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Abstract
Recognizing Cell Identity: Classifying cell types in scRNAseq data
by
Chenling Xu
Doctor of Philosophy in Computational Biology
University of California, Berkeley

Professor Nir Yosef, Chair

The classification of cell type is one of the first steps in scRNAseq analysis for translating
observed transcriptional variation to biological insights. The same cell types can be sampled
from different environment and using different technologies and their transcriptional profile
can differ. Thus, defining cell types in scRNAseq data is much more than a matter of identi-
fying clusters of cells that are similar to each other. In chapter 1, we developed a simulation
method SymSim in order to understand the different facets of variability in scRNAseq. In
Chapter 2, we applied a Bayesian Variational Inference method scVI for the harmonization
scRNAseq datasets and propose a new method scANVI in the same frame work for the
annotation of these datasets. We tested the performance of scVI and scANVI using both
SymSim and experimental data. In Chapter 3 we applied our data harmonization method
scVI to a Multiple Sclerosis (MS) case-control study using scRNAseq data to profile immune
cells. We identified cellular changes associated with MS in tissue-specific cell type abundance
and transcriptional changes after being able to identify shared cell types in both blood and
CSF in multiple donors. In Chapter 4 we apply a number of scRNAseq harmonization and
annotation including scVI and scANVI to a large consortium cell atlas project Tabula Sapi-
ens. Tabula Sapiens aims to provide a comprehensive reference scRNAseq dataset for the
scientific community. We developed an automatic annotation pipeline named PopularVote
to facilitate the in-house data annotation process, and to be published for using as a public
tool for other scientists to annotate their own data. This dissertation presents a set of tools
that we developed or used in cell type annotation in a diverse set of scRNAseq applications
(identifying rare cell types, comparing cell types across conditions, generating automatic
data annotations). The potential of scRNAseq is best realized by generating a well-curated
dataset that everyone in the research community can use and contribute to, and the ability
to classify cells in an automatic manner will enable such efforts in the future.
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Preface

The discovery of cell types has long attracted the curiosity of generations of scientist. Cells
are the basic functional unit in most living organisms [1]. Through the collaboration of a
variety of cell types, tissue, organs and whole organisms are formed. Although cells in any
multi-cellular organism can have vastly diverse morphology, metabolism and function, they
all developed from the same zygote, thus sharing the same genome. Cell type diversity exists
because different genes are activated in different cells. By studying the regulatory patterns of
gene expression through RNA sequencing, we are able to reconstruct the pattern of cellular
diversity in multi-cellular organisms.

Single cell RNA sequencing (scRNAseq) has become an essential tool in molecular and cel-
lular biology in the past decade since the first single cell RNA sequencing proof-of-principal
study was published [2] with only 8 cells. Although other single-cell resolution data was
possible before scRNAseq (single cell gPCR [B], single molecular FISH [{]) and single cell
microarray [5]), no other technology was able to capture full transcriptomics information on
one single cell. scRNAseq allows us to perform massively parallel assays of cells and define
new cell types. Due to the small amount of starting material, scRNAseq suffers from low sen-
sitivity, high batch effect and other technical issues [6, [7]. On the other hand, scRNAseq has
the advantage of producing a large amount of data that enables the use of rapidly advancing
machine learning algorithms for the analysis of this data. These massive assays (thousands
to millions of cells, thousands of genes) provide unprecedented amount of information for
understanding cellular biology in a data-driven fashion. Numerous computational methods
have since come up with innovative ways to map the diversity of single-cell transcriptional
profile to functional cellular diversity. Cell type annotation is at the heart of all scRNAseq
methods because all downstream analysis using single cell data depend on cell type an-
notation. Once cells are accurately annotated, scRNAseq data can be used in differential
expression analysis, differential abundance analysis, alternative splicing and more.

