
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Detection of Traumatic Brain Injury Using a Standard Machine Learning Pipeline in Mouse 
and Human Sleep Electroencephalogram

Permalink
https://escholarship.org/uc/item/7073x7sf

Author
Vishwanath, Manoj

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7073x7sf
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Detection of Traumatic Brain Injury Using a Standard Machine Learning Pipeline in
Mouse and Human Sleep Electroencephalogram

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Electrical Engineering

by

Manoj Vishwanath

Thesis Committee:
Professor Hung Cao, Chair

Distinguished Professor Nikil Dutt
Professor Amir M. Rahmani

2021



© 2021 Manoj Vishwanath



DEDICATION

To

my parents, Mr. Y. S. Vishwanath & Mrs. H. N. Suryakala, for their constant support, and
belief in my dreams.

my committee members for their constant guidance and encouragement.

Professor A. G. Ramakrishnan, Dr. T. V. Ananthapadmanabha and Assistant Professor
Sastry V. Ramachandrula who introduced me to this exciting and evolving field of EEG

and BCI and mentored me in crucial aspects of scientific research.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

ABSTRACT OF THE THESIS ix

1 Introduction 1

2 Data Acquisition 6
2.1 Mouse data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Human data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Preprocessing of EEG Signals 9
3.1 Independent Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Feature Extraction 19
4.1 Spectral Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Average Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Relative Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.3 Slow:Fast Power Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.4 Frequency Amplitude Asymmetry . . . . . . . . . . . . . . . . . . . . 24
4.1.5 Phase Amplitude Coupling . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Connectivity Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Phase difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Phase Locking Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Time domain Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Hjorth Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Non-linear Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.1 Spectral Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



5 Feature Normalization 33
5.1 Log Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Age Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Z-score Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Feature Selection 40

7 Machine Learning Approaches 43
7.1 Train/Test Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1.1 k-fold Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1.2 Independent-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2 Rule Based ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2.1 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2.2 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2.4 k Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2.5 Extreme Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . . 52

8 Evaluation Metrics 53
8.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.3 Specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.4 AUC score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 Pipeline and Tools Used 58

10 Results and Discussion 60

11 Future work 65

Bibliography 66

iv



LIST OF FIGURES

Page

1.1 An example of EEG Recording set-up . . . . . . . . . . . . . . . . . . . . . . 3
1.2 EEG signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Electrode position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 ICA procedure followed by MNE . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Removing ECG component in EEG using ICA . . . . . . . . . . . . . . . . . 12
3.3 EEG epoch rejection procedure . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Examples of retained and rejected epochs . . . . . . . . . . . . . . . . . . . . 14
3.5 Effect of filtering in frequency domain . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Phase shift due to filtering. Upper panel shows a simulated signal of sum

of 2 sine waves of 5Hz and 15Hz. Bottom panel shows original 5Hz compo-
nent present in the signal, results of filtering in frequency domain and using
butterworth bandpass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.7 EEG filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Periodogram obtained for signal in Fig.1.2 . . . . . . . . . . . . . . . . . . . 22
4.2 EEG Frequency band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 PAC procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Phase Amplitude Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Phase of filtered EEG signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Phase Locking Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Log transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Effect of log transformation on features (Delta Power F3-electrode) . . . . . 34
5.3 Effect of log transformation on features (Relative Alpha Power O2-electrode) 35
5.4 Effect of age regression on Log transformed Delta Power F3-electrode . . . . 36
5.5 Effect of Z-score normalization on log-transformed and age regressed Activity

and Mobility theta F3-electrode . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 Relationship between number of features and CV accuracy . . . . . . . . . . 42

7.1 k-Fold Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2 Individual validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

v



7.5 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.6 K Nearest Neighbor (Left: K = 5, Right: K = 11) . . . . . . . . . . . . . . . 52

8.1 ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.1 Procedure used to analyze mouse data (left) and human data (right) . . . . 59

10.1 Correlation matrix for the most frequently chosen features in N2 sleep stage
of human data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



LIST OF TABLES

Page

1.1 Glasgow Coma Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

8.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10.1 Accuracy (%) obtained for mouse data . . . . . . . . . . . . . . . . . . . . . 60
10.2 Evaluation Metric (%) obtained for mouse data . . . . . . . . . . . . . . . . 61
10.3 Accuracy (%) obtained for human data . . . . . . . . . . . . . . . . . . . . . 61
10.4 Evaluation Metric (%) obtained for human data . . . . . . . . . . . . . . . . 62

vii



ACKNOWLEDGMENTS

I would like to thank Associate Professor Miranda M. Lim and Dr. Carolyn E. Jones from
VA Portland Health Care System, Portland and Oregon Health Science University, Portland
for curating the mice and human dataset and lending their constant guidance.

I would like to thank Professor Ramesh Srinivasan from Cognitive Sciences, School of Social
Sciences, UCI for sharing his domain knowledge in EEG processing and providing valuable
inputs throughout this work.

This work is supported by the NSF CAREER Award #1917105 (H.C.), the NIH R44
#OD024874 (H.C.), the setup fund from the Henry Samueli School of Engineering at UC
Irvine (H.C.), VA Biomedical Laboratory Research & Development (BLRD) Career De-
velopment Award (CDA) #IK2BX002712 and VA Clinical Science Research Development
(CSRD) Merit Review Award I01 CX002022.

viii



ABSTRACT OF THE THESIS

Detection of Traumatic Brain Injury Using a Standard Machine Learning Pipeline in
Mouse and Human Sleep Electroencephalogram

By

Manoj Vishwanath

Master Of Science in Electrical Engineering

University of California, Irvine, 2021

Professor Hung Cao, Chair

Traumatic Brain Injury (TBI) is a highly prevalent and serious public health concern. TBI

is defined as an alteration in brain functioning or brain pathology initiated by external

impacts, such as blunt trauma, penetrating objects, or blast waves which can cause a wide

range of functional short- or long-term changes affecting thinking, sensation, language, and

emotion, and perhaps most prominently, sleep. Most cases of TBI are mild in nature, yet

some individuals may develop following-up persistent disability. The pathophysiologic causes

for those with persistent post-concussive symptoms are most likely multifactorial and the

underlying mechanism is not well understood. Currently, there are no prognostic markers

to predict individuals who are most at risk. Thus, novel approaches to the precise detection

and prognostication of mTBI is of utmost importance.

The sleep electroencephalogram (EEG) provides a direct window into neuronal activity dur-

ing an otherwise highly stereotyped behavioral state and represents a promising quantitative

measure for TBI diagnosis and prognosis. With the ever-evolving domain of machine learn-

ing, deep convolutional neural networks, and the development of better architectures, these

approaches hold promise to solve some of the long entrenched challenges of personalized

medicine for uses in recommendation systems and/or in health monitoring systems. In par-
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ticular, advanced EEG analysis to identify putative EEG biomarkers of neurological disease

could be highly relevant in the prognostication of mild TBI, an otherwise heterogeneous

disorder with a wide range of affected phenotypes and disability levels.

In this work, we investigate the use of various machine learning techniques on a cohort

of mice and human subjects with sleep EEG recordings from overnight, in-lab, diagnostic

polysomnography (PSG) from human subjects and 24 hours recording from mice subjects.

An optimal scheme is explored for the classification of TBI versus non-TBI control subjects.

The results are promising with an accuracy of 95% in mice and 75% in humans. We are

thus confident that, with additional data and further studies, we would be able to build a

generalized model to detect TBI accurately, not only via attended, in-lab PSG recordings,

but also in practical scenarios such as EEG data obtained from simple wearables in daily

life.
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Chapter 1

Introduction

Traumatic brain injury (TBI) is defined as an alteration in brain functioning or brain pathol-

ogy initiated by external impacts, such as blunt trauma, penetrating objects, and/or blast

waves. TBI results in physical brain damage, including tearing injuries of white matter,

hematomas, or cerebral edema [68]. Consequently, it leads to a cascade of metabolic events

which can cause a secondary brain damage possibly due to the generation of free radicals,

inflammatory responses, calcium-mediated damage, mitochondrial dysfunction, to name a

few. Falls are the cause of nearly half of the TBI related hospitalization [30]. Between 2000

and 2019, more that 400,000 TBI cases have been reported in U.S. service members [27].

Based on the severity of the injury, the effects may last upto few days or entire lifetime.

Currently severity of TBI is assessed clinically based on Glasgow Coma Scale (GCS) which

is a highly observer dependent and a qualitative measure [110]. The person is assessed based

on his/her ability to perform certain actions which is shown in Table.1.1.

