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ABSTRACT	OF	THE	DISSERTATION	

	
Full	characterization	of	transcriptomes	using	long	read	sequencing	
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Dana	Elizabeth	Wyman	
	

Doctor	of	Philosophy	in	Mathematical,	Computational,	and	Systems	Biology	
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Professor	Ali	Mortazavi,	Chair	
	
	
	

					Almost	all	multi-exonic	human	genes	are	believed	to	undergo	alternative	splicing,	giving	

rise	to	isoforms	with	potentially	distinct	functions,	tissue	specificities,	and	developmental	

roles.	Differential	isoform	usage	has	been	implicated	in	both	normal	developmental	

processes	and	in	disease	states.	Much	of	the	previous	work	attempting	to	identify	and	to	

quantify	individual	gene	isoforms	has	been	performed	using	short-read	RNA	sequencing	on	

the	Illumina	platform.	While	this	technology	is	considered	the	state	of	the	art	for	

quantifying	gene	expression,	short	reads	are	unable	to	accurately	resolve	full-length	

mammalian	isoforms,	which	can	be	multiple	kilobases	long.	Although	computational	

methods	have	been	developed	to	reconstruct	isoforms	from	short	reads,	these	are	not	able	

to	overcome	the	fundamental	limitations	of	the	technology.	

		 Long-read	sequencing	platforms	such	as	Pacific	Biosciences	(PacBio)	and	Oxford	

Nanopore	(ONT)	bypass	the	transcript	reconstruction	challenges	of	short	reads	and	offer	

the	additional	advantage	of	sequencing	single	molecules	individually.	PacBio	sequencing	in	

particular	has	been	used	extensively	for	de	novo	isoform	reconstruction	but	was	previously	

not	deemed	useful	for	quantitative	measurements	of	gene	or	transcript	expression	due	



xi	
	

both	to	the	cost	of	the	assay	and	to	its	relatively	low	throughput.	However,	technical	

advances	have	increased	the	yield	as	well	as	the	accuracy	of	longer	reads,	presenting	an	

opportunity	to	use	these	technologies	directly	for	isoform-level	quantification.	Here,	I	

present	novel	methods	for	long-read	error	correction,	isoform	discovery,	and	

quantification	in	RNA	samples	from	both	pooled	and	single	cells.	First,	I	introduce	

TranscriptClean,	a	program	that	leverages	a	reference	genome	to	correct	common	

sequencing	errors	in	long	reads.	Next,	I	describe	TALON,	a	technology-agnostic	approach	to	

discovering	and	quantifying	isoforms	in	multiple	long-read	datasets.	Finally,	I	apply	TALON	

to	the	analysis	of	deeply	sequenced	single	cells	from	the	developing	mouse	limb	bud,	

demonstrating	that	long	reads	can	provide	key	biological	insights	in	the	context	of	

development.	Together,	these	projects	help	pave	the	way	for	long-read	transcriptome	

analyses	on	both	the	bulk	and	single-cell	level,	which	grant	us	new	insights	into	isoform	

expression	across	diverse	human	and	mouse	tissues.	
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Chapter	1	

Introduction:	Characterizing	gene	and	isoform	expression	using	third-

generation	sequencing	technologies	
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Chapter	1	

Introduction:	Characterizing	gene	and	isoform	expression	using	third-

generation	sequencing	technologies	

1.1. Abstract	

The	process	of	alternative	splicing	can	generate	isoforms	from	the	same	gene	with	

potentially	different	biological	functions.	Depending	on	the	context	in	which	an	isoform	is	

expressed,	it	may	contribute	to	normal	biological	processes	or	to	a	disease	state.	

Unfortunately,	the	most	common	method	for	profiling	gene	expression,	short-read	RNA-

seq,	cannot	readily	distinguish	isoforms	due	to	fundamental	limits	of	the	technology.	

However,	long-read	sequencing	platforms	such	as	PacBio	and	Oxford	Nanopore	have	the	

potential	to	greatly	improve	our	understanding	of	isoform-level	RNA	expression	in	the	

context	of	both	normal	development	and	disease.	Here,	I	review	different	methods	for	

studying	alternative	splicing,	with	particular	focus	on	the	current	use	of	long-read	

sequencing	in	the	field.	Additionally,	I	describe	how	single-cell	RNA	sequencing	(scRNA-

seq)	methods	have	been	adapted	to	work	with	long-read	technologies.		

	

1.2. Introduction	

1.2.1. Alternative	splicing	in	development	and	disease	

Differences	in	gene	expression	are	essential	to	shaping	the	wide	variety	of	cell	

phenotypes	present	in	an	organism	throughout	its	lifetime1.	In	eukaryotes,	the	composition	

of	the	transcriptome	is	further	modified	by	the	process	of	alternative	splicing.	During	

splicing,	intronic	sequences	and	certain	exons	are	excised	from	the	mRNA	transcript,	thus	

expanding	the	number	of	possible	transcripts	that	a	single	gene	can	code	for2.	In	the	human	
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genome,	approximately	~20,000	protein	coding	genes	are	believed	to	produce	more	than	

100,000	isoforms	through	alternative	splicing,	greatly	expanding	the	potential	diversity	of	

the	proteome3.	Depending	on	the	exons	they	contain,	isoforms	from	the	same	gene	may	

have	similar,	distinct,	or	even	antagonistic	functions4,5.	In	one	striking	case,	the	BCL-XS	

isoform	of	the	BCL2L1	gene	is	known	to	promote	apoptosis,	while	a	second	alternatively	

spliced	isoform,	BCL-XL,	instead	inhibits	apoptosis	and	is	expressed	in	many	cancers6,7.	

Some	isoforms	have	been	observed	to	be	very	specific	to	a	particular	tissue	or	

developmental	stage8–10.	This	type	of	specificity	may	be	achieved	through	the	context-

specific	expression	of	different	RNA-binding	proteins	(RBPs),	which	bind	to	sequence	

motifs	within	mRNA	molecules	and	help	direct	the	splicing	machinery11.	For	example,	the	

RBFOX	and	NOVA	families	of	splicing	factors	promote	inclusion	of	specific	exons	in	

developing	human	and	mouse	neurons12,13.	NOVA	in	particular	is	known	to	regulate	

splicing	of	genes	involved	in	maintaining	synaptic	plasticity14.		Aberrant	isoform	expression	

patterns	have	been	implicated	in	multiple	diseases,	particularly	in	tissues	such	as	the	brain	

where	alternative	splicing	is	particularly	prolific12,15.	For	instance,	the	relative	proportions	

of	Mapt	isoforms	in	brains	affected	by	Alzheimer’s	disease	deviate	from	normal	levels,	

favoring	a	class	of	transcripts	that	contain	an	extra	microtubule	binding	domain16.		

	

1.2.2. Application	of	RNA-seq	to	the	study	of	isoforms	and	alternative	splicing	

Over	the	years,	many	methods	have	been	applied	to	the	twin	problems	of	

characterizing	and	quantifying	alternative	splicing	and	exon	usage.	The	first	of	these,	the	

northern	blot,	was	introduced	in	1977.	This	technique	detects	mRNA	from	a	particular	

gene	or	isoform	by	first	isolating	the	RNA	by	size,	affixing	it	to	a	membrane,	and	then	
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visualizing	the	signal	by	hybridizing	the	RNA	to	labeled	probes17,18.	Beginning	in	the	1990s,	

the	reverse	transcription	polymerase	chain	reaction	(RT-PCR)	technique	was	applied	to	

quantify	isoforms19–21.		RT-PCR	is	still	considered	a	gold	standard	for	validating	gene	

expression	measurements	today.	On	the	characterization	side,	Sanger	sequencing	of	

expressed	sequence	tags	(ESTs)	made	it	possible	to	identify	new	splicing	events	and	call	

novel	genes22.	However,	northern	blots,	RT-PCR,	and	EST	sequencing	are	considered	low-

throughput	techniques	and	are	therefore	not	readily	applicable	to	full	transcriptomes23.	

Isoform-specific	microarrays	address	this	scalability	problem	by	arranging	thousands	of	

transcript	or	exon-specific	probes	on	a	chip,	allowing	massively	parallel	measurements	to	

be	made	on	a	transcriptome-wide	level24.	However,	microarrays	suffer	from	challenges	of	

their	own.	The	signal	tends	to	be	noisy,	and	it	is	often	challenging	to	design	probes	to	

accurately	detect	specific	isoforms	of	a	gene23.	And	although	it	is	possible	to	design	probes	

to	screen	for	novel	splicing	provided	that	the	flanking	exons	are	known,	microarrays	are	

mostly	limited	to	detecting	known	events.		

	

	The	development	of	high-throughput,	short-read	RNA	sequencing	methods	(RNA-

seq)	around	2008	completely	changed	the	way	gene	and	isoform	expression	are	studied	

today.	Although	individual	workflows	vary,	RNA-seq	broadly	involves	reverse-transcribing	

RNA	to	cDNA,	and	fragmenting	the	cDNA	into	short,	uniform	pieces	(50-300bp),	followed	

by	amplification	and	high-throughput	sequencing25,26.	The	resulting	reads	can	be	aligned	to	

the	reference	transcriptome	or	genome	and	counted	in	order	to	provide	a	quantitative	

expression	level	for	both	known	and	unknown	genes25,26.		Cheap	and	relatively	accurate,	

RNA-seq	has	been	widely	adopted	across	biological	and	biomedical	disciplines	as	the	
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predominant	way	to	study	gene	expression.	This	has	included	large	consortia	such	as	the	

Encyclopedia	of	DNA	elements	(ENCODE).	As	part	of	its	mission	to	characterize	the	

functions	of	all	regions	in	the	genome,	ENCODE	has	generated	and	released	hundreds	of	

RNA-seq	datasets	from	a	variety	of	human	and	mouse	cell	types27.	While	ENCODE	largely	

focuses	on	phenotypically	normal	samples,	RNA-seq	has	also	proved	a	powerful	tool	for	

characterizing	gene	expression	in	disease.	For	instance,	the	Cancer	Genome	Atlas	(TCGA)	

has	amassed	RNA-seq	data	from	thousands	of	patient	samples	in	over	30	cancer	types28.	

This	is	an	invaluable	resource	for	the	cancer	research	community,	and	has	helped	advance	

breakthroughs	in	the	diagnosis,	prevention,	and	treatment	of	cancer29,30.	

	

Short-read	RNA-seq	data	has	also	been	widely	used	to	study	alternative	splicing31.	

For	instance,	computational	methods	have	been	developed	to	quantify	differential	exon	

usage	across	samples	from	RNA-seq	data32.	Known	and	novel	splice	junctions	can	also	be	

quantified	from	RNA-seq	data	by	counting	the	number	of	reads	spanning	the	junctions	in	

question33–35.	However,	recovering	alternatively	spliced	junctions	of	a	full	isoform	is	

challenging	with	this	technology.	The	core	problem	is	that	short-read	sequencing	requires	

cDNA	transcripts	to	be	cut	into	50-300bp	pieces	and	amplified	many	times	over	(Figure	

1.1).	Since	mammalian	transcripts	routinely	measure	multiple	kilobases	in	length,	short	

reads	seldom	span	more	than	one	splice	junction	at	a	time8.	This	makes	it	very	difficult	to	

tell	which	exons	were	originally	present	in	the	source	transcript.	A	series	of	bioinformatic	

methods	have	been	devised	to	reconstruct	and	quantify	isoforms	from	short-read	data.	For	

example,	the	MAJIQ	method	developed	by	Vaquero-Garcia	et	al.	assembles	a	splicing	graph	

from	the	transcriptome	annotation,	then	models	alternative	isoform	usage	across	samples	
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and	conditions	by	calling	local	splice	variation	events	for	each	gene	from	short	reads36.		The	

rMATS	package	provides	a	Bayesian	statistical	framework	for	modeling	isoform	

uncertainty	in	RNA-seq	measurements	and	incorporates	biological	replicates	to	help	

increase	statistical	power	to	call	differential	isoform	events	37.	However,	one	major	

drawback	of	rMATS	is	that	it	uses	a	two-isoform	model	for	each	gene,	which	does	not	

realistically	capture	the	true	complexity	of	alternative	splicing.	The	Kallisto	program	takes	

a	different	approach	by	constructing	a	de	Bruijn	graph	from	k-mers	of	reference	transcript	

sequences,	and	then	pseudo-aligning	short	reads	to	these	graphs38.	Expectation	

maximization	is	used	to	assign	reads	to	the	isoforms	that	they	are	most	likely	to	originate	

from38.	While	this	algorithm	is	able	to	decide	which	isoforms	are	consistent	with	the	

observed	short-read	data,	it	cannot	resolve	the	ground	truth	of	exactly	which	isoforms	

were	originally	present.	In	addition,	this	method	is	limited	by	its	dependence	on	the	choice	

of	transcriptome	reference	and	can	only	measure	known	isoforms.	Overall,	RNA-seq	has	

proved	useful	for	identifying	alternative	exon	and	splice	junction	usage	but	falls	short	with	

respect	to	identifying	complete	splicing	patterns	in	full-length	transcripts.		

	

1.2.3. Emerging	long-read	sequencing	technologies	

For	over	a	decade,	next-generation,	short-read	sequencing	has	reigned	supreme	in	

genomics.	However,	it	is	far	from	the	only	option	available.	Since	as	early	as	2010,	third-

generation	sequencing	platforms	such	as	PacBio	and	Oxford	Nanopore	have	pioneered	the	

use	of	long	reads	in	the	field39,40.	These	platforms	are	in	principle	ideal	for	sequencing	

isoforms	because	they	produce	reads	long	enough	to	capture	entire	mRNA	transcripts	at	

single-molecule	resolution.	PacBio	has	a	maximum	read	length	of	60	kb,	while	Oxford	
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Nanopore	has	been	known	to	generate	reads	up	to	1	Mb41.	However,	both	technologies	

have	historically	been	plagued	by	two	major	problems:	low	throughput	in	terms	of	read	

count	and	indel-driven	error	rates	of	up	to	15-20%39.	Compared	to	a	single-pass	error	rate	

of	less	than	1%	in	Illumina	short-read	sequencing,	this	is	exceedingly	high41.	The	sources	of	

these	errors	differ	in	PacBio	and	Oxford	Nanopore	due	to	underlying	differences	in	the	

technology.	In	a	PacBio	run,	cDNA	molecules	are	first	diffused	into	a	series	of	individual	

zero-mode	wave	guide	(ZMW)	structures	containing	a	DNA	polymerase.	As	DNA	synthesis	

proceeds,	fluorescently	labeled	nucleotides	are	incorporated	into	the	growing	sequence	in	

each	ZMW,	and	the	emitted	pulses	of	light	are	captured	on	video39.	Nucleotides	are	

identified	in	real	time	based	on	the	emission	profile	of	the	light	pulse	generated	while	the	

base	resides	with	the	polymerase39.	Indels	and	mismatches	are	introduced	into	the	

sequence	when	pulses	are	missed,	duplicated,	or	when	the	emission	profile	is	mistakenly	

attributed	to	the	wrong	base39.	These	errors	are	considered	random	rather	than	related	to	

the	underlying	composition	of	the	source	sequence,	which	means	that	additional	read	

coverage	can	help	improve	accuracy39,41,42.		

	

Oxford	Nanopore,	on	the	other	hand,	has	long	struggled	with	non-random,	

sequence-specific	bias	in	their	errors43.		In	this	technology,	individual	DNA	or	RNA	

molecules	are	pulled	through	bioengineered	protein	pores	spanning	a	membrane	with	an	

electrical	gradient40.	As	nucleotides	pass	through	the	pore,	the	change	in	electrical	current	

is	measured	and	bases	are	called	from	the	characteristic	changes	in	signal40.	Approximately	

five	connected	nucleotides	fit	inside	a	pore	at	any	given	time,	so	basecalling	must	be	

performed	on	this	sliding	window	rather	than	on	individual	bases43,44.	Early	Nanopore	



8	
	

basecallers	used	the	Viterbi	algorithm	or	hidden	Markov	models	for	this	purpose,	while	

newer	versions	apply	deep	neural	networks44–46.	Some	sequence	combinations,	such	as	

homopolymers,	are	more	difficult	to	call	correctly	than	others,	which	means	that	Nanopore	

errors	come	from	systematic	as	well	as	random	sources47.	Nevertheless,	Oxford	Nanopore’s	

approach	to	sequencing	offers	some	substantial	advantages	over	PacBio.	Since	it	does	not	

rely	on	sequencing	by	synthesis,	Oxford	Nanopore	is	able	to	sequence	native	RNA	

molecules	directly	without	amplification.	Direct-RNA	sequencing	avoids	the	PCR	artifacts	

and	amplification	biases	seen	in	cDNA	technologies	and	offers	the	added	benefit	of	

detecting	RNA	modifications48.	In	addition,	Oxford	Nanopore	has	a	much	lower	capital	cost	

and	smaller	device	footprint	compared	to	PacBio.	This	has	sped	its	adoption	by	research	

groups	around	the	world	and	allowed	sequencing	to	be	performed	in	real	time	in	

environments	ranging	from	rainforests	to	the	International	Space	Station49,50.		

	

	 Significant	efforts	have	been	made	to	reduce	long-read	error	rates.	The	most	

fundamental	of	these	approaches,	consensus	sequencing,	works	by	comparing	multiple	

sequencing	passes	over	the	same	source	molecule	in	order	to	more	accurately	call	the	read	

sequence.	In	the	case	of	PacBio,	this	is	achieved	by	ligating	circular	adaptors	onto	the	blunt	

ends	of	each	double-stranded	cDNA	during	library	preparation51.	This	template	opens	up	

into	a	circle	during	sequencing,	allowing	the	DNA	polymerase	to	continuously	sequence	the	

insert	molecule	(Figure	1.2).	After	sequencing,	the	PacBio	circular	consensus	(CCS)	

software	splits	the	read	into	constituent	subreads	based	on	the	delimiting	adaptor	

sequences,	and	compares	them	in	order	to	arrive	at	a	single	consensus	sequence	for	the	

insert52.	Since	PacBio	has	a	stochastic	error	profile,	CCS	is	highly	effective	in	correcting	
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single-pass	errors,	but	it	should	be	noted	that	its	success	depends	on	obtaining	sufficient	

numbers	of	sequencing	passes41.	CCS	therefore	becomes	less	effective	as	the	insert	

molecule	increases	in	length.	Consensus	sequencing	methods	have	also	been	developed	for	

Oxford	Nanopore.	For	instance,	the	R2C2	method	from	Volden	et	al.	uses	a	molecular	

cloning	method	called	Gibson	assembly	to	circularize	the	cDNA	transcript,	and	amplifies	it	

to	create	multiple	consecutive	copies	of	the	insert	for	Nanopore	sequencing53.	However,	the	

non-random	errors	generated	by	Oxford	Nanopore	are	a	continuing	obstacle,	since	

consensus	correction	is	less	likely	to	succeed	when	there	is	an	underlying	sequence	bias.	

Also,	this	method	only	works	on	cDNA,	so	it	is	not	useful	for	mitigating	direct-RNA	

sequencing	errors.	

	

	 In	spite	of	the	associated	challenges,	third-generation	sequencing	technologies	have	

been	widely	used	to	study	alternative	splicing.	Given	the	high	cost	and	low	throughputs	of	

the	original	platforms,	many	studies	have	used	PacBio	to	assemble	a	catalogue	of	full-

length	isoforms	in	the	sample	of	interest,	and	then	mapped	matching	short-read	data	to	

this	reference	transcriptome	in	order	to	quantify	isoform	expression52,54–56.	The	PacBio-

affiliated	transcriptome	pipeline,	Isoseq,	is	designed	for	this	type	of	analysis.	Isoseq	

performs	de	novo	isoform	assembly	by	clustering	PacBio	reads	in	a	sample	and	collapsing	

them	to	form	distinct	transcript	models52.	One	advantage	of	this	approach	is	that	it	can	be	

applied	in	organisms	that	lack	a	high-quality	reference	genome,	making	it	possible	to	

identify	genes	in	less	well-studied	species.	However,	the	Isoseq	paradigm	is	less	ideal	in	

settings	where	reference	availability	is	not	a	problem,	such	as	for	human	and	mouse.	For	

example,	clustering-based	methods	have	been	known	to	collapse	transcripts	from	highly	
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similar	gene	families	into	the	same	model,	and	they	routinely	merge	shorter	isoforms	from	

the	same	gene	into	longer	ones57.	More	concerningly,	isoform	polishing	steps	obscure	

interesting	sequence	differences	such	as	small	variants	and	RNA	editing	events	that	may	

have	occurred	in	different	reads.	Finally,	different	clustering	runs	on	the	same	data	may	

generate	substantially	different	results	depending	on	how	the	clusters	were	initialized	and	

merged,	leading	to	problems	with	reproducibility58.	

	

Recently,	technical	advances	have	increased	the	yield	as	well	as	the	accuracy	of	long	

reads,	opening	up	new	avenues	for	isoform	study.	To	give	a	sense	of	the	scale	involved,	the	

newest	PacBio	Sequel	2	machine	produces	up	to	8	million	reads	per	sequencing	unit	

compared	to	150,000	on	the	older	RSII	machines59.	Comparable	improvements	have	been	

made	on	the	Oxford	Nanopore	side	as	well59.	This	progress	towards	more	cost-effective,	

deep	long-read	sequencing	raises	the	possibility	of	directly	quantifying	isoform-level	

expression	from	PacBio	and	Oxford	Nanopore	reads	themselves.	However,	computational	

challenges	remain.	Most	long-read	software	packages	were	not	originally	designed	for	this	

purpose,	relying	on	read	clustering	or	assembly	approaches	for	calling	isoforms.		For	

example,	the	SQANTI	package	was	originally	developed	to	perform	quality	control	on	

transcript	models	assembled	by	the	PacBio	Isoseq	pipeline,	and	uses	isoform	abundance	

estimates	from	the	Isoseq	collapsing	step	as	input	for	quantification60.	A	different	program,	

FLAIR,	uses	the	Minimap2	aligner	to	map	long	reads	to	each	other	in	order	to	create	a	

consolidated	isoform	model	set,	then	assigns	the	reads	to	these	models	after	various	

sequencing	error	correction	steps61.	The	StringTie2	package	focuses	on	the	problem	of	

assembling	full-length	isoforms	from	multiple	long	reads	much	the	way	one	would	with	



11	
	

short	reads,	but	this	approach	has	the	disadvantage	of	chaining	together	reads	that	might	

represent	distinct	isoforms	in	their	own	right	rather	than	originating	from	one	molecule62.	

Another	problem	is	that	many	long-read	software	packages	were	developed	with	either	

PacBio	or	Oxford	Nanopore	in	mind,	even	if	they	can	technically	be	made	to	run	on	both.	In	

light	of	this,	new	methods	are	needed	to	process	long	read	data	from	different	platforms	in	

a	way	that	that	allows	for	simultaneous	transcript	discovery	and	quantification	in	both	

regular	bulk	RNA	samples	and	single	cells.	

	

1.2.4. Single-cell	transcriptomics	

Thus	far,	our	discussion	has	centered	on	bulk,	pooled-cell	approaches	to	

characterizing	gene	and	isoform	expression.	However,	in	some	systems,	bulk	sequencing	is	

not	sufficient	to	understand	the	biology	at	hand.	When	thousands	or	millions	of	cells	are	

processed	together,	the	resulting	expression	measurements	are	effectively	averaged	across	

the	sample,	obscuring	interesting	cell-cell	differences	that	may	have	significant	biological	

implications63.	This	is	especially	problematic	when	the	sample	in	question	consists	of	

heterogenous	cell	types	or	when	the	cell	type	of	interest	is	rare	in	the	population64.	For	

instance,	patient	tumor	samples	commonly	used	for	cancer	research	typically	contain	a	mix	

of	cell	types,	ranging	from	the	cancerous	tissue	itself	to	blood	vessels,	immune	cells,	and	

phenotypically	normal	surrounding	tissue.	Considerable	heterogeneity	may	also	exist	

among	cells	that	nominally	belong	to	the	same	type.	For	example,	T-cell	receptor	diversity	

is	essential	in	order	to	detect	and	destroy	invading	pathogens65.	Bulk	RNA-seq	experiments	

conducted	on	such	samples	are	likely	to	average	out	interesting	differences	between	cells	

and	subpopulations.		
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In	light	of	these	challenges,	single-cell	RNA	sequencing	approaches	have	been	

developed	to	allow	transcriptome	analysis	to	take	place	on	the	level	of	individual	cells66–69.	

These	can	be	broadly	divided	into	two	classes:	those	that	amplify	transcripts	in	full	(i.e.	

SMART-seq,	SPLiT-seq)67,70,	and	methods	that	tag	and	sequence	only	the	3’	or	the	5’	end	of	

transcripts	(i.e.	Drop-Seq,	10X	Chromium,	STRT-seq)68,71,72.	These	methods	come	with	

important	tradeoffs.	Full-length,	single-cell	preparations	preserve	transcript	information,	

but	are	historically	low-throughput	with	respect	to	cell	count	because	they	require	cells	to	

be	placed	in	individual	wells.	The	combinatorial	barcoding	approach	introduced	by	SPLiT-

seq	represents	a	potential	improvement	here,	since	it	does	not	require	physical	separation	

of	the	cells70.	Conversely,	end-tagging	approaches	allow	tens	of	thousands	of	cells	to	be	

sequenced	at	a	time,	and	have	been	leveraged	by	consortia	such	as	the	Human	Cell	Atlas73	

and	Tabula	Muris74	to	exhaustively	catalogue	cell	subtypes	in	human	and	mouse.	However,	

3’-end	methods	necessarily	lack	any	kind	of	isoform	or	promoter	usage	information	

because	they	sequence	only	the	3’	end	of	the	mRNA.	By	virtue	of	the	higher	cell	count,	these	

methods	also	tend	to	have	lower	read	depths	per	cell,	resulting	in	fewer	genes	(or	

transcripts)	detected.	Overall,	the	tradeoffs	between	full-length	and	3’-end	methods	set	up	

a	choice:	more	in-depth	information	for	few	cells,	or	lower-resolution	information	for	a	

greater	number.			

	

Recent	studies	have	combined	full-length	scRNA	library	preparation	with	long-read	

sequencing	to	assay	isoforms	on	the	single-cell	level.	These	have	typically	employed	a	

hybrid	approach,	using	short	reads	to	identify	cell	types	and	quantify	gene	expression,	
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while	using	long	reads	to	catalogue	isoforms.	The	first	of	these	studies	were	conducted	on	a	

very	small	number	of	cells	(<	10)75,76.	For	instance,	Byrne	et	al.	applied	Oxford	Nanopore	

cDNA	sequencing	to	seven	mouse	B1a	cells	and	were	able	to	detect	many	of	the	same	genes	

captured	in	corresponding	short-read	data76.	Overall,	the	sequencing	depth	was	high	but	

inconsistent,	ranging	from	17,749	to 128,726	Nanopore	reads	per	cell.	Gupta	et	al.	took	an	

different	approach,	developing	the	ScISOr-seq	method	to	profile	a	higher	number	of	cells	

(>1,000)	from	the	mouse	brain	at	the	expense	of	low	read	depth	(median	270	long	reads	

per	cell)77.	In	ScISOr-seq,	short-read	3’-end	sequencing	is	used	to	assign	a	cell	type	identity	

to	each	cell,	and	long-read	PacBio	sequencing	is	used	to	call	isoforms.	This	hybrid	approach	

has	made	it	possible	to	examine	alternative	isoform	usage	across	different	cell	types	for	

hundreds	of	cells.	Similar	approaches	have	been	pioneered	using	Oxford	Nanopore	

sequencing	as	well53,78.	Notably,	in	all	of	these	studies,	the	read	counts	per	cell	were	too	low	

or	too	variable	to	attempt	direct	quantification	of	isoforms	from	the	long	reads	themselves.	

To	the	best	of	our	knowledge,	no	publication	has	achieved	this	yet.	

	

	 As	the	field	moves	toward	isoform-level	analyses	in	single	cells,	it	will	have	to	

contend	with	many	of	the	same	challenges	faced	by	conventional	scRNA-seq	on	the	gene	

level.	These	include	amplification	bias,	signal	dropout,	and	the	delicate	matter	of	

distinguishing	between	true	biological	variation	and	technical	artifacts79.	Compared	to	bulk	

methods,	single-cell	experiments	must	work	with	much	smaller	starting	amounts	of	RNA,	

requiring	multiple	cycles	of	amplification	that	may	distort	the	underlying	proportions	of	

the	transcripts80.	Runaway	amplification	events	can	be	addressed	by	using	unique	

molecular	identifiers	(UMIs)	to	identify	and	remove	PCR	duplicates81.	However,	UMIs	
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cannot	address	PCR	biases	themselves,	nor	the	underlying	sampling	issues	faced	by	single-

cell	sequencing.		For	instance,	signal	dropout	is	a	persistent	challenge	for	scRNA-seq.	When	

the	abundance	of	a	particular	gene	is	recorded	as	zero	for	a	cell,	it	could	be	a	true	null	value	

or	simply	a	false	negative	resulting	from	low	read	depth	and	inefficient	RNA	capture79,80.	

Unfortunately,	this	is	likely	to	be	an	even	bigger	problem	for	isoforms	since	individual	

transcripts	are	per	definition	expressed	at	a	level	less	than	or	equal	to	the	genes	that	they	

originate	from.	Additionally,	the	differences	observed	in	single-cell	transcriptomics	can	

arise	from	many	sources,	including	biological	factors	such	as	cell	type	and	cell	cycle	stage,	

but	also	from	technical	sources	such	as	library	preparation	and	sequencing	batch	effects.	

Single-cell	analysis	suites	such	as	Seurat,	Scanpy,	and	MAST	have	all	implemented	methods	

to	regress	out	noise	from	technical	sources	and	to	deal	with	signal	dropout,	but	these	are	

ongoing	challenges82–84.	Isoform	quantification	on	the	single-cell	level	necessitates	the	

combination	of	deep	long-read	sequencing	with	improved	computational	methods	for	

analysis.	

	

1.3. Conclusions	

Alternative	splicing	of	mRNA	allows	the	same	gene	to	give	rise	to	different	isoforms.	

These	may	have	distinct	functional	properties	and	are	often	associated	with	specific	tissues	

and	developmental	contexts.	Disruptions	to	the	splicing	process	or	misexpression	of	an	

isoform	have	been	implicated	in	a	variety	of	diseases,	particularly	neurological	disorders.	

Therefore,	understanding	isoform-level	gene	expression	in	biological	systems	of	interest	is	

crucial.	Short-read	RNA-seq,	the	most	commonly	applied	RNA	sequencing	technology,	lacks	

isoform	resolution	due	to	the	short	length	of	the	reads	relative	to	the	typical	mammalian	
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mRNA	transcript.	Emerging	long-read	sequencing	technologies	overcome	this	limitation,	

but	new	computational	methods	are	needed	to	address	the	unique	challenges	associated	

with	these	techniques.	With	this	in	mind,	the	overall	goal	of	my	work	has	been	to	develop	

methods	for	long	read	transcriptome	analyses	that	are	technology-agnostic	with	respect	to	

platform	and	that	directly	use	long	reads	for	gene	and	transcript-level	quantification.		

	

In	Chapter	2,	I	discuss	TranscriptClean,	a	variant-aware,	reference-based	approach	

to	correcting	common	sequencing	errors	in	long	reads.	I	applied	TranscriptClean	to	

publicly	available	PacBio	data	and	showed	that	the	method	was	able	to	salvage	many	reads	

that	originally	contained	artifactual	noncanonical	splice	junctions,	allowing	the	corrected	

data	to	be	used	in	downstream	analyses.	The	results	of	this	study	were	published	in	the	

journal	Bioinformatics	in	January	2019.	

