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Abstract. Sparse systems of linear equations and eigen-equations arise at the heart of
many large-scale, vital simulations in DOE. Examples include the Accelerator Science and
Technology SciDAC (Omega3P code, electromagnetic problem), the Center for Extended
Magnetohydrodynamic Modeling SciDAC (NIMROD and M3D-C1 codes, fusion plasma
simulation). The Terascale Optimal PDE Simulations (TOPS) is providing high-performance
sparse direct solvers, which have had significant impacts on these applications. Over the
past several years, we have been working closely with the other SciDAC teams to solve their
large, sparse matrix problems arising from discretization of the partial differential equations.
Most of these systems are very ill-conditioned, resulting in extremely poor convergence
(sometimes no convergence) for many iterative solvers. we have successfully deployed our
direct methods techniques in these applications, which achieved significant scientific results
as well as performance gains. These successes were made possible through the SciDAC model of
computer scientists and application scientists working together to take full advantage of terascale
computing systems and new algorithms research.

1. Overview of SuperLU

SuperLU is a leading scalable solver for sparse linear systems using direct methods, which
is partly funded through the TOPS SciDAC project (led by David Keyes) [11]. It is
especially targeted for nonsymmetric, indefinite problems. The library routines perform an
LU factorization with numerical pivoting and triangular solutions through forward and back
substitutions. The factorization can be applied to non-square matrices. In addition, the driver
routines contain the functionalities of equilibrating the matrix, reordering the rows and columns
of the matrix for stability and sparsity, iterative refinement, estimating the condition number,
and computing the forward and backward error bounds. The solver supports both real and
complex data types.

The collection of routines has been carefully designed for optimal performance on modern
architectures. The sequential algorithm enhances data reuse in memory hierarchy by calling
Level 3 BLAS on supernodes, which has achieved up to 40% of the peak megaflop rate on many
hierarchical memory machines. The shared-memory algorithm exploits both coarse and fine
grain parallelism, and employs low-overhead dynamic scheduling to minimize parallel runtime.
The distributed-memory algorithm enhances scalability using static pivoting and 2D matrix
distribution, which lead up to a hundred-fold speedup on large matrices. Moreover, the solver has
an easy-to-use and flexible interface to accommodate various needs of the application programs,
such as one-factor-multiple-solves and multiple-factors of a sequence of similar matrices, which



occur in the multiple time-step computations. The solver can easily work with any other
reordering algorithms not implemented in SuperLU. All these different usage scenarios are
realized in one driver routine but with different settings of the input option argument. For
more details about the algorithms and software architecture, see [7]. In addition to being used
in many research codes from the labs and academics, SuperLU is also adopted in commercial use,
including Mathematica, FEMLAB, Python, and the HP Mathematical Library, among others.

2. Deployment of SuperLU in fusion simulation codes

The SciDAC Center for Extended Magnetohydrodynamic Modeling (CEMM) [1] is providing the
fusion community with flexible and sophisticated tools which can lead to improved understanding
of the complex phenomena in fusion reactor plasmas (e.g., in the future ITER experiment), and
ultimately lead to better approaches to harnessing fusion energy.

2.1. NIMROD code

NIMROD [9] models fluid-based nonlinear macroscopic electromagnetic dynamics in fusion
plasmas. The long-wavelength, low-frequency, nonlinear phenomena involve large-scale changes
in the shape and motion of the plasma and severely constrain the operation of fusion experiments.
Therefore, the high-fidelity computer modeling is of great desire. The team’s primary high-end
computing resource is the 10 teraflop/s IBM SP (Seaborg) at the National Energy Research
Scientific Computing (NERSC) Center at Lawrence Berkeley National Laboratory.

NIMROD’s algorithm uses a high-order finite element representation of the poloidal plane
(2D) and a finite Fourier series representation of the toroidal direction (third dimension). The
time advance is semi-implicit, which updates the four physical fields separately during each time-
step. In three of these advances, different Fourier components (for the periodic coordinate) are
not coupled, and a set of systems arising from finite element discretization of the remaining two
coordinates (2D) are solved. These correspond to linearized resistive MHD and are relatively
small. In the last of the four advances (temperature), the Fourier components are coupled, so
there is one larger linear system. The entire calculation is 3D nonlinear resistive MHD, and
requires solution of several large sparse linear systems in parallel at every time step. All the
matrices involved are complex.