Cell Type Concept

It is not straightforward to come up with a rigorous, data-driven definition of cell type.
There are multiple theoretical frameworks of cell type definition [§], but the most relevant
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one in the context of transcriptional regulation is the self-stabilizing regulatory programs
[9]. Living organisms are dynamic, yet the definition of cell type implies a certain degree of
persistence [10]. In Waddington’s influential treatise of development “The strategy of the
genes” [L1], cell types are thought of as a result of canalization. The developmental land-
scape are “grooved by valleys, each leading to one of the normal end states”. Cell types can
therefore be thought of as a stable attractor state in a dynamic system [9]. The observed cell
states can vary in different environment but they return to the attractor state. A particular
interesting example in the immune system is tissue macrophages, which has two distinct
origins (embryogenesis and differentiation from monocytes later in life) but share similar
transcriptional profiles and carry out similar functions [[12]. The concept of cell type is fur-
ther complicated by the continuous nature of transcriptional variation in some cell types.

One example is the different types of T helper cells that span the continuum of inflammotory
state [13, [14].

The definition of cell type also often vary according to the technology used for their defini-
tion [[15, 8]. For example a number of immune cells are named after their histology properties
such as “basophil”, “eosinophil” and “erythrocyte”. Subsequently as flow cytometry became
widely applied in immunology, immune cell types are delineated by surface protein markers
that can be tagged by fluorochrome-conjugated antibodies [16]. As an example, T cells are
separated into helper and cytotoxic T cells based on their expression of the CD4 and CDS
surface markers. scRNAseq as a high-throughput, whole genome assay will again change
how cell types are defined.

The reader might ask why it is important to define cell types based on scRNAseq data,
if the concept of cell type itself is elusive. scRNAseq can act like a bridge between the
morphological and functional studies on the cell level and genetic studies on the gene level.
The field of molecular biology has accumulated a deep understanding of the function of in-
dividual genes. The emergence of comprehensive scRNAseq datasets will finally allow us to
map the gene-specific knowledge onto the cell- and tissue-specific domains of biology. For
example, Genome-Wide Association Studies (GWAS) have discovered many disease-related
genetic variants, but the disease mechanism remains obscure. scRNAseq has been used to
uncover the cell-type-specific and disease-specific expression of genes associated with these
variants [17].

scRN Aseq Technology

scRNAseq has rapidly progressed from a laborious and specialized experiment to standard
lab technique in the past decade. Most of these methods rely on multiplexing by ¢cDNA
tagging to increase the throughput of the sequencing experiments to hundreds or thousands
of cells per experiment. Briefly, the process of scRNAseq include five major steps: (1) Cell
dissociation or nuclei purification (2) Single cell or nucleus isolation (3) Reverse Transcription
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cDNA amplification (4) Library construction and (5) Next generation sequencing. The core
scRNAseq platform usually refer to step 2-4. Cells can be enriched if needed before input
into the scRNAseq platform. After the experimental data generation, the short sequenc-
ing reads are mapped back to the reference transcriptome and a count matrix of dimension
number of cells by number of genes is generated for computational analysis [18, 6, 19].

Different sequencing platforms vary in the cell isolation strategy, barcode addition method
and sequencing technology [6, 18]. Single cell or nucleus can be isolated using FACS-sorting
into plates [20, 21|, microfluidic devices (Fluidigm C1 HT [22]), droplet-based (10X [23],
inDrop [24], Drop-seq [25]) or microwells(Cytoseq [26]). Cells that are not amenable to
regular dissociation protocols such as neuron, adipocytes, or cells in preserved tissue can
be sequenced using single nuclei sequencing [27, 28]. The RNA molecules are then reverse-
transcribed into cDNA. In this step, RNA from the single cells is tagged with a cell-specific
barcode. Some protocols also tag each transcript with a unique molecular identifier (UMI)
[29]. The barcoded cDNA is then pooled for preparing a next-generation sequencing library.
Different methods also differs by whether they sequence the 3’-ends [25], 5’-ends [29] or full
length of the transcript [30, B1, B2]. An additional sample barcode can be added to multiplex
libaries on the same sequencing lane. Each experimental protocol comes with its advantages
and drawbacks, and depending on the objective of the studies the users can choose the most
appropriate protocol [18].