TBI can cause a wide range of functional short- or long-term changes affecting thinking,

sensation, language, emotion, and perhaps most prominently, sleep [34][103]. About 75%

of TBIs that occur each year are concussions or mild TBI (mTBI) [35]. Lack of consensus
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Response Scale Score/Points

Eye opening response

Open spontaneously 4
Open to sound 3

Open to pressure 2
No eye opening 1

Verbal response

Oriented 5
Confused conversation 4

Words discernible 3
Incomprehensible sounds 2

No verbal response 1

Motor response

Obeyes command 6
Movement to stimulus 5
withdraws from pain 4

Abnormal flexion 3
Extensor response 2

No response 1
Mild TBI = 13-15 points Moderate TBI = 9-12 points Severe TBI = 3-8 points

Table 1.1: Glasgow Coma Scale

regarding what constitutes mTBI adds to the complication of the under-diagnosis of the

disease. Not all instances of mTBI result in persistent disability, and currently there are

no prognostic markers to predict individuals who are most at risk. Investigations show that

electroencephalogram (EEG) returns to normal baseline within few minutes or days from

the time of injury [58]. Thus, novel approaches to the precise detection and prognostication

of mTBI is of utmost importance.

EEG is a non-invasive electrophysiological recording of the neuronal activity of the brain

that reflects a summation of synchronous activity of a population of neurons [84]. As a

result, this electrophysiological recording is space-averaged by volume conduction and does

not have high spatial resolution and EEG channels are often highly correlated spatially.

However, it measures modulations of synaptic and action potential fields at high temporal

resolution. EEG can be broadly divided into two categories: spontaneous potentials such as

sleep rhythms and evoked potentials which are time-locked responses to external stimulus.

EEG has been used to study various neurological conditions in clinical applications such
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as epilepsy [1], sleep disorders, stroke, Alzheimer’s disease [63], and topics of interests in

cognitive sciences such as sensor and auditory pathways, memory, motor processes, and

general intelligence. Use of quantitative EEG (QEEG) in detection and classification TBI

have been discussed in detail in features selection section. Some of the major advantages

of EEG over other methods to study functioning of the brain are its low cost, lesser need

for highly trained clinicians and bulky equipment, thereby being more suited for real-time

monitoring. However it has its challenges. EEG is a non-stationary signal with low signal-

to-noise ratio and is highly variable across subjects which makes it difficult build generalize

models for EEG analysis. Fig.1.1 shows an example of typical EEG recording set-up with a

256 electrode system. Fig.1.2 shows an epoch of human EEG signal. To overcome the above

problems signal processing pipelines with domain specific knowledge is often used. With

the advent of advanced machine learning (ML) and deep learning (DL) concepts, better

automated approaches with better generalization capabilities have been developed [101].

Figure 1.1: An example of EEG Recording set-up

3



Figure 1.2: EEG signal

Machine learning (ML) and deep learning (DL) are sub-fields of artificial intelligence. Ma-

chine learning (ML) [102] refers to the study of computer algorithms that focus on use of

statistical methods and data to improve automatically through experience. Rule based ML

are characterised by identifying set of rules that represent the knowledge learned by the

algorithm. It is dependent on user to determine the set of input features based on domain

knowledge. Unlike ML, deep learning automatically extracts relevant feature set from the

given data input. ML models can be broadly divided into supervised learning in which the

model has access to pre-labeled data, unsupervised learning in which the dataset being used

is unlabeled, semisupervised learning in which a small subset of labeled dataset guide classi-

fication and feature extraction from a larger, unlabeled dataset, and reinforcement learning

that works on the basis of “rewards/punishments” system, offering feedback to the algorithm

to learn from its own experiences by trial and error. Detailed description on the different

algorithms used in this work are discussed in following sections. In this work we investigate

relevant EEG features and various supervised algorithms formulating an efficient pipeline to

detect mTBI in mouse and humans sleep EEG.

The following chapters of this thesis have been organised as follows: chapter 2 discusses the

data acquisition procedure in mice and human subjects. Chapter 3 and 4 give a detailed de-

scription on the pre-processing and feature extraction steps carried out on EEG respectively.

Chapter 5 and 6 discusses some of the important and essential steps which have to be taken

4



before feeding the features on to a machine learning model such as feature normalization and

selection techniques. Chapter 7 and 8 sheds light on working of different rule based machine

learning algorithms which will be used for classification in this work and their evaluation

metrics. Chapter 9 summarizes the pipeline used for mouse and human EEG classification.

Finally, chapter 10 and 11 discusses the results obtained and future directions.
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Chapter 2

Data Acquisition

2.1 Mouse data

Male C57BL6 mice (Jackson Laboratories, Bar Harbor, ME) 4–6 months of age were used for

the experiments. Experimental collection was performed as detailed in [134]. Surgical im-

plantation of microdialysis probes, EEG and electromyography (EMG) wires was performed.

EEG and EMG electrodes soldered to a mini-connector for polysomnographic recordings were

implanted. A custom-built head stage amplifier (Washington University Electronics Shop,

St. Louis, MO), in series with a recording cable distal to the implant was used to eliminate

external electrical noise. Following a 2-week recovery on the morning of day 3, left cran-

iotomy and electromagnetic controlled cortical impact (CCI) or left craniotomy only (sham)

was performed ipsilateral to the implanted probes. The mice were subjected to CCI with

a flat metal tip impounder driven at a velocity of 5 m/sec by an electromagnetic device

producing a moderately severe contusion to the cortex [14]. Signals were electronically saved

to a file for the offline analysis of sleep states. EEG and EMG activity was assessed us-

ing a P511K AC pre-amplifier, digitized with a DigiData 1440A Data Acquisition System,
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and recorded using pClamp 10.2. EEG/EMG records were scored automatically using sleep

scoring software (SleepSign; Kissei Comtec Co., Ltd., Nagano, Japan) into 4-sec epochs as

wake, REM, and non-REM on the basis of standard criteria of rodent sleep [99], and then

over-scored manually by visual inspection and corrected when appropriate by a single inves-

tigator blinded to intervention (M.M. Lim). On day 5, the animals were sacrificed. Previous

results from the same dataset leading up to the work presented in this thesis can be found

in [126][125][28].

2.2 Human data

All participants provided informed consent under VA Portland Health Care System (VA-

PORHCS) Institutional Review Board approval (MIRB #3641). Participants were con-

sented upon referral to the VAPORHCS Sleep Clinic between May 2015 and November 2016

(n = 370). Subjects with in-lab, overnight polysomnography (PSG; n=337) were included

in the initial study population. Participants were excluded if they had an apnea-hypopnea

index of fifteen or greater (n = 126). Participants who met criteria for PTSD (n=38) were

then age-matched to n = 38 non-PTSD controls. Subjects in the data repository under-

went in-lab overnight polysomnography (PSG) using Polysmith (NihonKohden, Japan). Six

scalp electrodes were placed at F3, F4, C3, C4, O1, and O2 per the 10–20 system of EEG

placement. This is shown in Fig.2.1. Following the conclusion of the study, an American

Academy of Sleep Medicine (AASM)-accredited polysomnographic technician manually per-

formed standard sleep staging analysis for each 30-second epoch duration according to the

standard clinical criteria. Each 30-second epoch of data was scored as one of the five sleep

stages (Awake [W], Rapid Eye Movement [REM], non-REM [NREM] stages N1, N2, and

N3). Staging of each PSG was additionally validated by a board-certified sleep physician

blinded to PTSD status. In the event that there was non-convergence between scorers, the

7



board-certified sleep physician made the final call. The details of the procedure can be found

in [79].

Figure 2.1: Electrode position
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Chapter 3

Preprocessing of EEG Signals

Preprocessing is an essential step in the process of EEG analysis. Numerous algorithms

and preprocessing pipelines have been developed to tackle the problem of artifact rejection

in electrophysiological data. Each of these algorithms has certain strengths and deal with

certain aspect of artifact rejection better than the others. To name a few LARG [7] and

MARA [135] are ICA-based pipelines whereas ASR 5* and ASR 10* are based on artifact

subspace reconstruction algorithm [71]. Statistical Control of Artifacts in Dense Arrays Stud-

ies (SCADS) method uses thresholding methods to detect artifacts [67]. Some of the most

common preprocessing steps involve visual inspection to remove bad channels, interpolation

of bad channels to minimize loss of information, filtering to remove direct current (DC) shift,

slow frequency component, and power noise, and Independent Component Analysis (ICA)

to remove eye movement or electrocardiogram (ECG) artifacts. Some preprocessing steps

may not directly involve removing artifacts but are performed so that one can handle the

huge EEG data better such as dimensionality reduction (reducing the number of electrodes

for analysis) and downsampling. Re-referencing of the electrode also plays a major role de-

pending on the underlying neuronal activity in interest. These techniques must be carefully

chosen depending on the data set being used and the questions being tackled about the

9



data set and must be well understood before implementing so as to know the effect these

procedures have on the signal. Some of these procedures have been dealt with in detail in

this section.

3.1 Independent Component Analysis

Independent component analysis (ICA) is a statistical and computational method used to

separate underlying independent components from observed multivariate non-gaussian sta-

tistical data. The technique of ICA was first introduced by J. Herault, C. Jutten, and B. Ans

in the 1980s, where they introduced the problem of analysis of multivariate data produced

by a linear combination of multiple source signals with an analogy to messages carried in

the nerve fibers [46][47].