	

Next,	in	Chapter	3,	I	describe	TALON,	a	pipeline	I	developed	for	the	ENCODE	

consortium	to	annotate,	quantify,	and	filter	long	read	transcripts.	In	collaboration	with	my	

co-first	author	Gabriela	Balderrama-Gutierrez,	Fairlie	Reese,	and	others,	we	applied	TALON	

to	the	transcriptome	of	human	cell	line	GM12878	sequenced	on	both	the	PacBio	and	the	

direct-RNA	Oxford	Nanopore	platforms.	We	found	that	PacBio	more	reliably	captured	full-

length	mRNA	transcripts,	but	that	it	was	prone	to	reverse-transcription	artifacts.		

Additionally,	we	compared	long-read	PacBio	transcriptomes	from	the	mouse	cortex	and	

hippocampus,	identifying	both	known	and	novel	isoforms	specifically	expressed	in	each.		

This	manuscript	was	initially	posted	on	BioRxiv	in	pre-print	form	in	June	2019	and	was	

updated	in	March	2020.	It	is	currently	under	review.	
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In	Chapter	4,	I	present	a	collaboration	with	Barbara	Wold’s	laboratory	at	Caltech	to	

extend	the	TALON	pipeline	to	single-cell	PacBio	data	from	the	developing	mouse	limb	bud.	

To	focus	our	efforts	on	specific	cell	types	of	interest,	we	first	used	short-read	RNA-seq	

(SMART-seq)	as	a	screening	tool	to	distinguish	cells	from	three	different	muscle	stages	as	

well	as	the	erythro-myeloid	progenitors	and	tissue-resident	macrophages.	The	selected	

cells	were	then	sequenced	using	the	PacBio	platform.	Focusing	on	a	relatively	smaller	

number	of	cells	allowed	us	to	achieve	deep	long-read	coverage,	enabling	detection	of	

quantitative	gene	and	isoform	differences	between	cell	types	and	differentiation	stages.	My	

role	in	the	project	has	been	to	develop	computational	analyses	and	methods,	while	the	

experimental	work	was	performed	by	my	collaborators,	notably	Dr.	Brian	Williams	at	

Caltech.		

	

Finally,	in	Chapter	5,	I	propose	possible	extensions	of	this	work.	Long-read	

transcriptomics	is	expanding	rapidly	as	a	field	with	a	variety	of	applications	to	explore.	For	

instance,	long-read	platforms	are	suitable	for	measuring	allele-specific	isoform	expression	

provided	that	the	data	can	be	appropriately	phased.	In	addition,	I	discuss	some	of	the	

ongoing	challenges	posed	by	long-read	artifacts.	Overall,	this	thesis	introduces	and	

demonstrates	the	use	of	novel	long-read	transcriptome	analysis	methods	on	both	bulk	and	

single-cell	RNA-seq	samples.	
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Figure 1.1. Isoform sequencing is straightforward using long reads. Short 
reads can capture individual splice junctions and exons but cannot recapitulate 
whole transcripts (Figure from Park et al. 2018).  
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Figure 1.2. Circular consensus sequencing improves PacBio accuracy. Prior to PacBio 
sequencing, circular adaptors are attached to each end of the double-stranded cDNA. During 
sequencing, the template opens up into a circle, allowing the DNA polymerase to sequence 
multiple passes over the insert. These passes, or sub-reads, can be identified based on the 
spacing of the adaptor sequences. Consensus correction is performed by computationally 
comparing and merging the subreads for each molecule obtain the sequence that agrees best 
across the passes. 
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Chapter	2	

TranscriptClean:	A	reference-based,	variant-aware	method	for	

correcting	sequencing	errors	in	long	reads	

2.1 Abstract	

Long-read,	single-molecule	sequencing	platforms	hold	great	potential	for	isoform	

discovery	and	characterization	of	multi-exon	transcripts.	However,	their	high	error	rates	

are	an	obstacle	to	distinguishing	novel	transcript	isoforms	from	sequencing	artifacts.	

Therefore,	we	developed	the	package	TranscriptClean	to	correct	mismatches,	microindels	

and	noncanonical	splice	junctions	in	mapped	transcripts	using	the	reference	genome	while	

preserving	known	variants.	Our	method	corrects	nearly	all	mismatches	and	indels	present	

in	a	publicly	available	human	PacBio	Iso-seq	dataset,	and	rescues	39%	of	noncanonical	

splice	junctions.	

	

2.2 Introduction	

Conventional	short-read	RNA	sequencing	is	widely	used	to	quantify	gene	expression	in	

a	variety	of	applications.	While	cost-effective	and	accurate,	short	reads	lack	the	ability	to	

resolve	full-length	mammalian	isoforms,	which	are	commonly	multiple	kilobases	long1.	

Long-read	sequencing	platforms	such	as	Pacific	Biosciences	(PacBio)	and	Oxford	Nanopore	

bypass	the	transcript	reconstruction	challenges	of	short	reads	but	have	substantially	

higher	error	rates.	Raw	PacBio	reads	have	a	stochastic	error	rate	of	11-15%,	including	

single-base	mismatches	and	microindel	errors2.	Microindels	are	especially	problematic	

during	isoform	mapping	because	they	can	misrepresent	splice	junction	locations.		
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Circular	consensus	correction	and	read	polishing	steps	in	the	PacBio	ToFU	analysis	

pipeline	can	substantially	reduce	the	error	rate	for	most	transcripts	once	raw	reads	are	

processed2,3.	However,	this	correction	process	is	only	effective	when	multiple	sequencing	

passes	over	the	same	insert	molecule	are	available,	which	becomes	less	likely	as	transcript	

length	increases4.	

	

To	address	this	problem,	various	PacBio-specific	tools	have	been	developed	to	correct	

transcripts	downstream	of	the	ToFU	pipeline.	TAPIS,	HapIso,	and	SQANTI	use	a	reference-

guided	approach	to	correct	indels	within	exons5–7.	HapIso	distinguishes	single	nucleotide	

variants	from	errors	in	a	haplotype-aware	manner	by	phasing	long	reads.	TAPIS	and	

SQANTI	deal	with	remaining	errors	by	removing	affected	transcripts,	the	former	using	a	

splice	junction	quality	filter,	and	the	latter	using	a	random	forest	classifier.	While	these	

methods	produce	cleaner	PacBio	datasets,	none	of	them	attempt	to	correct	noncanonical	

splice	junctions	arising	from	microindel	errors.	Furthermore,	HapIso	requires	multiple	

transcripts	per	gene	in	order	for	the	phasing	to	work,	which	is	not	a	given	depending	on	

sequencing	depth	and	gene	expression	level.		

	

We	present	TranscriptClean,	a	program	that	uses	the	reference	genome,	splice	

annotation,	and	a	variant	file	to	correct	mismatches,	microindels,	and	noncanonical	splice	

junctions	in	PacBio	transcripts	while	preserving	known	variants.	Running	TranscriptClean	

on	a	publicly	available	PacBio		human	transcriptome	from	GM128788,	we	corrected	99%	of	

indels,	98%	of	mismatches,	and	39%	of	noncanonical	splice	junctions	present	in	these	
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transcripts.	This	allowed	us	to	salvage	32,536	transcripts	that	would	have	been	discarded	

under	previous	workflows	because	of	noncanonical	splice	junctions.	

	

2.3 Methods	

2.3.1 Indel	and	mismatch	correction	

TranscriptClean	processes	transcripts	in	the	SAM	format,	scanning	each	entry	to	look	for	

insertions,	deletions,	and	mismatches	relative	to	the	reference	genome.	Indels	less	than	or	

equal	to	the	size	threshold	(default	£	5	bp)	are	modified	to	match	the	reference	sequence.	

Mismatches	 in	 the	 transcripts	 are	 replaced	with	 the	 reference	 base.	 Indel	 and	mismatch	

correction	can	also	be	run	in	variant-aware	mode	to	avoid	removing	variants	of	interest	to	

the	user.	In	this	mode,	mismatches	and	indels	are	changed	to	the	reference	sequence	only	if	

they	do	not	match	the	position	and	sequence	of	a	known	variant	in	a	user-provided	VCF	file.	

A	potential	downside	of	running	mismatch	correction	is	that	it	will	remove	novel	SNPs	or	

RNA	editing	events	not	provided	in	the	VCF.	

	

TranscriptClean	outputs	a	SAM	file	of	corrected	transcripts	with	updated	CIGAR,	

sequence,	and	MD/NM	fields.	It	also	provides	a	fasta	file	of	corrected	sequences	alongside	

log	files	tracking	changes	to	individual	errors	and	transcripts.	The	accessory	script	

generate_report.R	produces	figures	summarizing	the	TranscriptClean	results,	and	can	also	

be	used	to	choose	an	appropriate	indel	size	threshold	for	a	given	dataset,	as	the	size	

distribution	may	vary	across	different	PacBio	chemistries.	
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2.3.2 Noncanonical	splice	junction	correction	

TranscriptClean	also	provides	the	option	of	correcting	noncanonical	splice	junctions.	

During	pre-mRNA	splicing,	dinucleotides	at	the	start	and	end	of	the	intron	form	highly	

conserved	canonical	motifs	GTAG,	GCAG,	and	ATAC,	with	GTAG	accounting	for	98.9%	of	

known	human	splice	junctions9,10.	Noncanonical	splice	junctions	(NCSJs)	are	very	rare	

events,	which	suggests	that	most	NCSJs	in	long-read	transcripts	are	likely	to	be	sequencing	

errors.	Typically	10-20%	of	PacBio	transcripts	contain	at	least	one	NCSJ7.	

	

When	a	microindel	error	disrupts	a	splice	boundary,	the	read	mapping	can	be	affected	in	a	

variety	of	ways.	In	one	scenario,	the	entire	junction	is	shifted	upstream	or	downstream	of	its	

original	location.	In	another,	the	error	is	split	across	the	junction,	resulting	in	a	smaller	indel	

on	each	side.	Finally,	the	error	may	only	affect	one	side	of	the	junction.		

	

To	 identify	NCSJs,	TranscriptClean	checks	the	 intron	motif	of	each	transcript	splice	site.	

Each	 NCSJ	 is	 compared	 to	 user-provided	 high-confidence	 splice	 junctions	 (derived	 from	

same-sample	mapped	 short	RNA-seq	 reads	 or	 a	 reference	 annotation)	 and	 is	 changed	 to	

match	 the	 known	 junction	 when	 the	 distance	 between	 the	 NCSJ	 and	 its	 nearest	 high-

confidence	junction	is	microindel-sized.		

	

2.4 Results	and	Discussion	

We	performed	two	TranscriptClean	runs	on	ToFU-processed	circular	consensus	GM12878	

PacBio	transcripts	from	Tilgner	2014	(Table	2.1).	In	the	first,	we	used	known	human	splice	

junction	annotations	from	GENCODE	v24	and	no	variant	file.	Next	we	provided	GM12878-
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specific	variants	and	splice	 junctions	derived	from	GM12878	short	reads.	When	provided	

GM12878-specific	references	 for	correction,	TranscriptClean	corrected	99%	of	 indels	and	

39%	 of	 NCSJs,	 rescuing	 32,536	 transcripts	 no	 longer	 considered	 noncanonical.	 98%	 of	

mismatches	were	corrected,	with	the	remaining	2%	representing	known	NA12878	SNPs.		

A	major	goal	of	long-read	isoform	characterization	is	to	provide	a	higher-quality	reference	

transcriptome	for	short-read	quantitation.	If	such	a	reference	contains	frequent	sequencing	

errors,	 reads	 will	 not	 map	 well	 to	 it,	 defeating	 its	 purpose.	 Furthermore,	 downstream	

analysis	 programs	 commonly	 ignore	 transcripts	 with	 one	 or	 more	 NCSJs,	 effectively	

throwing	out	long-read	data	that	could	provide	interesting	isoform	information.	Repairing	

errors	where	possible	allows	more	data	to	be	used,	particularly	for	longer	transcripts.	While	

the	 current	 version	 of	 variant-aware	 TranscriptClean	 does	 not	 account	 for	 the	 case	 of	 a	

sequencing	error	converting	a	real	SNP	to	the	reference	base,	nor	the	case	where	a	real	indel	

is	disguised	by	one	or	more	sequencing	errors,	we	hope	to	improve	correction	for	special	

cases	like	these	in	future	versions	and	to	support	transcript	correction	of	Oxford	Nanopore	

reads.		
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Table	2.1.	 Summary	of	GM12878	TranscriptClean	results	

	 No	TC	 				TC	with	
GENCODE	splice			
junctions	

Corrected		 				TC	with	
GM12878	
Illumina	SJs	&	
variants	

Corrected	

Total	Transcripts	 568048		 568048	 ---		 568048	 ---	
Canonical	Transcripts	 479005	 512092	 ---	 511541	 ---	
Noncanon.Transcripts	 89043	 55956	 37%	 56507	 37%	

Deletions	 3133172		 23047	 99%	 29883	 99%	
Insertions	 1901787	 20175	 99%	 21816	 99%	
Mismatches	 14380068	 0	 100%		 295547		 98%	
NCSJ	 109268	 66304	 39%		 66784	 39%	
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whereas	she	generated	the	long-read	datasets	and	designed	the	mouse	brain	analyses.	The	
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is	currently	under	review. 
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Chapter	3	

A	technology-agnostic	long-read	analysis	pipeline	for	transcriptome	

discovery	and	quantification	

3.1 Abstract	

Alternative	splicing	is	widely	acknowledged	to	be	a	crucial	regulator	of	gene	expression	

and	is	a	key	contributor	to	both	normal	developmental	processes	and	disease	states.	While	

cost-effective	and	accurate	for	quantification,	short-read	RNA-seq	lacks	the	ability	to	resolve	

full-length	 transcript	 isoforms	despite	 increasingly	 sophisticated	 computational	methods.	

Long-read	sequencing	platforms	such	as	Pacific	Biosciences	(PacBio)	and	Oxford	Nanopore	

(ONT)	bypass	 the	 transcript	 reconstruction	 challenges	of	 short	 reads.	Here	we	 introduce	

TALON,	 the	 ENCODE4	 pipeline	 for	 platform-independent	 analysis	 of	 long-read	

transcriptomes.	We	apply	TALON	to	the	GM12878	cell	line	and	show	that	while	both	PacBio	

and	 ONT	 technologies	 perform	 well	 at	 full-transcript	 discovery	 and	 quantification,	 each	

displayed	distinct	technical	artifacts.	We	further	apply	TALON	to	mouse	hippocampus	and	

cortex	 transcriptomes	 and	 find	 that	 422	 genes	 found	 in	 these	 regions	 have	more	 reads	

associated	with	novel	isoforms	than	with	annotated	ones.	We	demonstrate	that	TALON	is	a	

capable	 of	 tracking	 both	 known	 and	 novel	 transcript	models	 as	well	 as	 their	 expression	

levels	across	datasets	for	both	simple	studies	and	in	larger	projects.	These	properties	will	

enable	TALON	users	to	move	beyond	the	limitations	of	short-read	data	to	perform	isoform	

discovery	 and	 quantification	 in	 a	 uniform	 manner	 on	 existing	 and	 future	 long-read	

platforms.	
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3.2 Introduction	

Differences	 in	 gene	 expression	 play	 a	 large	 role	 in	 shaping	 cell	 phenotypes	 and	

interactions,	both	during	development	and	in	later	life.	While	humans	have	around	20,000	

protein	 coding	 genes,	 they	 produce	 at	 least	 100,000	 splice	 isoforms	 through	 alternative	

splicing,	and	potentially	many	more1.	Alternative	splicing	controls	which	exons	are	included	

in	the	mature	mRNA,	thus	expanding	the	number	of	possible	transcripts	that	a	single	gene	

can	encode.	Some	isoforms	have	vastly	different	functions	and	may	be	highly	specific	to	a	

particular	tissue	or	temporal	stage2–4.	For	instance,	alternative	splicing	of	the	transcription	

factor	erbAα	in	rats	gives	rise	to	one	isoform	which	acts	as	a	transcriptional	activator,	while	

a	second	isoform	acts	as	a	repressor5.	This	is	a	specific	instance	of	an	evolutionary	strategy	

whose	 extent	 is	 not	 yet	 known,	 in	 which	 differential	 RNA	 splicing	 creates	 one	 or	 more	

“dominant	 negative”	 protein	 isoforms.	 Differential	 RNA	 isoforms	 are	 also	 important	 in	

disease.	The	Mapt	gene	has	isoforms	that	are	known	to	be	differentially	expressed	in	various	

human	 neural	 lineages,	 and	 their	 relative	 proportions	 change	 during	 progression	 of	

Alzheimer’s	disease,	ultimately	leading	to	the	formation	of	the	tangles	that	kill	neurons6.		

	

In	the	best	understood	cases,	alternative	splicing	is	tightly	regulated,	relying	on	highly	

conserved	 sequence	 and	 structure	motifs	 and	 complex	networks	 of	RNA	binding	protein	

interactions	 to	define	 functional	 isoforms7.	Disruptions	 to	 the	splicing	process	 frequently	

lead	to	disease,	whether	in	the	form	of	genetic	mutations	that	directly	affect	splice	sites	or	

splicing	factors,	or	more	subtle	changes	that	alter	the	balance	between	different	isoforms6,7.	

As	a	result,	alternative	splicing	and	exon	usage	in	RNA	transcripts	have	long	been	the	subject	

of	great	interest	in	the	context	of	development	and	disease.	In	early	studies,	the	preferred	
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methods	 for	 characterizing	 and	measuring	 isoforms	were	 RT-PCR,	 Sanger	 sequencing	 of	

expressed	 sequence	 tags	 (ESTs),	 and	 isoform-specific	 microarrays8.	 This	 changed	

dramatically	 with	 the	 availability	 of	 next-generation	 short-read	 RNA	 sequencing,	 which	

allows	gene	expression	to	be	profiled	quantitatively	in	a	high-throughput	manner9.	This	led	

to	the	generation	of	large	reference	transcriptome	databases	for	human	and	mouse	cell	types	

and	tissues,	beginning	with	ENCODE	and	rapidly	expanding	to	GTEx	and	FANTOM10–12.	In	the	

cancer	community,	the	Cancer	Genome	Atlas	(TCGA)	serves	as	a	massive	source	of	RNA-seq	

data	from	patient	samples13.		

	

With	the	widespread	availability	of	RNA-seq,	many	efforts	have	been	made	to	infer	

isoform	usage	 from	short-read	data14.	However,	 this	 is	 intrinsically	 challenging,	as	 short-

read	 protocols	 require	 cDNA	 transcripts	 to	 be	 sheared	 into	 50-300	 bp	 pieces	 prior	 to	

sequencing.	These	pieces	are	far	smaller	than	typical	mammalian	transcripts,	which	can	be	

multiple	 kilobases	 in	 length15.	 This	 means	 that	 it	 is	 not	 possible	 to	 know	 the	 exact	

combination	 of	 exons	 originally	 present	 in	 each	 transcript	molecule.	 To	 get	 around	 this,	

computational	methods	were	developed	to	reconstruct	the	transcript	models	present	in	a	

sample	and	to	quantify	their	abundance.	Here,	we	use	the	term	‘transcript	model’	to	describe	

a	distinct	set	of	splice	junctions	paired	with	variable	5’	and	3’	ends.	Bioinformatics	software	

packages	 such	 as	Kallisto	 use	 expectation-maximization	 to	 pseudo-align	 short	 reads	 to	 a	

transcriptome	reference,	generating	abundance	estimates	for	transcript	and	gene	models16.	

These	 algorithms	 are	 effective	 in	 broadly	 identifying	 which	 transcripts	 the	 reads	 are	

compatible	 with,	 but	 they	 cannot	 tell	 exactly	 which	 ones	 were	 present.	 Long-distance	

contiguity	is	especially	challenging.	An	additional	drawback	is	that	these	methods	depend	
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heavily	on	the	choice	of	the	reference	transcript	annotation	and,	as	such,	they	cannot	identify	

novel	transcript	models.	Another	widely	used	approach	to	quantifying	alternative	splicing	is	

to	 compute	 short	 read	 coverage	 of	 specific	 splice	 junctions	 or	 exons,	 and	 compare	 the	

resulting	counts	across	samples	using	statistical	tests17,18.	While	these	methods	are	useful	

for	detecting	alternative	exon	usage,	they	do	not	overcome	the	fundamental	limitations	of	

short-read	data	with	respect	to	assembling	and	assigning	exactly	which	exons	made	up	the	

source	transcript.	

	

Since	 2010,	 third-generation	 sequencing	 platforms	 such	 as	 PacBio	 and	 Oxford	

Nanopore	(ONT)	have	pioneered	the	use	of	long	reads	in	genomics19,20.	With	read	lengths	of	

up	to	60	kb	for	PacBio	and	up	to	1	Mb	for	Oxford	Nanopore,	these	reads	can	capture	entire	

transcripts	from	end	to	end.	They	also	offer	the	advantage	of	representing	single	molecules	

rather	than	amplified	clusters,	making	them	ideal	for	sequencing	isoforms.	Historically,	the	

major	drawbacks	of	long	read	technologies	have	been	their	relatively	low	throughput	as	well	

as	high	indel	and	mismatch	error	rates	ranging	up	to	15-20%19.	In	the	case	of	PacBio,	these	

stochastic	errors	are	mitigated	by	using	circular	consensus	sequencing,	 in	which	multiple	

sequencing	passes	over	the	same	molecule	are	used	for	error	correction21.	The	exact	error	

rate	 depends	 largely	 on	 the	 number	 of	 passes	 that	 a	 molecule	 receives.	 Computational	

methods	 have	 also	 been	 developed	 to	 correct	 errors	 in	 long	 reads,	 including	 hybrid	

approaches	 that	 incorporate	 short	 reads,	 and	 other	methods	 that	make	 use	 of	 reference	

annotations22–25.		
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Due	 to	 the	 low	 throughput	 of	 the	 original	 platforms,	 the	 conventional	 long-read	

transcriptome	sequencing	approach	was	to	first	catalog	expressed	isoforms	using	long	reads	

from	 size-selected	 subsamples,	 and	 then	map	 short	 reads	 to	 the	 resulting	 transcriptome	

references	 for	 the	 purpose	 of	 quantification26–28.	 PacBio	 popularized	 this	 method	 in	

mammals,	plants,	and	beyond	under	the	name	“Iso-seq”.	Recently,	PacBio	yields	increased	

substantially,	producing	up	to	8	million	reads	per	SMRT	cell	on	the	Sequel	2	compared	to	

150,000	on	the	older	RSII	machines.	Similar	yield	increases	have	been	reported	for	Oxford	

Nanopore.	 This	 increased	 throughput	 has	 made	 direct	 long-read	 quantification	 more	

plausible.	 Unfortunately,	 most	 existing	 tools	 for	 analyzing	 long-read	 transcriptome	 data	

were	not	explicitly	designed	for	this	purpose.	PacBio-affiliated	software	packages	such	as	

ICE-Quiver/Arrow	and	Cupcake	ToFU	generate	de	novo	transcript	models	by	clustering	long	

reads	 and	 then	merging	 them	 to	 generate	 one	 transcript	model	 per	 cluster26,29.	 This	 is	 a	

particularly	 useful	 approach	 in	 species	 that	 lack	 a	 reference	 genome,	 but	 it	 comes	 with	

disadvantages.	ICE-Quiver	has	been	known	to	merge	together	transcripts	from	highly	similar	

genes	and	can	smooth	over	real	differences	of	interest	such	as	sequence	variants	and	RNA	

editing	events30.	In	addition,	the	algorithm	is	stochastic	by	nature,	and	cluster	assignments	

for	individual	reads	can	vary	substantially	across	different	runs.	Most	existing	programs	for	

transcriptome-wide	PacBio	annotation	and	quantification	rely	on	the	ICE-Quiver	or	Cupcake	

ToFU	outputs.	For	instance,	SQANTI	uses	post-ToFU	transcript	models	and	their	estimated	

abundances	 as	 the	 input	 to	 its	 annotation,	 quantification,	 and	 quality	 control	 pipeline23.		

Another	set	of	pipelines	such	as	FLAIR	have	been	developed	for	analyzing	Oxford	Nanopore	

cDNA	 and	 direct	 RNA	 sequencing	 data31.	 As	 in	 ICE-Quiver,	 a	 common	 feature	 of	 these	
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pipelines	is	the	alignment	of	reads	to	each	other	before	determining	which	known	and	novel	

transcripts	are	present.	

	

Here,	 we	 present	 TALON,	 the	 ENCODE4	 pipeline	 for	 simultaneous	 transcript	

discovery	and	quantification	of	long-read	RNA-seq	data	regardless	of	platform.	This	pipeline	

is	designed	to	explicitly	track	both	known	and	novel	transcripts	across	different	bio-samples	

to	allow	 for	annotation	and	use	of	new	 isoforms.	The	 full	TALON	pipeline	 is	available	on	

GitHub	through	the	ENCODE4	Data	Coordinating	Center	(DCC)	at	ENCODE-DCC/long-read-

rna-pipeline	 and	 at	 mortazavilab/TALON.	 We	 first	 analyze	 the	 transcriptome	 of	 the	

GM12878	cell	line	using	the	PacBio	and	ONT	to	quantify	the	relative	performance	of	both	

platforms.	 The	 TALON	 pipeline	 allows	 us	 to	 process	 PacBio	 and	 ONT	 data	 in	 a	 uniform	

fashion	 and	 make	 direct	 comparisons	 between	 the	 two.	 We	 evaluate	 the	 resulting	

transcriptomes	relative	to	available	CAGE,	poly(A),	and	RNA-PET	annotations	in	these	cells	

and	find	that	each	long-read	technology	is	affected	by	different	artifacts.	We	then	sequence	

the	transcriptomes	of	adult	mouse	hippocampus	and	cortex	to	show	the	applicability	of	the	

TALON	pipeline	 for	 the	analysis	of	complex	tissues.	Overall,	we	demonstrate	that	current	

long-read	platforms	are	suitable	for	quantifying	and	characterizing	isoform-level	expression	

of	genes.	

	

3.3 Results	

3.3.1 Tracking	transcript	novelty	and	quantification	using	TALON	
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To	compare	long	read	platforms	side	by	side	and	to	track	isoforms	consistently	across	

multiple	 datasets,	 we	 developed	 a	 technology-agnostic	 long-read	 pipeline	 called	 TALON	

(Figure	3.1a).	 This	pipeline	 is	 designed	 to	 annotate	 full-length	 reads	 as	 known	or	novel	

transcripts	 and	 also	 to	 report	 the	 abundance	 for	 genes	 and	 transcripts	 across	 datasets.	

Starting	from	long	reads	mapped	to	the	reference	genome	with	a	long-read	aligner	such	as	

Minimap2,	reference-based	error	correction	is	performed	using	TranscriptClean	to	remove	

microindels,	mismatches,	and	noncanonical	splice	junctions	in	a	variant-aware	manner	as	

previously	described25.	Noncanonical	splice	junctions	are	permitted	in	the	final	output	only	

if	they	are	supported	by	the	splice	annotation.	Note	that	TALON	expects	reads	to	be	oriented	

to	the	appropriate	strand,	which	is	typically	achieved	using	platform-specific	preprocessing	

in	 the	 case	 of	 cDNA	 reads	 (Figure	 S3.1a-b).	 After	 TranscriptClean,	 corrected	 reads	 are	

passed	into	the	talon_label_reads	TALON	module,	which	records	QC	information	for	use	by	

subsequent	steps.	In	particular,	long-read	libraries	built	using	poly(A)	selection	are	prone	to	

internal	priming	artifacts	in	A-rich	regions	of	transcripts	that	result	in	truncated	isoforms.	

Therefore,	 tracking	 the	 fraction	 of	 As	 following	 alignments	 is	 informative	 for	 TALON’s	

transcript	filtering	process.	After	the	internal	priming	labels	have	been	assigned,	the	reads	

are	passed	into	the	main	talon	module	for	annotation.	In	a	talon	run,	each	input	SAM	read	is	

compared	 to	 known	and	previously	 observed	novel	 transcript	models	 on	 the	basis	 of	 its	

splice	 junctions,	 start,	 and	 end	 points.	 This	 allows	 us	 to	 not	 only	 assign	 a	 novel	 gene	 or	

transcript	identity	where	appropriate,	but	to	track	new	transcript	models	and	characterize	

how	they	differ	from	known	ones.	The	result	is	a	collection	of	all	transcripts	observed	in	each	

input	dataset	that	can	then	be	filtered,	quantified,	and	compared	using	downstream	TALON	

modules.		
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We	adopted	 the	nomenclature	 introduced	by	SQANTI	 to	 characterize	 the	different	

types	of	 transcript	 novelty	 in	 our	datasets23.	 Query	 transcripts	with	 splice	 junctions	 that	

perfectly	match	an	existing	model	are	deemed	‘known’	(Figure	3.1b).	Flexibility	is	allowed	

at	the	5’	and	3’	ends.	In	cases	where	a	transcript	matches	a	subsection	of	a	known	transcript	

model	 and	 has	 a	 novel	 putative	 start	 or	 endpoint,	 it	 is	 considered	 an	 ‘incomplete	 splice	

match’	(ISM).	TALON	further	subdivides	the	ISM	category	into	prefix	ISMs	and	suffix	ISMs.	

The	former	refers	to	ISMs	that	match	along	the	5’	end	of	an	existing	transcript	model,	and	

the	latter	describes	ISMs	that	match	to	the	3’	end.	It	is	possible	for	a	transcript	to	belong	to	

more	 than	one	 ISM	category	 if	 it	matches	 to	different	parts	of	 several	 existing	 transcript	

models.	The	ISM	category	is	useful	as	a	means	of	quality	control	as	libraries	with	a	higher	

proportion	of	ISMs	relative	to	known	transcripts	tend	to	be	less	than	complete	in	terms	of	

length	 and	 may	 harbor	 more	 artifacts.	 For	 instance,	 RNA	 degradation	 and	 incomplete	

reverse-transcription	 can	 lead	 to	 suffix	 ISMs.	 In	 Oxford	 Nanopore,	 pore	 blockages	 can	

produce	suffix	ISMs	by	prematurely	stopping	sequencing	of	the	RNA.	In	the	case	of	prefix	

ISMs,	 internal	 priming	 is	 the	 most	 likely	 culprit.	 However,	 not	 all	 ISMs	 are	 sequencing	

artifacts.	To	differentiate	between	a	truly	novel	ISM	transcript	and	one	that	is	artifactual,	it	

is	 useful	 to	 test	 against	 relevant	 orthogonal	 data	 such	 as	 CAGE,	 RNA-PET,	 or	 poly(A)	

annotations,	 which	 are	 often	 available	 from	 external	 databases.	 This	 can	 provide	

independent	validation	to	support	or	reject	a	new	5’	or	3’	end	seen	in	an	ISM	transcript.	

	

The	 next	 category,	 novel	 in	 catalog	 (NIC),	 describes	 transcripts	 that	 have	 known	

splice	donors	and	acceptors,	but	reveal	new	connections	between	them.	This	can	be	thought	

of	as	a	novel	arrangement	of	known	exons.	Novel	not	in	catalog	(NNC)	transcripts	contain	at	
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least	 one	 novel	 splice	 donor	 or	 acceptor,	 meaning	 that	 there	 is	 at	 least	 one	 novel	 exon	

boundary	present.	Genomic	transcripts	are	either	partial	transcripts	that	do	not	share	any	

splice	 junctions	 with	 overlapping	 genes	 or	 may	 come	 from	 DNA	 contamination	 in	 the	

samples,	 and	 are	 therefore	 discarded	 by	 the	 filter,	 reproducible	 or	 not.	 The	 antisense	

category	consists	of	transcripts	that	overlap	an	existing	gene,	but	are	oriented	in	the	opposite	

direction.	If	a	transcript	lacks	any	overlap	with	a	known	gene,	then	it	is	deemed	intergenic.	