Quality Control for scRNAseq

On the computational side, almost scRNAseq dataset typically go through the following
analysis pipeline (1) Quality Control (2) Feature selection and dimensionality reduction (3)
Clustering and cell type annotation. More specific biological insights can be uncovered based
on the results of the previously mentioned analysis with additional investigation. Two major
analysis software Seurat [33, B4] and Scanpy [35] have integrated a number of tools in the R
and Python environment respectively for these analysis and are the most widely used in the
scRNAseq community. New methods are continuously being developed and either extends
or integrates into these two common frameworks [36].

Besides QC applicable to other next-generation sequencing data, scRNAseq comes with
unique technical challenges that require specialized computational methods. First we dis-
cuss the three technical artifacts as a result of the cell isolation. (1) RNA molecules can be
released into the cell suspension during the isolation step. This results in highly expressed,
cell-type-specific genes to be observed at low level in other cell types [37]. Computation
methods can infer the decontaminated RNA counts by modeling the ambient RNA level
with empty droplets (defined in (2)) [B8], or treating each observed cells as a mixture of
native expression and contamination [37]. (2) Not all observed cell barcodes correspond to
viable cells. If a well or a droplet only contains ambient RNA in the cell lysis solution, or cell
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fragments, these RNA molecules will still be tagged by a unique cell-specific barcode. The
number of expressed genes, the total number of UMIs and the fraction of counts from the
mitochondrial genome are the most common metric used to filter out barcodes that do not
correspond to viable cells [19]. (3) Another technical artifact is named doublets, correspond-
ing to the scenario that more than a single cell is tagged with the same barcode. A number
of computational methods identify doublets using expression signatures that correspond to
distinct clusters or cell types in the data [39, 40]. Other methods try to recover the single
cell data from doublets by deconvolution [41].

At the sequencing step, a common artifact is barcode swapping. This happens on mul-
tiple patterned flow-cell illumina sequencing machines, including HiSeq4000, HiSeq X and
NovaSea [42]. In multiplexed scRNAseq data, barcode swapping will cause sequences from
different samples to share the same cell barcode and UMI. We can compute the probability
that this happens by chance based on the number of unique UMI and cell barcode. If the
number of shared barcode and UMI across samples is much higher than by chance, we can
remove those reads. A study from 2018 [42] estimate that approximately 2.5% of reads were
mislabelled between samples on HiSeq4000. This filtering is not possible without the use of
UMI.

Normalization, Feature Selection and Dimensionality Reduction
and Data Harmonzation

scRNAseq data are typically normalized by first correcting for cell size, and log(x + 1) trans-
formed for visualization and methods that assumes normality [19]. Methods that explicitly
models the stochasticity in count data such as scVI and scANVI [43, [14] does not require
normalization.

Humans have around 20, 000 genes, which means that every scRNAseq dataset of human
cells contains 20,000 features. This means that any machine learning methods will suffer
from the curse of dimensionality. In high dimensional space, similarity in Euclidean dis-
tance becomes meaningless because all samples are distant from their neighbors. The curse
of dimensionality can be alleviated by both feature selection and dimensionality reduction.
Feature selection aims to only keep genes that contribute to variation, often termed Highly
Variable Genes (HVG) [44, 45, 46]. Methods used for dimensionality reduction and data
harmonzation are discussed in detail in Chapter 2, thus will be omitted here.