ICA can be considered as a statistical latent variable generative model which describes the

observed data as generated by a linear combination of underlying independent latent sources

which cannot be directly observed. A basic ICA model is defined as follows: We observe n

random variables x1, . . . , xn, which are modeled as linear combinations of n random variables

s1, . . . , sn:

xi = ai1s1 + ai2s2 + . . .+ ainsn, for all i = 1, . . . , n (1)

where the aij, i, j = 1, . . . , n are some real coefficients. In vector notation it is represented

as

X = AS (2)

where X and S are column vectors of observed variable and the latent variables respectively.

Here, both, the mixing coefficients aij and the independent components (ICs) si are unknown.
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Once A is determined, ICs are calculated using

S = WX (3)

where W is inverse of A. The goal of ICA is to estimate the mixing coefficients and deter-

mine the ICs with minimum assumptions as possible. A detailed explanation regarding the

conditions which have to be satisfied by the random variables such as statistical indepen-

dence and non-gaussian distribution of ICs and the assumptions made on A to be square and

ambiguities of ICA are clearly put forth in [57]. There have been many algorithms developed

to compute ICs fast with each having their pros and cons [55][56]. The standard procedure

followed by MNE [41] - an open-source Python package for analyzing human neurophysiolog-

ical data is shown in Fig.3.1. Since ICA is very sensitive to low frequency drift, the observed

signals should first be high-pass filtered. Then, the pre-whitened signals are decomposed

using PCA. First n principal components (PCs) are then passed to ICA algorithm to obtain

ICs. The ICs corresponding to artifacts are removed after careful visual inspection of the

ICs. The final step in the procedure is to reconstruct the signals using ICs and residual PCs.

Figure 3.1: ICA procedure followed by MNE

One of the major applications of ICA is found to be in the field of neural signal processing.

EEG, as mentioned in the previous section, is a neuro-physiological recording of brain activity

consisting of electrical potential recordings from different locations in the brain. Inevitably,

EEG is not just a mixture of electrical activities of the brain but also consists of artifacts

11



such as electrooculogram (EOG), electrocardiogram (ECG), and muscle activity. These

potential sources presumably generate the composite signals recorded from the scalp as EEG.

Since, neither there is a need to have prior knowledge on the accurate model generating the

underlying artifacts nor additional inputs which consists of specified observation intervals

of the artifacts, ICA is of the most promising signal processing techniques used for artifact

removal in EEG. Fig.3.2 top panel shows an EEG recording typically consisting of ECG

components. This can be confirmed by observing the ECG electrode recorded simultaneously

shown in the middle panel. The last panel overlays the ECG removed - preprocessed EEG

signal over the original unprocessed EEG signal. Even with all the advantages offered by the

preprocessing methods such as ICA/PCA, it is suggested that this method be avoided while

calculating coherence and phase differences as quantitative EEG (QEEG) features because,

the regression and reconstruction effects the raw EEG values and may distort the calculated

QEEG features and invalidate them [117].

Figure 3.2: Removing ECG component in EEG using ICA
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3.2 Thresholding

EEG is a very noisy electrophysiological data that is typically contaminated with artifacts

such as eye movements characterized by electrooculogram (EOG), muscle movements char-

acterized by electromyogram (EMG), slow frequency drifts, DC components, and artifacts

due to electrode displacement. Most of these artifacts are usually identified by careful visual

inspection which is typically a very tedious task.

In case of a bad channel, the recorded signal will be much noisier or appear as a flat line

which may arise due to displacement of the electrode from its original position or in case

of wet electrodes, due to an increase in the impedance between the electrode-scalp interface

which occurs during long term usage of EEG acquisition devices. These channels are usually

discarded and interpolated from neighboring electrodes [97]. The relative motion of the

electrodes with respect to the scalp also causes offsets in the electrode measurements which

can be detected by high amplitude. EMG artifacts manifest as high variance in EEG epochs.

There are many algorithms based on ICA and regression which are used to detect and correct

artifacts caused by eye or muscle movements. A detailed analysis of these standardized EEG

processing pipelines and their effects on EEG signals can be found in [6][83][100][38]. Artifact

rejection procedure in epochs used in [83] is shown in Fig.3.3. Amplitude range, variance,

and channel deviation are calculated for each epoch and a Z-score of ±3 is used as a threshold

to identify contaminated data.

Amplitude Range = 〈max (xne)−min (xne)〉N (4)

Deviation = 〈〈xne〉 − 〈xn〉〉N (5)
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V ariance =
〈
S2
xne

〉
N

(6)

where n, e denotes channel and epoch number respectively. 〈...〉 denotes mean operation.

Rejection of epoch in one channel results in rejection of the same in all channels. Fig.3.4

shows some of the retained as well as rejected epochs.

Figure 3.3: EEG epoch rejection procedure

Figure 3.4: Examples of retained and rejected epochs
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3.3 Filtering

Filters are one of the most commonly used signal processing tools in neural signal processing.

They may be used to remove slow frequency drifts (0-1 Hz), power noise (50 Hz/60 Hz), or

to extract various frequency band information such as delta (0.5 - 4Hz), theta (4 - 8Hz),

alpha (8 - 12Hz), sigma (13 - 16Hz), beta (16 - 25Hz), and gamma (30 - 35Hz). The filtering

process increases the signal-to-noise ratio. As a result, filters play a major role in inferences

drawn later from the analysis of the neural signals. The major function of these filters is

to attenuate signal components corresponding to certain frequency components which are

not of any interest, thereby selectively retaining components corresponding to a particular

frequency or range of frequencies in interest present in the signal. As a result of this, usually

only the amplitude of the filtered signal is given more importance neglecting the effects

the filters have on the phase of the signal. However, along with the modification of the

amplitude, filters also change the phase of the signal causing a temporal shift. Linear phase

(LP) filters, cause a fixed change in the temporal shift of all the frequencies while, most

filters, termed non-LP (NLP) filters, cause a differential time shift as a function of frequency

[88]. The induced changes in phase lead to changes in the temporal relationship between

oscillations at different frequencies which can lead to misinterpretation of results regarding

the underlying process. One should also note here that digital filters usually do not attenuate

the undesired spectral components completely, it attenuates to a certain large factor. This is

shown in Fig.3.5 where the acquired EEG signal is filtered between 10 - 50Hz. An in depth

analysis of digital filter design for electrophysiological data in detailed in [132].

To understand the phase shifting property of filters, consider an input x(t) = A cos (ω0t)

filtered using a filter of frequency response

H(jω) = M(ω)ejφ(ω) (7)
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Figure 3.5: Effect of filtering in frequency domain

where H(jω) and φ(ω) are the magnitude and phase response of the filter respectively. The

filtered signal or the response of the filter to the input is given by

y(t) = AM (ω0) cos (ω0t+ φ (ω0)) (8)

which can be rewritten as

y(t) = AM (ω0) cos

(
ω0

(
t+

φ (ω0)

ω0

))
= AM (ω0) cos (ω0 (t− τp (ω0))) (9)

From (6) we see that a sinusoidal signal of frequency ω0 experiences a delay of τp (ω0).

To perform filtering operation in the frequency domain, Fourier Transform (FT) of the signal

is obtained [23]. Then it multiplied by a window defining the frequency of interest. Once the

desired frequency range is obtained, the signal is reconstructed back to the time domain by

taking Inverse Fourier Transform (IFT). Fig.3.6. shows the effect filtering has on the phase

of the signal.

The simulated input signal consists of the sum of 2 sine waves one at 5Hz and the other

at 15Hz. Then the signal is filtered both in the frequency domain as mentioned in the

procedure explained previously and in the time domain using a 6th order butterworth filter
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Figure 3.6: Phase shift due to filtering. Upper panel shows a simulated signal of sum of 2
sine waves of 5Hz and 15Hz. Bottom panel shows original 5Hz component present in the
signal, results of filtering in frequency domain and using butterworth bandpass filter

independently in the passband of 0.5 - 10Hz. As it can be clearly seen from the Fig.3.6. the

resulting filtered signal obtained from filtering in frequency domain overlaps exactly with the

5Hz frequency component present in the input signal whereas, the filtered signal obtained

from filtering using butterworth filter has a phase shift.

Similarly, the effect of filtering on EEG is shown in Fig.3.7. Also, filtering in the frequency

domain is sometimes more efficient as the convolution steps involved between the input signal

and the filter in the time domain transforms to multiplication operation in the frequency

domain and we have a faster implementation of FT in the form of Fast-FT (FFT) and

Inverse Fast-FT (IFFT). [136] gives a detailed explanation on the consequence of induced

phase shifts during filtering process of neural signals.
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Figure 3.7: EEG filtering
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Chapter 4

Feature Extraction

Discriminant models are governed by some specific predefined rules which help in classifying

one class from another. Domain knowledge is crucial in the development of such models as

one has to decide which QEEG features are most relevant for the detection or classification

problem one is working to solve. [98] describes the necessary considerations one has to keep

in mind while developing such algorithms. The most commonly used discriminant function to

study TBI is the one developed by Brainscope [94]. The other notable QEEG discriminant

function used for detection on TBI was developed by Thatcher et. al. [118][113] which

consisted of 20 and 16 QEEG features respectively that mostly comprised of the measures

discussed in the following subsections. QEEG-based discriminant functions are one of the

most promising tools for TBI detection as it takes into account multiple features in the

evaluation process thereby improving specificity and sensitivity. However, care must be

taken as some studies show a return of prominent QEEG features to normal within few days

after concussion [60][29]. Over the past years, there has been the development of advanced

signal processing techniques involving complexity measures such as scale-free brain activity

[45], graph theory [130], and analysis of causal interactions whose potential in the application

of TBI detection and classification has not yet been fully explored [60][82]. Some of the well-
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consolidated review work on the use of QEEG for TBI detection and classification can be

found in [98][89][128][103][86].