Taken	together,	the	novelty	categories	allow	us	to	examine	the	types	of	transcripts	that	we	

detect	 in	 our	 long-read	 datasets,	 to	 perform	 quality	 control,	 and	 to	 stratify	 or	 filter	 by	

category.		

	

Biological	 replicates	 serve	 as	 an	 important	 means	 of	 verifying	 novel	 transcript	

discoveries.	 Although	 the	 accuracies	 of	 long-read	 platforms	 are	 improving,	 artifactual	

transcripts	are	still	 a	problem,	and	may	arise	 from	a	variety	of	 technical	 sources.	TALON	

streamlines	the	filtering	process	for	multiple	datasets	by	tracking	transcript	annotations	and	

abundance	in	one	place,	where	the	information	can	be	easily	accessed	and	compared.	Our	

filtering	process	uses	the	novelty	labels	assigned	to	each	observed	transcript	model	in	order	

to	 remove	 likely	 artifacts.	 Observed	 transcripts	 that	 fully	 match	 counterparts	 in	 the	

GENCODE	annotation	are	accepted	 immediately,	but	we	require	 that	novel	 transcripts	be	

supported	by	at	least	5	reads	each	in	at	least	two	biological	replicate	samples	in	order	to	be	

included	in	the	downstream	analysis.	Furthermore,	all	five	reads	must	all	pass	the	internal	

priming	cutoff	(fraction	As	≤	0.5).	These	cutoffs	can	be	adjusted	by	the	user	to	accommodate	

different	oligo-dT	lengths	or	sequencing	depths.	As	additional	samples	are	sequenced,	it	is	

also	possible	to	cross-reference	novel	transcripts	across	these	datasets.		
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TALON	 quantification	 relies	 on	 the	 premise	 that	 each	 long	 read	 represents	 an	

individual	transcript	molecule	sequenced.	This	allows	us	to	quantify	expression	by	simply	

counting	the	number	of	individual	reads	that	were	assigned	to	a	particular	transcript	or	gene	

and	then	converting	these	values	 into	units	of	 transcripts	per	million	(TPM)	to	adjust	 for	

library	size.	For	gene-level	expression	values,	we	include	all	reads	assigned	to	a	locus	in	the	

computation,	since	even	incomplete	transcripts	(ISMs)	that	did	not	meet	the	threshold	to	

become	a	new	transcript	model	are	informative	for	the	overall	gene	expression	level.	On	the	

transcript	level,	however,	we	apply	the	TALON	filters	in	order	to	avoid	quantifying	transcript	

models	with	insufficient	evidence.		

To	demonstrate	the	utility	of	TALON,	we	applied	it	in	two	different	settings	(Table	S3.1).	

First,	we	compared	long-read	GM12878	data	sequenced	on	different	platforms:	PacBio	

Sequel	II	and	direct-RNA	ONT	(Figure	3.1c).	Then,	we	used	TALON	to	analyze	gene	and	

isoform-level	expression	across	the	complex	tissues	of	cortex	and	hippocampus	in	mouse	

(Figure	3.1d).	In	each	case,	we	sequenced	at	least	6	million	raw	reads	per	replicate.	Spike-

in	RNA	variants	(SIRVs)	in	our	samples	provided	us	with	an	opportunity	to	evaluate	TALON	

filtering	on	artificial	sequences	with	fully	known	splice	patterns.	The	expected	outcome	in	

an	error-free	setting	would	be	to	detect	exactly	69	known	isoforms	from	a	total	of	7	SIRV	

genes,	and	to	detect	zero	novelty.	After	applying	the	TALON	transcript	filter	(including	the	

internal	priming	cutoff)	to	SIRVs	sequenced	with	the	two	PacBio	GM12878	replicates,	we	

detected	67	known	SIRV	transcripts	and	only	13	novel	models	(Figure	S3.2a).	96%	of	the	

filtered	reads	matched	a	known	isoform	(Figure	S3.2b),	In	contrast,	the	unfiltered	SIRV	

data	contained	a	much	higher	fraction	of	artifactual	novel	transcripts	(Figure	S3.2c,d).	The	
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ISM	category	was	the	most	common	form	of	novelty,	accounting	for	between	5	and	6%	of	

the	unfiltered	reads	by	replicate.	About	60%	of	the	reads	assigned	to	prefix	ISMs	displayed	

evidence	of	internal	priming,	suggesting	that	this	is	a	substantial	artifact	of	cDNA	

sequencing	in	PacBio	(Figure	S3.2e).	The	TALON	filter	was	highly	effective	in	removing	

these	transcripts-	after	filtering,	only	9	ISM	models	remained.	Overall,	these	results	

indicate	that	the	TALON	filter	is	effective	at	removing	artifactual	transcript	models.	

	

3.3.2 Performance	of	TALON	on	human	ENCODE	Tier	1	PacBio	data	

We	then	turned	our	attention	to	applying	TALON	to	GM12878	reads	mapped	onto	the	

human	 genome.	 TALON	 detected	 15,727	 known	 GENCODE	 genes	 and	 26,841	 GENCODE	

transcripts	in	GM12878	across	the	two	replicates.	The	number	of	known	genes	is	smaller	

than	the	number	of	known	transcripts	because	known	genes	can	be	detected	through	novel	

transcripts	as	well	as	known	ones.	The	analysis	also	called	359	unknown	gene	models,	the	

majority	of	which	consisted	of	monoexonic	transcripts	mapped	as	antisense	within	a	known	

gene	 locus.	 The	 TALON	 N50	 read	 lengths	 for	 Rep	 1	 and	 Rep	 2	 were	 1,877	 and	 1,791	

nucleotides,	 respectively,	 which	 is	 in	 line	 with	 the	 expected	 length	 distribution	 of	 most	

mammalian	mRNA	transcripts	(Fig	S3).	

We	next	computed	the	expression	level	 for	each	known	GENCODE	gene	across	the	

PacBio	data.	For	this	quantification,	we	included	all	long	reads	assigned	to	a	locus	in	these	

counts	because	even	incomplete	transcripts	are	informative	for	the	overall	gene	expression	

level.	The	resulting	gene	expression	levels	were	highly	correlated	across	biological	PacBio	

replicates	of	each	cell	line	(Pearson	r	=	0.97,	Spearman	rho	=	0.92)	(Figure	3.2a).	This	shows	
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that	 our	 PacBio	 primary	 data	 coupled	 with	 the	 TALON	 pipeline	 produces	 reproducible	

quantifications	of	gene	expression.	

				

We	also	compared	our	PacBio	results	to	short-read	RNA-seq	data	from	the	same	cell	

line.	First,	we	examined	how	often	PacBio	was	able	to	detect	known	genes	as	a	function	of	

their	short-read	expression	 level	(Figure	3.2b).	As	expected,	genes	at	 the	 lower	range	of	

expression	(<	2	TPM	from	short	reads)	were	less	likely	to	be	detected	by	PacBio,	but	upwards	

of	70%	of	genes	expressed	above	2	TPM	were	reproducibly	detected.	Overall,	the	expression	

levels	 of	 the	14,947	 genes	detectable	 in	 both	PacBio	 and	 Illumina	 correlated	well	 across	

platforms	(Spearman	rho	0.78).	We	conducted	a	differential	expression	analysis	to	further	

examine	how	much	gene	expression	levels	vary	between	the	platforms.	The	log	fold	change	

between	 PacBio	 and	 Illumina	was	 computed	 using	 the	 exact	 test	method	 in	 EdgeR,	 and	

Bonferroni	 correction	 for	multiple	 testing	was	performed	on	 the	 resulting	p-values.	 This	

analysis	revealed	that	there	was	no	significant	difference	in	expression	levels	for	most	genes	

(Figure	 3.2c).	 However,	 a	 subset	 of	 genes	 showed	 significant	 fold	 change	 differences,	

including	 773	 that	were	 higher	 in	 PacBio	 and	 1,139	 that	were	higher	 in	 Illumina.	 Genes	

expressed	significantly	higher	in	Illumina	tended	to	have	longer	median	transcript	lengths	

on	average	than	those	that	were	not	differentially	expressed	or	that	were	expressed	more	

highly	 in	 PacBio	 (Figure	 S3.4a).	 This	 suggests	 that	 these	 PacBio	 data	 under-detect	 the	

longest	transcripts	(greater	than	5	kb)	when	no	size	selection	is	applied.	Genes	with	higher	

expression	in	PacBio	had	significantly	higher	median	GC	content	as	a	group	(adjusted	p	=	

4.950e-08)	than	those	that	were	higher	in	Illumina	(Figure	S3.4b).	It	is	possible	that	this	is	
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related	to	the	GC	bias	known	to	affect	Illumina	next-generation	sequencing.	Overall,	non-size	

selected	PacBio	libraries	detect	most	of	the	genes	expressed	at	1	or	more	TPM	in	Illumina.		

	

Having	established	that	TALON	can	quantify	gene-level	expression	on	the	basis	of	

long	reads,	we	moved	on	to	transcript-level	quantification.	As	expected,	most	of	the	

transcript	models	identified	in	our	analysis	of	the	extensively-studied	GM12878	cell	line	

were	known	matches	to	the	GENCODE	annotation	(Figure	3.2d).	The	expression	levels	of	

detected	known	transcripts	were	highly	correlated	across	PacBio	biological	replicates	

(Pearson	r	=	0.97,	Spearman	rho	=	0.73)	(Figure	3.2e).	Novel	transcript	models	displayed	

even	stronger	expression	correlations,	likely	related	to	the	stringent	abundance	and	

filtering	requirements	that	were	applied	to	them	(Pearson	r	=	0.97,	Spearman	rho	=	0.83)	

(Figure	3.2f).	PacBio	transcript	expression	levels	were	not	significantly	different	for	87%	

of	GENCODE	transcripts	when	compared	to	short-read	expression	levels	(Figure	3.2g).	

The	known,	NIC,	and	NNC	isoform	categories	account	for	about	94%	of	the	filtered	PacBio	

reads,	with	known	transcripts	making	up	91.1%	of	the	reads	(Figure	3.2h).	NIC	and	NNC	

transcripts	contained	a	larger	number	of	exons	on	average	than	the	other	novelty	

categories,	and	also	tended	to	come	from	longer	reads	(Figure	S3.5a-b).	To	evaluate	the	

canonical	junctions	found	in	the	PacBio	reads,	we	compared	them	to	junctions	called	from	

the	short-read	Illumina	GM12878	RNA-seq	data	using	STAR32.		83%	of	novel	PacBio	splice	

junctions	featuring	known	splice	donors/acceptors	had	short-read	support	(Figure	3.2i).		

The	majority	of	PacBio	junctions	with	a	novel	splice	donor	and/or	acceptor	were	supported	

as	well.		Overall,	these	results	indicate	that	we	can	reliably	annotate	and	quantify	transcript	

models	using	our	long-read	pipeline.		
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GM12878	is	an	Epstein-Barr	Virus	(EBV)	transformed	lymphoblastoid	cell	line	(LCL).	We	

were	therefore	able	to	analyze	the	gene	and	transcript	expression	of	EBV	within	the	

GM12878	PacBio	transcriptome.	We	found	that	EBV	transcripts	are	detectable	using	long-

read	sequencing,	and	that	these	transcripts	can	be	quantified,	annotated,	and	assessed	for	

their	novelty	using	TALON.	Overall,	25	known	and	4	post-filter	novel	EBV	transcript	

isoforms	were	detected	and	28	known	EBV	genes	were	detected	(Figure	S3.6a-b).	Many	

detected	transcripts	belong	to	the	EBNA	gene	family	(Figure	S3.6c),	which	code	for	

proteins	that	are	essential	to	the	virus’	ability	to	transform	infected	cells	into	LCLs	33,	and	

are	typically	among	the	most	highly	expressed	genes	from	the	EBV	chromosome	in	LCLs.34	

Consistent	with	the	novel	transcript	models	detected	by	TALON,	the	EBNA	transcripts	have	

previously	been	identified	as	heavily	alternatively	spliced35.	

	

3.3.3 Performance	of	TALON	on	Oxford	Nanopore	data	and	comparison	with	PacBio	

Oxford	 Nanopore	 is	 an	 alternative	 long-read	 sequencing	 platform	 that	 offers	 the	

option	of	direct	RNA	sequencing	36.	While	the	protocol	involves	one	reverse-transcription	

step,	this	is	primarily	for	the	purpose	of	removing	secondary	RNA	structure	and	ultimately	

only	the	RNA	strand	is	sequenced.	In	order	to	demonstrate	the	applicability	of	TALON	to	the	

Nanopore	platform,	we	directly	sequenced	RNA	from	two	biological	replicates	of	GM12878	

to	 a	 depth	 of	 at	 least	 2	 million	 basecalled	 reads	 per	 replicate.	 After	 alignment	 with	

Minimap237,	each	replicate	was	processed	with	the	TALON	pipeline	as	described	for	PacBio.	

The	TALON	N50	read	lengths	for	the	datasets	were	1,269	nucleotides	for	Rep	1	and	989	for	

Rep	2	 (Fig	 S7a-b).	 Although	 the	 starting	number	of	 reads	was	 lower	 than	 in	our	PacBio	
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transcriptomes,	we	detected	~13,500	known	GENCODE	genes	and	~18,000	known	isoforms	

in	GM12878.	Gene	and	transcript	expression	levels	across	the	two	GM12878	ONT	replicates	

correlated	 with	 each	 other	 (gene	 Pearson	 r	 =	 0.99,	 	 gene	 Spearman	 rho	 =	 0.92;	 known	

transcript	Pearson	r	=	0.97,	known	transcript	Spearman	rho	=	0.64)	(Figure	3.3a-b).	When	

we	 labeled	 the	 transcripts	 by	 their	 novelty	 type,	 it	 became	 apparent	 that	 differences	 in	

isoform-level	expression	between	ONT	replicates	are	largely	driven	by	overrepresentation	

of	novel	ISM	transcript	models	(Figure	3.3c-d).	This	leads	us	to	believe	that	ONT	is	more	

sensitive	to	degradation	events	or	is	prone	to	stopping	mid-transcript	during	sequencing,	

which	may	explain	the	high	ISM	numbers	in	our	data.			

	

Next,	we	compared	gene	and	transcript	expression	levels	across	the	PacBio	and	ONT	

platforms	in	GM12878	(Figure	3.3e).	These	were	well-correlated	at	the	gene	level,	but	there	

were	interesting	differences	at	the	transcript	level.	For	instance,	ISMs	were	overrepresented	

in	ONT	relative	to	PacBio,	suggesting	that	the	former	had	more	difficulty	sequencing	full-

length	transcripts	(Fig	S3.7c).	On	the	other	hand,	of	414	total	antisense	transcripts	called	

across	 the	platforms,	276	were	unique	to	PacBio,	whereas	only	26	were	detected	 in	ONT	

alone	(Figure	3.3f).	This	likely	means	that	the	majority	of	antisense	transcripts	were	in	fact	

artifacts	of	the	reverse	transcription	steps	required	for	PacBio,	demonstrating	a	drawback	

of	conversion	to	cDNA	before	sequencing,	at	least	by	the	standard	methods	used	for	PacBio.	

Interestingly,	there	is	a	set	of	88	genes	with	TPM	>	10	in	both	technologies	that	are	detected	

as	more	 than	10-fold	more	highly	 expressed	 in	Oxford	Nanopore,	which	 could	 represent	

further	 under-representation	 of	 these	 transcripts	 due	 to	 reverse	 transcription	 biases.	

Among	the	genes	enriched	in	Oxford	Nanopore	we	found	a	subset	related	to	mitochondrial	
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functions	 (MT-RNR1,	MTCO1,	MT-CO2,	MT-ATP6,	MT-CO3	 and	MT-CYB),	 that	 have	 been	

previously	characterized	as	a	benchmark	for	direct	RNA-seq	performance	as	pointed	out	by	

other	groups31.	Although	some	mitochondrial	genes	are	subject	to	a	deadenylation	process,	

mature	mt-mRNA	 transcripts	 contain	 a	 non-templated	 sequence	 of	 poly(A)s38.	 This	 fact,	

along	 with	 the	 minimal	 processing	 steps	 before	 sequencing,	 might	 explain	 the	 higher	

detection	levels	of	these	genes	on	the	Oxford	Nanopore	platform	compared	to	PacBio.	

	

3.3.4 Comparison	of	TALON	and	FLAIR	on	GM12878	PacBio	and	ONT	data	

FLAIR	is	another	recent	pipeline	designed	to	identify	and	quantify	transcripts	in	long-

read	PacBio	or	ONT	data39.	To	compare	FLAIR	and	TALON,	we	ran	FLAIR	on	the	full-length,	

non-chimeric	 PacBio	 reads	 from	 GM12878	 replicates	 1	 and	 2	 as	 described	 in	 the	

Supplementary	 Methods.	 We	 then	 compared	 the	 FLAIR	 quantification	 results	 to	 those	

generated	by	TALON	 in	 Figure	 3.2.	 Similarly	 to	TALON,	 FLAIR	 reported	 strong	 gene	 and	

transcript-level	expression	correlations	across	biological	replicates	(FLAIR	Pearson	r	=	0.96,	

Spearman	rho	=	0.94	for	known	genes	and	Pearson	r	=	0.96	Spearman	rho	=	0.88	for	known	

transcripts	 in	GM12878).	However,	FLAIR	was	 less	sensitive	 than	TALON	with	respect	 to	

detecting	 known	 genes	 and	 transcripts	 (Table	 S3.2).	 For	 instance,	 in	 GM12878,	 TALON	

detected	 2,525	 more	 GENCODE	 genes	 than	 FLAIR	 that	 were	 also	 expressed	 in	 the	

corresponding	 short-read	 data	 (Figure	 S3.8a).	 Recognizing	 that	 FLAIR	 was	 initially	

developed	 for	ONT	data,	we	 ran	 the	 same	comparison	on	our	direct-RNA	ONT	GM12878	

datasets	 (Fig.	 S3.8b).	 As	 in	 the	 PacBio	 analysis,	 FLAIR	detected	 fewer	 known	 genes	 and	

transcripts	 in	 the	ONT	data	 than	TALON	(Table	S3.3).	This	discrepancy	was	particularly	

pronounced	at	lower	expression	levels,	but	applied	to	genes	with	>	50	TPM	in	Illumina	as	
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well	 (Fig.	S8b).	Taken	 together,	 these	results	demonstrate	 that	TALON	 is	currently	more	

sensitive	to	known	genes	and	transcripts	than	FLAIR	in	the	same	datasets.	

	

3.3.5 Assessing	completeness	of	TALON	transcript	models	using	CAGE,	poly(A)	
motifs,	and	RNA-PET	

	
The	 exonuclease	 treatment	 of	 our	 samples	 at	 the	 RNA	 stage	 and	 the	 full-length	

classification	 step	 in	 silico	 are	 intended	 to	 ensure	 that	 the	 transcripts	 at	 the	 end	 of	 our	

pipeline	have	 intact	5’	 and	3’	 ends.	To	verify	 completeness,	we	performed	an	 integrative	

analysis	comparing	our	TALON	transcript	models	with	data	from	the	CAGE	and	RNA-PET	

assays,	as	well	as	computationally	identified	poly(A)	motifs.	For	known	transcript	models,	

the	annotated	GENCODE	5’	and	3’	sites	were	used.	

	

CAGE	is	a	genome-wide	method	of	annotating	transcription	start	sites	that	works	by	

trapping	the	5’	end	cap	of	a	mature	mRNA	transcript	using	an	antibody	and	then	sequencing	

its	5’	end.	To	validate	the	5’	ends	of	our	long-read	transcript	models,	we	compared	them	to	

CAGE-derived	TSSs	from	the	FANTOM5	project.	76%	of	known	GENCODE	transcripts	in	our	

GM12878	PacBio	transcriptome	had	CAGE	support	(Figure	3.4a).	Transcripts	in	the	prefix	

ISM	category	were	overwhelmingly	supported	(97%),	whereas	suffix	ISMs	were	not	(34%).	

94%	of	NIC	and	87%	of	NNC	transcripts	were	supported	by	CAGE,	indicating	that	their	5’	

ends	were	 at	 least	 as	 reliable	 as	 those	 of	 the	 known	 transcripts.	However,	 the	 antisense	

PacBio	 transcripts	 had	 scant	 support,	 lending	 credence	 to	 the	 idea	 that	 they	 are	 largely	

reverse-transcription	artifacts.	We	observed	similar	CAGE	trends	in	our	ONT	transcriptome	

(Figure	3.4b),	although	notably,	most	transcript	categories	tended	to	have	lower	rates	of	

support	than	in	the	corresponding	PacBio	transcriptome.		
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To	 examine	 transcript	 completeness	 at	 the	 3’	 end,	we	 conducted	 a	 computational	

poly(A)	motif	analysis	of	our	long-read	transcript	models.	This	entailed	scanning	the	last	35	

bases	 of	 each	 transcript	 sequence	 to	 look	 for	 the	 presence	 of	 a	 known	poly(A)	motif.	 In	

PacBio,	64%	of	known	transcripts	contained	such	a	motif	(Figure	3.4c).	Rates	of	support	

were	also	high	in	the	suffix	ISM,	other	ISM,	NIC,	and	NNC	categories	(86%,	80%,	84%,	and	

86%	 respectively).	 As	 expected,	 only	 43%	 of	 the	 prefix	 ISMs	 contained	 a	 poly(A)	motif,	

indicating	 that	many	of	 these	 transcripts	may	be	artifactual.	Overall,	 similar	 trends	were	

observed	in	the	ONT	transcripts	(Figure	3.4d).	

	

Finally,	we	sought	to	validate	the	5’-3’	pairings	in	our	transcript	models	using	publicly	

available	 RNA-PET	 data	 from	 the	 ENCODE	 consortium	 for	 both	 PacBio	 and	 ONT	

transcriptomes	(Figure	3.4e-f).	This	assay	marks	the	start	and	endpoints	of	individual	cDNA	

transcripts	by	circularizing	and	sequencing	them	with	paired-end	tags.	This	data	type	was	

lower-throughput	 than	 the	more	 recently	 generated	 CAGE	 data,	which	 helps	 explain	 the	

lower	rates	of	RNA-PET	support	 for	known	transcripts.	We	nevertheless	observed	strong	

RNA-PET	support	for	NIC	and	NNC	transcripts	in	both	PacBio	and	Oxford	Nanopore.	Of	the	

three	ISM	categories,	prefix	ISMs	were	the	most	likely	to	have	RNA-PET	support	for	their	5’-

3’	end	pairing.	Antisense	transcripts	had	extremely	high	rates	of	RNA-PET	support.	The	RNA-

PET	protocol	uses	reverse	transcription,	and	therefore	it	is	possible	that	this	assay	is	prone	

to	the	same	types	of	antisense	artifacts	as	PacBio.	
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Taken	 together,	 the	results	of	our	CAGE,	poly(A),	and	RNA-PET	analyses	 indicated	

that	most	NIC	and	NNC	transcript	models	derived	from	long	reads	have	intact	5’	and	3’	ends,	

which	argues	that	they	represent	full-length	RNA’s.	However,	inferred	transcripts	in	the	ISM	

novelty	category	require	more	scrutiny.	As	expected	based	on	the	category	definition,	prefix	

ISMs	had	reliable	5’	sites,	but	their	3’	ends	were	potentially	incomplete	in	many	cases.	The	

reverse	was	true	for	suffix	ISMs.	In	both	cases,	this	suggests	that	many	are	technical	artifacts.	

In	 general,	 the	PacBio	platform	did	 a	 better	 job	 of	 capturing	 complete	 transcripts	 in	 our	

hands	than	did	direct-RNA	ONT	and	offered	the	additional	benefit	of	higher	throughput.		

	

3.3.6 Comparison	of	PacBio	transcriptomes	of	mouse	cortex	and	hippocampus	

After	testing	and	characterizing	TALON	on	PacBio	data	in	a	homogeneous	cell	line,	we	

applied	 it	 to	begin	 to	discover	and	quantify	 isoforms	 in	 the	complex	brain	 regions	of	 the	

mouse	cortex	and	hippocampus.	The	cortex	and	hippocampus	are	critical	regions	of	the	brain	

for	 learning	 because	 of	 their	 functions	 of	 neural	 integration	 and	memory,	 respectively41.	

Therefore,	these	regions	have	been	characterized	extensively	under	different	conditions	and	

models	 in	 order	 to	 understand	 their	 gene	 expression	 profiles42.	 These	 brain	 regions	 are	

much	more	complex	 in	cell	 type	composition	than	isolated	cell	 lines,	and	the	two	regions	

have	both	similar	and	distinct	cell	types.	Regulation	of	cell	type	diversity	is	key	during	their	

development,	aging,	and	in	disease,	with	both	known	and	likely	undiscovered	differences	in	

gene	and	isoform-level	expression42.	In	addition,	the	brain	at	large	is	known	to	have	a	high	

alternative	splicing	ratio	when	compared	to	other	tissues	40.			
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We	sequenced	two	PacBio	Sequel	II	replicates	each	of	cortex	and	hippocampus	to	a	

minimum	 depth	 of	 6	 million	 raw	 reads	 per	 replicate	 and	 ran	 TALON	 on	 them.	 Gene	

expression	 was	 highly	 correlated	 across	 biological	 replicates	 (cortex	 Pearson	 r	 =	 0.96	 ,	

Spearman	 rho	 =	 0.95	 and	 hippocampus	 Pearson	 r	 =	 0.89	 Spearman	 rho	 =	 0.83)	 as	 was	

transcript-level	expression	(cortex	Spearman	rho	=	0.84	and	hippocampus	Spearman	rho	=	

0.73)	 (Fig.	 S3.9a-d).	 On	 average,	 we	 detected	 17,000	 known	 genes	 and	 26,000	 known	

transcripts	 for	 each	 tissue.	 The	 diversity	 of	 the	 isoform	 novelty	 categories	 was	 similar	

between	 cortex	 and	 hippocampus	 (Figure	 3.5a-b).	 We	 identified	 694	 differentially	

expressed	transcripts	isoforms	from	a	total	of	612	genes	(log	fold-change	>	1	and	adjusted	

pvalue	<	0.01),	 including	607	known	and	87	novel	 transcript	models	(Figure	3.5c).	This	

included	differences	between	known	transcripts	for	genes	such	as	Pnisr,	which	is	a	splicing	

factor	involved	in	aging43.		Other	examples	involving	novel	isoforms	include	the	maternally	

expressed	3	(Meg3)	long-coding	RNA	gene	for	which	we	detected	two	NIC	transcript	models	

that	were	enriched	in	cortex.	Meg3	is	thought	to	be	involved	in	controlling	vascularization	in	

the	brain	by	inhibiting	angiogenesis44	and	is	highly	expressed.	In	addition,	an	NNC	transcript	

of	Amigo2	was	selectively	enriched	in	hippocampus.	Amigo2	is	known	to	be	upregulated	in	

the	CA2	and	CA3a	regions45	and	is	also	commonly	used	as	a	marker	of	astrocyte	activation46.		

	

We	extended	our	transcript	analysis	by	asking	whether	there	are	specific	sets	of	genes	with	

more	novel	transcript	expression	than	known	transcript	expression.	Specifically,	we	

focused	on	genes	that	had	more	reads	assigned	to	NIC	and	NNC	novel	transcript	isoforms	

than	known	transcript	isoforms	in	either	brain	region	and	found	a	shared	set	of	352	genes	

with	an	additional	29	and	41	that	were	specific	to	cortex	and	hippocampus	respectively	
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(Figure	3.5d).	This	includes	an	NIC	isoform	of	Pnisr	(ENCODEMT000904037)	that	is	

enriched	in	the	cortex	(Figure	3.5e).	These	analyses	show	that	full-length	transcriptome	

sequencing	can	detect	isoform	differences	even	in	intensively	studied	tissues	and	cell	types.	

These	differences	would	be	difficult	to	recover	from	short	reads	alone,	especially	for	the	

NIC	isoforms.	

	

3.4 Discussion	

We	demonstrated	here	that	with	sufficient	sequencing	depth,	long	read	data	can	be	

used	to	reproducibly	quantify	gene	and	transcript	expression	in	homogeneous	cell	lines	

and	in	complex	tissues.	Our	technology-agnostic	long-read	pipeline,	TALON,	simplifies	the	

process	of	comparing	long-read	transcriptomes	across	different	datasets	and	allowed	

PacBio	and	ONT	transcriptomes	to	be	directly	compared.	We	found	that	our	PacBio	results	

are	reasonably	well-correlated	with	Illumina	short-read	data,	particularly	for	gene	

expression	levels	above	2	TPM.	We	also	found	that,	in	our	hands,	the	current	PacBio	

platform	captured	more	complete	transcript	models	than	did	the	current	direct-RNA	ONT,	

but	that	the	former	is	prone	to	antisense	transcript	artifacts	that	apparently	stem	from	the	

reverse	transcription	step	into	cDNA.	It	is	also	likely	that	many	of	the	ISM-class	of	

transcripts	that	we	detected	more	prominently	in	ONT	are	false	positives	due	to	the	pore	

ceasing	to	sequence	midway	through	an	RNA.	While	over	80%	of	the	transcript	models	we	

detect	in	the	well-studied	GM12878	cell	line	were	already	known,	we	nonetheless	found	

evidence	of	a	number	of	new	NIC	and	NNC	transcript	models	that	are	supported	

independently	by	5’	and	3’	ends	from	other	genomics	assays.		
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In	contrast	to	the	homogeneous	and	frequently-studied	GM12878	cell	line,	we	found	

that	a	substantial	number	of	genes	in	the	mouse	cortex	and	hippocampus	produced	more	

novel	(NIC	and	NNC)	isoform	reads	than	known	isoforms.	Not	surprisingly,	this	suggests	

that	we	are	still	underestimating	the	overall	contributions	of	alternative	splicing	in	tissues	

that	are	both	more	complex	in	terms	of	cell	composition	and	also	less	comprehensively	

measured	to	date.	At	this	time,	the	goal	of	producing	a	reference-level	annotation	

transcriptome	for	any	given	cell	type	or	tissue	is	well-served	by	the	PacBio	platform,	but	

our	results	also	make	it	clear	that	any	platform	that	provides	transcript	information	by	

direct	RNA	sequencing,	as	the	RNA	ONT	platform	now	does,	makes	a	different	and	

important	contribution.	At	our	current	PacBio	sequencing	depth,	we	do	not	expect	to	

encounter	substantial	issues	with	lack	of	complexity	in	our	bulk	cDNA	libraries.	However,	

as	long-read	cDNA	sequencing	depths	increase,	reads	from	PCR	duplicates	may	become	

much	more	prevalent	and	would	be	difficult	to	detect	without	UMIs.	This	is	never	an	issue	

with	direct-RNA	sequencing	on	the	Nanopore	platform	because	each	read	must	correspond	

to	a	distinct	mRNA	molecule.	As	iterative	advances	are	made	on	these	platforms,	and	as	

other	long-read	systems	are	added,	the	ability	to	process	and	compare	the	outputs	from	all	

versions	of	all	systems	in	a	platform-agnostic	way	will	be	increasingly	important.					