The stiffness inherent in the physical system leads to matrices that are ill-conditioned,
since rapid wave-like responses provide global communication within a single time step. The
preconditioned conjugate gradient (CG) solver that was used was the most computationally
demanding part of the algorithm — took more than 90% of the simulation time. Through
SciDAC interactions, we introduced SuperLU to the team, and have been working closely
with them for code integration and performance tuning. The performance improvements were
dramatic. For 2D linear calculations of MHD instabilities, NIMROD runs more than 100 times
faster with SuperLU than it does with the PCG solver. The linear calculations are extremely
useful for preliminary explorations that help determine which cases require in-depth nonlinear
simulations. For the cutting-edge 3D, nonlinear tokamak simulations (Figure 1), they use a
matrix-free CG solver, but compute the elements of an approximate matrix, which is diagonal
with respect to Fourier index. The independent submatrices of this approximate matrix are
passed to SuperLU, and the approximated systems are solved as the preconditioning step for
the matrix-free CG solve. In this case, NIMROD with SuperLU runs 4-5 times faster than
before. The nonlinear simulations accumulate relatively small changes in the matrix elements at
each time step, but there are no changes to the sparsity pattern. The NIMROD implementation
allows SuperLU to reuse its factors repeatedly until the matrix elements accumulate a significant
change and refactoring becomes necessary. Refactoring makes the performance improvement less
dramatic in nonlinear simulations than in linear calculations, but it is still very significant.

The net result is that computationally demanding simulations of macroscopic MHD



instabilities in tokamak plasmas, which until now were considered too difficult, have become
routine.

Figure 1. Full 3D numerical simulation of plasma particle drift orbit in a tokamak.

2.2. M3D-C1 code

M3D is a Multilevel, 3D, parallel, plasma simulation code developed by a multi-institution
collaboration [1]. It is suitable for performing linear and nonlinear calculations of plasmas in
toroidal topologies including tokamaks and stellarators. M3D-C1 is a new code being developed
by Steve Jardin et al. [4] at Princeton Plasma Physics Laboratory. It performs implicit solution
of the two-fluid MHD equations using high-order finite elements with C1 continuity. The extreme
stiffness and anisotropy lead to very ill-conditioned linear systems that posed great challenges
to many iterative solvers, including algebraic multigrid method. This naturally pointed to
our direct solver. Although the fusion group at PPPL performs production runs on the IBM
supercomputer at NERSC, they also acquired a 32-processor SGI Altix system locally to for new
code development in order to shorten the turn-around time. For this new 64-bit architecture,
we have resolved a word-type inconsistency problem in the interface routines that communicate
between SuperLU and M3D-C1 codes. As a result, the PPPL team can run the largest jobs
in a fully parallel mode, with even better than “ideal” scaling. This greatly increased the
productivity of the M3D-C1 development activities, and removed the linear systems solving as
a bottleneck.

In the entire nonlinear calculation, the same linear system needs to be solved several times
before it changes the nonzero values. The SuperLU interface easily facilitate this need by reusing
its factors repeatedly with different right-hand sides.

3. Deployment of SuperLU in accelerating cavity modeling

In shape optimization and sensitivity study of next-generation particle accelerators, there is
a need to compute approximate cavity resonance frequencies (RF) and the electromagnetic
field associated with a cavity structure. Researchers at Stanford Linear Accelerator Center
(SLAC) have developed a widely used parallel finite-element code, Omega3P, for electromagnetic
modeling of large, complex 3D structures in the frequency domain [5]. The continuum model
is represented by the curl-curl formulation of Maxwell’s equation in a 3D cavity geometry.
The finite-element discretization leads to a generalized eigenvalue problem Kx = λMx, where
K is real symmetric and M is symmetric and positive definite. The problem is challenging
because of the wide distribution of the spectrum, the need for finding the relatively small interior
eigenvalues, and the large problem size (a high resolution modeling requires millions of mesh
points). Typically, there are large number of eigenvalues very close to zero. Only the first few
(tens to hundreds) smallest “nonzero” eigenvalues and their associated eigenvectors are sought.
Figure 2 (a) shows the eigenvalue distribution of a small eigensystem.