4.1 Spectral Features

The study of frequency domain features is one of the most common forms of EEG analysis.

It involves the study of the distribution of the EEG signal over various frequencies which

are limited to a narrow frequency range of 0.1 - 100Hz [84][111] which are subdivided into

different frequency bands. The boundaries of these sub-bands are slightly blurred and can

differ among various researchers resulting in a slight variation of results across studies. the

typical range of these frequency sub-bands are delta (0.5 – 4Hz), theta (4 – 8Hz), alpha

(8 – 12Hz), alpha1 (8 – 10Hz), alpha2 (10 – 12Hz), sigma (12 - 16Hz), beta1 (12 – 25Hz),

beta2 (25 – 35Hz), gamma (35 – 50Hz). A key attribute of frequency/spectral analysis that

accounts for its strong applicability is that the spectral information can be derived from very

few electrodes making it an easy acquisition set up to record neural activity on the field.

Most of the studies report statistically significant alteration in at least one frequency band in

TBI patients compared to control groups. Though the inferences somewhat vary, the general

conclusion drawn from these studies shows a decrease of power in higher frequency band such

as alpha and an increase of power in lower frequency bands such as delta and theta in TBI

subjects [133][119][40][114]. Some studies showed a change in the ratio of theta/alpha power

in TBI subjects returned to normal levels after few months suggesting that these measures

can be used for longitudinal studies of TBI [20]. However, these studies have to be validated.

Some of the Spectral features have been discussed in detail in the subsequent subsection.
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4.1.1 Average Power

Many different methods can be used to calculate the power of a signal. One such method

is discussed here. To calculate the power in a different frequency band, first power spectral

density (PSD) is calculated using Welch’s periodogram [131] which averages consecutive

Fourier transform (FT) [23] of small windows of the signal, with or without overlapping.

Since the spectral content is not stationary in EEG signals, in order to obtain the best

estimates of the PSD one has to average the periodograms obtained over short segments

of the windows. The optimal window length can be defined to encompass at least two full

cycles of the lowest frequency of interest.

Mathematically, the signal is X(j) of length N is divided into smaller segments Xk(j) of

length L. FFT of the signal window obtained by multiplying signal Xk(j) with window

W (j) of length L is calculated by

Ak(n) =
1

L

L−1∑
j=0

Xk(j)W (j)e−2kijn/L (10)

K modified periodogram is obtained using

Ik (fn) =
L

U
|Ak(n)|2 k = 1, 2, · · · , K, (11)

where

fn =
n

L
n = 0, · · · , L/2 (12)

and

U =
1

L

L−1∑
j=0

W 2(j) (13)
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The spectral estimate is calculated by taking the average of these periodogram

P̂ (fn) =
1

K

K∑
k=1

Ik (fn) (14)

More on this is given in [131].

The top panel in Fig.4.1. shows the periodogram obtained for EEG signal shown in Fig.1.2

using Welch’s periodogram method. This signal has undergone the preprocessing steps men-

tioned in the previous section which includes ICA, artifact removal using thresholding, and

filtering in the range of 0.5 - 50Hz. For better visualization of the periodogram, PSD is

plotted in decibel (dB) in the bottom panel.

Figure 4.1: Periodogram obtained for signal in Fig.1.2

Note that the PSD value drops off drastically after 50Hz since the signal used to plot these

graphs has undergone filtering from 0.5 to 50Hz. The next step in calculating the average

power is to define the required frequency bands. Some of the EEG frequency bands mentioned

above have been highlighted in Fig.4.2.
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Figure 4.2: EEG Frequency band

The average power in the specific frequency band is then equal to the area of the shaded

region corresponding to that frequency band in the Fig.4.2

4.1.2 Relative Power

Relative power in the different frequency bands is given by the ratio of power in the specific

frequency band to the total power. Again, total power is defined slightly differently by

different researchers. It can be considered as the power of EEG signal in a frequency band

corresponding to 0.5 - 50Hz.

Relative Power =
Power in frequency band

Total Power
(15)

4.1.3 Slow:Fast Power Ratio

As mentioned previously some studies showed a change in the ratio of slow power:fast power

in TBI subjects [20][78]. Therefore, power ratios of theta : alpha1, theta : alpha2, and
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alpha1 : alpha2 are also considered as a prominent QEEG feature to detect anomalies in

EGG in TBI subjects.

4.1.4 Frequency Amplitude Asymmetry

The difference in absolute power between pairs of electrodes is computed to calculate fre-

quency amplitude asymmetry. For inter-hemisphere comparison, it is calculated as

Frequency Amplitude Asymmetry =
Left − Right

Left + Right
(16)

and for intra-hemisphere comparisons, it is calculated as

Frequency Amplitude Asymmetry =
Anterior − Posterior

Anterior + Posterior
(17)

Frequency amplitude asymmetry was one of the important feature used by Thatcher et. al.

to develop a discriminant score for detect TBI [118].

4.1.5 Phase Amplitude Coupling

The interaction of neural oscillations in different frequesncy bands is called cross-frequency

coupling (CFC). One of the best example CFC is phase amplitude coupling in which the

amplitude of high-frequency oscillations is modulated by the phase of low-frequency rhythms

[122][80]. The procedure to obtain the modulation index which quantifies PAC developed

by Tort et. al. [122] is shown in Fig.4.3. and Fig.4.4. The raw signal x(t) is filtered in

two frequency range of interest, one at a lower frequency (fP ) as xP (t) and one at a higher

frequency (fa) as xa(t). Hilbert transform is used to obtain the phase φxP (t) of the signal

filtered at fP and the amplitude envelope of the signal filtered at fa as Axa(t). This is shown
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in Fig.4.3. The use of Hilbert transform is explained in more detail in the subsection of

phase difference. Then the normalized mean amplitude is calculated for each frequency bin

as shown in Fig.4.4 denoted as

P (j) =
〈Axa〉φxP (j)∑N
k=1 〈Axa〉φxP (k)

(18)

where 〈 〉 denoted mean operation. The phase-amplitude plot is obtained by plotting P as a

function of the phase bins. The modulation index which gives us an idea of PAC is calculated

using Kullback–Leibler (KL) distance [72] as the deviation of Phase-Amplitude plot from a

uniform distribution.

MI =
DKL(P,U)

log(N)
(19)

where DKL(P,Q) is the KL distance between discrete distribution P and Q is given by

DKL(P,Q) =
N∑
j=1

P (j) log

[
P (j)

Q(j)

]
(20)

4.2 Connectivity Features

Connectivity features are a measure of the relationship between EEG signals recorded si-

multaneously from different locations on the scalp that requires multichannel EEG recording

which involves more complex electrode montages and advanced computational capacity for

data analysis as compared to spectral features. Unlike causal relationships which determine

the direction of information exchange, connectivity measures are adirectional which means

they simply convey if the EEG signals recorded from different locations are in some way

correlated or not. Connectivity measures can be broadly divided into three categories: time-
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Figure 4.3: PAC procedure

domain measures, frequency-domain measures, and measures calculated from the geometry

of embedded data. As the name suggests time-domain and frequency-domain connectiv-

ity measures quantify correlation between the original time-domain EEG signal and between

spectra or phase of EEG signals respectively. Commonly used frequency domain connectivity

features include coherence [85], phase synchronization [2], phase-locking value [73], and phase

lag index [109]. Though many studies show a significant change in coherence [78][114][119]

and phase-locking value [108] in TBI subjects, sometimes specifically in frontal electrode

positions care must be taken regarding the referencing of electrodes before computational

analysis can be performed since referencing of EEG electrodes pay a major role in inferences
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Figure 4.4: Phase Amplitude Plot

of these connectivity measures [3]. The computation of coherence and phase-locking value

has been discussed in the following subsections.

4.2.1 Coherence

Coherence [17] is a widely used measure to quantify synchrony between two difference regions

of the brain [85]. This gives a means for spatial analysis of the recorded EEG signals. Higher

coherence value between pairs of electrodes indicate higher lever of synchronization between

the respective regions of the brain. Mathematically, the coherence can be attributed to the

frequency domain equivalent to the time domain cross-correlation function. It is a normalized

quantity ranging between 0 to 1 given by squared correlation of two spectral density functions

over trials

Coh(f, t) =
|
∑

n S1n · S ′2n|
2∑

n |S1,|2 ·
∑

n |S2n|2
(21)
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where spectral-temporal density function of a signal is expressed as

S(f, t) = A(f, t) · eiφ(f,t) (22)

where A and φ are the amplitude and phase of the signal at certain frequency f and time

t. Many studies have previously used coherence as a measure to detect tbi [119][115][127].