	 	

In	addition	to	the	technology-specific	challenges	of	each	long-read	platform,	we	

identified	some	shared	issues.	While	both	PacBio	and	ONT	could	sequence	most	genes	

expressed	in	the	cells,	some	very	long	transcripts	were	conspicuously	missing	or	under-

represented	in	our	data.	For	instance,	in	GM12878,	we	only	detected	3	reads	that	fully	

matched	known	isoforms	of	the	highly	expressed	XIST	gene	in	terms	of	their	splice	
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junctions.	Even	the	longest	of	these	reads	(3,539	nt)	was	missing	several	kb	from	the	5’	and	

3’	ends	of	the	annotated	GENCODE	model.	More	generally,	while	NIC	and	NNC	transcript	

models	looked	identical	to	or	better	than	known	transcripts	in	terms	of	CAGE,	poly(A),	and	

RNA-PET	validation,	ISMs	represent	a	challenge	for	both	technologies.	This	is	particularly	

pressing	as	we	detect	more	such	ISMs	in	our	brain	tissue	biosamples	than	in	cell	lines.	We	

expect	that	parsing	ISMs	will	be	a	challenge	in	human	post-mortem	tissue	samples,	

including	reference	collection	efforts	for	ENCODE4,	because	RNA	quality	is	typically	lower	

than	what	we	obtained	from	cell	lines	and	fresh	mouse	tissue	sources.	The	“Iso-seq”	

approach,	which	intentionally	enriches	long-read	size	categories,	has	been	to	collapse	ISM	

reads	onto	known	transcripts.	However,	our	results	show	that	a	subset	of	ISMs	do	have	

independent	CAGE	and	3’	end	support.	Thus,	biological	ISM	forms	are	difficult	to	

distinguish	from	truncated	reads	without,	at	minimum,	some	independent	CAGE	support.	

Interestingly,	the	XIST	locus	is	crowded	with	CAGE	peaks	throughout	its	longest	transcript	

model,	suggesting	that	there	may	be	multiple	“shorter”	isoforms	produced	than	previously	

appreciated,	with	evidence	for	them	having	been	ignored	due	to	the	lack	of	resolution	using	

short	reads	alone.	ISMs	are,	in	any	case,	useful	models	to	incorporate	into	gene	expression	

quantifications.	With	additional	datasets	and	evidence	for	training,	we	anticipate	that	

machine	learning	techniques	will	allow	us	to	discriminate	real	ISMs	from	technical	

artifacts.	Until	then,	it	seems	prudent	to	ignore	ISMs	for	transcript	discovery	in	the	absence	

of	CAGE	(or	similar)	support.	

	

Clear	challenges	remain	to	generate	fully	comprehensive,	high-fidelity	long-read	

transcriptomes	because	of	the	still	relatively	noisy	sequencing	methods	and	imperfectly	
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preserved	RNAs.		That	said,	our	results	show	that	current	long-read	methods	are	already	

demonstrably	superior	to	“pooled”	short-read	RNA-seq	for	reference	annotation-level	

transcriptomics	if	high	quality	mRNA	can	be	extracted.	The	resulting	gain	in	clarity	with	

respect	to	long-range	isoform	structure	and	associated	isoform-specific	quantification	is	

already	substantial,	although	relatively	high	costs	remain	a	limiting	factor.		At	the	time	of	

this	study,	our	long-read	data	costs	were	roughly	an	order	of	magnitude	higher	than	their	

short-read	counterpart,	although	a	useful	perspective	is	that	this	cost	is	comparable	to	that	

of	short-read	RNA-seq	10	years	ago.		We	expect	that	long-read	data	will	decrease	similarly	

in	cost	per	experiment	as	these	platforms	mature.		Even	in	the	domain	of	single-cell	RNA-

seq,	which	is	currently	thriving	on	short	single-reads	for	molecule	counting,	long-read	

formats	are	beginning	to	be	applied,	aiming	to	capture	the	richness	of	isoform	variation	

and	regulation	on	a	per-cell	and	per-cell-type	basis47.	That	said,	short-read	transcriptomes	

will	surely	continue	to	play	a	prominent	role	for	short	RNA	class	substrates,	for	intractably	

degraded	RNAs,	and,	increasingly,	in	biological	settings	where	a	few	long-read	

transcriptomes	can	provide	a	reference	against	which	larger	numbers	of	companion	short-

read	samples	can	be	quantified.			Ultimately,	the	transition	to	routine	long-read	

transcriptome	quantification	will	allow	biologists	to	achieve	clarity	about	functional	mRNA	

isoform	choices	and	their	inferred	protein	products	for	any	cell	type,	tissue,	or	disease	

state.	
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3.5 Materials	and	Methods	

3.5.1 Sample	collection	and	RNA	extraction	

GM12878	cells	were	grown	and	harvested	as	described	in	the	ENCODE	consortium	

protocols	(encodeproject.org).	Total	RNA	was	extracted	using	the	QIAGEN	RNAEasy	Plus	

kit	(Cat.	No.	74134).	All	animal	experimental	procedures	were	approved	by	the	

Institutional	Animal	Care	and	Use	Committee	of	University	of	California,	Irvine,	and	

performed	in	accordance	with	the	NIH	Guide	for	the	Care	and	Use	of	Laboratory	Animals.		

	

Mice	were	anesthetized	with	CO2	and	perfused	with	phosphate	buffered	saline	(PBS)	

for	5-7	minutes	until	most	organs	are	clean	from	blood.	Hippocampus	and	Cortex	from	two	

8-month	male	C57BL/6	mice	were	dissected	and	collected	in	HBSS	no	calcium	no	magnesium	

solution	 (cat.	No.	14170112).	Tissues	were	homogenized	using	 the	QIAshredder	while	 in	

lysis	buffer	included	in	the	QIAGEN	RNAEasy	Plus	kit	(Cat.	No.	74134).	Total	RNA	extraction	

was	done	following	the	vendor	instructions.	To	degrade	mRNA	without	a	5’	cap,	total	RNA	

was	 exposed	 to	 an	 exonuclease	 treatment	 using	 Terminator™	 5´-Phosphate-Dependent	

Exonuclease	(Cat.	No.	TER51020).	

	

PacBio	library	preparation,	sequencing,	and	initial	data	processing	

Starting	from	the	depleted	RNA,	we	followed	a	modified	version	of	the	SMART-seq2	

protocol	to	synthesize	cDNA48.	1000	ng	of	cDNA	were	used	as	input	for	the	PacBio	library	

prep	following	the	SMRTbell	Template	Prep	Kit	2.0	instructions.	Sequencing	was	done	on	

the	PacBio	Sequel	II	machine,	allocating	1	SMRT	cell	per	biological	replicate.	Raw	PacBio	

subreads	were	processed	into	circular	consensus	reads	using	the	Circular	Consensus	step	
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(CCS	v4.0.0)	from	the	SMRTanalysis	8.0	software	suite	(parameters:	--noPolish	--

minLength=10	--minPasses=3	–min-rq=0.9	–min-snr=2.5)	(Figure	S3.1a).	Next,	adapter	

configurations	were	identified	and	removed	using	Lima	v1.10.0	(parameters:	--isoseq	--

num-threads	12	--min-score	0	--min-end-score	0	--min-signal-increase	10	--min-

score-lead	0).	After	this,	full-length	non-chimeric	(FLNC)	reads	were	extracted	using	the	

Isoseq3	Refine	step	(v3.2.2;	parameters:	--min-polya-length	20	--require-polya).	This	

program	considers	a	read	to	be	FLNC	if	it	contained	the	expected	arrangement	of	5’	and	3’	

PacBio	primers	at	the	Lima	stage	as	well	as	a	poly-(A)	tail.	Refine	orients	the	reads	to	the	

correct	strand	(reverse-complementing	sequences	as	necessary)	and	removes	the	poly-A	

tails.	The	resulting	FLNC	reads	were	mapped	to	the	reference	genome	using	Minimap2	

version	2.17	(GRCh38	assembly	for	human	cell	types,	and	mm10	for	mouse)	with	

parameters	recommended	by	the	Minimap2	documentation	for	PacBio	(-ax	splice:hq	-uf	--

MD).		

	

Illumina	library	preparation	and	sequencing	for	mouse	brain	samples	

Starting	 from	 the	 same	 cDNA	used	 for	 the	mouse	 brain	 PacBio	 libraries,	we	 built	

short-read	 libraries	 using	 the	 Nextera	 DNA	 Flex	 Library	 Prep	 Kit	

(https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/nextera-

dna-flex.html?scid=2017249vu1	 <%22>).	 These	 libraries	were	 sequenced	 on	 an	 Illumina	

NextSeq500	to	a	minimum	of	50	million	paired-75bp	reads	per	sample.	

	

ONT	library	preparation	and	sequencing	
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Starting	from	45	μg	of	depleted	RNA,	we	proceeded	to	the	direct-RNA	library	prep	following	

the	RNA-002	kit	instructions.	Reverse	transcription	was	used	to	get	rid	of	secondary	RNA	

structures.	We	used		R9.4	flowcells	and	MinKNOWN	2.0	was	used	to	run	the	samples	until	

having	2	millionraw	reads.	Basecalling	was	performed	on	the	direct	RNA	ONT	reads	using	

ONT	 Guppy	 3.2.1+334123b	 (parameters:	 -r	 --flowcell	 FLO-MIN106	 --kit	 SQK-RNA002	 --

disable_pings	-q	0	--read_batch_size	4000000	--reverse_sequence	on	--u_substitution	on	-x	

"cuda:0	cuda:1")	(Figure	S3.1b).	ONT	reads	were	mapped	to	the	reference	genome	using	

Minimap2	 version	 2.17.	 We	 used	 parameters	 recommended	 for	 ONT	 by	 the	 Minimap2	

documentation	(ax	splice	-uf	-k14	-MD).		

	

Preparing	reference	genomes	and	transcriptome	annotations	

The	human	and	mouse	reference	genomes	were	obtained	from	the	ENCODE	portal	

(GRCh38	assembly	for	human	cell	types,	and	mm10	for	mouse).	All	information	other	than	

the	chromosome	name	was	removed	from	the	FASTA	headers	in	the	reference	genome	

files.	GENCODE	v29	human	and	GENCODE	vM21	mouse	comprehensive	GTF	transcriptome	

annotations	were	downloaded	from	the	GENCODE	portal.		

	

Since	all	samples	were	sequenced	with	ERCC	spike-ins	and	SIRVs,	it	was	necessary	

to	augment	the	reference	genomes	and	transcriptomes	with	these	transcripts.	The	

sequences	of	the	SIRVs	and	ERCCs	(Set	3)	as	well	as	the	SIRV	GTF	annotation	were	

downloaded	from	Lexogen	here:	https://www.lexogen.com/wp-

content/uploads/2018/08/SIRV_Set3_Sequences_170612a-ZIP.zip.	To	create	augmented	
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reference	genomes,	we	concatenated	each	of	the	human	and	mouse	fasta	files	with	

SIRV_ERCCs_multi-fasta_170612a.fasta	and	SIRV_isoforms_multi-fasta_170612a.fasta.		

	

Additional	processing	was	needed	before	adding	the	SIRV	and	ERCC	transcripts	to	

the	human	and	mouse	annotations.	Since	no	GTF	file	was	provided	for	the	ERCCs,	we	

created	one	by	running	merge_encode_annotations.py	on	the	ERCC	fasta	file.	The	SIRV	

isoforms	(SIRV_isoforms_multi-fasta-annotation_C_170612a.gtf)	were	processed	with	the	

separate_multistrand_genes.py	script	so	as	to	separate	transcripts	located	on	different	

strands	into	separate	genes.	Next,	we	ran	talon_reformat_gtf	(TALON	utility)	on	the	ERCC	

and	SIRV	GTFs	in	order	to	add	in	explicit	gene	and	transcript	lines	needed	by	the	TALON	

program.	These	reformatted	GTF	files	were	then	concatenated	to	the	end	of	the	human	and	

mouse	GENCODE	annotations.	

	
TALON	pipeline							

Following	alignment	to	the	genome,	reference-based	error	correction	was	performed	

on	 the	PacBio	FLNC	and	ONT	 reads	using	TranscriptClean	v2.0.2	 (available	on	GitHub	at	

https://github.com/mortazavilab/TranscriptClean).	 Reference	 splice	 junctions	 were	

derived	 from	 the	 GENCODE	 annotations	 using	 TranscriptClean	 accessory	 script	

get_SJs_from_gtf.py.	For	the	human	runs,	we	used	VCF-formatted	NA12878	truth-set	small	

variants	from	Illumina	Platinum	Genomes	to	run	TranscriptClean	in	variant-aware	mode	(--

canonOnly	+	defaults).	For	the	mouse	datasets,	we	ran	TranscriptClean	without	a	VCF	file	(-

-canonOnly	 +	 defaults).	 By	 using	 the	 –canonOnly	 flag,	 we	 omitted	 any	 reads	 that	 still	

contained	one	or	more	un-annotated	noncanonical	splice	junctions	from	the	output.		
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	 After	 TranscriptClean,	 we	 ran	 the	 TALON	 module	 talon_label_reads	 on	 each	

corrected	SAM	 file	 in	order	 to	 compute	 the	 fraction	of	As	 following	 the	end	of	 each	 read	

alignment.	We	set	the	–ar	parameter	to	20	bp	to	match	the	length	of	the	T	sequence	used	in	

PacBio’s	oligo-dT	primer	for	poly-(A)	capture.	All	TALON	steps	(including	this	one)	were	run	

with	 version	 5.0.	 TALON	 and	 accompanying	 documentation	 are	 available	 from	

https://github.com/mortazavilab/TALON.	

Human	and	mouse	TALON	databases	were	 initialized	 from	 the	GENCODE	v29	and	

GENCODE	vM21	+	SIRVs/	ERCC	annotations	using	 the	 talon_initialize_database	module	

from	the	TALON	package	(parameters:	--l	0	--5p	500	--3p	300).	To	annotate	the	GM12878	

PacBio	and	ONT	reads,	we	created	a	configuration	file	with	all	four	datasets	in	it	and	ran	the	

talon	module	on	this	file	along	with	the	human	TALON	database	(parameters:	--cov	0.9	--

identity	 0.8).	 To	 annotate	 the	 mouse	 cortex	 and	 hippocampus	 reads,	 we	 created	 a	

configuration	file	with	all	four	datasets	in	it	and	ran	the	talon	module	on	this	file	along	with	

the	mouse	TALON	database	(parameters:	--cov	0.9	--identity	0.8).	

	

	 To	perform	long	read	quantification,	transcript	abundance	matrices	were	extracted	

from	 the	 TALON	 databases	 using	 the	 talon_abundance	module.	We	 used	 the	 unfiltered	

abundance	 files	 for	all	gene-level	expression	analyses	(omitting	genomic	transcripts	).	To	

perform	 transcript-level	 analyses,	 we	 first	 used	 the	 talon_filter_transcripts	 utility	 to	

generate	celltype	and	experiment-specific	transcript	whitelists	(parameters:	--maxFracA	0.5	

–minCount	5).	This	filtering	process	selected	for	transcript	models	that	were	1)	known	in	

GENCODE/SIRV/ERCC,	or	2)	reproducibly	detected	at	least	5	times	in	each	specified	dataset.	

Reads	 with	 >	 0.5	 fraction	 As	 (as	 specified	 by	 talon_label_reads)	 were	 omitted	 when	
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computing	 this	 read	 support.	We	generated	 separate	whitelists	 for	 the	PacBio	GM12878,	

ONT	 GM12878,	 PacBio	 cortex,	 and	 PacBio	 hippocampus	 dataset	 pairs.	 The	 resulting	

whitelists	were	used	to	generate	filtered	abundance	files	for	transcript	quantification	(using	

talon_abundance),	as	well	as	custom	filtered	GTF	annotations	(using	talon_create_GTF).		

	 Further	 details	 and	 custom	 scripts	 for	 data	 visualization	 are	 available	 on	 GitHub	

(https://github.com/mortazavilab/TALON-paper-2020).		

	

PacBio	vs.	Illumina	short	read	comparison	

Illumina	 short-read	 RNA-seq	 reads	 from	 GM12878	 were	 downloaded	 from	 the	

ENCODE	portal	 in	 the	 fastq	 format	 (accession	ENCSR000AEH).	Quantification	against	 the	

GENCODE	v29	annotation	was	performed	on	each	biological	replicate	using	Kallisto16.	The	

log	 fold	changes	between	PacBio	and	 Illumina	counts	 for	each	GENCODE	gene/transcript	

were	computed	using	the	exact	test	method	in	EdgeR	(v3.28.1)	following	filtering	of	lowly	

expressed	genes/transcripts	and	normalization.	Bonferroni	correction	for	multiple	testing	

was	performed	on	the	resulting	p-values.	Genes/transcripts	were	considered	significantly	

different	in	the	two	platforms	if	adjusted	p	<	0.01	and	abs(log2FC)	>	1.	

In	addition,	we	computed	the	gene-level	Spearman	correlations	between	each	long-

read	technology	and	Illumina	for	GM12878	for	genes	that	were	detected	by	both	platforms.	

To	do	this,	we	first	averaged	the	expression	(in	TPM)	of	each	gene	across	biological	replicates	

by	platform.	For	Illumina,	this	meant	averaging	the	Kallisto	TPM	results	across	replicates.	

For	 PacBio	 and	 ONT,	 we	 computed	 the	 gene-level	 TPMs	 from	 the	 unfiltered	 TALON	

abundance	 tables	 for	each	dataset	 (excluding	genomic	 transcripts	and	novel	genes),	 then	

averaged	the	replicates.		
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Comparison	of	PacBio	and	ONT	transcriptomes	

We	calculated	gene	quantification	using	the	unfiltered	TALON	abundance	files	with	

genomic	transcripts	removed.	For	transcript	quantification,	we	included	transcript	models	

in	the	union	of	the	PacBio	and	ONT	filtering	whitelists.		

	

CAGE	analysis	

Robust	human	CAGE	peaks	were	downloaded	from	FANTOM5	in	the	BED	format12.		

The	genomic	coordinates	were	mapped	from	hg19	to	hg38	using	the	UCSC	genome	browser	

LiftOver	tool49.	We	obtained	the	start	site	of	each	long-read	transcript	model	from	our	GTF	

transcriptomes,	then	used	Bedtools	to	ascertain	whether	any	CAGE	peak	overlapped	the	100	

bp	region	immediately	up	or	downstream	of	each	TSS50.	

	

Computational	Poly(A)	motif	analysis	

Each	 GTF	 transcript	model	 was	 converted	 to	 BED	 format.	We	 extracted	 the	 DNA	

sequence	of	the	last	35	bp	in	each	transcript	using	the	reference	genome	(GRCh38	assembly	

for	human	cell	types,	and	mm10	for	mouse),	then	searched	for	the	presence	of	a	known	6-

mer	poly(A)	motif	as	described	in	Anvar	et	al.,	201851.	

	

RNA-PET	analysis	

RNA-PET	 clusters	 for	 GM12878	 were	 downloaded	 in	 the	 BED	 format	 from	 the	

ENCODE	 portal	 (accession	 ENCFF001TIL).	 The	 genomic	 coordinates	 were	 mapped	 from	

hg19	to	hg38	using	the	UCSC	genome	browser	LiftOver	tool49.	We	obtained	the	start	and	end	
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site	of	each	long-read	transcript	model	from	our	GTF	transcriptomes,	then	used	Bedtools	to	

check	whether	any	pair	of	RNA-PET	clusters	was	located	within	100	bp	of	the	start	and	end50.		

	

Mouse	Hippocampus	and	Cortex	data	analysis	

Gene	and	transcript	abundances	were	calculated	as	described	above.	For	differential	

transcript	expression	analysis,	we	used	EdgeR	(v3.28.1)	and	adjusted	the	resulting	p-values	

using	the	Bonferroni	method.	Transcripts	with	abs(log2FC)	>	1	and	an	adjusted	p-value	<	

0.01	 were	 considered	 significantly	 differentially	 expressed.	 We	 used	 a	 custom	 script	 to	

identify	 genes	 that	 had	 higher	 novelty	 counts	 (NIC+NNC)	 separately	 for	 cortex	 and	

hippocampus	and	identified	the	overlapping	genes.	The	UCSC	genome	browser	was	used	to	

visualize	transcripts	colored	according	to	their	novelty.	

		

Overview	of	TALON	database	

A	key	novel	aspect	of	the	TALON	pipeline	is	its	use	of	a	database	to	store	transcript	

models	 and	 abundances	 from	 multiple	 runs,	 and	 therefore	 its	 ability	 to	 compare	 new	

datasets	to	this	knowledge	base.	The	database	is	designed	to	serve	two	major	purposes:		

1)	To	store	gene,	transcript,	and	exon	attributes	of	the	type	needed	to	construct	a	GTF	

transcriptome	annotation	(i.e.	their	names/IDs,	genomic	positions,	and	novelty	type).	

2)	 To	 track	 the	 quantity	 and	 identity	 of	 the	 transcripts	 observed	 in	 each	 of	 the	

datasets	that	have	been	processed	so	far.			

	

The	 underlying	 philosophy	 of	 TALON	 filtering	 is	 that	 as	 additional	 datasets	 are	

sequenced	and	added	to	the	database,	more	information	becomes	available	to	differentiate	
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between	real	transcripts	and	artifacts.	Therefore,	it	makes	sense	to	apply	filtering	to	novel	

transcript	models	in	the	database	as	a	post-processing	step	that	can	be	revisited	at	any	time,	

rather	than	discarding	transcripts	upfront	during	a	run.	Datasets	can	be	processed	back-to-

back	with	TALON	as	part	of	a	single	run	but	can	also	be	added	successively	without	the	need	

to	re-analyze	the	earlier	data	since	the	results	are	already	tracked	in	the	database.		

	

TALON	database	structure	

Each	instance	of	a	TALON	database	consists	of	14	tables	in	total	in	the	SQLite	format	

(Figure	S3.10).	The	database	is	initialized	from	a	GTF-formatted	transcriptome	annotation	

such	 as	 GENCODE,	 which	 populates	 its	 ‘gene_annotations’,	 ‘transcript_annotations’,	 and	

‘exon_annotations’	 tables	 with	 the	 metadata	 from	 each	 GTF	 entry.	 Notably,	 these	 tables	

permit	data	 to	be	 entered	 from	more	 than	one	 source,	 recognizing	 for	 example	 that	 it	 is	

possible	 for	 a	 transcript	 to	 have	 a	 different	 name	 or	 novelty	 status	 depending	 on	 the	

particular	annotation	version	consulted.		

	

During	initialization,	the	locations	of	the	genes,	transcripts,	and	exons	must	also	be	

stored.	Rather	than	placing	genomic	coordinates	directly	in	the	‘gene’	or’	transcript’	tables,	

we	 considered	 how	 the	 database	 could	 be	 extended	 in	 the	 future	 to	 accommodate	

personalized	 genomes	 for	 human	 transcriptome	 analysis,	 or	 genomes	of	 different	mouse	

strains.	 Individual	 genomic	 coordinates	 are	 abstracted	 out	 and	 represented	 by	 a	 vertex	

(‘vertex’	table),	which	can	have	a	different	location	depending	on	the	instance	of	the	genome	

build	in	the	database	(as	denoted	in	the	‘location’	table).	Exons	and	introns	are	represented	

as	edges	connecting	two	vertices,	which	means	that	transcripts	are	paths	through	vertices	
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belonging	to	a	gene.	These	are	stored	in	the	‘edge’	table.	In	the	future,	this	graph	structure	

could	be	exploited	by	superimposing	count	data	onto	 it	and	examining	 the	probability	of	

different	transcripts.	

		

The	 database	 also	 contains	 two	major	 tables	 for	 the	 explicit	 purpose	 of	 tracking	

transcripts	 in	 long	 read	datasets.	The	 ‘abundance’	 table	 stores	 the	number	of	 times	each	

transcript	was	detected	in	each	dataset,	which	is	highly	useful	for	quantitative	comparisons.	

The	 ‘observed’	 table	 contains	 a	 record	 of	 every	 long	 read	 processed	 by	 the	 annotation	

pipeline.	It	tracks	the	read	length,	the	transcript	and	gene	assignment	of	the	read,	and	any	

differences	from	the	annotation	at	the	5’	and	3’	ends.	The	latter	is	important	because	more	

accurate	5’	and	3’	ends	are	a	major	goal	of	long	read	transcriptomic	analysis.	The	‘dataset’	

table	tracks	associated	metadata	for	each	dataset	that	was	initially	entered	by	the	user	in	the	

TALON	configuration	file.		

	

Epstein-Barr	Virus	transcriptome	analysis		

An	EBV	chromosome	GTF	annotation	was	obtained	from	

https://ebv.wistar.upenn.edu/downloadstatis/ebv.custom	and	refined	for	use.	PacBio	

GM12878	reads	that	mapped	to	the	EBV	chromosome	from	the	hg38	genome	build	were	

isolated	and	run	through	TranscriptClean	using	splice	junctions	generated	from	the	GTF,	

and	subsequently	run	through	TALON.	Gene	and	transcript	TPMs	were	calculated	using	

previously	discussed	filtering	methodologies.		
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Running	FLAIR	on	PacBio	and	ONT	data	

FLAIR	was	cloned	from	BrooksLabUCSC/flair	on	GitHub	on	3/12/20	(latest	commit	

d23a9c2ef62ede402e8b23d6231784ad910ed1af).	For	each	of	the	PacBio	and	ONT	

GM12878	datasets,	we	ran	the	FLAIR	align	and	correct	steps	on	biological	replicates	

separately,	then	combined	the	outputs	in	order	to	run	the	FLAIR	collapse	and	quantify	

steps	using	default	parameters.	We	removed	SIRV	and	ERCC	transcripts	at	this	point	and	

converted	the	‘counts_matrix.tsv’	output	file	from	FLAIR	Quantify	to	a	format	resembling	

the	TALON	abundance	file.	From	there,	we	compared	gene	and	transcript	detection	to	the	

TALON	results	and	to	Illumina.	

	

Long-read	splice	junction	extraction	

Post-TALON	splice	junctions	and	GENCODE	annotation	splice	junctions	were	

extracted	from	GTF	files	using	the	get_SJs_from_gtf.py	script	from	TranscriptClean	(v2.0.2).		

	

Short-read	splice	junction	extraction	

To	obtain	high-confidence	splice	junctions	from	short	reads,	Illumina	RNA-seq	reads	

(fastq)	were	mapped	to	the	reference	genome	using	STAR	v.	2.5.2a.	We	used	the	following	

ENCODE-recommended	parameters:	

STAR	\	
--runThreadN	4	\	
--genomeDir	genome	\	
	--readFilesIn	illumina_1.fastq	illumina_2.fastq	\	
--sjdbGTFfile	gencode.annotation.gtf	\	
--outFilterType	BySJout	\	
--outFilterMultimapNmax	20	\	
--alignSJoverhangMin	8	\	



 72 

--alignSJDBoverhangMin	1	\	
--outFilterMismatchNmax	999	\	
--outFilterMismatchNoverLmax	0.04	\	
--alignIntronMin	20	\	
--alignIntronMax	1000000	\	
--alignMatesGapMax	1000000	\	
--outSAMattributes	NH	HI	NM	MD	jM	jI	\	
--outSAMtype	SAM	
	

For	each	splice	junction,	the	resulting	file	lists	genomic	location,	strand,	intron	motif,	

whether	or	not	the	junction	is	annotated	in	GENCODE,	and	the	amount	of	read	support.	To	

ensure	splice	junction	reproducibility,	we	ran	each	replicate	separately,	and	the	

subsequent	splice	junctions	were	merged	and	filtered	for	each	cell	type.	Splice	junctions	

with	no	supporting	uniquely-mapped	reads	were	discarded,	and	we	required	non-

annotated	splice	junctions	to	have	at	least	one	uniquely-mapping	read	in	each	replicate.		

	

Splice	junction	support	by	junction	novelty	category	

To	determine	the	novelty	of	all	long-read,	post-TALON	GM12878	splice,	we	first	extracted	

each	junction	from	the	TALON	GTF.	Next,	we	used	a	custom	script	to	compare	each	long-

read	junction	with	the	splice	donors	and	acceptors	present	in	the	GENCODE	annotation.	We	

defined	three	different	junction	categories:	

• Known	junctions:	The	exact	splice	donor/acceptor	combination	was	seen	in	the	

GENCODE	annotation.	

• 	Novel	in	catalog:	The	splice	donor	and	acceptor	are	seen	in	the	GENCODE	

annotation,	but	never	together	in	the	same	junction.		

• Novel	not	in	catalog:	The	splice	donor,	splice	acceptor,	or	both	fail	to	be	seen	in	the	

GENCODE	annotation.		
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Once	the	status	of	each	junction	was	determined,	we	computed	the	GM12878	short-read	

support	for	each	splice	junction	novelty	category	separately	by	platform.	
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Figure	3.1.	Overview	of	TALON.	a)	Long-read	alignments	from	either	technology	are	
corrected	with	TranscriptClean	for	each	biological	replicate.	Next,	potential	internal	
priming	events	are	flagged	by	the	talon_label_reads	module.	Labeled	reads	are	passed	into	
talon,	where	they	are	assigned	a	gene	and	transcript	identity.	The	talon_abundance	module	
computes	gene	expression	directly	from	the	talon	results,	whereas	novel	transcript	models	
are	filtered	prior	to	quantification.	Novel	transcripts	must	be	reproducibly	detected	n	times	
in	k	datasets	to	pass	the	filter	(default	n	=	5	and	k	=	2),	and	must	not	come	from	internally	
primed	reads.	b)	Types	of	transcript	novelty	tracked	by	TALON.	c)	TALON	can	be	used	to	
compare	different	long-read	sequencing	technologies	run	on	the	same	biological	sample	
such	as	the	human	GM12878	cell	line.	d)	TALON	can	also	be	used	to	compare	genes	and	
transcripts	across	different	samples	such	as	mouse	hippocampus	and	cortex.		
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Figure	3.2.	Performance	of	TALON	on	PacBio	transcripts	 from	GM12878	cell	 line.	a)	
Expression	level	of	known	genes	(GENCODE	v29)	in	each	biological	replicate	(Pearson	r	=	
0.97,	Spearman	rho	=	0.92).	b)	Proportion	of	genes	expressed	in	Illumina	RNA-seq	data	of	
GM12878	 that	 are	also	detected	 in	PacBio,	binned	by	 Illumina	expression	 level	 (TPM).	c)	
Comparison	of	gene	expression	levels	for	known	genes	in	the	PacBio	and	Illumina	RNA-seq	
platforms.	d)	Number	of	distinct	transcript	isoforms	observed	in	each	novelty	category.	e)	
Expression	level	of	known	transcript	models	in	each	biological	replicate	(Pearson	r	=	0.97,	
Spearman	rho	=	0.73).	f)	Expression	of	transcript	models	in	each	biological	replicate,	labeled	
by	 their	novelty	assignments	 (Pearson	r	=	0.97,	Spearman	rho	=	0.83)	 .	g)	Comparison	of	
known	transcript	expression	levels	in	the	PacBio	and	Illumina	RNA-seq	platforms.	h)	Total	
number	of	PacBio	reads	assigned	to	each	novelty	category	after	transcript	filtering	(Rep	1).	
i)	Percentage	of	known	and	novel	PacBio	GM12878	splice	junctions	supported	by	Illumina.	
Junctions	labeled	NIC	indicate	novel	combinations	of	known	splice	sites,	while	NNC	junctions	
included	a	new	donor	and/or	acceptor.	