An effective method to find these small interior eigenvalues is by spectral transformation,
which yields the new eigensystem: M(K − σM)−1Mx = µMx, with µ = 1

λ−σ
. The largest

eigenvalues of the new system correspond to the original eigenvalues closest to the shift σ, and



they are well separated from the others. At each iteration of the Lanczos algorithm, a shifted
linear system involving operator (K−σM)−1 must be solved. The earlier algorithm in Omega3P
is called the Filtering algorithm [10], which solves the linear system iteratively, and in the end
uses a Newton-type correction to refine the eigen-approximation. We implemented an efficient
Exact Shift and Invert Lanczos (ESIL) solver by coupling parallel SuperLU [8] with parallel
ARPACK [6], in which SuperLU is used for direct solution of the linear system (K −σM)x = b.
This enabled accurate calculation of eigenvalues and allows verification of the other eigensolvers.
Figure 2 (b) compares the parallel runtimes of the two algorithms for a 47-cell DDS cavity
structure, for which the matrix dimension is 1.3×106 and 16 eigenpairs close to a specified shift
were computed. For ESIL, we used two different reordering methods: METIS and minimum
degree. It is clear that although each iteration of ESIL is more expensive than Filtering, many
fewer iterations are needed by ESIL (about 9 iterations per eigenvalue), and it is 2 to 3 times
faster than Filtering.

The largest system solved is of order 7.5 million, with 304 million nonzeros in each matrix.
Using one shift, we were able to find 10 eigenvalues close to that shift. PARPACK needs 5̃.5
solve for each eigenvalue. The entire eigensolver time is about 2.5 hours using 24 processors of
Seaborg.
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Figure 2. (a) Eigenvalue distribution of an accelerator model problem. The eigenvalues sought are in
the region marked by the arrow. (b) Parallel runtimes of Filtering and ESIL algorithms on the IBM SP
at NERSC.

4. Recent and future developments driven by SciDAC applications

Most of our recent algorithmic research and software developments were motivated by the needs
from SciDAC applications. In particular, the large scale of the problem revealed some bottlenecks
in the solver that were not detected while testing smaller problems, and our SciDAC-funded work
has been mostly in parallel algorithms/codes.

For parallel SuperLU, we re-designed the matrix redistribution algorithm that transforms
the user input format into the internal distributed format, which led to 10-20 times faster for
the largest problems in accelerator modeling. We designed a parallel symbolic factorization
algorithm which works directly on the distributed input matrix without the need to gather
the distributed graph onto one single processor. The parallelism achieved 5 times reduction in
per-processor memory usage and 12 times speedup [3]. This removed the memory bottleneck
for the largest problems. We designed a new reordering algorithm for nonsymmetric matrices
which respects the unsymmetric structure and preserves sparsity better — up to 22% reduction
in factor size was observed.

When modeling the full size accelerator structure, the eigenvalue problems can reach
dimension of millions. The ESIL method would be prohibitively expensive because of the
need for entire factorizations. This prompted us to look into the Algrbraic Multilevel Sub-
structuring Algorithm (AMLS). AMLS is very attractive for largest eigenvalue problems because



of its reminiscence of domain decomposition technique successfully used for linear systems. An
important step is the congruence transformation resulting in many decoupled subproblems.
This step requires block Gaussian elimination but at a coarse-grain level, and is therefore
amenable to a scalable implementation. The techniques in sparse direct methods are very
useful here. We developed an efficient algorthm and code that can handle large null space
specific in the accelerator problems. We analyzed the approximate properties of the algorithm,
investigated the complexity of its implementation, and devised better mode selection criteria to
improve its efficiency, and demonstrated its performance advantage over ESIL for the accelerator
problems [12].

In addition to improving SuperLU, we are exploring some asymtotically faster algorithms.
We found that many SciDAC applications involve elliptic PDEs, for which the inverse of the
continuous operator looks like an integral operator with the kernel smooth away from the
diagonal, so the off-diagonal blocks of the discretized inverse operator have low numerical-
ranks. We can rapidly compute the low-rank structures on the fly using a compressed
representation such as SVD, which also exhibits high locality. The resulting factorization
algorithm would have almost-linear time complexity, breaking the theoretical lower bound of
classical Gaussian elimination algorithm [2]. The innovative ideas to linear system are analogous
to fast multipole methods to matrix-vector multiplication, and will have great impact for tera-
scale PDE computations.
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