The quality of estimates of coherence highly depend on the number and size of segments

correspond to the same process with the same spectral properties used to calculate it [17][85].

Also, as seen in the above equation, coherence is prone to relative change in the amplitude

of the signals being considered. To overcome these drawbacks, an alternative measure called

phase locking value (PLV) was introduced and is discussed bellow.

4.2.2 Phase difference

Thatcher et. al. [114] reported EEG phase difference between certain pair of electrodes to

be comparably more accurate in predicting TBI compared to EEG coherence and relative

power. Thornton [119] also reported a change in phase in beta1 and beta2 spectral bands in

TBI subjects in a audio memory task paradigm. The phase of a signal is calculated as the

angle of its analytical signal which is obtained by taking the Hilbert transform of the signal

[21][36][88].

φ(t) = arg [sa(t)] (23)

where sa(t) is the analytical signal of s(t) which is given by

sa(t) = s(t) + jŝ(t) (24)
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Hilbert transform (ŝ(t)) of signal s(t) is given by

ŝ(t) =

[
1

πt
∗ s(t)

]
(25)

where ∗ conveys convolution operation. Fig.4.5 illustrates phase of a section of filtered EEG

signal in theta frequency band. Here the phase of the signal is plotted between −π to π

radians.

Figure 4.5: Phase of filtered EEG signal

4.2.3 Phase Locking Value

Phase locking value (PLV) as a measure of phase synchrony between brain regions was intro-

duced by Lachaux et. al. [73]. This technique was introduced to over come the shortcoming

in the interpretation of phase synchrony by coherence calculation . The relationship between

coherence and PLV is well put forth in [15]. Reduction in inter-hemisphere PLV over anterior

portions of the brain in delta, theta and beta frequency bands have been reported in TBI

cohort previously [108].

PLV (f, t) =

∣∣∣∣∣ 1

N

∑
n

ei(φ1n−φ2n)

∣∣∣∣∣ (26)

where φ1 and φ2 and phase of the two EEG signals respectively. An example of PLV calcu-

lated for monopolar electrodes of an TBI subject is shown in Fig.4.6.
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Figure 4.6: Phase Locking Value

4.3 Time domain Features

4.3.1 Hjorth Parameters

Hjorth parameters helps to quantify characteristics of EEG signal in time domain. They

may be considered as a bridge between time-domain and frequency-domain characterization

as they can also be derived from the first five statistical moments of the power spectrum.

Hjorth parameters have shown to be promising measure in the domain of TBI classification

[81]. They consist of three measures - activity, mobility and complexity [48].

Activity is measured as the variance of the amplitude of the EEG signal which also charac-

terizes signal power.

Activity (x(t)) = var(x(t)) (27)

Mobility is defines as the square root of the ratio between the variances of the first derivative
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and the amplitude of the EEG signal. It is expressed as a ratio per time unit.

Mobility(x(t)) =

√√√√var
(
dx(t)
dt

)
var(x(t))

(28)

Complexity is a dimensionless quantity measures as the ratio between the mobility of the

first derivative of the signal and the mobility of the signal itself.

Complexity (x(t)) =
Mobility

(
dx(t)
dt

)
Mobility (x(t))

(29)

where x(t) denotes EEG signal.

4.4 Non-linear Features

4.4.1 Spectral Entropy

The entropy of a signal is insensitive to the order of the measurements in the signal. That is,

even if the values are randomly shuffled the same entropy value is obtained when calculated.

Entropy quantifies the uniformity of energy distribution in a signal [105]. In particular,

spectral entropy measures the uniformity of energy distribution in the frequency-domain.

Spectral entropy has been a commonly used quantity in EEG signal processing to measure

these irregularities in the signal [59] and previous studies have shown that spectral entropy

has been a useful measure in classifying TBI characteristics [127]. Spectral entropy is calcu-

lated using the standard entropy formula

H(x, sf) = −
fs/2∑
f=0

P (f) log2[P (f)] (30)
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where P (f) is normalized PSD and fs is the sampling frequency.
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Chapter 5

Feature Normalization

5.1 Log Transformation

Log transformation is one the most widely used transformation not only in neural signal

processing but also in biomedical research in general. QEEG features are generally highly

skewed and tailed distributions. Skewness can be considered as a measure of symmetry in a

distribution. The importance of approximation to a Gaussian distribution was emphasized

by both Dr. E. Roy John and Dr. Frank Duffy in the 1970s and 1980s respectively and

will also be discussed in detail in the section of Z-score Normalization. In simple words,

log transform compresses a particular range of values and expands other ranges of values

depending on the class of log transformation being used. Fig.5.1 shows some of the commonly

used log transformations on the QEEG features.

Consider the log(x) curve. Here the smaller values of x are expanded and larger values are

compressed. Similarly, log(x/(1− x)) transform expands smaller and larger range of values

while compressing the mid-range values. Proper care must be taken and the distributions

of features being transformed must be kept in mind before choosing the appropriate log
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Figure 5.1: Log transformation

transformations. Generally, relative band power R is transformed using log(R/(1 − R)),

magnitude squared coherence C is transformed with log(C/(1−C)), amplitude asymmetry X

is transformed with log((2+X)/(2−X)) and spectral entropy SpEn using − log(1−SpEn).

An in-depth analysis of conforming QEEG features to gaussian normality have been discussed

in [64][39][117]. The benefits of log transforms can be seen in Fig.5.2 and Fig.5.3. Fig.5.2

and Fig.5.3 are density histogram plots of delta power in F3 electrode and relative alpha

power in O2 electrode where they help in reducing the skewness present in the data and

conform it to gaussian distribution. However, it is important to keep in mind that once

the log transformation is done, the features will no longer have the meaning of the original

QEEG features and cannot be directly interpreted as before.

Figure 5.2: Effect of log transformation on features (Delta Power F3-electrode)
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Figure 5.3: Effect of log transformation on features (Relative Alpha Power O2-electrode)

5.2 Age Regression

The age and functional status of the brain are reflected in EEG. The dominant frequency of

EEG increases with age and incidents such as brain damage, dysfunction, or deterioration

causes frequency slowing in the involved brain regions [65][66][93]. In [65] linear regression

equations have been developed to predict the frequency composition of EEG within four

frequency bands, for four bilateral regions of the brain, as a function of age which describe

the development of the electrical activity of the normal human brain, independent of cultural,

ethnic, socio-economic, or sex factors. There are generally 2 different approaches used to

minimize the effect of age on QEEG features.

Age stratification involves the grouping of subjects with respect to age and computing mean

and standard deviation for each group [115][77]. The grouping of subjects and the number

of subjects per age group highly depends on the age of the samples, the relative rate of

maturation, and the questions being addressed. A simple method to increase stability and

sample size is to use sliding averages for the age stratification. In [116] Thatcher et. al. used

one year age groups with sliding averages of approximately .25 years. The best method has

to be chosen depending on careful examination of validation at different age groups.

The second method is age regression which was introduced by John et al. Here, the model

assumes a linear relationship between the calculated QEEG features and log10 of subject’s
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age expressed in years. The intercept and the coefficients obtained from fitting a straight

line to QEEG features with respect to log10(Subject
′s age) are then used to regress the same

feature using the below equation.

yi = xi − log 10( SubjectAge ) ·mi (31)

where xi and yi represent untransformed and transformed variables respectively and mi

represents the age-regression parameter. An example of age regression is shown in Fig.5.4.

Figure 5.4: Effect of age regression on Log transformed Delta Power F3-electrode

Age regression is performed on the log-transformed QEEG features obtained from the pre-

vious step explained in the previous subsection. The left pane shows the QEEG features

before age regression is performed. It can be clearly observed that the slope of the best

linear fit is not equal to zero indicating the presence of a correlation of this variable with

age. As age increases, the delta power decreases as mentioned in [65][66][93]. Once age re-

gression is performed, as shown in the right pane, this correlation is removed. The regression

parameters are calculated for norming group ( group of all control/normal subjects) which
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are then used to age regress TBI subjects [94]. As stated before this model assumes a linear

relationship between QEEG feature and age which might not always be true. If the changes

in the QEEG features with age is more rapid than a simple linear regression,then one might

miss the underlying growth of QEEG feature with age. In those cases, a quadratic or cubic

polynomial may account for a better fit which has to be carefully investigated.

5.3 Z-score Standardization

Feature scaling is one of the important steps that will speed up the training process in an

ML model. Z-score standardization brings all features to a similar scale of zero mean and

unit standard deviation which helps to minimize the cost function of the ML model and find

the global minimum faster especially in gradient descent based ML optimization models. For

distance-based computations, the distance will be governed solely by the feature having a

wide range of values if the difference between the ranges of QEEG features is quite large. This

may inadvertently result in prioritizing one feature over the other. Whereas, tree-based ML

models are largely insensitive to such standardization. Z-score standardization is performed

by subtracting the mean and then dividing by the feature’s standard deviation. It is given

by

z =
x− µ
σ

(32)

where µ is mean of the feature vector given by

µ =
1

N

N∑
i=1

(xi) (33)

and σ is the standard deviation of the feature vector given by

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (34)
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where N is the number of samples and xi denoted samples of the feature vector. Z-score

standardization parameters (mean and standard deviation) are calculated for each QEEG

feature for the training dataset which are then used to standardize the corresponding features

of the test subjects [37]. More on train/test dataset is discussed in Train/Test Split section.