 76 

	

	

	

	

	

	

Figure	3.3.	Comparison	of	Oxford	Nanopore	direct	RNA-seq	transcriptome	with	
PacBio	transcriptome	in	GM12878.	a-b)	2	GM12878	replicates	were	sequenced	using	
the	MinIon	platform	and	analyzed	using	TALON	pipeline	to	measure	a)	gene	expression	
(Pearson	r	=	0.99,	Spearman	rho	=	0.92)	and	b)	transcript	expression	(Pearson	r	=	0.97,	
Spearman	rho	=	0.64).	c)	Total	read	count	per	novelty	category.	There	is	a	substantially	
larger	fraction	of	ISM	reads	than	full-length	known	compared	to	PacBio	(Fig	2h).	d)	
Number	of	distinct	isoforms	by	novelty	category.	e-f)	Correlations	between	ONT	direct	
RNA-seq	and	PacBio	with	respect	to	e)	gene	expression	(Pearson	r	=	0.58,	Spearman	rho	
=	0.63)	and	f)	transcript	expression	(Pearson	r	=	0.5,	Spearman	rho	=	0.18).	
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Figure	3.4.	External	validation	of	transcript	model	ends	by	novelty	category.	a)	
Percentage	of	TALON	transcript	models	with	CAGE	support	for	their	5’	end	by	novelty	
category	(GM12878	PacBio).	b	Percentage	of	TALON	transcript	models	with	a	poly(A)	motif	
identified	at	their	3’	end	(GM12878	PacBio).	c)	Percentage	of	TALON	transcript	models	with	
RNA-PET	support	for	their	5’-3’	end	pair	(GM12878	PacBio).	d)	Percentage	of	TALON	
transcript	models	with	CAGE	support	for	their	5’	end	by	novelty	category	(GM12878	ONT).	e)	
Percentage	of	TALON	transcript	models	with	a	poly(A)	motif	identified	at	their	3’	end	
(GM12878	ONT).	f)	Percentage	of	TALON	transcript	models	with	RNA-PET	support	for	their	
5’-3’	end	pair	(GM12878	ONT).	
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Figure	 3.5.	 PacBio	 transcriptomes	 of	 8-month	 male	 adult	 mouse	 cortex	 and	
hippocampus.	 Novelty	 assignments	 of	 distinct	 transcript	 models	 detected	 in	 one	
representative	 replicate	 each	 of	 a)	 cortex	 and	 b)	 hippocampus.	 c)	 Differential	 isoform	
expression	in	hippocampus	and	cortex.	Transcripts	with	a	fold	change	>	1	and	an	adjusted	
p	 value	 of	 <	 0.01	 are	 colored	 according	 to	 their	 novelty	 status	 and	 labeled	 with	 their	
corresponding	gene	name	(color	scheme	in	panels	a,b)	d)	Detection	of	genes	with	greater	
novel	read	counts	(NIC	+	NNC)	than	known.		e)	Pnisr	UCSC	genome	browser	visualization	
showing	a	new	combination	of	exons	detected	by	PacBio.	Expression	levels	of	each	isoform	
detected	are	is	plotted	on	the	right	for	cortex	and	hippocampus.	
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Figure	 S3.1:	 Platform-specific	 data	 processing	 performed	 prior	 to	 running	 TALON	
pipeline.	a)	Sequencing	and	preprocessing	of	PacBio	Sequel	data.	The	Lima/Refine	step	in	
particular	is	important	because	it	removes	reads	that	did	not	receive	a	full	sequencing	pass	
and	orients	the	remaining	reads	to	the	correct	strand.	b)	Sequencing	and	preprocessing	of	
ONT	direct-RNA	data.	 Since	 the	RNA	 itself	 is	 sequenced	 poly(A)	 first,	 no	 additional	 read	
orientation	steps	are	required.	
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Figure S1: Platform-specific data processing performed prior to running TALON pipeline. a) Sequencing and preprocessing of PacBio Sequel data. 
                   The Lima/Refine step in particular is important because it removes reads that did not receive a full sequencing pass and orients the remaining reads to the correct strand. 
                    b) Sequencing and preprocessing of ONT direct-RNA data. Since the RNA itself is sequenced poly(A) first, no additional read orientation steps are required.
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Figure	 S3.2.	 Performance	 of	 TALON	 filtering	 on	 SIRV	 transcripts	 sequenced	 with	
PacBio	 Sequel	 II.	 a)	Number	 of	 SIRV-aligned	 reads	 assigned	 to	 each	 transcript	 novelty	
category	 in	 the	 GM12878	 Rep1	 and	 Rep2	 datasets	 after	 TALON	 filtering.	 b)	 Number	 of	
distinct	 transcript	models	 called	 per	 novelty	 category	 from	 the	 SIRV-aligned	 reads	 after	
TALON	filtering.	Union	of	GM12878	Rep1	and	Rep2	 is	shown.	c)	Number	of	SIRV-aligned	
reads	assigned	to	each	transcript	novelty	category	in	the	GM12878	Rep1	and	Rep2	datasets	
(no	filtering).	d)	Number	of	distinct	transcript	models	called	per	novelty	category	from	the	
SIRV-aligned	reads	(no	filtering).	Union	of	GM12878	Rep1	and	Rep2	is	shown.	e)	Proportion	
of	unfiltered	SIRV	reads	in	each	novelty	category	that	display	evidence	of	internal	priming	
(>	50%	As	in	20bp	window	following	the	alignment).	Union	of	GM12878	Rep1	and	Rep2	is	
shown.	
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Figure	S3.3.	TALON	read	length	distributions	for	PacBio	GM12878	datasets.	a)	Rep	1.	
b)	Rep	2.		
	

	

	

	

	

	

	

	

	

	

	

	

a) b)
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Figure	S3.4.	Further	characterization	of	gene	detection	in	GM12878	by	short	reads	and	
PacBio	 long	 reads.	 a)	 Length	 of	 known	 genes	 by	 differential	 expression	 category.	 Gene	
length	was	computed	by	taking	the	median	length	of	all	known	transcripts	per	gene.	b)	GC	
content	of	known	genes	by	differential	expression	category.	Gene	GC	content	was	computed	
by	taking	the	median	GC	of	all	known	transcripts	per	gene.	
	

	

	

	

	

	

	

	

	

	

	

a) b)
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Figure	S3.5.	Length	and	exon	count	by	transcript	novelty	type	in	GM12878	PacBio.	a)	
Read	 length	distributions	by	novelty	 category.	b)	Number	of	exons	per	 transcript	model,	
grouped	by	novelty	type	assignment.	
	

	

a)

b)
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Figure	S3.6.	Epstein-Barr	Virus	transcriptome	characterization	in	GM12878.	a)	Gene	
expression	 levels	 in	 GM12878	 from	 the	 EBV	 chromosome	 and	 from	 the	 human	
chromosomes,	labelled	by	gene	novelty.	b)	Transcript	expression	levels	in	GM12878	from	
the	EBV	 chromosome	 and	 from	 the	 human	 chromosomes,	 labelled	 by	 transcript	 novelty.	
Novel	 transcripts	 have	 been	 filtered	 for	 reproducibility	 between	 GM12878	 biological	
replicates.	c)	Visualization	of	TALON	GTF	annotations	in	the	UCSC	genome	browser	for	EBV	
transcripts	in	GM12878.	
	

	

	

a) b)

c)
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Figure	 S3.7.	 Characterization	of	GM12878	 cell	 line	by	Oxford	Nanopore	direct-RNA	
sequencing.	TALON	read	length	distributions	for	Nanopore	ENCODE	Tier	1	cell	line	datasets	
a)	GM12878	Rep	1	and	b)	GM12878	Rep	2.	c)	Expression	level	of	known	transcript	models	
and	reproducible	ISMs	in	PacBio	vs.	ONT	for	GM12878	(Pearson	r	=	0.48,	Spearman	rho	=	
0.08).	
	
	
	
	

a) b)

c)
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Figure	S3.8.	TALON	and	FLAIR	gene	detection	across	sequencing	platforms	and	
samples.	Proportion	of	genes	expressed	in	Illumina	GM12878	RNA-seq	data	that	are	also	
detected	by	TALON,	FLAIR,	or	both	in	the	corresponding	a)	PacBio	and	b)	ONT	long-read	
datasets.	Genes	are	divided	into	bins	based	on	their	Illumina	expression	level	(TPM).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

a) PacBio GM12878 b) Direct-RNA Nanopore GM12878

Figure S8. TALON and FLAIR gene detection across sequencing platforms and samples. 
Proportion of genes expressed in Illumina GM12878 RNA-seq data that are also detected by 

TALON, FLAIR, or both in the corresponding a) PacBio and b) ONT long-read datasets. 

Genes are divided into bins based on their Illumina expression level (TPM).
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Figure	S3.9.	Reproducibility	of	PacBio	gene	and	transcript	expression	in	mouse	cortex	
and	hippocampus.	a)	Expression	level	of	known	genes	in	each	cortex	biological	replicate.	
b)	Expression	level	of	known	transcripts	in	each	cortex	biological	replicate.	c)	Expression	
level	of	known	genes	in	each	hippocampus	biological	replicate.	d)	Expression	level	of	known	
transcripts	in	each	hippocampus	biological	replicate.			
	
	
	
	
	

a) b)

c) d)

Figure S9. Reproducibility of PacBio gene and transcript expression in mouse cortex 
                  and hippocampus. a) Expression level of known genes in each cortex 
                  biological replicate. b) Expression level of known transcripts in each cortex 
                  biological replicate. c) Expression level of known genes in each 
                  hippocampus biological replicate. d) Expression level of known transcripts 
                  in each hippocampus biological replicate.
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Figure	S3.10.	TALON	database	schema.	Relationships	between	the	14	tables	are	indicated	
with	grey	lines,	and	primary	keys	are	shown	in	bold.		
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Table	S3.1:	Accessions	for	submitted	data	
	

Platform Cell/tissue 
type Replicate 

 
ENCODE 
accession 

 

GEO accession Raw read 
count 

Pre- 
mapping 

read count 

Reads at 
TALON 

stage 

PacBio 
Sequel II GM12878 1 ENCLB200YVA --- 6,061,818 2,137,168 2,040,933 

PacBio 
Sequel II GM12878 2 ENCLB735WVC --- 6,692,215 2,538,701 2,445,556 

PacBio 
Sequel II Mouse cortex 1 ENCLB287KUK --- 6,404,493 2,843,245 2,777,090 

PacBio 
Sequel Mouse cortex 2 ENCLB440QNX --- 6,549,444 2,643,160 2,578,722 

PacBio 
Sequel 

Mouse 
hippocampus 1 ENCLB722NJT --- 7,422,892 2,961,269 2,900,630 

PacBio 
Sequel 

Mouse 
hippocampus 2 ENCLB186LWF --- 6,943,825 3,124,583 2,858,450 

ONT 
direct-
RNA 

GM12878 1 --- GSM4417547 2,020,127 2,020,127 1,675,608 

ONT 
direct-
RNA 

GM12878 2 --- GSM4417548 2,571,101 2,571,101 1,984,953 

Illumina 
RNA-

seq 
Mouse cortex 1 ENCLB894RIO --- 87,966,793 NA NA 

Illumina 
RNA-

seq 
Mouse cortex 2 ENCLB671GZH --- 51,152,278 NA NA 

Illumina 
RNA-

seq 

Mouse 
hippocampus 1 ENCLB591DUT --- 61,562,264 NA NA 

Illumina 
RNA-

seq 

Mouse 
hippocampus 2 ENCLB626JBH --- 62,561,081 NA NA 
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Table	 S3.2:	 Detection	 of	 Illumina-expressed	 genes	 by	 TALON	 and	 FLAIR	 in	 PacBio	
GM12878	
	
	
	
	
	
	
	
	
	
Table	S3.3:	Detection	of	known	transcripts	by	TALON	and	FLAIR	in	PacBio	GM12878	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

GENCODE	transcripts		 PacBio	
GM12878	

ONT	
GM12878	

Detected	by	FLAIR	only	 471	 923	
Detected	by	TALON	only	 12,741	 11,642	
Detected	by	both	TALON	

and	FLAIR	
14,100	 11,891	

Illumina-expressed	Genes		 PacBio	
GM12878	

ONT	
GM12878	

Not	detected	 13,583	 13,788	
Detected	by	FLAIR	only	 234	 246	
Detected	by	TALON	only	 2,525	 2,381	
Detected	by	both	TALON	

and	FLAIR	 10,459	 10,386	
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Chapter	4	

A	single-cell,	isoform-level	survey	of	the	developing	mouse	forelimb	

using	deep	long-read	sequencing	

4.1 Abstract	

During	embryonic	development,	the	diverse	tissues	of	the	mouse	forelimb	form	

through	a	highly	regulated	sequence	of	cell	migration	and	differentiation.	Although	gene	

expression	changes	during	limb	development	have	been	well-characterized,	the	role	of	

alternative	splicing	and	5’/3’	end	variation	during	this	process	remains	poorly	understood.	

Here,	we	use	single-cell	PacBio	long-read	sequencing	to	deeply	interrogate	isoform-level	

expression	in	81	selected	cells	from	the	myogenic	and	immune	lineages	in	the	embryonic	

mouse	forelimb.	At	a	depth	of	~90,000	reads	per	cell,	we	find	that	long-read	gene	and	

isoform-level	measurements	show	good	agreement	with	short-read	data	from	the	same	

cells	and	are	largely	able	to	recapitulate	the	relationships	between	cell	types.		While	we	did	

not	observe	clear	isoform	switching	events	across	cell	types	thus	far,	we	did	identify	

isoform-level	markers	that	evaded	the	gene	analysis,	as	well	as	novel	isoforms	that	were	

specific	to	a	particular	cell	state.	In	addition,	our	long-read	data	allowed	us	to	examine	

alternative	transcription	start	site	(TSS)	and	transcription	end	site	(TES)	usage	on	the	level	

of	individual	mRNA	molecules.	From	this,	we	learned	that	some	genes	consistently	express	

transcripts	with	multiple	different	TSSs	or	TESs	in	the	same	cell.	These	results	demonstrate	

the	utility	of	long-read	sequencing	for	performing	quantitative,	isoform-level	studies	of	

single	cell	transcriptomes.	
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4.2 Introduction	

Development	is	a	carefully	coordinated	process	in	which	cells	must	migrate	and	divide	

over	a	controlled	timeline	to	form	complex	structures	and	tissues.		Successive	changes	in	

gene	expression	are	essential	to	reshaping	the	identity	and	functions	of	cells	along	the	

way1,2.	With	the	availability	of	RNA-seq,	a	high-throughput	method	for	measuring	gene	

expression,	it	has	been	possible	to	thoroughly	quantify	transcriptional	changes	in	a	variety	

of	developmental	settings3,4.	More	recently,	the	extension	of	RNA-seq	to	single	cells	

(scRNA-seq)	has	enabled	unprecedented	glimpses	into	how	individual	cells	make	fate	

decisions5–8.		

	

	 While	many	studies	have	focused	broadly	on	the	role	of	gene	expression	during	

development,	it	is	believed	that	alternative	splicing	also	plays	an	important	role9,10.	

Alternative	splicing	allows	individual	multi-exonic	genes	to	produce	mRNA	transcripts	

with	different	combinations	of	exons11.	The	resulting	‘isoforms’	may	have	different	

functional	properties	depending	on	which	protein	domains	they	code	for,	or	alternately,	

due	to	the	regulatory	sequence	domains	they	contain12,13.	Isoform	proportions	have	been	

observed	to	change	across	developmental	stages	even	as	the	overall	gene	expression	level	

remains	stable,	particularly	in	the	brain14.	Consequently,	differential	expression	of	

isoforms,	not	just	genes,	can	profoundly	affect	the	properties	of	cells	during	development.		

	

The	developing	embryonic	mouse	forelimb	is	an	interesting	setting	in	which	to	

examine	isoform	expression	because	it	contains	a	variety	of	migrating	and	differentiating	

cell	types.	Limb	formation	is	highly	conserved	across	vertebrates15.	The	mouse	forelimb	
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forms	over	the	course	of	embryonic	day	E9.5	through	E17.5,	beginning	as	a	bud	structure	

containing	primarily	undifferentiated	mesoderm	cells	and	later	harboring	bone,	muscle,	

and	cartilage	tissues16.	Skeletal	muscle	in	the	limb	is	believed	to	form	by	successive	waves	

of	cell	migration	and	differentiation17.	Initially,	early	muscle	precursor	cells	expressing	the	

Pax3	transcription	factor	as	well	as	Myf5	migrate	from	the	somite	to	the	limb,	forming	

masses	that	will	later	become	distinct	muscle	groups15,17,18.	Inside	these	masses,	the	muscle	

precursors	differentiate	into	myoblast	cells,	which	express	myogenic	lineage	genes	such	as	

Myod1	and	continue	to	express	Myf5	15,18,19.	Myoblasts	can	proliferate	or	terminally	

differentiate	into	myocytes,	which	are	characterized	by	expression	of	genes	such	as	Myod1,	

Myog,	Acta1,	and	Myh320–22.	Early	myocytes	are	mononuclear,	but	they	later	fuse	into	large,	

multinucleated	myotubes,	which	organize	into	muscle	fibers20.		

	

Recently,	He	and	Williams	et	al.	conducted	an	in-depth,	single-cell	study	of	the	

developing	mouse	forelimb	using	short-read	single-cell	RNA-seq23.	Their	analysis	identified	

both	known	and	new	candidate	cell	types	in	the	limb	bud	across	developmental	timepoints,	

and	revealed	regulatory	circuits	involved	in	various	stages.	A	logical	next	step	is	to	

understand	isoform-level	expression	in	these	cell	types.		Here,	we	use	PacBio	long-read	

technology	to	deeply	sequence	the	full-length	transcriptomes	of	81	single	cells	isolated	

from	five	cell	populations	of	interest	in	the	developing	mouse	limb	bud.	We	characterize	

and	quantify	the	isoforms	present	in	each	cell	using	the	TALON	long-read	pipeline	from	

Chapter	3,	identifying	gene	and	isoform-level	markers	by	cell	type.	We	also	use	the	TALON	

outputs	to	identify	alternative	5’	and	3’	sites	on	a	single-molecule	basis.	Overall,	we	

demonstrate	that	it	is	feasible	to	quantify	isoform-level	expression	in	single	cells	using	
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long-read	technology,	and	that	these	can	provide	insights	that	would	be	challenging	to	

obtain	from	short	reads.	

	

4.3 Results	

4.3.1 Single	cell	gene	and	isoform	detection	with	PacBio	long-read	sequencing	

Although	single-cell	sequencing	has	revolutionized	the	study	of	rare	and	heterogeneous	

cell	types,	characterizing	single	cells	with	a	relatively	low-throughput	technology	such	as	

PacBio	still	poses	a	significant	challenge.	Notably,	our	populations	of	interest	(muscle	

precursors,	myoblasts,	myocytes,	EMPs,	and	macrophages)	are	extremely	rare	in	the	

embryonic	mouse	limb	bud	overall.	For	instance,	the	largest	of	these	lineages,	the	muscle	

precursors,	are	estimated	to	account	for	only	5.8%	of	limb	bud	cells23.	Given	the	expense	

involved	in	long-read	sequencing	and	the	high	read	depth	needed	to	characterize	isoform-

level	expression,	it	is	not	feasible	to	sequence	an	indeterminate	number	of	cells	from	the	

limb	bud	with	PacBio	and	hope	that	enough	cells	of	interest	will	be	represented.	Therefore,	

we	devised	a	screening	approach	to	allow	targeted	long-read	study	of	selected	cells	

(Figure	4.1).	This	involved	sequencing	full-length,	single-cell	libraries	with	the	

comparatively	cheaper	short-read	scRNA-seq	first	to	assign	cell	type	identities	based	on	

canonical	gene	markers,	and	then	selecting	libraries	for	long-read	profiling	based	on	these	

assignments.	Using	this	approach,	we	performed	PacBio	long-read	sequencing	on	25	

muscle	precursors,	25	myoblasts,	20	myocytes,	5	EMPs,	and	8	macrophages	(Figure	

4.2,4.3a).	Of	these,	two	myocytes	were	later	removed	for	quality	control	reasons.	

Focusing	on	the	relatively	small	total	of	81	cells	allowed	us	to	achieve	deep	gene	and	

isoform-level	coverage,	which	is	necessary	to	confidently	detect	quantitative	isoform	
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differences	between	cells.	A	median	of	92,150	reads	per	cell	passed	our	quality	controls	

and	were	used	for	gene	and	isoform	calling	in	the	TALON	pipeline	(Figure	4.3b).	After	

annotation,	a	median	of	5,724	GENCODE	genes	were	detected	per	cell,	while	a	median	of	

5,123	known	GENCODE	isoforms	were	detected	(Figure	4.4a-b).	Note	that	the	gene	count	

is	higher	than	isoforms	in	part	because	novel	isoforms	can	contribute	to	the	detection	of	

known	genes.	We	observed	a	trend	in	which	cell	types	considered	to	be	less	differentiated	

(i.e.	muscle	precursors,	EMPs)	tended	to	have	a	greater	number	of	known	genes	and	

isoforms	detected	than	more	differentiated	cell	types	(i.e.	myocytes,	macrophages).	This	

effect	was	not	satisfactorily	explained	by	depth	of	sequencing	alone	(Figure	4.5).	Previous	

works	have	suggested	that	as	cells	differentiate,	they	devote	increasing	transcriptional	

resources	to	a	more	speciailized	set	of	genes,	leading	to	less	diversity	in	the	transcriptome	

24.	This	is	one	possible	explanation	for	what	we	see	in	our	data,	but	further	investigation	is	

needed.		

We	next	compared	our	long-read	gene	detection	to	that	of	matched	short-read	scRNA-

data	for	each	individual	cell.	The	number	of	genes	detected	was	strongly	correlated	across	

the	platforms	(Spearman	rho	=	0.71),	but	as	expected,	short	reads	detected	a	greater	

number	of	genes	per	cell,	likely	due	to	higher	sequencing	depth	(Figure	4.6a).	We	also	

computed	the	gene	expression	correlation	for	each	cell	across	the	long	and	short-read	

platforms	(Figure	4.6b).		The	median	Spearman	rho	across	all	cells	was	0.65,	indicating	

good	agreement	between	the	technologies.	No	particular	trend	was	observed	between	the	

Spearman	rho	and	the	PacBio	read	count,	indicating	that	all	of	our	cells	achieved	enough	

long-read	coverage	to	be	comparable	to	the	short-read	measurements.	
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The	TALON	pipeline	also	allowed	us	to	group	novel	isoforms	into	categories	based	on	

how	they	differed	from	known	ones.	After	filtering	to	remove	likely	artifacts	(see	Materials	

and	Methods),	we	detected	a	median	of	1,482	novel	isoforms	per	cell	(Figure	4.7a).	The	

incomplete	splice	match	(ISM)	category	was	the	most	common	novelty	type,	followed	by	

the	novel	in	catalog	(NIC)	category	(Figure	4.7b).	Overall,	the	breakdown	of	novelty	types	

was	similar	across	the	cells	independent	of	type.	Over	90%	of	the	filtered	reads	came	from	

known	isoforms	(Figure	4.7c).	

	

4.3.2 Clustering	single	cells	based	on	gene	expression	

After	obtaining	gene	and	isoform-level	counts	from	TALON	on	a	per-cell	basis,	we	used	

these	as	input	to	Scanpy25	in	order	to	cluster	the	cells	and	call	gene	and	isoform	markers.	

We	performed	the	gene-level	analysis	first.	We	log-normalized	the	gene	expression	counts	

by	cell	and	then	performed	dimensionality	reduction	via	a	principle	component	analysis	

(PCA).	The	Leiden	algorithm	was	used	to	cluster	the	cells	from	the	PCA,	then	we	visualized	

the	resulting	clusters	in	two	dimensions	using	the	uniform	manifold	approximation	and	

projection	(UMAP)	technique	(Figure	4.8a).		For	the	most	part,	the	cells	clustered	by	

known	cell	type	identity,	indicating	that	long-read	derived	gene	expression	measurements	

were	sufficient	to	recapitulate	the	cell	type	composition	of	the	data	(Figure	4.8b).	Leiden	

clusters	0,	2,	and	4	clearly	corresponded	to	the	muscle	precursor,	myocyte,	and	

macrophage	groups,	respectively.	Interestingly,	the	myoblast	cells	were	divided	across	

Leiden	clusters	1	and	3,	which	we	denoted	as	myoblast.1	and	myoblast.2,	respectively.		

Although	the	EMP	cells	were	co-localized	on	the	UMAP,	the	Leiden	clustering	failed	to	

assign	an	EMP-specific	cluster	regardless	of	the	parameter	regime,	conflating	them	instead	
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with	the	muscle	precursors.	This	is	likely	due	to	the	very	small	number	of	EMPs	(5	cells)	

relative	to	the	other	cell	types.	We	also	superimposed	the	sequencing	batch	information	of	

each	cell	onto	the	UMAP	to	visualize	how	the	different	batches	segregated	in	two	

dimensions	(Figure	4.8c).		The	batches	are	well-distributed	across	the	different	clusters	

and	do	not	seem	to	account	for	the	substructure	in	the	myoblast	populations.		

	

	 After	computing	cell	clusters	using	Scanpy,	we	proceeded	to	call	markers	for	each	

group.	We	identified	62	significant	marker	genes	for	the	myocyte	cluster,	65	for	the	

macrophages,	22	for	muscle	precursor,	34	for	myoblast.1,	and	15	for	myoblast.2	(Table	

4.1-4.4).	Encouragingly,	we	found	canonical	cell	type	markers	among	the	genes	for	each	

group,	including	Pax3	for	muscle	precursors,	Msc	for	myoblasts,	Myog	for	myocytes,	and	

Spi1	for	macrophages	(Figure	4.9).	We	also	observed	expected	expression	patterns	for	a	

set	of	well-known	myogenic	markers	(Figure	4.10).	For	instance,	Pax3	was	expressed	

mainly	in	muscle	precursors,	along	with	a	handful	of	myoblasts.	Myf5	was	pervasively	

expressed	in	muscle	precursors	and	myoblasts,	while	Msc	was	largely	specific	to	the	latter	

group.	Des	and	Myod1	were	expressed	beginning	in	the	myoblast	stage	but	were	more	

highly	expressed	in	the	myocytes.	Myog	was	ubiquitously	expressed	by	the	myocytes	and	

also	appeared	in	a	few	myoblasts.	A	small	number	of	myocytes	dually	expressed	Acta1	amd	

Myh3,	which	are	considered	later-stage	myocyte	markers.	

	

Previous	works	have	suggested	that	temporally	distinct	populations	of	myoblasts	

ultimately	give	rise	to	fast,	mixed	fast/slow,	and	slow-twitch	muscle	fibers19,26,27.	

Embryonic	myoblasts	emerge	around	day	E10.5	and	are	believed	to	be	precursors	to	
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primary	muscle	fibers,	which	provide	a	scaffold	for	the	developing	muscle	and	tend	to	

conform	to	the	slow-twitch	phenotype28.		Fetal	myoblasts	appear	later	(~E14.5),	

differentiating	into	secondary	myotubes	that	form	fast-twitch	fibers28,29.	Because	the	single	

cells	in	our	data	were	pooled	from	timepoints	spanning	E10.5	through	E15.5,	it	is	possible	

for	the	myoblast	cells	to	belong	to	either	group.	We	therefore	sought	to	better	understand	

the	differences	between	the	myoblast.1	and	myoblast.2	clusters	in	our	data,	and	to	examine	

whether	the	groups	corresponded	at	all	to	the	embryonic	and	fetal	subpopulations.	Cells	in	

the	myoblast.1	cluster	expressed	more	of	the	Junb,	Notch1,	and	Lmna	genes,	which	have	

been	previously	describedas	enriched	in	fetal	myoblasts	(Figure	4.11)19.	Meanwhile,	

myoblast.2	cells	expressed	more	Pax3,	Met,	and	Myf5,	which	have	been	observed	at	higher	

levels	in	embryonic	myoblasts19.	However,	the	results	were	less	conclusive	for	other	

markers	such	as	Msc,	Tcf15,	and	Prkcq.	Tentatively,	it	is	possible	that	the	myoblast.1	and	

myoblast.2	clusters	correspond	to	the	fetal	and	embryonic	myoblast	populations,	but	more	

evidence	is	needed.	A	possible	confounder	is	the	fact	that	the	myoblast.1	cluster	contains	a	

handful	of	misclassified	macrophage	and	EMP	cells.	

	

4.3.3 Examining	splice	isoform	differences	by	cell	type	

Having	established	that	long-read	gene	expression	measurements	could	recapitulate	

cell	type	relationships	in	the	single-cell	data,	we	next	analyzed	the	isoforms.	First,	we	

tested	whether	the	cell	types	clustered	as	expected	based	on	isoform	as	well	as	gene	

expression.	To	focus	on	the	transcripts	least	likely	to	be	artifacts,	we	elected	to	run	Scanpy	

on	isoform	counts	from	known,	NIC,	and	NNC	transcripts	only.	As	in	the	gene	analysis,	the	

isoform-based	clustering	successfully	captured	the	underlying	cell	population	structure	
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(Figure	4.12a).	Again,	the	myocytes	and	macrophages	formed	clearly	distinct	groups,	

corresponding	to	Leiden	clusters	2	and	4,	respectively	(Figure	4.12b).	In	an	interesting	

departure	from	the	gene	analysis,	the	myoblasts	were	grouped	in	a	single	cluster,	number	

0,	while	the	muscle	precursors	were	split	in	two	(Leiden	clusters	1	and	3).	The	sequencing	

batches	were	well-distributed	across	the	UMAP	(Figure	4.12c).	We	next	identified	64	

marker	isoforms	for	the	myocyte	cluster,	69	for	the	macrophage	cluster,	41	for	the	

myoblasts,	42	for	the	muscle-pre.1	cluster,	and	25	isoforms	for	the	muscle-pre.2	cluster	

(Figure	4.13;	Table	4.5-4.8).	34	of	the	markers	were	novel	NIC	or	NNC	isoforms,	which	

likely	would	have	been	difficult	to	call	with	short	reads.	Of	the	241	total	isoform	markers,	

114	belonged	to	genes	that	were	called	as	markers	in	the	previous	gene	analysis,	and	127	

were	unique	to	the	isoform	analysis	(Table	4.9).	Although	we	observed	several	cases	of	

marker	isoforms	belonging	to	the	same	gene,	all	of	these	instances	occurred	within	the	

same	cluster	rather	than	across	cell	types.	For	instance,	four	different	Tnnt1	isoforms	were	

called	as	myocyte	markers,	and	three	Msc	isoforms	were	called	as	myoblast	markers.		

	

Athough	we	did	not	find	clear	examples	of	isoform	switching	in	our	marker	analysis,	

we	nevertheless	identified	interesting	examples	of	context-specific	alternative	splicing	in	

the	data	at	large.	For	instance,	Rbm24	is	a	splicing	factor	known	to	regulate	skeletal	muscle	

by	promoting	inclusion	of	muscle-specific	exons	in	its	targets30.	We	detected	known	

isoforms	Rbm24-201,	Rbm24-203	and	Rbm24-204	in	all	three	muscle	cell	types,	and	also	

identified	a	novel	isoform	(Rbm24-ENCODEMT000167653)	that	contained	a	new	

combination	of	known	exons	(Figure	4.14).	This	novel	transcript	was	exclusively	

expressed	in	myocyte	cells	and	would	have	been	challenging	to	identify	from	short	reads.	
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Going	forward,	it	would	be	interesting	to	further	investigate	the	functional	properties	of	

this	novel	isoform	relative	to	the	others,	and	to	ask	whether	the	exon	inclusion	event	has	

any	effect	on	Rbm24’s	activity	as	a	splicing	factor.		

	

4.3.4 Alternative	5’	and	3’	ends	

Because	PacBio	is	a	single-molecule	sequencing	technology,	it	is	possible	to	identify	the	

5’	start	and	3’	ends	for	each	transcript	in	addition	to	its	splicing	pattern,	a	task	that	is	very	

difficult	to	perform	with	short-read	data.		This	led	us	to	ask	whether	we	could	observe	any	

interesting	trends	in	the	single	cells	with	respect	to	transcript	differences	at	the	5’	and	3’	

ends.	We	first	called	transcription	start	sites	(TSSs)	directly	from	the	long	reads	that	

passed	our	isoform	filters	(Figure	4.15a).	This	was	done	on	a	per-gene	basis	by	selecting	

the	start	positions	of	each	long-read	alignment	that	was	annotated	to	the	gene	and	

collapsing	these	sites	into	ranges	(see	Materials	and	Methods	for	details).		Since	long	reads	

are	subject	to	artifacts	that	can	generate	misleading	starts	and	ends,	we	also	sought	to	

assign	evidence	levels	to	the	TSSs.	For	instance,	we	compared	each	TSS	to	known	start	sites	

from	the	GENCODE	annotation	as	well	as	FANTOM	CAGE	peaks.	We	found	that	of	39,209	

total	TSSs	called	from	the	filtered	transcript	models,	15,600	TSSs	were	supported	by	>	1	

read	and	had	GENCODE	support,	CAGE	support,	or	both.	This	total	can	be	subdivided	to	

11,638	known	GENCODE	TSSs	and	3,962	CAGE-supported	novel	TSSs.	A	median	of	4,303	

GENCODE/CAGE-supported	TSSs	were	detected	per	cell	(Figure	4.15b).	We	next	plotted	

the	number	of	known	splice	isoforms	and	supported	TSSs	detected	for	each	gene	in	each	

individual	cell	(Figure	4.15c).	Although	most	genes	had	at	most	one	supported	TSS	and	

one	known	isoform	detected	at	a	time	in	a	single	cell,	there	were	many	exceptions.	For	
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instance,	four	distinct	TSSs	of	the	Hes1	transcription	factor	were	found	in	a	single	myoblast	

and	myocyte	cell,	and	a	further	6	muscle-precursors,	4	myoblasts,	and	1	myocyte	cell	

expressed	more	than	one	Hes1	TSSs	at	the	same	time	(Figure	4.15d).	Interestingly,	many	

of	these	distinct	TSSs	came	from	transcripts	that	otherwise	shared	the	same	set	of	exons.	

The	Hnrnpf	RNA	binding	protein	gene	also	displayed	a	striking	amount	of	TSS	

heterogeneity	on	the	single-cell	level.	When	only	known	isoforms	were	considered,	all	but	

one	cell	in	the	muscle	precursor,	myoblast,	and	myocyte	categories	expressed	two	or	more	

Hnrnpf	TSSs,	the	max	being	4	per	cell	(Figure	4.15e).	When	we	included	reads	that	were	

annotated	to	novel	NIC	and	NNC	isoforms	as	well,	a	maximum	of	5	TSSs	were	detected	in	

21	individual	cells	(Figure	4.15f).	In	both	versions,	the	muscle	precursor	population	had	a	

significantly	higher	degree	of	TSS	diversity	in	Hnrnpf	than	was	observed	in	the	myoblast	

and	myocyte	cells.	The	TSSs	differences	discussed	here	would	have	been	difficult	to	discern	

from	short-read	RNA-seq	data	alone	and	represent	a	case	where	single-molecule	long	reads	

can	make	a	substantial	contribution.		

	

The	next	step	was	to	identify	and	compare	transcription	end	sites	(TESs)	in	the	single	

cells.	Candidate	TESs	were	called	in	a	similar	manner	to	the	TSSs,	though	the	evaluation	

was	somewhat	different	(Figure	4.16a).	For	each	TES,	we	compared	the	candidate	to	

known	GENCODE	end	sites	and	looked	for	the	presence	of	a	canonical	poly-(A)	motif	

towards	the	end	of	the	sequence.		Of	the	30,671	total	TESs	called,	20,347	had	GENCODE	

support,	poly(A)	motif-support,	or	both.	We	detected	12,200	known	GENCODE	TESs	and	

8,147	poly(A)-supported	novel	TESs.	A	median	of	4,370	GENCODE/poly(A)	motif-

supported	TESs	were	detected	per	cell	(Figure	4.16b).	As	in	the	case	of	the	TSSs,	most	cells	
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detected	one	TES	and	one	splice	isoform	at	most	per	gene	(Figure	4.16c).	However,	

exceptions	included	the	tropomyosin	1	(Tpm1)	gene	–	cells	from	the	three	muscle	

populations	were	consistently	found	to	simultaneously	express	two	or	more	validated	TESs	

in	mucle	precursor,	myoblast,	and	myocyte	cells	(Figure	4.16d).	Muscle	precursors	

contained	significantly	more	Prrx1	TESs	per	cell	than	the	myocytes	(Figure	4.16e).	

Furthermore,	the	muscle	precursor	and	myoblast	cells	expressed	significantly	more	TESs	

of	splicing	factor	Srsf3	than	did	the	myocytes	(Figure	4.16f).	This	is	intriguing	because	the	

expression	level	of	this	gene	was	relatively	steady	across	all	three	cell	types	(Figure	4.17a-

b).	This	further	illustrates	the	transcriptomic	diversity	that	can	be	found	on	the	level	of	

single	cells	using	long-read	sequencing.	

	

4.4 Discussion	

Here,	we	used	PacBio	long-read	sequencing	to	deeply	profile	the	isoform-level	

transcriptomes	of	81	individual	muscle	precursor,	myoblast,	myocyte,	EMP,	and	

macrophage	cells	from	the	developing	mouse	limb.	Overall,	our	results	demonstrate	that	it	

is	possible	to	quantitatively	measure	gene	and	isoform	expression	as	well	as	alternative	

TSS/TES	usage	directly	from	long	reads	on	the	single-cell	level.	We	found	that	long	read-

based	expression	levels	correlated	well	with	short-read	data	from	the	same	individual	cells.	

In	addition,	long-read	clustering	analyses	on	both	the	gene	and	isoform	level	reconstituted	

known	celltype	groupings	with	respect	to	the	three	myogenic	populations.	In	particular,	

the	isoform	expression	analysis	revealed	over	200	isoform-level	cluster	markers,	many	of	

which	contained	novel	splicing	events.	More	than	half	of	these	isoforms	came	from	genes	

that	were	not	identified	as	gene-level	cluster	markers,	suggesting	that	some	differences	
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between	the	cell	types	may	be	driven	on	the	level	of	particular	isoforms	rather	than	genes.	

An	important	next	step	will	be	to	characterize	the	functions	of	differentially	expressed	

isoforms	in	order	to	better	understand	how	they	may	be	contributing	to	the	underlying	

biology	of	the	cells	they	are	expressed	in.		

	

While	we	did	observe	isoforms	that	were	specific	to	particular	cell	populations,	we	

were	somewhat	surprised	that	we	did	not	observe	any	obvious	isoform	switching	events	in	

which	two	isoforms	showed	inverted	expression	patterns	across	celltypes.	One	possible	

explanation	could	be	that	not	much	isoform	switching	goes	on	in	the	particular	cell	types	

and	stages	that	we	chose	to	observe.	Isoform	switching	is	known	to	be	an	important	

developmental	mechanism	in	tissues	such	as	the	brain,	but	the	ground	truth	is	less	well	

understood	in	myogenesis.	However,	it	is	also	possible	that	we	were	unable	to	detect	these	

events	as	a	result	of	our	current	sequencing	depth	and	quantity	of	cells.	One	option	would	

be	to	sequence	additional	cells	from	the	original	screen	to	approximately	double	the	total.	

An	important	challenge	of	working	with	long	read	data	is	how	to	use	reads	that	are	

annotated	to	potentially	artifactual	novel	transcripts.	In	particular,	the	incomplete	splice	

match	(ISM)	category	presents	a	conundrum	because	these	transcripts	may	represent	‘lost’	

expression	from	a	longer	isoform,	and	it	is	often	unclear	exactly	which	one.	Here,	we	chose	

to	be	conservative	by	including	only	known,	NIC,	and	NNC	transcripts	in	our	isoform-level	

analyses,	but	it	is	possible	that	we	missed	some	isoform	expression	patterns	in	doing	so.	It	

is	also	worth	noting	that	the	Scanpy	package	was	developed	and	optimized	for	short-read	

gene	expression	analysis	in	large	single	cell	datasets,	rather	than	for	long-read,	isoform-

based	counts.	Since	signal	dropout	for	isoforms	is	likely	to	be	even	more	severe	than	on	the	
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gene	level,	computational	methods	may	need	to	be	tailored	more	specifically	to	help	find	

differential	isoform	trends	hidden	in	the	noise.	

	

There	is	one	final	limitation	to	consider.	We	did	not	add	unique	molecular	identifiers	

during	PacBio	library	preparation,	meaning	that	it	was	not	possible	to	detect	and	remove	

PCR	duplicate	reads.	When	working	with	single	cells,	there	is	always	a	concern	that	the	

large	amounts	of	amplification	needed	to	build	a	library	can	give	rise	to	runaway	

amplification	artifacts	that	distort	expression	measurements	downstream.	While	we	

cannot	completely	rule	out	this	scenario	in	our	data,	we	do	not	believe	that	it	invalidates	

the	general	conclusions	we	have	drawn.		

	

In	the	third-generation	sequencing	era,	methods	that	combine	single-molecule	

sequencing	with	the	resolution	of	single	cells	will	offer	an	unprecedented	look	at	the	

transcriptional	diversity	underpinning	different	cell	states.	The	methods	we	have	described	

here	can	be	extended	and	applied	in	a	variety	of	biological	settings.	We	anticipate	that	long-

read,	single-cell	transcriptome	profiling	will	be	highly	useful	in	advancing	our	

understanding	of	disease,	particularly	for	neurological	disorders	where	alternative	splicing	

is	known	to	play	a	role.		

	

4.5 Materials	and	Methods	

4.5.1 Library	selection	and	long-read	sequencing	

Single	cells	dissected	from	the	developing	mouse	limb	bud	(embryonic	days	E10.5,	

E11,	E11.5	E12.5,	E13,	E13.5,	E14,	E14.5	and	E15.5)	were	isolated	using	the	Fluidigm	C1	
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system	and	were	built	into	Smart-seq	full-length	cDNA	libraries	with	ERCC	spike-ins	as	

described	in	He,	Williams,	et	al.	202023.	These	libraries	were	first	sequenced	as	50	bp	single	

reads	on	the	Illumina	Hi-Seq	2500	to	a	depth	of	about	1M	aligned	reads	(cell	barcodes	were	

added	at	the	tagmentation	step).	Cell	type	identities	were	called	as	described	in	He,	

Williams,	et	al.	202023.	Using	these	identities,	a	total	of	83	cells	were	determined	to	belong	

to	cell	types	of	interest	(muscle	precursors,	myoblasts,	myocytes,	erythroid	myeloid	

progenitors,	and	macrophages)	and	were	selected	for	further	study	by	long-read	

sequencing.	To	prepare	these	single-cell	cDNA	libraries	for	PacBio	sequencing,	we	added	

cell-specific	barcodes	via	limited	PCR.		After	pooling	the	bar-coded	libraries	in	equi-molar	

proportions,	a	portion	of	the	pool	was	reserved	for	size	selection.		Concentration	of	the	

pooled	libraries	was	determined	via	Qubit,	and	the	pool	was	then	reconcentrated	to	>	45	

ng/uL	using	Ampure	XP	SPRI	beads.		The	pool	was	then	bound	to	Sera-Mag	beads	for	size	

selection,	collected	on	a	magnet	and	rinsed	twice	with	70%	Etoh,	and	then	eluted	from	the	

beads	in	EB.	Sequencing	was	performed	on	a	combination	of	the	PacBio	Sequel	and	Sequel	

II	machines	(Table	4.10).		

	

4.5.2 Running	TALON	pipeline	on	single-cell	long-read	data	

The	full	workflow	is	shown	in	Figure	2.	The	CCS	program	was	run	on	each	raw	library	

subreads	 BAM	 file	 to	 generate	 a	 high-fidelity	 consensus	 for	 each	 read	 (version	 4.0.0,	

parameters:	--skip-polish	--min-length=10	--min-passes=3	--min-rq=0.9	--min-snr=2.5).	The	

CCS	reads	were	demultiplexed	by	cell	barcode	and	had	their	adaptors	removed	by	the	Lima	

program	 (version	 1.10.0,	 parameters:	 --same	 --split-bam-named	 --score-full-pass	 --ccs	 --

dump-removed).	At	this	point,	each	library	was	subdivided	into	separate	fasta	files	for	each	
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cell.	Next,	we	ran	a	custom	script	(flip_reads.py)	on	each	fasta	file	to	identify	and	reverse-

complement	reads	with	a	poly(T)	sequence	of	at	least	20	bp	in	the	first	50	nucleotides	of	the	

read.		The	purpose	of	this	step	was	to	place	reads	in	the	correct	strand	orientation	prior	to	

aligning	 them	 to	 the	 mm10	 +	 ERCC	 reference	 genome	 with	 Minimap231	 (version	 2.17,	

parameters	-ax	splice:hq	-uf).	After	alignment,	reads	were	corrected	using	TranscriptClean32	

(version	 2.0.2,	 parameters:	 --canonOnly	 +	 defaults).	 Next,	 internal	 priming	 scores	 were	

computed	for	each	read	using	the	talon_label_reads	utility	(TALON33	version	5.0,	parameters	

--ar	20).	At	this	point,	we	created	a	unified	SAM	file	for	each	cell	ID	by	concatenating	all	reads	

for	 each	 cell	 from	different	 sequencing	 runs	 and	 libraries.	We	 imposed	 a	minimum	 read	

cutoff	of	5,000,	which	led	us	to	remove	two	cells	with	identifiers	20036_D11	and	19915_B9	

(both	myocytes).	

A	 mouse	 TALON	 database	 was	 initialized	 from	 the	 GENCODE	 vM21	 +	 ERCC	

annotations	 using	 the	 talon_initialize_database	 module	 from	 the	 TALON	 package	

(parameters:	--l	0	--5p	500	--3p	300).	To	annotate	the	reads,	we	created	a	configuration	file	

with	a	line	for	each	cell	and	ran	the	talon	module	on	this	file	along	with	the	TALON	database	

(parameters:	--cov	0.9	--identity	0.8).		

	

	 To	perform	long	read	quantification,	transcript	abundance	matrices	were	extracted	

from	 the	 TALON	 databases	 using	 the	 talon_abundance	module.	We	 used	 the	 unfiltered	

abundance	 files	 for	 all	 gene-level	 expression	 analyses	 (omitting	 genomic	 transcripts).	 To	

filter	 isoforms,	we	 required	 the	 isoform	 be	 a)	 known,	 or	 b)	 to	 appear	 at	 least	 once	 in	 a	

minimum	 of	 5	 cells	 of	 the	 same	 cell	 type.	 Reads	with	 >	 0.5	 fraction	 As	 (as	 specified	 by	

talon_label_reads)	 were	 omitted	 when	 computing	 this	 read	 support.	 The	 union	 of	 the	
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resulting	 whitelists	 was	 used	 to	 generate	 filtered	 abundance	 files	 for	 transcript	

quantification	(using	talon_abundance),	as	well	as	custom	filtered	GTF	annotations	(using	

talon_create_GTF).		

	

4.6 Short-read	gene	quantification	

Matching	short-read	RNA-seq	data	was	available	in	the	fastq	format	for	each	single	cell.	

To	quantify	the	short-read	gene	expression,	we	ran	Kallisto34	(version	0.43.1;	parameters	-

b	100	–single	-l	180	-s	20)	on	the	fastqs	for	each	individual	cell,	using	a	Kallisto	index	

generated	from	the	GENCODE	vM21	transcriptome	annotation	plus	ERCC	spike-in	

sequences.	Genes	expressed	at	a	level	of	<	1	TPM	were	not	considered	in	further	analysis.	

	

4.7 Scanpy	long-read	gene	analysis	

Scanpy	version	1.4.4.post1	was	used.	A	single-cell	gene	expression	matrix	was	

constructed	by	summing	all	transcript	counts	per	gene	for	each	cell	from	the	unfiltered	

TALON	abundance	file,	excluding	only	the	genomic	transcript	category.	This	matrix	was	

used	to	initialize	a	Scanpy	AnnData	object.	Gene	expression	values	were	normalized	to	

10,000	total	counts	per	cell	and	log-transformed	as	recommended	in	the	Scanpy	

documentation.	Next,	we	called	highly	variable	genes	using	Scanpy’s	

scanpy.pp.highly_variable_genes	function	(parameters:	n_top_genes	=	3000,	flavor	=	

'seurat',	min_mean=0.0125,	max_mean=3,	min_disp=0.5).	We	performed	PCA	

dimensionality	reduction	(scanpy.tl.pca)	on	the	highly	variable	gene	values	scaled	using	

scanpy.pp.scale	(parameters:	max_value=10).	To	select	the	number	of	PCs	to	use	for	

subsequent	analyses,	we	computed	the	number	of	PCs	needed	to	explain	90%	of	the	
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variance.	The	result	was	36	PCs.	We	computed	a	neighborhood	graph	of	the	PCA-processed	

cells	using	scanpy.pp.neighbors	(n_neighbors=9,	n_pcs=36).	Then,	we	performed	Leiden	

clustering	using	scanpy..tl.leiden.	We	used	scanpy.tl.umap	and	scanpy.pl.umap	to	embed	

the	graph	in	two	dimensions.	Cluster	markers	were	called	using	sc.tl.rank_genes_groups	

(method='wilcoxon',	use_raw	=	True,	corr_method= 'benjamini-hochberg'),	then	filtered	

using	sc.tl.filter_rank_genes_groups	(min_in_group_fraction=	0.25,	min_fold_change=	1,	

max_out_group_fraction=	0.5).	

	

4.8 Scanpy	long-read	isoform	analysis	

This	analysis	was	conducted	largely	the	same	way	as	the	Scanpy	gene	analysis,	though	

on	a	different	input.	Rather	than	computing	gene-level	expression,	we	initialized	the	

Scanpy	AnnData	object	on	an	expression	matrix	derived	from	the	filtered	TALON	

abundance	file,	and	elected	to	keep	only	transcripts	from	the	known,	NIC,	and	NNC	

categories.	This	was	done	because	these	are	the	novelty	types	with	the	most	supporting	

evidence.	The	number	of	PCs	needed	to	explain	90%	of	the	transcript	variance	was	36.	

After	marker	calling,	the	markers	were	filtered	using	sc.tl.filter_rank_genes_groups	

(min_in_group_fraction=	0.25,	min_fold_change=	1,	max_out_group_fraction=	0.5).		

	 	

4.9 TSS	and	TES	isoform	analysis	

To	call	long-read	transcription	start	sites	(TSSs),	we	took	the	5’	end	start	site	of	each	

PacBio	read	annotated	to	a	transcript	model	that	passed	the	TALON	filter	and	internal	

priming	cutoff.	These	were	recorded	in	the	TALON	read	annotation	output	file.	Next,	for	

each	gene	individually,	we	merged	the	read	starts	such	that	consecutive	members	of	the	
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same	TSS	group	were	at	most	50	bp	apart.	To	filter	the	TTSs,	we	required	them	to	be	

located	within	10	bp	of	either	an	annotated	GENCODE	TSS	or	a	FANTOM5	CAGE	peak,	and	

also	to	be	supported	by	at	least	two	reads.	The	CAGE	peaks	were	downloaded	in	the	BED	

format	from	the	following:	

https://fantom.gsc.riken.jp/5/datafiles/reprocessed/mm10_latest/extra/CAGE_peaks/m

m10_fair+new_CAGE_peaks_phase1and2.bed.gz.	

	 We	used	a	similar	approach	to	call	long-read	transcription	start	sites	(TESs).	We	

took	the	3’	end	start	site	of	each	PacBio	read	annotated	to	a	transcript	model	that	passed	

the	TALON	filter	and	internal	priming	cutoff,	merging	consecutive	sites	for	each	gene	that	

were	within	100	bp	of	each	other.	To	filter	the	TESs,	we	looked	for	an	annotated	GENCODE	

end	within	10	bp	of	the	TES	and/or	the	presence	of	a	canonical	poly(A)	motif	in	the	last	35	

bp	of	the	TES	interval	as	described	in	Anvar	et	al.	201835.	TESs	that	were	supported	by	

fewer	than	two	reads	were	classified	as	unsupported.	
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Figure	4.1.	Experimental	design	for	selecting	cells	of	interest	for	long-read	
profiling.	Single-cell	SMART-seq	libraries	are	prepared	from	cells	isolated	from	the	
mouse	limb	bud	and	sequenced	using	short	reads.	These	data	are	used	to	determine	
the	identity	of	each	cells.	Cells	belonging	to	lineages	of	interest	are	then	sequenced	on	
the	PacBio	long-read	platform.	
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Figure	4.2.	Single-cell	barcoding	scheme	and	computational	workflow.	Cell-
specific	barcodes	and	PacBio	circular	adaptors	were	added	after	the	initial	Smart-seq	
library	prep.	After	sequencing	and	standard	circular	consensus	correction,	reads	were	
demultiplexed	and	partitioned	by	cell	barcode.	The	reads	for	each	cell	were	then	
processed	separately	up	until	the	TALON	annotation	step.	
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Figure	4.3.	Deep	sequencing	of	limb	bud	cells	with	PacBio.	a)	Number	of	cells	
sequenced	per	cell	type.	b)	Number	of	reads	obtained	per	cell	at	the	annotation	(TALON)	
stage	of	the	analysis.	The	median	value	across	all	cell	types	was	92,150	reads.	



 118 

	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	4.4.	Long-read	gene	and	isoform	detection	in	single	cells.	a)	
Number	of	known	GENCODE	genes	detected	per	single	cell	across	cell	types.	
Median	value	of	5,724	genes	per	cell.	b)	Number	of	known	GENCODE	
isoforms	detected	per	single	cell	across	cell	types.	Median	value	of	5,123	
isoforms	per	cell.	
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Figure	4.5.	Number	of	genes	detected	per	cell	versus	of	long-read	count.	
The	identity	of	each	cell	is	indicated	by	its	color.	
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Figure	4.6.	Comparison	of	long	and	short-read	gene	expression	
measurements	in	single	cells.	a)	Number	of	genes	detected	in	the	same	
cell	by	PacBio	long-read	and	Illumina	short-read	sequencing.	Libraries	were	
built	using	the	Fluidigm	C1	platform.	b)	Gene	expression	Spearman	rho	
computed	for	each	cell	across	long	and	short-read	platforms,	plotted	against	
the	number	of	long	reads	sequenced	per	cell.		
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Figure	4.7.	Novel	transcripts	identified	by	TALON	from	PacBio	single	cells.	a)	
Number	of	novel	transcript	models	detected	per	cell	by	TALON	(after	filtering).	b)	
Novelty	breakdown	of	isoforms	detected	in	each	single	cell	(after	filtering).	c)	Novelty	
category	assignments	of	filtered	reads	(pooled	from	all	cells).	A	diagram	of	the	novelty	
categories	is	shown	alongside.	
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Figure	4.8.	UMAP	visualization	of	single	cells	based	on	long-read	gene	
expression.	a)	Clusters	derived	from	Leiden	neighborhood	graph.	b)	Cells	labeled	by	
the	cell	identity	that	was	assigned	by	the	short-read	screening	process.	c)	Cells	labeled	
by	Sequel	II	sequencing	batch.	‘Pool	1’	refers	to	cells	that	were	sequenced	at	
HudsonAlpha,	‘Pool	2’	refers	to	cells	sequenced	at	UC	Irvine,	and	‘both’	describes	cells	
that	were	sequenced	at	both	facilities.	
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Figure	4.9.	Expression	of	gene	markers	identified	for	Leiden	clusters.	The	top	10	
gene	markers	(as	ranked	by	Scanpy)	are	shown	for	each	group.		
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Figure	4.10.	Expression	of	selected	myogenic	lineage	marker	genes	in	each	cell.	
Expression	levels	are	overlaid	on	the	Scanpy	gene	UMAP.	
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Figure	4.11.	Mean	PacBio	expression	level	and	fraction	of	cells	expressing	
selected	genes	in	each	Leiden	cluster.	a)	Myogenic	lineage	genes.	b)	Genes	
previously	described	as	expressed	in	embryonic	and	fetal	myoblast	cells.		
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Figure	4.12.	UMAP	visualization	of	single	cells	based	on	long-read	isoform	
expression	(Known,	NIC,	and	NNC	only).	a)	Clusters	derived	from	Leiden	
neighborhood	graph.	b)	Cells	labeled	by	the	cell	identity	that	was	assigned	by	the	
short-read	screening	process.	c)	Cells	labeled	by	Sequel	II	sequencing	batch.	‘Pool	1’	
refers	to	cells	that	were	sequenced	by	the	HudsonAlpha	facility,	‘Pool	2’	refers	to	cells	
sequenced	at	the	UC	Irvine	facility,	and	‘both’	describes	cells	that	were	sequenced	at	
both	facilities.	
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Figure	4.13.	Expression	of	isoform	markers	identified	for	Leiden	clusters.	The	top	
10	gene	markers	(as	ranked	by	Scanpy)	are	shown	for	each	group.	Isoforms	with	
‘ENCODE’	in	the	identifier	are	novel.	
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Figure	4.14.	A	novel	Rbm24	isoform	is	exclusively	expressed	by	myocyte	cells.	
Each	line	represents	an	individual	long	read,	and	the	color	identifies	the	novelty	type	of	
the	isoform	that	the	read	was	assigned	to.	All	Rbm24	reads	are	shown	for	each	cell	
type.	The	myocyte	track	had	more	Rbm24	reads	than	the	other	two	and	was	
compressed	vertically	to	allow	all	reads	to	be	displayed.	
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Figure	4.15.	Single-cell	detection	of	TSSs	in	long	reads.	a)	Example	of	TSS	calling	in	
the	Hes1	gene.	Consecutive	read	starts	are	included	in	the	same	TSS	if	they	are	≤ 50	bp	
apart.	A	TSS	is	‘supported’	if	it	has	>	1	read	and	overlaps	a	GENCODE	start	site	and/or	
CAGE	peak	(10	bp	flexibility).	Note:	Subset	of	reads	and	TSSs	at	locus	are	shown.	Scale	
is	approximate.		b)	Distinct	TSSs	detected	per	cell	by	type.	c)	Known	splice	isoforms	
detected	per	gene	per	cell	versus	the	number	of	distinct	TSSs	detected	for	that	same	
gene	in	that	cell.	d)	Supported	Hes1	TSSs	detected	in	each	cell	when	only	reads	from	
known	splice	isoforms	are	counted.	e)	Supported	Hnrnpf	TSSs	detected	in	each	cell	
when	only	reads	from	known	splice	isoforms	are	counted,	and	f)	when	reads	from	
known/NIC/NNC	splice	isoforms	are	counted.	Pairwise	P-values	in	panels	d,	e,	and	f	
come	from	the	Mann-Whitney	U	test. 
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Figure	4.16.	Single-cell	detection	of	TESs	in	long	reads.	a)	Example	of	TES	calling	in	
the	Prrx1	gene.	Consecutive	read	ends	are	included	in	the	same	TES	if	they	are	≤ 100	bp	
apart.	A	TES	is	‘supported’	if	it	has	>	1	read	and	overlaps	a	GENCODE	end	site	and/or	
has	poly-(A)	motif	support.	Note:	Subset	of	reads	and	TESs	at	locus	are	shown.	Scale	is	
approximate.		b)	Distinct	TESs	detected	per	cell	by	type.	c)	Known	splice	isoforms	
detected	per	gene	per	cell	versus	the	number	of	distinct	TSSs	detected	for	that	same	
gene	in	that	cell.	d-f)	Number	of	supported	TESs	detected	in	each	cell	from	known	
splice	isoforms	for	the	Tpm1,	Prrx1,	and	Srsf3	genes,	respectively.	Pairwise	P-values	
come	from	the	Mann-Whitney	U	test. 
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Figure	4.17.	Long-read	Srsf3	expression	in	single	cells.	a)	Expression	of	Srsf3	is	
shown	on	the	Scanpy	UMAP	derived	from	long-read	gene	expression.	b)	Celltype	labels	
are	shown	for	reference. 
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Table	4.1.	Scanpy	gene	markers	called	for	muscle-pre	cluster	(Leiden	0)	
	

Gene	 Score	 Log Fold Change	 Pval adj.	 cluster	
Car14	 5.4020295	 3.0252903	 0.0001858	 muscle-pre	

Gm49708	 4.633201	 4.2233005	 0.00220574	 muscle-pre	
Hsd11b2	 4.5118074	 3.8775368	 0.00302087	 muscle-pre	
Pax3	 4.5118074	 3.5957007	 0.00302087	 muscle-pre	
Nkd2	 4.4409943	 3.0505488	 0.00352325	 muscle-pre	

Macrod2	 4.3954716	 2.2377129	 0.00398779	 muscle-pre	
Ints2	 4.304426	 1.9214656	 0.00488374	 muscle-pre	
Plscr1	 4.2083225	 2.0139935	 0.00630842	 muscle-pre	
Aif1l	 4.1273932	 1.8997741	 0.00721809	 muscle-pre	
Tes	 4.05658	 1.7020516	 0.00896284	 muscle-pre	

Tspan13	 4.046464	 1.7668782	 0.00926042	 muscle-pre	
E2f5	 3.9554183	 1.6783144	 0.01164527	 muscle-pre	

Mogat2	 3.9402442	 4.4591904	 0.01229629	 muscle-pre	
Osr2	 3.9351861	 1.8555076	 0.01233785	 muscle-pre	
Dhcr24	 3.8542569	 2.0877926	 0.01623129	 muscle-pre	
Ccnf	 3.8036761	 1.5469029	 0.01773566	 muscle-pre	
Tcf15	 3.8036761	 2.6894221	 0.01773566	 muscle-pre	

Depdc1b	 3.7834437	 2.4781637	 0.0185597	 muscle-pre	
Acot1	 3.7733276	 2.233109	 0.01905867	 muscle-pre	
Mycn	 3.6873403	 1.785097	 0.02426595	 muscle-pre	

Hspbap1	 3.6721659	 1.564011	 0.02543173	 muscle-pre	
Eipr1	 3.6620498	 1.4385171	 0.0262933	 muscle-pre	
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Table	4.2.	Scanpy	gene	markers	called	for	myoblast	clusters	(Leiden	1	&	3)	
	