Effect of Z-score normalization is shown in Fig.5.5.

Figure 5.5: Effect of Z-score normalization on log-transformed and age regressed Activity
and Mobility theta F3-electrode

All the plots display histograms of the respective features. The features for normalization

have been taken from the previous step after log transformation and age regression. The

top and bottom rows correspond to activity and mobility feature in theta band for the F3

electrode which is calculated as explained in the feature extraction section. The left column

represents features before Z-score normalization and the right column denotes features after

Z-score normalization. One has to take note of the range of values taken by both the

features. The first QEEG features have a mean and standard deviation of 62.07 and 21.31

respectively. Whereas, the mean and standard deviation of the second QEEG feature is

0.19 and 0.0078. They are drastically different before the standardization step. However,
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once the standardization is performed both the features attain zero mean and unit standard

deviation and transform to a similar scale giving equal importance to both features in the

ML algorithm.
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Chapter 6

Feature Selection

Feature selection [18] refers to the process of automatically selecting the most relevant fea-

tures from the feature pool resulting in the reduction of number of input features used during

the development of the ML model [43]. It is an important step in building an efficient ML

model mainly for three reasons - to prevent overfitting, to reduce the training time and

computational cost of modeling, and to improve the performance of the model, as having

models built on irrelevant features decreases its performance. In supervised ML algorithms,

statistical-based feature selection is adopted in which the relationship between different fea-

tures is evaluated with respect to the target variable using cross validation on the training

data. Based on this, the features that have the strongest relationship to the target variable

are chosen that are further evaluated based on the performance on the hold out set. Selection

procedure is not performed on the entire dataset to prevent data snooping. Care must be

taken to differentiate feature selection from dimensionality reduction technique. Dimension-

ality reduction technique reduces the dimensionality of the data by projecting it into new

space creating new input features, unlike feature selection methods which only removes less

relevant features.
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Feature selection procedure may be broadly divided into wrapper, filter, and embedded

methods. Filter methods rank the features by scores which are obtained based on statistical

quantities depending on their correlation to the target variable and selects the features ac-

cording to the ranking order. This method is independent of any ML algorithm. Chi squared

test, pearson’s correlation [44], mutual information [4], and Analysis of variance (ANOVA)

are some of the examples of filter method. Wrapper methods [70] are computationally in-

tensive methods which evaluates the performance of a particular ML model on a subset of

feature on metrics such as accuracy. Based on the inference drawn from previous model,

decision is taken to add or remove a particular feature. This procedure is repeated until the

required number of features are obtained. As a result wrapper methods are not independent

of ML algorithm. Forward feature selection, backward feature elimination, and recursive

feature elimination (RFE) are some of the examples of wrapper methods. Embedded feature

selection procedure incorporates feature selection as a part of training process of the model.

Hence, it is quicker than the wrapper methods and is not independent of ML algorithm.

Regularization methods are the most common type of embedded feature selection procedure

which introduces additional constraints that lower model complexity and penalize a feature

given a coefficient threshold thereby preventing overfitting. Decision trees [75], least absolute

shrinkage and selection operator (LASSO) [121], and ridge regression [52] are some of the

examples of embedded feature selection methods.

Fig.6.1. shows the relationship between number of features and the cross-validation accuracy

(5 fold) obtained on N2 sleep stage of human dataset using RFE method with random forest

as the base estimator. The decision on the optimal number of features for a particular

dataset is still an ongoing research [53][32]. [61] shows that the optimal number of features

for a pool of uncorrelated features is N − 1 whereas for highly correlated features it is
√
N

where N in the total number of features.
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Figure 6.1: Relationship between number of features and CV accuracy
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Chapter 7

Machine Learning Approaches

7.1 Train/Test Strategy

Training ML models on the entire dataset results in data snooping and the model outper-

forming on the test set. If the data were already seen by the ML model, then it overfits and

would result in a much higher accuracy. This would also lead to a failure in classifying new,

previously unseen data [37]. There are primarily two ways one could test their ML algo-

rithms in these scenarios. They are k-fold Cross Validation and individual validation. The

significance of each method is discussed below. In both the data arrangements, it is made

sure that the same number of epochs are extracted from each subject to keep it consistent

across subjects.

7.1.1 k-fold Cross Validation

In this data arrangement, the features or the raw EEG epochs are shuffled and equally

partitioned into k folds. In each iteration one fold is selected as validation data, and the
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remaining (k-1) groups are considered as training data [69][62]. Each iteration creates a

model with corresponding train/validation dataset and finally the mean accuracy of the

models is calculated.

accuracycv =
k∑

i=1

accuracyi

k
(35)

where i denotes iteration number. As a result, the training dataset comprises of approxi-

mately x% of the data or features from each subject, and the rest of the (100 − x)% data

or features from each subject is used as the validation set depending on the number of folds

(k) chosen. This is portrayed in Fig.7.1. Each box in the figure corresponds to an epoch. It

should be noted here that this is not suitable for highly unbalanced datasets.

Figure 7.1: k-Fold Cross Validation

Since, a part of the data, specific to an individual is already seen by the algorithm while

training, this data arrangement helps to evaluate the power of pattern recognition of the

algorithms [8]. As the data from each individual is not separated in train/validation sets,

the importance of subject specific differences are not taken into account while validating the

algorithm. This type of data arrangement enables one to build models which can be used

for daily monitoring of patients since it relies on previous data from the same subject rather

than detection problems which involves validation on a completely new subject.
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7.1.2 Independent-Validation

Figure 7.2: Individual validation

In this is data arrangement, one subject from each class - control and TBI are set aside as

the validation set and the ML model is trained on rest of the dataset. By having data from

both classes in the validation set it is made sure that the composition of the validation set

reflects the composition of the training set. This is carried out for all possibles combinations

of training and validation sets depending on the number of subjects used in the dataset. As

in k-fold cross validation, the final accuracy of the model is considered as the mean accuracy

of the models obtained from each iteration. Since the data from an individual subject do

not appear in both training and validation set, this data arrangement is known as individual

validation (IV). The IV data arrangement gives significant importance to differences in EEG

from different subjects. This arrangement helps study the generality of the trained model

as the prediction of class is made on subjects whose data is completely new and is not seen

by the algorithm beforehand. This arrangement mostly reflects a more practical scenario of

TBI detection rather than TBI monitoring as in case of k-fold cross validation arrangement.
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7.2 Rule Based ML

Rule-based classical ML models suit best for small to medium structured/tabular data. In

the following sub-section we will discuss the working of a number of classical rule-based ML

algorithms.

7.2.1 Decision Tree

Decision Trees (DTs) are a non-parametric supervised learning method. Many decision

tree algorithms have been developed and improved upon over many years [76], all of which

work on broadly the same principle. Some of the well known DT algorithms are Iterative

Dichotomiser 3 (ID3) [95], C4.5 [96], and Classification And Regression Tree (CART) [13][75].

DT is built as a tree of nodes in a top-down induction manner successively splitting the root

node consisting the source data. This splitting is based on certain conditions with respect

to a particular feature. Different algorithms use different criteria to select the best feature

for the split at each node. Some of the common metrics used are Gini impurity, information

gain, and variance reduction. Used by CART, Gini impurity is calculated as

IG(p) =
J∑
i=1

(
pi
∑
k 6=i

pk

)
(36)

where pi is the probability of an instance with label i, and J is the number of classes. It is

defined as likelihood of incorrectly classifying a randomly chosen instance if it were randomly

labeled according to the distribution of labels in the subset. It has a lower bound of zero

which is obtained when a node consists of data from a single class. During the training

process, the best split is chosen by maximizing the Gini gain which is given by the difference

between the weighted impurities of the branches from the original impurity. This process is

repeated recursively until all data in a node has the same label or when splitting no longer
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adds value to the predictions. DTs are easy to interpret but are prone to overfit. Fig.7.3

shows a simple decision dtree built on wake sleep stage of mouse data with two normalized

features. Each node displays the splitting condition on the feature, gini impurity, number of

samples in the node and the class assigned to the node.

Figure 7.3: Decision Tree

7.2.2 Random forest

Random forests (RFs) [49][12] are a supervised ML algorithm that builds an ensemble of

decision tree classifiers which are fit on different sub-samples of the dataset and features

with replacement. This is known as bagging [11][50]. This method helps in reducing the

variance of the decision trees and avoids overfitting of the data by introducing randomization.

The output of the random forest algorithm is however the averaged prediction of individual

classifiers. If feature bagging is not performed, the trees developed may be highly correlated

if a subset of features are very strong predictors of the target class. In this case, the same
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features will be selected in developing different trees making them correlated [51]. Fig.7.4

shows the overlapping RF decision boundaries of 30 different decision trees on wake sleep

stage of mouse data with two normalized features identical to the one used to obtained

decision tree.

Figure 7.4: Random Forest

7.2.3 Support Vector Machine

Support vector machines (SVM)[24][9] are supervised learning models used for classification

and regression. The main objective of SVM is to find a hyper-plane in an N-dimensional

space that gives the widest separation between different classes and distinctly classifies the

data points. The dimension of the hyper-plane depends on the number of features being used.

The distance from the hyper-plane to the nearest data points determines the margin. If the

dataset is linearly separable, the hyper-plane is chosen such that it maximizes the margin

between classes. This is referred to as hard margin. This boundary is usually specified or

determined by a smaller subset of data points known as support vectors as in a vector space
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a point is considered to be a vector from the origin and that point. The decision rule is given

by

ω̄ · ū+ b ≥ 0 (37)

where ω̄ is the weight vector which is a vector perpendicular to the hyper-plane, b is the

intercept term and ū is the unknown data point. Introducing additional constraints and

variables to facilitate calculation of ω̄ and b conveniently we get

yi(x̄i · ω̄ + b)− 1 = 0 (38)

where x̄i is the data point and yi is equal to +1 for positive samples and -1 for negative

samples respectively thus satisfying the constraints of decision rule being equal to +1 for

positive sample and -1 for negative samples. The geometric margin or the width of the

decision boundary is given by 2/||w̄|| which is to be maximised. Hence, the formulation of

SVM becomes a minimization problem where, to find ω̄ and b, 1
2
w̄T ω̄ is minimized with the

constraints specified in the above equation. Lagrange multipliers are used to find extremum

of the function subject to equality constraints [16][74]

L =
1

2
‖ω̄‖2 −

∑
αi [yi (w̄ · x̄i + b)− 1] (39)

where αi are the Lagrange multipliers. The final decision rule is of the form

∑
αiyix̄i · ū+ b ≥ 0 (40)

The proof for the decision rule is clearly explained in [124][104]. When the data points are

not linearly separable in a particular space they are either transformed into other space using

different kernels in which they are linearly separable or soft margin is used [24]. Some of the

commonly used kernels are linear, polynomial, and Radial Basis Function (RBF). In case of
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soft margin the cost function to be minimized changes to

E(w̄, b) =

[
1

n

n∑
i=1

max (0, 1− yi (w̄ · x̄i + b))

]
+ λ‖w̄‖2 (41)

where the fist term on the right side of the equation corresponds to the hinge loss and the

second term is the regularization term [91]. Fig.7.5 shows the SVM decision boundary and

the support vectors obtained using linear kernel.

Figure 7.5: Support Vector Machine

7.2.4 k Nearest Neighbor

First developed by Evelyn Fix and Joseph Hodges [33], k nearest neighbor (kNN) is a su-

pervised, instance based learning algorithm. Major assumption made in kNN is that, the

data points from same classes exist in close proximity with each other. Instead of building

a model, kNN simply stores the instances of the training dataset during the training phase.

In the classification phase, the label of the new data point is inferred from a simple majority
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vote of the ’k’ (a predefined number) of training samples closest to the unknown data point.

For example, if k = 1, then the label of the unknown data point is assigned based on the

closest training sample to it. In 1967, Thomas Cover and Peter Hart showed, as the size

of training dataset approaches infinity, the error of one nearest neighbor classifier is upper

bounded by twice the Bayes error rate [26]. Euclidean distance is the most commonly used

distance metric. Euclidean distance between two points A and B with coordinates (x1, y1)

and (x2, y2) respectively in the Cartesian plane is calculated as

d(A,B) =

√
(x2 − x1)2 + (y2 − y1)2 (42)

Since the algorithm is highly dependent on the distance between data points, kNN is highly

sensitive to local structure of the dataset. Any scaling operations performed on the data

results in a change of the distance between the data points and thereby impacting the

assignment of the label. The optimal value of ’k’ is highly dependent on the training data,

however a larger value of ’k’ is chosen to prevent overfitting of the algorithm on the training

data. Fig.7.6 shows the decision boundary obtained for two different values of ’k’, 5 and

11. As seen in the figure, having a lower value of ’k’ bends the decision boundary around

the training samples. kNN algorithm which use brute force method to find the k nearest

neighbors becomes slower as the size of the samples increases which is one of its major

drawbacks. This problem is addressed to some extent by more computationally efficient

methods such as k-dimensional tree (k-D tree) [5] or ball tree [87] methods. If the dataset

is highly skewed, then the class with more samples dominate the prediction of label of new

data points. This is overcome by using weighted nearest neighbor method in which the class

of the k nearest data points are multiplied by a weight proportional to the inverse of the

distance between itself and the unknown data point thereby giving more importance to the

samples which are closer.
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Figure 7.6: K Nearest Neighbor (Left: K = 5, Right: K = 11)

7.2.5 Extreme Gradient Boosting

Also known as XGBoost (XGB) [19], it is an ensemble learning method which implements

the gradient boosting decision tree algorithm enabling faster learning through parallel and

distributed computing [25]. Boosting is a sequential technique in which the result of the

model is the weighted average of previous models. The current decision stump is built by

weighing missclassified points form previous stumps higher thereby updating the residual

error in each iteration. Since gradient descent algorithm is used to minimize the loss, is

it called gradient boosting. XGBoost uses regularization parameters to prevent the model

from overfitting. XGBoost betters its performance through system optimization techniques

such as parallelization, tree pruning, and hardware optimization, algorithmic enhancement

techniques such as regularization, sparsity awareness, and weighted quantile sketch.
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Chapter 8

Evaluation Metrics

An accurate interpretation of the results and a careful evaluation of the model used to obtain

them are some of the most important steps in any data analytic/pattern recognition prob-

lem. Evaluation metrics, also known as performance metrics are fundamental in assessing the

quality of the learned methods. There have been numerous metrics defined for this purpose

that convey different information regarding the model, enabling one to interpret the perfor-

mance of the model from different standpoints. Some of the most commonly used metrics are

accuracy, sensitivity, specificity, precision, F1-score, receiver operating characteristic curve

(ROC), and area under the ROC (AUC). The differences between these metrics become more

evident when multi-class problems and problems which deal with imbalances datasets are

considered. Some of the frequently used metrics in the medical field have been mentioned

in detail in [106]. A number of previous studies have established the importance of under-

standing these metrics before using them in assessing the ML models [92][112][107]. [123]

clearly explains the difference between sensitivity, precision, and predictive values. Some of

these metrics have been discussed in more detain in the following subsections. Most of these

metrics are derived from confusion matrix. Confusion matrix for a binary classifier is shown

in Table 8.1.
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Actual values
Positive Negative

Positive
True

Positive
False

Positive
Row entries for determining

positive predictive value
Predicted

values Negative
False

Negative
True

Negative
Row entries for determining

negative predictive value
Column entries for

determining sensitivity
Column entries for

determining specificity

Table 8.1: Confusion Matrix

The confusion matrix summarizes the predictions into four cells which may be expressed

using raw counts of the number of times each predicted label is associated with each real

class, or may be expressed in relative terms. True positive and true negative refers to the

number of correctly predicted positive and negative labels respectively represented in green

in Table 8.1. Similarly, false positive and false negative refers to the number of incorrectly

predicted positive and negative labels respectively represented in red in Table 8.1. All four

cells add up to the total number of data points.

8.1 Accuracy

Accuracy is the ratio of total number of correct predictions to the total number of cases.

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(43)
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8.2 Sensitivity

Sensitivity (Sen) also known as recall or true positive rate is the ratio of true positive to the

sum of true positive and false negative.

Sensitivity =
True Positive

True Positive + False Negative
(44)

It conveys the ability of the ML model to detect actual positive cases relative to the

known reference standard. However, this should not be mistaken with positive predictive

value/precision as sensitivity only takes into account the actual positive cases and assess

how well the model performs to detect the positive cases out of all actual positives.

8.3 Specificity

Specificity (Spec) is the ratio of true negative to the sum of true negative and false positive.

Specificity =
True Negative

True Negative + False Positive
(45)

It conveys the ability of the ML model to detect actual negative relative to the known

reference standard. However, this should not be mistaken with negative predictive value as

specificity only takes into account the actual negative cases and assess how well the model

performs to detect the negative cases out of all actual positives. The main focus of sensitivity

and specificity is on the accuracy of the ML model relative to the actual reference and is

not concerned with the actual true labels of the subjects. As a result if there is an error in

the actual label, it is not detected when using sensitivity or specificity. This concept is well

explained in [123].
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8.4 AUC score

ROC is a visualization tool that helps to compare the performance of different classifiers [31].

It is a two dimensional graph in which true positive rate is plotted against false positive rate

depicting the relative trade-off between the two.

False Positive Rate =
False Positive

False Positive + True Negative
(46)

A classifier outputs a score which defines the degree to which an instance belongs to a

particular class. A threshold to this score is used to produce a discrete classifier with a

rule of assigning positive label if the score is above the set threshold or a negative label if

the score is below the set threshold. Different threshold value produces different points on

the ROC curve for the same classifier. The optimal threshold corresponds to the threshold

obtained at the point closest to the top left corner of ROC space. The diagonal representing

y = x in the ROC curve represents the strategy of randomly guessing a class. An illustration

of ROC curve is shown in Fig.8.1.