Gene	 Score	 Log Fold Change	 Pval adj.	 cluster	
Vgll3	 3.700404	 2.2235928	 0.19168029	 myoblast.1	
Msc	 3.4663422	 2.4202578	 0.30299196	 myoblast.1	
Ogn	 3.36603	 1.640408	 0.32886577	 myoblast.1	
Nab1	 3.315874	 2.0490253	 0.32886577	 myoblast.1	
Plagl1	 3.2434263	 2.0487673	 0.34027715	 myoblast.1	
Col5a1	 3.1876974	 2.583274	 0.35681809	 myoblast.1	
Deaf1	 3.1876974	 1.5323653	 0.35681809	 myoblast.1	
Slc7a5	 3.1096768	 1.5289271	 0.40622856	 myoblast.1	
Ddah1	 3.0706666	 1.6460644	 0.41535473	 myoblast.1	
Pum2	 3.042802	 1.6736284	 0.43577853	 myoblast.1	
Mgp	 3.042802	 1.992388	 0.43577853	 myoblast.1	
Nbl1	 2.9870732	 1.6416957	 0.45821597	 myoblast.1	
Kcnk1	 2.9647815	 2.5078528	 0.47451216	 myoblast.1	
Spr	 2.9647815	 1.5565022	 0.47451216	 myoblast.1	
Plat	 2.8979068	 2.5100403	 0.512567	 myoblast.1	
Xxylt1	 2.8979068	 1.5228835	 0.512567	 myoblast.1	
Akt1s1	 2.886761	 1.6203117	 0.51853389	 myoblast.1	
Zc3hav1l	 2.8533235	 2.5995398	 0.53430141	 myoblast.1	
Snhg18	 2.8533235	 1.9643141	 0.53430141	 myoblast.1	
Agtr2	 2.8366048	 2.1542766	 0.53767757	 myoblast.1	
Lfng	 2.8366048	 1.5166178	 0.53767757	 myoblast.1	
Susd6	 2.8143132	 2.8942626	 0.54998629	 myoblast.1	
Sncaip	 2.7975945	 1.8104236	 0.55482138	 myoblast.1	
Angptl2	 2.775303	 1.9029424	 0.56895612	 myoblast.1	
Rtl3	 2.7307198	 1.5311079	 0.62527262	 myoblast.1	
Chodl	 2.7251468	 3.3846366	 0.63195917	 myoblast.1	
Abcb10	 2.719574	 1.7912517	 0.63195917	 myoblast.1	
Gpr107	 2.719574	 1.8943115	 0.63195917	 myoblast.1	
Pus3	 2.6972823	 1.2959712	 0.65750809	 myoblast.1	
Kdelr3	 2.6471262	 1.9617811	 0.69018488	 myoblast.1	
Dlg3	 2.6415534	 2.0723667	 0.69122316	 myoblast.1	
Mmp11	 2.6304076	 1.4631004	 0.69995637	 myoblast.1	
Osbpl2	 2.6304076	 1.588369	 0.69995637	 myoblast.1	
Dcx	 2.6192617	 5.571286	 0.69995637	 myoblast.1	
Moxd1	 4.0094733	 3.089231	 0.19069019	 myoblast.2	
Vgll3	 3.897058	 2.4300573	 0.19271161	 myoblast.2	
Msc	 3.8845675	 2.8909311	 0.19271161	 myoblast.2	
Sapcd2	 3.5723033	 2.0998673	 0.39243569	 myoblast.2	
Depdc1a	 3.5723033	 2.1475537	 0.39243569	 myoblast.2	
Fap	 3.3349824	 2.0625885	 0.49768006	 myoblast.2	
Six2	 3.241303	 2.035452	 0.54408127	 myoblast.2	
Nid2	 3.197586	 2.101204	 0.58005404	 myoblast.2	
Fbn2	 2.972756	 1.8771782	 0.84634908	 myoblast.2	
Cdc25c	 2.9477746	 1.6738876	 0.85544397	 myoblast.2	
Nek1	 2.8416047	 1.6602198	 0.91499369	 myoblast.2	
Ebf3	 2.8041332	 1.9811496	 0.9778417	 myoblast.2	
Nxt2	 2.7978878	 1.6335794	 0.9778417	 myoblast.2	
Ptpn9	 2.6917179	 1.5563906	 0.98827117	 myoblast.2	
Dmrt2	 2.6604915	 1.5260006	 0.98827117	 myoblast.2	
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Table	4.3.	Scanpy	gene	markers	called	for	myocyte	cluster	(Leiden	2)	
	

Gene	 Score	 Log Fold 
Change	

Pval adj.	 cluster	
Mymk	 6.1683693	 9.132295	 2.25E-06	 myocyte	
Actc1	 6.1683693	 7.3800144	 2.25E-06	 myocyte	
Zbtb18	 6.1683693	 6.9418387	 2.25E-06	 myocyte	
Fndc5	 6.1683693	 4.702166	 2.25E-06	 myocyte	
Myog	 6.1683693	 7.7061925	 2.25E-06	 myocyte	
Mymx	 6.12092	 7.453832	 2.25E-06	 myocyte	
Atp2a1	 6.049747	 5.033737	 3.07E-06	 myocyte	
Iffo1	 6.0260224	 5.852096	 3.16E-06	 myocyte	
Cap2	 5.966711	 4.3768435	 3.41E-06	 myocyte	
Cryab	 5.9785733	 5.2330327	 3.41E-06	 myocyte	
Rbm24	 5.931124	 4.1954484	 3.92E-06	 myocyte	
Arpp21	 5.895538	 5.303498	 3.95E-06	 myocyte	
Klhl41	 5.7472596	 8.508643	 8.08E-06	 myocyte	

Kremen2	 5.6642237	 6.2610507	 1.03E-05	 myocyte	
Rgs16	 5.670155	 3.8824253	 1.03E-05	 myocyte	
Ttn	 5.658293	 4.5299516	 1.03E-05	 myocyte	

Chrna1	 5.670155	 6.1346893	 1.03E-05	 myocyte	
Tnni1	 5.628637	 6.4922442	 1.14E-05	 myocyte	
Neb	 5.5989814	 4.1797447	 1.26E-05	 myocyte	
4-Sep	 5.397323	 30.253965	 3.37E-05	 myocyte	
Rb1	 5.397323	 4.0720644	 3.37E-05	 myocyte	
Nes	 5.3676677	 3.8621235	 3.86E-05	 myocyte	

Gadd45g	 5.3380117	 3.9702566	 4.42E-05	 myocyte	
Tnnt2	 5.3142877	 6.9242187	 4.77E-05	 myocyte	
Kcnk13	 5.2668386	 5.80958	 5.73E-05	 myocyte	
Gatm	 5.243114	 3.3504105	 6.36E-05	 myocyte	
Chrng	 5.100767	 4.5871997	 0.00013008	 myocyte	
Chrnb1	 5.088905	 3.8613286	 0.0001354	 myocyte	
Scrib	 5.053318	 4.261105	 0.0001597	 myocyte	
Cd82	 5.017731	 3.3554664	 0.00018822	 myocyte	
Plpp1	 5.005869	 2.4368443	 0.00019202	 myocyte	
Mylpf	 5.005869	 4.8316493	 0.00019202	 myocyte	
Dll1	 4.9821444	 4.3206162	 0.00021279	 myocyte	
Lrrn1	 4.9465575	 2.8981788	 0.00025059	 myocyte	
Vgll2	 4.9287643	 3.094633	 0.00026416	 myocyte	

Tmem35a	 4.910971	 3.905218	 0.00028395	 myocyte	
Cdh15	 4.8753843	 3.2382863	 0.00033406	 myocyte	
Fbxo17	 4.8042107	 2.5803235	 0.0004532	 myocyte	
Olfml2b	 4.780486	 4.1567974	 0.00050147	 myocyte	
Trim55	 4.7567616	 5.499389	 0.00055473	 myocyte	
Hdac11	 4.7330375	 4.4299636	 0.000594	 myocyte	
Des	 4.715244	 3.1071703	 0.00060946	 myocyte	

Cdkn1a	 4.6974506	 3.2640507	 0.00063671	 myocyte	
Dync1i1	 4.679657	 4.680893	 0.00068475	 myocyte	
Fitm1	 4.6381392	 2.1441612	 0.0008148	 myocyte	

S100a16	 4.6025524	 7.855525	 0.0009542	 myocyte	
Crip2	 4.59069	 3.652356	 0.00098349	 myocyte	

Traf3ip3	 4.59069	 3.4632251	 0.00098349	 myocyte	
Hfe2	 4.5551033	 6.987626	 0.00115049	 myocyte	
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Tmem200a	 4.519517	 6.310513	 0.00132741	 myocyte	
Lmna	 4.4779987	 2.565389	 0.00155461	 myocyte	
Dner	 4.4246187	 4.84567	 0.00185749	 myocyte	
Adgre5	 4.4246187	 2.9423041	 0.00185749	 myocyte	
Myzap	 4.400894	 4.7150245	 0.0020494	 myocyte	
Hspb1	 4.3653073	 2.9702024	 0.00230943	 myocyte	
Ccdc141	 4.329721	 3.6239035	 0.00268721	 myocyte	
Map4	 4.3059964	 3.3798952	 0.00292973	 myocyte	
Palmd	 4.3059964	 3.8218606	 0.00292973	 myocyte	
Pip4k2a	 4.300065	 2.2182345	 0.00297823	 myocyte	
Rtn4	 4.282272	 2.615745	 0.00312993	 myocyte	
Myl1	 4.2763405	 4.0295606	 0.00318262	 myocyte	
Ablim3	 4.240754	 29.484991	 0.00362409	 myocyte	
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Table	4.4.	Scanpy	gene	markers	called	for	macrophage	cluster	(Leiden	4)	
	

Gene	 Score	 Log Fold Change	 Pval adj.	 cluster	
Nfam1	 4.057513	 31.389265	 0.0155388	 macrophage	
Tapbp	 3.9673464	 5.2011533	 0.0155388	 macrophage	
Rtp4	 3.9673464	 5.487895	 0.0155388	 macrophage	
Tifa	 3.9853797	 6.211637	 0.0155388	 macrophage	
Lcp1	 3.9853797	 6.408189	 0.0155388	 macrophage	
Slc7a7	 3.9853797	 6.9965487	 0.0155388	 macrophage	
Fcer1g	 4.003413	 5.6955624	 0.0155388	 macrophage	
Casp1	 4.003413	 6.6441946	 0.0155388	 macrophage	

Tnfaip8l2	 4.003413	 6.4254136	 0.0155388	 macrophage	
Trf	 4.003413	 7.6763115	 0.0155388	 macrophage	
Cd68	 4.003413	 6.659149	 0.0155388	 macrophage	

Tmem86a	 4.003413	 4.0100503	 0.0155388	 macrophage	
Maf	 4.003413	 5.9239583	 0.0155388	 macrophage	
Lyn	 3.9673464	 5.730999	 0.0155388	 macrophage	
Ptpn6	 3.9312797	 5.9449954	 0.0155388	 macrophage	
Ostf1	 3.9312797	 4.3841844	 0.0155388	 macrophage	
Pf4	 3.9312797	 5.0301304	 0.0155388	 macrophage	
Pld4	 3.9312797	 6.7817526	 0.0155388	 macrophage	
Pon3	 3.9312797	 5.051027	 0.0155388	 macrophage	
Tyrobp	 3.9312797	 5.3925257	 0.0155388	 macrophage	
Psmb9	 3.949313	 5.414737	 0.0155388	 macrophage	
Gpr34	 3.949313	 5.886734	 0.0155388	 macrophage	
Hexb	 3.949313	 4.2991667	 0.0155388	 macrophage	
Ctsc	 3.949313	 6.0997887	 0.0155388	 macrophage	

Tmem37	 3.949313	 5.7186313	 0.0155388	 macrophage	
Il4ra	 3.949313	 5.354958	 0.0155388	 macrophage	

Unc93b1	 4.003413	 6.7391615	 0.0155388	 macrophage	
Anxa3	 4.0214467	 5.7330155	 0.0155388	 macrophage	
Slfn2	 4.057513	 7.5114217	 0.0155388	 macrophage	
Hpgds	 4.0214467	 7.38303	 0.0155388	 macrophage	
Phyhd1	 4.057513	 8.150206	 0.0155388	 macrophage	
Spi1	 4.057513	 7.073855	 0.0155388	 macrophage	

P2ry12	 4.057513	 10.195053	 0.0155388	 macrophage	
Csf1r	 4.057513	 12.443872	 0.0155388	 macrophage	

Tmem106a	 4.057513	 7.44141	 0.0155388	 macrophage	
Trem2	 4.057513	 11.917926	 0.0155388	 macrophage	
Aif1	 4.057513	 30.64478	 0.0155388	 macrophage	
C1qa	 4.057513	 13.540819	 0.0155388	 macrophage	
C1qb	 4.057513	 13.081396	 0.0155388	 macrophage	
C1qc	 4.057513	 12.657262	 0.0155388	 macrophage	
Lrrc25	 4.057513	 28.026665	 0.0155388	 macrophage	
C3ar1	 4.057513	 12.056113	 0.0155388	 macrophage	
C5ar1	 4.057513	 30.908575	 0.0155388	 macrophage	
Ms4a6d	 4.057513	 31.657768	 0.0155388	 macrophage	
Gpr160	 4.057513	 30.793812	 0.0155388	 macrophage	
Cd86	 4.057513	 11.483597	 0.0155388	 macrophage	
Fcrls	 4.057513	 13.164282	 0.0155388	 macrophage	
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Mrc1	 4.057513	 32.394344	 0.0155388	 macrophage	
Ms4a6b	 4.0214467	 7.577761	 0.0155388	 macrophage	
Cx3cr1	 4.0214467	 8.526653	 0.0155388	 macrophage	
Il10rb	 4.0214467	 5.6306634	 0.0155388	 macrophage	
Apoe	 4.057513	 8.440612	 0.0155388	 macrophage	
Ccl9	 4.0214467	 7.156742	 0.0155388	 macrophage	
Irf8	 4.0394797	 6.5784955	 0.0155388	 macrophage	
Irf5	 4.0394797	 7.066024	 0.0155388	 macrophage	
Sirpa	 4.0394797	 6.93287	 0.0155388	 macrophage	
Ifi204	 4.0214467	 6.6691546	 0.0155388	 macrophage	
Adgre1	 4.0394797	 7.978259	 0.0155388	 macrophage	
Clec4a2	 4.057513	 9.093093	 0.0155388	 macrophage	
Ctss	 4.0394797	 7.4226303	 0.0155388	 macrophage	

Uap1l1	 3.8771794	 4.9545493	 0.0161774	 macrophage	
Cfh	 3.9132462	 5.833235	 0.0161774	 macrophage	
Ifi30	 3.9132462	 5.272209	 0.0161774	 macrophage	
Klf2	 3.895213	 3.8315318	 0.0161774	 macrophage	

Arhgap30	 3.895213	 5.0778165	 0.0161774	 macrophage	
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Table	4.5.	Scanpy	isoform	markers	called	for	muscle	precursor	clusters	(Leiden	1,3)	
	

Isoform	 Novelty	 Score	 Log Fold Change	 Pval adj.	 Cluster	
Kif18a-201	 Known	 4.8418484	 2.5332475	 0.00292975	 muscle-pre.1	

Depdc1b-201	 Known	 4.7250495	 3.1452296	 0.00425725	 muscle-pre.1	
Ccnf-201	 Known	 4.650723	 2.4526238	 0.00544086	 muscle-pre.1	
Bora-201	 Known	 4.459597	 2.0784216	 0.0097249	 muscle-pre.1	
Knl1-201	 Known	 4.337489	 2.0168455	 0.01410105	 muscle-pre.1	

Depdc1a-203	 Known	 4.3215623	 2.8921287	 0.01433475	 muscle-pre.1	
Sapcd2-201	 Known	 4.087964	 2.8468535	 0.03458265	 muscle-pre.1	

Gm10184-201	 Known	 4.077346	 2.0365045	 0.03458265	 muscle-pre.1	
Prc1-206	 Known	 4.077346	 1.9713358	 0.03458265	 muscle-pre.1	
Nuf2-201	 Known	 4.0189466	 1.7332197	 0.03933754	 muscle-pre.1	
Ska3-201	 Known	 3.9977105	 1.7515329	 0.04120397	 muscle-pre.1	
Dbf4-203	 Known	 3.9924014	 1.7725917	 0.04120397	 muscle-pre.1	
Ttk-201	 Known	 3.9711652	 1.7023541	 0.04411713	 muscle-pre.1	

Nusap1-201	 Known	 3.8543663	 1.8275551	 0.06481907	 muscle-pre.1	
Oip5-202	 Known	 3.8331301	 1.658908	 0.06689453	 muscle-pre.1	
Cdca5-201	 Known	 3.7694216	 1.6803302	 0.08074415	 muscle-pre.1	
Ndc80-201	 Known	 3.7534943	 1.5409368	 0.08327797	 muscle-pre.1	
Ncapg-201	 Known	 3.6632407	 1.7917058	 0.10843686	 muscle-pre.1	
Knstrn-206	 Known	 3.6526225	 1.5931767	 0.1113843	 muscle-pre.1	
Entr1-201	 Known	 3.6366954	 2.4724135	 0.11356238	 muscle-pre.1	
Coasy-201	 Known	 3.6207683	 1.5757657	 0.11752356	 muscle-pre.1	
Kif11-201	 Known	 3.578296	 1.4158559	 0.12799604	 muscle-pre.1	
Poc1a-201	 Known	 3.5570598	 1.6891567	 0.1306336	 muscle-pre.1	
Cip2a-201	 Known	 3.5570598	 1.7929885	 0.1306336	 muscle-pre.1	

Hsd11b2-201	 Known	 3.5464416	 2.712209	 0.13443107	 muscle-pre.1	
Prc1-202	 Known	 3.5411327	 1.7184653	 0.13558875	 muscle-pre.1	
Ckap2-201	 Known	 3.4243336	 1.612998	 0.18065494	 muscle-pre.1	

Kpna2-ENCODEMT000383037	 NIC	 3.4243336	 2.1289346	 0.18065494	 muscle-pre.1	
Macrod2-204	 Known	 3.4084065	 1.9190261	 0.18425616	 muscle-pre.1	
Terf1-203	 Known	 3.3977883	 1.4129584	 0.18975081	 muscle-pre.1	
Cenph-201	 Known	 3.3871703	 1.2960953	 0.19540598	 muscle-pre.1	
Nek2-201	 Known	 3.3712432	 2.112818	 0.20514444	 muscle-pre.1	
Ube2t-201	 Known	 3.3128438	 1.4995973	 0.23471287	 muscle-pre.1	
Cdca2-204	 Known	 3.3022256	 2.015715	 0.23471287	 muscle-pre.1	
Tpx2-202	 Known	 3.3022256	 2.217055	 0.23471287	 muscle-pre.1	
Cenpl-203	 Known	 3.2916076	 1.6752703	 0.2359557	 muscle-pre.1	
Psrc1-201	 Known	 3.2916076	 1.8760694	 0.2359557	 muscle-pre.1	
Daxx-201	 Known	 3.2703714	 1.6053554	 0.25040066	 muscle-pre.1	
Cdc25c-201	 Known	 3.206663	 1.3763092	 0.29893906	 muscle-pre.1	
Mbip-201	 Known	 3.2013538	 1.4214157	 0.29999152	 muscle-pre.1	

Gemin6-ENCODEMT000278446	 NNC	 3.1854267	 1.5211272	 0.31011324	 muscle-pre.1	
Bub1b-201	 Known	 3.1854267	 1.5196954	 0.31011324	 muscle-pre.1	
Osr2-201	 Known	 4.046945	 2.9633505	 0.54014211	 muscle-pre.2	

Ptma-ENCODEMT000223015	 NIC	 2.5917933	 1.2528777	 0.98456262	 muscle-pre.2	
Dcp2-201	 Known	 2.62302	 1.5583023	 0.98456262	 muscle-pre.2	

Tmem30b-201	 Known	 2.629265	 2.4316359	 0.98456262	 muscle-pre.2	
Slc25a5-ENCODEMT000161559	 NNC	 2.6729822	 1.4240137	 0.98456262	 muscle-pre.2	
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Tpm1-213	 Known	 2.6854727	 2.0807443	 0.98456262	 muscle-pre.2	
Ldhb-ENCODEMT000433208	 NIC	 2.5730577	 1.3159151	 0.98456262	 muscle-pre.2	

Ndufaf5-201	 Known	 2.5480764	 1.3475776	 0.98456262	 muscle-pre.2	
B9d2-203	 Known	 2.4543972	 1.2891717	 0.98456262	 muscle-pre.2	
Nicn1-201	 Known	 2.4606423	 1.1927199	 0.98456262	 muscle-pre.2	
Nkd2-201	 Known	 2.4606423	 1.687973	 0.98456262	 muscle-pre.2	
Ddt-201	 Known	 2.5106046	 1.6233656	 0.98456262	 muscle-pre.2	

Rrm2-ENCODEMT000436459	 NNC	 2.5230954	 1.7915854	 0.98456262	 muscle-pre.2	
Mogat2-201	 Known	 2.5230954	 2.0340626	 0.98456262	 muscle-pre.2	
Car14-201	 Known	 2.6979632	 1.6422741	 0.98456262	 muscle-pre.2	
Srsf7-205	 Known	 3.085171	 2.4485793	 0.98456262	 muscle-pre.2	

Hnrnpc-ENCODEMT000273062	 NIC	 3.2350578	 2.2577627	 0.98456262	 muscle-pre.2	
Tipin-205	 Known	 3.322492	 1.6066203	 0.98456262	 muscle-pre.2	
Mpg-201	 Known	 2.997737	 2.0498493	 0.98456262	 muscle-pre.2	
Riox1-201	 Known	 2.7042086	 1.5094658	 0.98456262	 muscle-pre.2	
Tes-202	 Known	 2.9914916	 1.8418247	 0.98456262	 muscle-pre.2	

Trappc1-202	 Known	 2.822869	 1.5575259	 0.98456262	 muscle-pre.2	
Rpl15-203	 Known	 2.8353596	 1.4044408	 0.98456262	 muscle-pre.2	
Mcm5-205	 Known	 2.9602652	 1.7092898	 0.98456262	 muscle-pre.2	
Cnih2-201	 Known	 2.4356613	 1.725709	 0.98456262	 muscle-pre.2	
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Table	4.6.	Scanpy	isoform	markers	called	for	myoblast	cluster	(Leiden	0)	
	

Isoform	 Novelty	 Score	 Log Fold Change	 Pval adj.	 Cluster	
Msc-201	 Known	 6.0816016	 4.459252	 1.76E-05	 myoblast	
Vgll3-202	 Known	 5.7868304	 4.4114966	 5.48E-05	 myoblast	

Slc38a4-201	 Known	 5.233487	 2.4577858	 0.00054723	 myoblast	
Klhl13-ENCODEMT000158660	 NIC	 4.7577157	 2.22412	 0.00483094	 myoblast	
Spry1-ENCODEMT000164274	 NIC	 4.5198298	 2.4397829	 0.01077894	 myoblast	

Fxyd6-201	 Known	 4.219887	 1.7706419	 0.03446158	 myoblast	
Rtl3-201	 Known	 4.1164584	 2.238378	 0.05177886	 myoblast	

Moxd1-201	 Known	 4.0699153	 3.1572297	 0.06054219	 myoblast	
Chodl-ENCODEMT000326138	 NNC	 4.002687	 6.0318184	 0.07417062	 myoblast	

Spry1-201	 Known	 3.992344	 2.3537247	 0.07450213	 myoblast	
Msc-204	 Known	 3.9613154	 3.609085	 0.07881861	 myoblast	
Myf5-201	 Known	 3.8734012	 2.027822	 0.10957714	 myoblast	
Cited1-202	 Known	 3.837201	 2.4036095	 0.1228185	 myoblast	
Lfng-201	 Known	 3.7544582	 1.8220166	 0.14287244	 myoblast	

Shisal2a-201	 Known	 3.7130868	 3.7927008	 0.1638416	 myoblast	
Arhgap29-ENCODEMT000263463	 NIC	 3.6872296	 2.3747003	 0.17211266	 myoblast	

Fgfr4-201	 Known	 3.6562011	 3.2005439	 0.18045416	 myoblast	
Gart-202	 Known	 3.6044867	 1.6802435	 0.20578904	 myoblast	

Entpd4-206	 Known	 3.5372581	 1.9686908	 0.25469451	 myoblast	
Prkci-201	 Known	 3.5217438	 1.4278562	 0.25905077	 myoblast	
Nfib-202	 Known	 3.464858	 1.5686892	 0.2855887	 myoblast	
Dlk1-208	 Known	 3.4700296	 1.7494532	 0.2855887	 myoblast	
Arfip2-206	 Known	 3.464858	 1.4423202	 0.2855887	 myoblast	
Pitx3-201	 Known	 3.4700296	 1.4916306	 0.2855887	 myoblast	
Chodl-201	 Known	 3.4855437	 5.04625	 0.2855887	 myoblast	

Tmem246-201	 Known	 3.4338295	 2.5512786	 0.31464756	 myoblast	
P3h2-201	 Known	 3.4183152	 3.4937754	 0.32729867	 myoblast	
Top2b-201	 Known	 3.402801	 1.6115663	 0.3291366	 myoblast	
Fzd4-201	 Known	 3.3924582	 3.6997597	 0.33621353	 myoblast	
Mta1-204	 Known	 3.3355725	 1.7063799	 0.37617183	 myoblast	
Agtr2-201	 Known	 3.3097153	 2.495194	 0.39501699	 myoblast	

Entpd4b-204	 Known	 3.2786865	 2.0241003	 0.43490972	 myoblast	
Msc-ENCODEMT000144365	 NNC	 3.2166295	 4.459759	 0.509456	 myoblast	

Cnot10-201	 Known	 3.2062867	 1.5141709	 0.509456	 myoblast	
Ddx51-201	 Known	 3.139058	 2.1518767	 0.57388791	 myoblast	
Pdgfa-202	 Known	 3.1338866	 1.3962227	 0.57388791	 myoblast	
Gm266-201	 Known	 3.1235437	 3.5360732	 0.58784153	 myoblast	
Mgp-201	 Known	 3.102858	 1.4088854	 0.5973385	 myoblast	
Rps8-203	 Known	 2.9632294	 1.5586787	 0.81203166	 myoblast	
Zfp580-201	 Known	 2.9270294	 1.3217518	 0.84436227	 myoblast	
Parm1-201	 Known	 2.8960009	 1.7470729	 0.90978745	 myoblast	
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Table	4.7.	Scanpy	isoform	markers	called	for	myocyte	cluster	(Leiden	2)	
	

Isoform	 Novelty	 Score	 Log Fold Change	 Pval adj.	 Cluster	
Actc1-201	 Known	 6.018265	 7.3777175	 1.76E-05	 myocyte	
Myog-201	 Known	 6.006107	 7.7137384	 1.76E-05	 myocyte	
Mymk-201	 Known	 5.8723674	 6.580818	 2.12E-05	 myocyte	
Fndc5-201	 Known	 5.702154	 3.723944	 4.38E-05	 myocyte	
Rgs16-201	 Known	 5.6535215	 4.59659	 4.47E-05	 myocyte	
Rbm24-201	 Known	 5.6413636	 3.9933963	 4.47E-05	 myocyte	
Tnnt1-203	 Known	 5.629205	 3.4453943	 4.47E-05	 myocyte	
Klhl41-201	 Known	 5.580573	 8.610352	 4.76E-05	 myocyte	
Zbtb18-202	 Known	 5.5684147	 7.8576965	 4.76E-05	 myocyte	
Mymx-203	 Known	 5.5684147	 6.7762823	 4.76E-05	 myocyte	
Bin1-206	 Known	 5.5319405	 3.338935	 5.21E-05	 myocyte	

Atp2a1-ENCODEMT000341384	 NIC	 5.507624	 4.978309	 5.49E-05	 myocyte	
Tnni1-ENCODEMT000266900	 NIC	 5.495466	 6.713701	 5.49E-05	 myocyte	

Chrna1-201	 Known	 5.4650707	 6.0732727	 6.23E-05	 myocyte	
Cap2-201	 Known	 5.4468336	 4.7288866	 6.55E-05	 myocyte	
Cryab-201	 Known	 5.4407544	 5.4953322	 6.55E-05	 myocyte	
Slc25a3-206	 Known	 5.3921223	 5.3179917	 7.36E-05	 myocyte	

Eno1-ENCODEMT000412975	 NIC	 5.40428	 5.4388027	 7.36E-05	 myocyte	
Tnnt1-ENCODEMT000153433	 NIC	 5.300936	 2.7793067	 0.0001066	 myocyte	
Tmed2-ENCODEMT000301604	 NIC	 5.167197	 7.7333364	 0.00018515	 myocyte	

Nes-201	 Known	 5.161118	 3.8478608	 0.00018636	 myocyte	
Lsm6-204	 Known	 5.1064067	 3.917087	 0.00022094	 myocyte	
Gatm-201	 Known	 5.1185646	 3.3676765	 0.00022094	 myocyte	

Gadd45g-201	 Known	 5.1124854	 3.944901	 0.00022094	 myocyte	
Lrrn1-201	 Known	 5.1064067	 3.2179692	 0.00022094	 myocyte	
Mylpf-201	 Known	 5.0699325	 6.146232	 0.00026184	 myocyte	

Cdkn1c-ENCODEMT000373118	 NIC	 5.045616	 3.342858	 0.00028478	 myocyte	
Hacd1-203	 Known	 5.0213	 5.6134887	 0.00031012	 myocyte	
Myl1-201	 Known	 5.0213	 6.1735725	 0.00031012	 myocyte	
Neb-204	 Known	 5.0091414	 4.110547	 0.00032375	 myocyte	
Rb1-201	 Known	 4.948351	 4.2429376	 0.00042615	 myocyte	
Vgll2-202	 Known	 4.942272	 3.260935	 0.00043137	 myocyte	
Zbtb18-201	 Known	 4.8997188	 4.747299	 0.00050743	 myocyte	
Cdh15-201	 Known	 4.8875604	 3.5815728	 0.00053031	 myocyte	

Scrib-ENCODEMT000187640	 NIC	 4.814612	 29.84949	 0.00074013	 myocyte	
Serinc2-203	 Known	 4.7902956	 4.1015873	 0.0008218	 myocyte	
Vgll2-201	 Known	 4.7538214	 2.9466174	 0.00095322	 myocyte	
Des-201	 Known	 4.723426	 3.3049855	 0.00108988	 myocyte	

Actc1-ENCODEMT000343314	 NNC	 4.6869516	 5.1047854	 0.00126314	 myocyte	
Mymx-ENCODEMT000242249	 NNC	 4.6747937	 5.4420204	 0.0012812	 myocyte	
Actc1-ENCODEMT000342824	 NIC	 4.6747937	 5.498227	 0.0012812	 myocyte	

Tnnt1-206	 Known	 4.6626353	 2.8404799	 0.00133959	 myocyte	
Cdkn1a-201	 Known	 4.644398	 3.3985753	 0.00140255	 myocyte	
Vasp-201	 Known	 4.644398	 3.4756563	 0.00140255	 myocyte	

Cdkn1c-ENCODEMT000373182	 NIC	 4.620082	 3.1417873	 0.0015143	 myocyte	
Tnnt1-201	 Known	 4.614003	 3.05506	 0.00153878	 myocyte	

Cdkn1c-ENCODEMT000373034	 NIC	 4.510659	 2.4062722	 0.0024221	 myocyte	
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Chrng-201	 Known	 4.468106	 4.667389	 0.00292066	 myocyte	
Crip2-201	 Known	 4.4255524	 3.6297178	 0.00339067	 myocyte	
Mymx-201	 Known	 4.3769197	 6.761977	 0.00404984	 myocyte	
Shisa2-201	 Known	 4.3586826	 2.6834664	 0.00435296	 myocyte	
Lmna-203	 Known	 4.352604	 2.8947704	 0.00437711	 myocyte	
Vma21-203	 Known	 4.3282876	 6.450808	 0.00483619	 myocyte	
Pnmal2-201	 Known	 4.3222084	 3.6279802	 0.00491796	 myocyte	
Cd82-201	 Known	 4.316129	 3.174818	 0.00494887	 myocyte	

Tmem35a-201	 Known	 4.316129	 3.6898923	 0.00494887	 myocyte	
Acta2-ENCODEMT000198548	 NNC	 4.273576	 3.1073308	 0.00587162	 myocyte	
Ube2d3-ENCODEMT000273941	 NIC	 4.267497	 5.277565	 0.00597231	 myocyte	

Chrnb1-201	 Known	 4.261418	 3.7903194	 0.00607514	 myocyte	
Palmd-201	 Known	 4.2431808	 4.028244	 0.00652483	 myocyte	

Lsm6-ENCODEMT000410310	 NNC	 4.2310224	 4.984635	 0.00681955	 myocyte	
Vdac3-ENCODEMT000393107	 NNC	 4.2127852	 3.1398304	 0.00725082	 myocyte	

Hspb1-201	 Known	 4.2067065	 3.0288143	 0.00737693	 myocyte	
Trim55-202	 Known	 4.194548	 4.758986	 0.00763707	 myocyte	
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Table	4.8.	Scanpy	isoform	markers	called	for	macrophage	cluster	(Leiden	4)	
	

Isoform	 Novelty	 Score	 Log Fold Change	 Pval adj.	 Cluster	
C5ar1-202	 Known	 4.057513	 31.207962	 0.03270791	 macrophage	
Anxa3-201	 Known	 3.9312797	 5.87416	 0.03270791	 macrophage	
Pf4-201	 Known	 3.9312797	 5.128383	 0.03270791	 macrophage	
Ifi30-202	 Known	 3.949313	 5.306476	 0.03270791	 macrophage	

Lgmn-ENCODEMT000443455	 NNC	 3.949313	 5.6585793	 0.03270791	 macrophage	
Ctsc-201	 Known	 3.949313	 6.203977	 0.03270791	 macrophage	

Tmem37-201	 Known	 3.949313	 5.727334	 0.03270791	 macrophage	
Tyrobp-202	 Known	 3.9673464	 5.484709	 0.03270791	 macrophage	

Sirpa-ENCODEMT000368623	 NIC	 3.9673464	 6.6034083	 0.03270791	 macrophage	
Rtp4-201	 Known	 3.9673464	 6.037283	 0.03270791	 macrophage	
Fcer1g-201	 Known	 3.9673464	 5.7990203	 0.03270791	 macrophage	
Casp1-201	 Known	 3.9673464	 6.1672387	 0.03270791	 macrophage	
Hexb-201	 Known	 3.9853797	 4.4007444	 0.03270791	 macrophage	

Tmem86a-201	 Known	 3.9853797	 4.311908	 0.03270791	 macrophage	
Pld4-201	 Known	 3.9312797	 6.9321337	 0.03270791	 macrophage	
Mpp1-201	 Known	 3.9312797	 4.1905756	 0.03270791	 macrophage	
Lcp2-201	 Known	 3.859146	 5.2996893	 0.03270791	 macrophage	
Cebpd-201	 Known	 3.859146	 3.9262567	 0.03270791	 macrophage	

Atp6v0a1-ENCODEMT000372261	 NIC	 3.859146	 4.9282146	 0.03270791	 macrophage	
Zfp36-202	 Known	 3.859146	 4.560254	 0.03270791	 macrophage	
Mt1-201	 Known	 3.859146	 4.929718	 0.03270791	 macrophage	
Cd53-201	 Known	 3.8771794	 5.9794636	 0.03270791	 macrophage	
Ctsc-203	 Known	 3.8771794	 5.8942194	 0.03270791	 macrophage	
Maf-202	 Known	 3.895213	 5.3753223	 0.03270791	 macrophage	

Fam49b-207	 Known	 3.895213	 4.1351047	 0.03270791	 macrophage	
Zfp36-201	 Known	 3.895213	 5.6155725	 0.03270791	 macrophage	
Klf2-201	 Known	 3.895213	 3.9960942	 0.03270791	 macrophage	

Psmb10-201	 Known	 3.9132462	 4.556701	 0.03270791	 macrophage	
Ostf1-201	 Known	 3.9132462	 4.4198847	 0.03270791	 macrophage	
Psmb9-204	 Known	 3.9853797	 6.3347144	 0.03270791	 macrophage	

Chd9-ENCODEMT000418033	 NNC	 4.003413	 6.0899177	 0.03270791	 macrophage	
Nfam1-204	 Known	 4.057513	 31.487928	 0.03270791	 macrophage	
Ms4a6d-201	 Known	 4.057513	 31.944609	 0.03270791	 macrophage	
Ctss-202	 Known	 4.057513	 7.818227	 0.03270791	 macrophage	
Dab2-203	 Known	 4.057513	 8.815356	 0.03270791	 macrophage	
Lyn-202	 Known	 4.057513	 7.150842	 0.03270791	 macrophage	
Il10rb-201	 Known	 4.057513	 6.3188634	 0.03270791	 macrophage	
Sirpa-214	 Known	 4.057513	 10.861557	 0.03270791	 macrophage	
Lgmn-202	 Known	 4.057513	 6.673731	 0.03270791	 macrophage	

C1qb-ENCODEMT000401026	 NNC	 4.057513	 30.418652	 0.03270791	 macrophage	
Csf1r-202	 Known	 4.057513	 13.428986	 0.03270791	 macrophage	
Aif1-203	 Known	 4.057513	 30.8233	 0.03270791	 macrophage	
Apoe-206	 Known	 4.057513	 8.509587	 0.03270791	 macrophage	
Spi1-201	 Known	 4.057513	 7.1644115	 0.03270791	 macrophage	
Ifi204-201	 Known	 4.057513	 9.737157	 0.03270791	 macrophage	
C1qa-201	 Known	 4.057513	 33.28197	 0.03270791	 macrophage	
C1qc-201	 Known	 4.057513	 12.49582	 0.03270791	 macrophage	



 144 

C1qb-201	 Known	 4.057513	 14.284418	 0.03270791	 macrophage	
Slfn2-201	 Known	 4.057513	 7.542062	 0.03270791	 macrophage	
C3ar1-201	 Known	 4.057513	 11.933406	 0.03270791	 macrophage	
Fyb-210	 Known	 4.057513	 29.61367	 0.03270791	 macrophage	
Fcrls-201	 Known	 4.057513	 12.92575	 0.03270791	 macrophage	
Ifngr1-201	 Known	 4.0394797	 4.342029	 0.03270791	 macrophage	
Cd68-201	 Known	 4.003413	 6.8047543	 0.03270791	 macrophage	
Ptpn6-202	 Known	 4.003413	 6.4402275	 0.03270791	 macrophage	
Sesn1-201	 Known	 4.003413	 4.205529	 0.03270791	 macrophage	
Trf-201	 Known	 4.003413	 7.6765733	 0.03270791	 macrophage	
Grn-201	 Known	 4.003413	 5.042139	 0.03270791	 macrophage	
Irf8-201	 Known	 4.0214467	 7.3081236	 0.03270791	 macrophage	
Ccl9-201	 Known	 4.0214467	 7.219744	 0.03270791	 macrophage	

Ms4a6b-201	 Known	 4.0214467	 7.437858	 0.03270791	 macrophage	
Dab2-202	 Known	 3.859146	 4.1632442	 0.03270791	 macrophage	
Tifa-201	 Known	 4.0214467	 7.034627	 0.03270791	 macrophage	

Unc93b1-203	 Known	 4.0214467	 7.5554075	 0.03270791	 macrophage	
Cndp2-202	 Known	 4.0214467	 4.1234236	 0.03270791	 macrophage	

Tmem106a-201	 Known	 4.0394797	 7.952365	 0.03270791	 macrophage	
Lcp1-ENCODEMT000305365	 NNC	 4.0394797	 7.5133996	 0.03270791	 macrophage	

Hpgds-201	 Known	 4.0394797	 8.171628	 0.03270791	 macrophage	
Cx3cr1-201	 Known	 4.0214467	 8.520628	 0.03270791	 macrophage	
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Table	4.9.	Isoform-level	markers	belonging	to	genes	that	were	not	called	in	the	gene-
level	clustering	analysis	

	
Isoform	 Score	 Log Fold 

Change	
Pval adj.	 Cluster	

Kif18a-201	 4.8418484	 2.5332475	 0.00292975	 muscle-pre.1	
Bora-201	 4.459597	 2.0784216	 0.0097249	 muscle-pre.1	
Knl1-201	 4.337489	 2.0168455	 0.01410105	 muscle-pre.1	

Gm10184-201	 4.077346	 2.0365045	 0.03458265	 muscle-pre.1	
Prc1-206	 4.077346	 1.9713358	 0.03458265	 muscle-pre.1	
Nuf2-201	 4.0189466	 1.7332197	 0.03933754	 muscle-pre.1	
Ska3-201	 3.9977105	 1.7515329	 0.04120397	 muscle-pre.1	
Dbf4-203	 3.9924014	 1.7725917	 0.04120397	 muscle-pre.1	
Ttk-201	 3.9711652	 1.7023541	 0.04411713	 muscle-pre.1	

Nusap1-201	 3.8543663	 1.8275551	 0.06481907	 muscle-pre.1	
Oip5-202	 3.8331301	 1.658908	 0.06689453	 muscle-pre.1	
Cdca5-201	 3.7694216	 1.6803302	 0.08074415	 muscle-pre.1	
Ndc80-201	 3.7534943	 1.5409368	 0.08327797	 muscle-pre.1	
Ncapg-201	 3.6632407	 1.7917058	 0.10843686	 muscle-pre.1	
Knstrn-206	 3.6526225	 1.5931767	 0.1113843	 muscle-pre.1	
Entr1-201	 3.6366954	 2.4724135	 0.11356238	 muscle-pre.1	
Coasy-201	 3.6207683	 1.5757657	 0.11752356	 muscle-pre.1	
Kif11-201	 3.578296	 1.4158559	 0.12799604	 muscle-pre.1	
Poc1a-201	 3.5570598	 1.6891567	 0.1306336	 muscle-pre.1	
Cip2a-201	 3.5570598	 1.7929885	 0.1306336	 muscle-pre.1	
Prc1-202	 3.5411327	 1.7184653	 0.13558875	 muscle-pre.1	
Ckap2-201	 3.4243336	 1.612998	 0.18065494	 muscle-pre.1	
Kpna2-

ENCODEMT000383037	
3.4243336	 2.1289346	 0.18065494	 muscle-pre.1	

Terf1-203	 3.3977883	 1.4129584	 0.18975081	 muscle-pre.1	
Cenph-201	 3.3871703	 1.2960953	 0.19540598	 muscle-pre.1	
Nek2-201	 3.3712432	 2.112818	 0.20514444	 muscle-pre.1	
Ube2t-201	 3.3128438	 1.4995973	 0.23471287	 muscle-pre.1	
Cdca2-204	 3.3022256	 2.015715	 0.23471287	 muscle-pre.1	
Tpx2-202	 3.3022256	 2.217055	 0.23471287	 muscle-pre.1	
Cenpl-203	 3.2916076	 1.6752703	 0.2359557	 muscle-pre.1	
Psrc1-201	 3.2916076	 1.8760694	 0.2359557	 muscle-pre.1	
Daxx-201	 3.2703714	 1.6053554	 0.25040066	 muscle-pre.1	
Mbip-201	 3.2013538	 1.4214157	 0.29999152	 muscle-pre.1	
Gemin6-

ENCODEMT000278446	
3.1854267	 1.5211272	 0.31011324	 muscle-pre.1	

Bub1b-201	 3.1854267	 1.5196954	 0.31011324	 muscle-pre.1	
Ptma-

ENCODEMT000223015	
2.5917933	 1.2528777	 0.98456262	 muscle-pre.2	

Dcp2-201	 2.62302	 1.5583023	 0.98456262	 muscle-pre.2	
Tmem30b-201	 2.629265	 2.4316359	 0.98456262	 muscle-pre.2	

Slc25a5-
ENCODEMT000161559	

2.6729822	 1.4240137	 0.98456262	 muscle-pre.2	
Tpm1-213	 2.6854727	 2.0807443	 0.98456262	 muscle-pre.2	
Ldhb-

ENCODEMT000433208	
2.5730577	 1.3159151	 0.98456262	 muscle-pre.2	

Ndufaf5-201	 2.5480764	 1.3475776	 0.98456262	 muscle-pre.2	
B9d2-203	 2.4543972	 1.2891717	 0.98456262	 muscle-pre.2	
Nicn1-201	 2.4606423	 1.1927199	 0.98456262	 muscle-pre.2	
Ddt-201	 2.5106046	 1.6233656	 0.98456262	 muscle-pre.2	
Rrm2-

ENCODEMT000436459	
2.5230954	 1.7915854	 0.98456262	 muscle-pre.2	

Srsf7-205	 3.085171	 2.4485793	 0.98456262	 muscle-pre.2	
Hnrnpc-

ENCODEMT000273062	
3.2350578	 2.2577627	 0.98456262	 muscle-pre.2	

Tipin-205	 3.322492	 1.6066203	 0.98456262	 muscle-pre.2	
Mpg-201	 2.997737	 2.0498493	 0.98456262	 muscle-pre.2	
Riox1-201	 2.7042086	 1.5094658	 0.98456262	 muscle-pre.2	

Trappc1-202	 2.822869	 1.5575259	 0.98456262	 muscle-pre.2	
Rpl15-203	 2.8353596	 1.4044408	 0.98456262	 muscle-pre.2	
Mcm5-205	 2.9602652	 1.7092898	 0.98456262	 muscle-pre.2	
Cnih2-201	 2.4356613	 1.725709	 0.98456262	 muscle-pre.2	
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Slc38a4-201	 5.233487	 2.4577858	 0.00054723	 myoblast	
Klhl13-

ENCODEMT000158660	
4.7577157	 2.22412	 0.00483094	 myoblast	

Spry1-
ENCODEMT000164274	

4.5198298	 2.4397829	 0.01077894	 myoblast	
Fxyd6-201	 4.219887	 1.7706419	 0.03446158	 myoblast	
Spry1-201	 3.992344	 2.3537247	 0.07450213	 myoblast	
Myf5-201	 3.8734012	 2.027822	 0.10957714	 myoblast	
Cited1-202	 3.837201	 2.4036095	 0.1228185	 myoblast	
Shisal2a-201	 3.7130868	 3.7927008	 0.1638416	 myoblast	
Arhgap29-

ENCODEMT000263463	
3.6872296	 2.3747003	 0.17211266	 myoblast	

Fgfr4-201	 3.6562011	 3.2005439	 0.18045416	 myoblast	
Gart-202	 3.6044867	 1.6802435	 0.20578904	 myoblast	

Entpd4-206	 3.5372581	 1.9686908	 0.25469451	 myoblast	
Prkci-201	 3.5217438	 1.4278562	 0.25905077	 myoblast	
Nfib-202	 3.464858	 1.5686892	 0.2855887	 myoblast	
Dlk1-208	 3.4700296	 1.7494532	 0.2855887	 myoblast	
Arfip2-206	 3.464858	 1.4423202	 0.2855887	 myoblast	
Pitx3-201	 3.4700296	 1.4916306	 0.2855887	 myoblast	

Tmem246-201	 3.4338295	 2.5512786	 0.31464756	 myoblast	
P3h2-201	 3.4183152	 3.4937754	 0.32729867	 myoblast	
Top2b-201	 3.402801	 1.6115663	 0.3291366	 myoblast	
Fzd4-201	 3.3924582	 3.6997597	 0.33621353	 myoblast	
Mta1-204	 3.3355725	 1.7063799	 0.37617183	 myoblast	

Entpd4b-204	 3.2786865	 2.0241003	 0.43490972	 myoblast	
Cnot10-201	 3.2062867	 1.5141709	 0.509456	 myoblast	
Ddx51-201	 3.139058	 2.1518767	 0.57388791	 myoblast	
Pdgfa-202	 3.1338866	 1.3962227	 0.57388791	 myoblast	
Gm266-201	 3.1235437	 3.5360732	 0.58784153	 myoblast	
Rps8-203	 2.9632294	 1.5586787	 0.81203166	 myoblast	
Zfp580-201	 2.9270294	 1.3217518	 0.84436227	 myoblast	
Parm1-201	 2.8960009	 1.7470729	 0.90978745	 myoblast	
Tnnt1-203	 5.629205	 3.4453943	 4.47E-05	 myocyte	
Bin1-206	 5.5319405	 3.338935	 5.21E-05	 myocyte	

Slc25a3-206	 5.3921223	 5.3179917	 7.36E-05	 myocyte	
Eno1-

ENCODEMT000412975	
5.40428	 5.4388027	 7.36E-05	 myocyte	

Tnnt1-
ENCODEMT000153433	

5.300936	 2.7793067	 0.0001066	 myocyte	
Tmed2-

ENCODEMT000301604	
5.167197	 7.7333364	 0.00018515	 myocyte	

Lsm6-204	 5.1064067	 3.917087	 0.00022094	 myocyte	
Cdkn1c-

ENCODEMT000373118	
5.045616	 3.342858	 0.00028478	 myocyte	

Hacd1-203	 5.0213	 5.6134887	 0.00031012	 myocyte	
Serinc2-203	 4.7902956	 4.1015873	 0.0008218	 myocyte	
Tnnt1-206	 4.6626353	 2.8404799	 0.00133959	 myocyte	
Vasp-201	 4.644398	 3.4756563	 0.00140255	 myocyte	
Cdkn1c-

ENCODEMT000373182	
4.620082	 3.1417873	 0.0015143	 myocyte	

Tnnt1-201	 4.614003	 3.05506	 0.00153878	 myocyte	
Cdkn1c-

ENCODEMT000373034	
4.510659	 2.4062722	 0.0024221	 myocyte	

Shisa2-201	 4.3586826	 2.6834664	 0.00435296	 myocyte	
Vma21-203	 4.3282876	 6.450808	 0.00483619	 myocyte	
Pnmal2-201	 4.3222084	 3.6279802	 0.00491796	 myocyte	

Acta2-
ENCODEMT000198548	

4.273576	 3.1073308	 0.00587162	 myocyte	
Ube2d3-

ENCODEMT000273941	
4.267497	 5.277565	 0.00597231	 myocyte	

Lsm6-
ENCODEMT000410310	

4.2310224	 4.984635	 0.00681955	 myocyte	
Vdac3-

ENCODEMT000393107	
4.2127852	 3.1398304	 0.00725082	 myocyte	

Lgmn-
ENCODEMT000443455	

3.949313	 5.6585793	 0.03270791	 macrophage	
Mpp1-201	 3.9312797	 4.1905756	 0.03270791	 macrophage	
Lcp2-201	 3.859146	 5.2996893	 0.03270791	 macrophage	
Cebpd-201	 3.859146	 3.9262567	 0.03270791	 macrophage	
Atp6v0a1-

ENCODEMT000372261	
3.859146	 4.9282146	 0.03270791	 macrophage	

Zfp36-202	 3.859146	 4.560254	 0.03270791	 macrophage	
Mt1-201	 3.859146	 4.929718	 0.03270791	 macrophage	
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Cd53-201	 3.8771794	 5.9794636	 0.03270791	 macrophage	
Fam49b-207	 3.895213	 4.1351047	 0.03270791	 macrophage	
Zfp36-201	 3.895213	 5.6155725	 0.03270791	 macrophage	
Psmb10-201	 3.9132462	 4.556701	 0.03270791	 macrophage	

Chd9-
ENCODEMT000418033	

4.003413	 6.0899177	 0.03270791	 macrophage	
Dab2-203	 4.057513	 8.815356	 0.03270791	 macrophage	
Lgmn-202	 4.057513	 6.673731	 0.03270791	 macrophage	
Fyb-210	 4.057513	 29.61367	 0.03270791	 macrophage	
Ifngr1-201	 4.0394797	 4.342029	 0.03270791	 macrophage	
Sesn1-201	 4.003413	 4.205529	 0.03270791	 macrophage	
Grn-201	 4.003413	 5.042139	 0.03270791	 macrophage	
Dab2-202	 3.859146	 4.1632442	 0.03270791	 macrophage	
Cndp2-202	 4.0214467	 4.1234236	 0.03270791	 macrophage	
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Table	4.10.	Single-cell	batch	and	sequencing	platform	information		
	

cell_ID	 celltype	 batch	 Sequel	 HudsonAlpha 
Sequel II	 UCI Sequel II	

17329_C5	 muscle-pre	 pool1	 X	 X	 	
17333_G6	 muscle-pre	 pool1	 X	 X	 	
18042_A7	 muscle-pre	 pool1	 X	 X	 	
18046_E3	 muscle-pre	 pool1	 X	 X	 	
18046_E8	 muscle-pre	 pool1	 X	 X	 	
18088_G2	 muscle-pre	 pool1	 X	 X	 	
18088_G8	 EMP	 pool1	 X	 X	 	
18252_B3	 macrophage	 pool1	 X	 X	 	
18254_D10	 EMP	 pool1	 X	 X	 	
18255_E8	 myocyte	 pool1	 X	 X	 	
18256_F2	 myoblast	 pool1	 X	 X	 	
18264_B9	 muscle-pre	 pool1	 X	 X	 	
18267_E11	 muscle-pre	 pool1	 X	 X	 	
18311_A9	 myoblast	 pool1	 X	 X	 	
18312_B8	 myoblast	 pool1	 X	 X	 	
18312_B12	 macrophage	 pool1	 X	 X	 	
18314_D6	 myocyte	 pool1	 X	 X	 	
19907_B3	 muscle-pre	 pool1	 X	 X	 	
19916_C5	 EMP	 pool1	 X	 X	 	
19917_D1	 myocyte	 pool1	 X	 X	 	
20026_A12	 muscle-pre	 pool1	 X	 X	 	
20032_G2	 EMP	 pool1	 X	 X	 	
20034_B3	 EMP	 pool1	 X	 X	 	
20034_B6	 myocyte	 pool1	 X	 X	 	
20038_F1	 myocyte	 pool1	 X	 X	 	
20040_B1	 myocyte	 pool1	 X	 X	 	
20040_B6	 myocyte	 pool1	 X	 X	 	
20041_C1	 myoblast	 pool1	 X	 X	 	
20042_D2	 myocyte	 pool1	 X	 X	 	
20043_E2	 myoblast	 pool1	 X	 X	 	
20046_C4	 macrophage	 pool1	 X	 X	 	
20047_D6	 myocyte	 pool1	 X	 X	 	
18044_C5	 muscle-pre	 pool2	 	 	 X	
18044_C6	 muscle-pre	 pool2	 	 	 X	
18044_C9	 muscle-pre	 pool2	 	 	 X	
18048_G2	 muscle-pre	 pool2	 	 	 X	
18048_G4	 muscle-pre	 pool2	 	 	 X	
18048_G8	 muscle-pre	 pool2	 	 	 X	
17328_B5	 muscle-pre	 pool2	 	 	 X	
17328_B8	 muscle-pre	 pool2	 	 	 X	
17329_C8	 muscle-pre	 pool2	 	 	 X	
18251_A3	 myoblast	 pool2	 	 	 X	
18251_A5	 myoblast	 pool2	 	 	 X	
18252_B8	 myocyte	 pool2	 	 	 X	
18252_B11	 myoblast	 pool2	 	 	 X	
18252_B12	 myocyte	 pool2	 	 	 X	
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cell_ID	 celltype	 batch	 Sequel	 HudsonAlpha 
Sequel II	 UCI Sequel II	

18254_D2	 myocyte	 pool2	 	 	 X	
18254_D12	 myoblast	 pool2	 	 	 X	
18255_E2	 myoblast	 pool2	 	 	 X	
18255_E3	 macrophage	 pool2	 	 	 X	
18255_E4	 myoblast	 pool2	 	 	 X	
18255_E5	 myoblast	 pool2	 	 	 X	
18255_E11	 myoblast	 pool2	 	 	 X	
18255_E12	 macrophage	 pool2	 	 	 X	
18257_G6	 myoblast	 pool2	 	 	 X	
18258_A7	 muscle-pre	 pool2	 	 	 X	
18263_A2	 myocyte	 pool2	 	 	 X	
18265_C6	 muscle-pre	 pool2	 	 	 X	
18270_A4	 myoblast	 pool2	 	 	 X	
18270_A11	 myoblast	 pool2	 	 	 X	
18271_B2	 myoblast	 pool2	 	 	 X	
18274_E3	 myoblast	 pool2	 	 	 X	
18312_B2	 macrophage	 pool2	 	 	 X	
18313_C10	 myocyte	 pool2	 	 	 X	
18316_F6	 myocyte	 pool2	 	 	 X	
18317_G2	 myoblast	 pool2	 	 	 X	
18317_G10	 myocyte	 pool2	 	 	 X	
20026_A5	 myoblast	 pool2	 	 	 X	
20026_A6	 myoblast	 pool2	 	 	 X	
20026_A9	 muscle-pre	 pool2	 	 	 X	
20031_F8	 muscle-pre	 pool2	 	 	 X	
20032_G5	 muscle-pre	 pool2	 	 	 X	
20039_A1	 myoblast	 pool2	 	 	 X	
20042_D4	 myocyte	 pool2	 	 	 X	
20044_A10	 myocyte	 pool2	 	 	 X	
20044_A12	 myoblast	 pool2	 	 	 X	
20048_E11	 myoblast	 pool2	 	 	 X	
20048_E12	 myoblast	 pool2	 	 	 X	
19914_A12	 muscle-pre	 pool2	 	 	 X	
20043_E4	 macrophage	 both	 X	 X	 X	
18316_F2	 macrophage	 both	 X	 X	 X	
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Chapter	5	

Future	Directions	

	

	 In	the	previous	chapters,	I	outlined	how	the	novel	long-read	analysis	methods	I	

developed	may	be	used	to	characterize	isoform-level	mRNA	expression	in	both	bulk	RNA	

samples	and	in	single	cells.	I	first	described	TranscriptClean,	a	tool	for	correcting	

mismatches,	small	indels,	and	noncanonical	splice	junctions	in	long-read	alignments	using	

the	reference	genome.		Next,	I	introduced	TALON,	a	novel,	technology-agnostic	pipeline	for	

annotation	and	quantification	of	long-read	transcriptomes.	Lastly,	I	demonstrated	how	

TranscriptClean	and	TALON	can	be	applied	to	deeply	sequenced	long-read	single-cell	data	

to	better	understand	the	role	of	isoform	switching	in	the	developing	embryonic	mouse	limb	

bud.		

	

	 I	anticipate	many	ways	to	build	on	this	work.	To	start,	it	would	be	interesting	to	

move	beyond	human	cell	lines	and	examine	isoform-level	differences	in	human	tissues	

using	long-read	sequencing.	The	ENTEx	collaboration	between	the	GTEx1	and	ENCODE2	

consortia	presents	an	exciting	opportunity	to	do	just	that.	This	project	entails	deep	

profiling	of	tissues	from	four	individual	human	donors	by	a	variety	of	genomics	assays,	

including	but	not	limited	to	ATAC-seq,	ChIP-seq,	eCLIP,	short-read	RNA-seq,	and	PacBio	

long-read	sequencing3.	In	addition,	work	is	underway	to	assemble	phased,	diploid	personal	

genomes	for	the	four	ENTEx	donors.	So	far,	our	laboratory	has	performed	PacBio	long-read	

sequencing	on	the	transcriptomes	of	four	donor	tissue	samples.	From	these	data,	it	is	

possible	to	quantify	isoform	differences	between	tissues	and	to	examine	how	isoform	
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expression	varies	in	the	same	tissue	across	the	ENTEx	individuals.	Ultimately,	an	important	

goal	would	be	to	understand	the	effects	of	personal	genetic	variation	on	isoform-level	

expression.	Given	the	small	sample	size	available	in	this	study,	it	may	be	difficult	to	draw	

broad	conclusions	in	this	regard.	Nevertheless,	it	is	possible	to	envision	integrative	

analyses	on	the	ENCODE	data	at	large	that	would	ask	variations	of	this	question.	For	

instance,	eCLIP,	RNA-seq,	and	PacBio	data	from	the	same	cell	lines	could	be	combined	to	

examine	the	effect	of	particular	RNA	binding	proteins	on	alternative	splicing.	Personal	

variation	within	RNA	binding	protein	motifs	could	play	an	important	role	here.	In	addition,	

the	availability	of	phased	genomes	could	allow	for	study	of	allele-specific	isoform	

expression,	which	I	will	discuss	further	in	the	next	section.	

	

	 Because	current	long-read	platforms	produce	data	with	single-molecule	resolution,	

it	is	in	principle	possible	to	tell	whether	each	read	comes	from	the	maternal	or	the	paternal	

copy	of	the	gene.	This	introduces	the	exciting	possibility	of	quantifying	allele-specific	

expression	on	the	isoform	level,	and	perhaps	to	better	understand	the	relationship	

between	genetic	variation	and	splicing	patterns.	Tilgner	et	al.	pioneered	this	type	of	

analysis	in	2014,	developing	a	principal	component	analysis-based	approach	to	assigning	

individual	PacBio	circular	consensus	reads	to	the	maternal	or	paternal	haplotype	of	

GM128784.	At	the	time,	the	high	long-read	error	rate	and	low	throughput	of	the	technology	

meant	that	calling	differential	allelic	expression	was	still	a	challenge.	Improvements	in	the	

technology	since	may	make	this	more	feasible	today.	In	practice,	such	analyses	will	of	

course	be	difficult	to	conduct	for	samples	lacking	a	phased	personal	genome.	However,	it	

may	be	feasible	to	modify	the	TALON	pipeline	to	record	phased	isoform	abundance	
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estimates	for	well-studied	cell	lines	such	as	GM12878	or	for	the	previously	mentioned	

ENTEx	personal	genomes.		

	

The	successful	application	of	long-read	sequencing	to	single	cells	has	opened	the	

door	to	a	variety	of	interesting	possibilities.	Since	alternative	splicing	is	known	to	be	an	

important	factor	in	many	diseases	including	Alzheimer’s,	a	natural	next	step	is	to	

characterize	single-cell	transcriptomes	from	diseased	and	healthy	tissues	and	look	for	

isoform-level	differences	with	pathogenic	implications.	Combining	such	an	analysis	with	

matching	personal	genome	data	from	the	patients	could	also	help	illuminate	the	

relationship	between	genetic	variation	and	alternative	splicing	in	the	disease	context.	As	

shown	in	Chapter	4,	the	TALON	pipeline	can	readily	be	applied	to	single-cell	datasets.	

	

Although	long-read	technologies	offer	many	advantages	over	short-read	sequencing,	

they	still	pose	significant	challenges	of	their	own.	It	is	important	to	develop	both	

computational	and	experimental	solutions	to	these	issues	so	that	we	can	more	accurately	

quantify	transcriptomes	on	the	isoform	level.	A	major	challenge	for	cDNA	protocols	is	to	

fully	sequence	long	transcripts,	such	as	those	measuring	over	5	kb	in	length.		More	

processive	reverse	transcriptases	are	needed	in	order	to	make	this	possible.	In	addition,	

internal	priming	is	a	widespread	experimental	artifact	that	can	lead	to	truncated	

transcripts	in	protocols	that	use	poly-(A)	selection.	In	Chapter	3,	I	outlined	a	computational	

approach	used	by	TALON	to	identify	and	flag	reads	believed	to	come	from	internal	priming.	

However,	it	may	also	be	possible	to	reduce	these	artifacts	on	the	experimental	side	by	

using	a	reverse-transcriptase	that	works	at	elevated	temperatures	(i.e.	50°C	or	higher).	The	
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goal	here	would	be	to	force	more	stringent	hybridization	conditions	and	reduce	off-target	

priming	events.	Computational	measures	may	also	be	taken	to	help	identify	full-length	

transcripts	provided	that	orthogonal	data	types	are	available.	For	instance,	it	would	be	

possible	to	adapt	the	CAGE	and	poly-(A)	motif	analysis	outlined	in	Chapter	3	to	use	5’	and	

3’	end	support	as	a	necessary	condition	when	filtering	novel	transcript	models	in	TALON.	

This	could	help	remove	artifactual	suffix	ISMs	resulting	from	RNA	degradation	or	

incomplete	reverse-transcription.	Finally,	there	is	the	matter	of	artifactual	long-read	splice	

junctions.	TranscriptClean	was	designed	at	the	outset	to	correct	exclusively	noncanonical	

splice	junctions,	since	these	are	highly	likely	to	be	the	result	of	sequencing	errors	rather	

than	biological	novelty.	However,	our	SIRV	analysis	in	Chapter	3	indicates	that	not	all	

artifactual	splice	junctions	are	noncanonical	–	we	see	unexpected	SIRV	junctions	with	

canonical	motifs	as	well.	In	light	of	this,	it	may	be	useful	in	the	future	to	consider	the	level	

of	splice	junction	support	during	transcript	filtering	as	well,	making	use	of	short-read	and	

annotation	support	information	where	available.	Overall,	quality	control	measures	such	as	

those	suggested	here	can	further	hone	the	accuracy	of	third-generation	sequencing	

platforms	and	improve	their	utility	for	isoform-level	analyses	on	the	bulk	and	the	single-

cell	level.	
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