Figure 8.1: ROC curve

56



One of the most important characteristic of ROC curves is that it is insensitive to changes

in class distribution. Since the ROC curve is a two-dimensional depiction of classifier per-

formance it is easier to compare the performance of the classifiers using area under ROC

(AUC) which is a scalar value instead [10]. AUC ranges between 0 to 1 since it is defined as

the area under the ROC curve which is a portion of the area of the unit square.
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Chapter 9

Pipeline and Tools Used

Though the procedure used to analyze the mouse and the human data are similar there very

subtle difference due to the difference in the data format of the two species. Since mouse data

are single electrode recording connectivity features for mouse data are not calculated and

as human cohort belong to a wide range of age demographics, age regression is performed

for human data. Also the influence of ECG in human EEG recordings is significant, human

data undergoes ICA. The steps performed on data of both species have been explained in

the previous sections in detail. Fig.9.1 shows the pipeline followed in both cases

Python 3.8 along with Spyder IDE and machine learning tool: scikit-learn [90] is used to

implement and test the algorithms. EEG analysis and visualization tool MNE [42] is used

for handling the raw data. Tensorpac [22] is used to calculate PAC. Matplotlib [54] and

Seaborn [129] are used to plot figures.
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Figure 9.1: Procedure used to analyze mouse data (left) and human data (right)

59



Chapter 10

Results and Discussion

This section discusses the results obtained using the above pipeline. Table 10.1 and 10.2

shows the results obtained for the mouse dataset. Table 10.1 shows the accuracy obtained

for different algorithms and sleep stages in mouse dataset for cross-validation (CV) and

IV data arrangement whereas Table 10.2 presents different evaluation metrics for the same

dataset in IV data arrangement.

Sleep
Stage

DT RF
kNN

MLP SVM XGB
k = 5 k = 11 k = 19

CV
Wake 99.54 99.63 99.54 99.63 99.63 99.44 98.8 99.63
NR 99.72 99.81 99.81 99.72 99.81 99.07 99.63 99.91

REM 100 100 100 94.55 96.36 85.27 97.27 100
IV

Wake 98.26 99.16 96.76 97.89 97.94 98.53 93.23 98.65
NR 97.54 96.44 91.27 92.03 92.85 95.02 90.23 98.38

REM 95.67 94.48 88.58 91.63 93.83 89.69 87.14 95.27

Table 10.1: Accuracy (%) obtained for mouse data

Table 10.3 and 10.4 shows the results obtained for the human dataset. Table 10.3 shows the
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Sleep
Stage

Metric
IV

DT RF
kNN

MLP SVM XGB
k = 5 k = 11 k = 19

W
AUC 98.26 99.16 96.76 97.89 97.94 98.53 93.23 98.65

Specificity 98.55 99.32 97.39 97.96 97.96 99.12 91.69 99.28
Sensitivity 98.26 99.16 96.76 97.89 97.94 98.53 93.23 98.65

NR
AUC 97.54 96.44 91.27 92.03 92.85 95.02 90.23 98.38

Specificity 96.74 97.73 93.77 93.27 93.31 94.02 83.11 98.42
Sensitivity 97.54 96.44 91.27 92.03 92.85 95.02 90.23 98.38

REM
AUC 95.67 94.48 88.58 91.63 93.83 89.69 87.14 95.27

Specificity 97.08 98.48 91.56 90.12 93.42 91.54 93.42 93.21
Sensitivity 95.67 94.48 88.58 91.63 93.83 89.69 87.14 95.27

Table 10.2: Evaluation Metric (%) obtained for mouse data

accuracy obtained for different algorithms and sleep stages in human dataset for CV and

IV data arrangement whereas Table 10.4 presents different evaluation metrics for the same

dataset in IV data arrangement.

Sleep
Stage

DT RF
kNN

MLP SVM XGB
k = 5 k = 11 k = 19

CV
W 89.29 97.86 98.75 97.86 95.36 97.32 94.11 96.43
N1 88.04 97.41 99.11 98.57 97.77 94.64 92.77 97.41
N2 93.19 99.43 99.62 99.33 99.29 99.43 97.71 99.24
N3 76.39 82.08 66.94 69.31 70.42 73.61 67.08 78.61

REM 91.79 99.14 98.79 98.21 97.71 93.86 82.29 98.86
IV

W 55.78 65.45 67.87 68.03 67.06 71.81 70.64 64.37
N1 57.58 64.72 69.48 69.81 70.29 68.84 70.63 62.86
N2 70.14 75.25 75.55 75.27 75.35 80.55 80.89 73.9
N3 62.8 64.44 70.91 66.81 69.81 69.35 73.28 63.79

REM 64.91 69.79 72.73 72.82 72.62 77.77 76.85 69.53

Table 10.3: Accuracy (%) obtained for human data

The difference in the metric values across different sleep stages maybe due to the difference

in the amount of data present in the different sleep stages. Since the mouse data are recorded
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Sleep
Stage

Metric
IV

DT RF
kNN

MLP SVM XGB
k = 5 k = 11 k = 19

W
AUC 55.78 65.45 67.87 68.03 67.06 71.81 70.64 64.37
Spec 52.23 59.47 56.78 58.35 59.17 62.62 60.53 57.81
Sen 55.78 65.45 67.87 68.03 67.06 71.81 70.64 64.37

N1
AUC 57.58 64.72 69.48 69.81 70.29 68.84 70.63 62.86
Spec 53.5 59.85 63.18 64.49 64.76 66.07 66.74 59.05
Sen 57.58 64.72 69.48 69.81 70.29 68.84 70.63 62.86

N2
AUC 70.14 75.25 75.55 75.27 75.35 80.55 80.89 73.9
Spec 65.89 71.23 70.62 70.8 71.16 77.71 74.79 71.72
Sen 70.14 75.25 75.55 75.27 75.35 80.55 80.89 73.9

N3
AUC 62.8 64.44 70.91 66.81 69.18 69.35 73.28 63.79
Spec 52.67 51.9 71.12 65.52 66.81 67.03 65.09 49.57
Sen 62.8 64.44 70.91 66.81 69.18 69.35 73.28 63.79

REM
AUC 64.91 69.79 72.73 72.82 72.62 77.77 76.85 69.53
Spec 59.91 67.74 71.09 71.66 71.37 74.95 73.34 65.74
Sen 64.91 69.79 72.73 72.82 72.62 77.77 76.85 69.53

Table 10.4: Evaluation Metric (%) obtained for human data

for 24 hours and the human data are PSG recording, the amount of data present in different

sleep for each mouse and human subject differs. Along the same line, another variable which

is to be considered here is the number of subjects used in different sleep stage. As some

sleep stage may not be present in some individual’s PSG data, the number of subjects used

in training differs. Though this difference is not very high, it cannot be ignored. The reason

behind the difference in accuracy obtained in different sleep has to be further investigated.

Higher accuracy obtained for mouse dataset can be due to consistent experimental procedure

used to induce TBI in mouse as opposed to the heterogeneity of TBI acquired in humans

in terms of location of impact and time since impact. The ability of the ML algorithms to

learn patterns using the extracted features which enables it to differentiate between TBI and

control subjects is showcased by the high accuracy obtained in CV data arrangement. When

using a larger data we expect the classification accuracy obtained in IV data arrangement to

converge to the results obtained in CV data arrangement thereby, indicating that the model
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has learnt more general parameters. Top panel of Fig.10.1 shows the correlation matrix

obtained for top features selected using RFE for human N2 stage data used to develop rule

based ML models. As it can be observed, most of the selected features are connectivity

features such as PLV and coherence and the features are not highly correlated. Bottom

panel of Fig.10.1 shows the number of times the respective features were selected in a total

on 153 IV iterations.
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Figure 10.1: Correlation matrix for the most frequently chosen features in N2 sleep stage of
human data
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Chapter 11

Future work

As it can be observed from the results shown in the previous section, the accuracy obtained

for human subjects in IV data arrangement is not optimal. The heterogeneous nature of EEG

and the injury which might have led to the above results have been discussed. However, one

critical assumption which the traditional ML algorithms make is that the training data and

the testing data are drawn from the same distribution. The major hypothesis in traditional

ML that the data on which the classifier is trained and the data on the classifier is evaluated

belong to the same feature space and follow the same probability distribution often do not

hold good in real-world problems. The difference in data distribution typically occurs since

the data is acquired from different subjects and one of the ways in which traditional ML

overcome this problem is by relying on a massive amount of training data that can account

to maximum variability. When the distribution changes, most models need to be retrained

from scratch which is very expensive in most cases and may lead to an overfit. One emerging

solution to this is transfer learning (TL) [120]. TL aims to learn distributions over different

domains and uses the previously learned knowledge on the target task. The potential future

work can focus on applying TL/domain adaptation techniques to use the knowledge learnt

using the mouse data to accurately classify human EEG.
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