Challenges and Methods in Cell Type Annotation

Cell type annotation is the step connecting the processed data to the downstream analysis.
There are two main ways of annotating scRNAseq data: manual annotation and automatic
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annotation. Manual annotation typically depend on unsupervised clustering of cells in a
lower dimensional space. Most initial scRNAseq studies are annotated manually. This ap-
proach has led to many significant discoveries of new cell types and states in various study
systems [45, 17, U8, #19, B2]. However this approach also has limitations. Many hyper-
parameters used in dimensionality reduction and clustering affects the grouping of cells such
as the number of dimension in the lower dimensional space and the number of neighbors
used in construction k-nearest-neighbours similarity map [50]. Annotations generated this
way might not be able to take into account the uncertainty in cluster assignment and lack
reproducibility. In theory, manual annotation can also be derived directly from marker gene
expression without clustering but due to the low sensitivity of scRNAseq [51, p2], many
cells cannot be confidently assigned this way. Pooling cells [62, b3] or increasing the cluster
resolution can ameliorate the problem of low sensitivity when annotating based on marker
expression, but also increases the workload of manual annotation. The choice of granularity
in manual annotation can vary from one study to another and make meta-analysis of mul-
tiple studies challenging.

Another challenge of cluster based annotation is the type of cell state variation. Although
some cell types differ from _each other in a discrete fashion, others vary more continuously.
Developmental trajectory [b4, b5, 56], certain T cell subsets [b7, b8| are examples of contin-
uously varying cells that are difficult to annotate using a clustering approach. Continuous
variation is addressed by trajectory inference methods such as Monocle [55], Slingshot [59],
RNA velocity [60] and many others [61]. In this thesis we only try to identify discrete clus-
ters, and acknowledge that in some cases the boundaries we draw between two cell types can
be arbitrary.

Recently, a plethora of automatic annotation methods have been developed and multi-
ple evaluation efforts have been published [62, 63, 64]. The major advantages of automatic
annotation are (1) it saves a lot of human time and (2) it preserves the naming conventions
across datasets. There are two main classes of methods. The first class of method performs
label transfer and annotates unannotated cells using annotated reference cells [14, 65, 66].
More general machine learning methods (SVM, LDA, RF, etc.) can also be used for la-
bel transfer by using the annotated dataset as training data and the unannotated dataset
as testing data [64]. The second class of methods performs annotation based on curated
marker lists [67] of known cell types [68, 69, [/0]. Supervised annotation methods reduces the
number of arbitrary choices of hyper-parameter associated with clustering, despite introduc-
ing its own hyper-parameters. The accuracy of the classifiers also depends on the accuracy
of the reference data annotation. It is challenging to benchmark these annotation methods
due to the lack of an agreed-upon metric and the fact that the best-performing method
vary per dataset. However, with the use of a diverse evaluation panel and evaluation metric,
researchers can make informed decisions about which methods to use in their own study [[71].
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Open-source Methods and Data

For scRNAseq to bring even more insights to the field of biology, we need to be able to
integrate datasets from multiple replications, study systems, disease states etc. The sharing
of scRNAseq data has been highly prioritized by the research community. scRNAseq is a
resource intensive experimental procedure due to the high throughput of each experiment
and the associated sequencing and computational costs. On the other hand, data generated
from scRNAseq is extremely information rich. scRNAseq data can be explored in many ways
when combined with other types of experimental data. For example, the transcriptional pro-
file from scRNAseq data can be used to deconvolve bulk RNA sequencing data in order to
infer cell type composition [72]. Most paper containing scRNAseq datasets do not exhaust
the potential of the data. For example immune receptor reads can be used to reconstruct the
B cell and T cell receptor sequences and further inform clonal relationships between immune
cells [[73, 74]. scRNAseq data can also reveal patterns of alternative splicing [75].

There have been many initiatives providing open-source, easily accessible datasets and
analysis methods. One of the primary example is the Human Cell Atlas Project (HCA) [[10].
HCA is committed to ensuring findable, accessible, interoperable and reusable (FAIR) data
principles [[76, [77]. This requires not only providing a repository of high quality data but also
making sure that the analysis methods used are accurate, standardized and reproducible.
HCA shares its data processing pipeline through a cloud computation pipeline [78] and
supports a number of analysis tools. Another example is HuBMAP [[79] and is also accom-
panied by its own cloud analysis pipeline Azimuth [80]. HCA, HuBMAP and another major
data hosting consortium Single Cell Expression Atlas [81] are constructed with community-
contributed data. Other databases such as Tabula Sapiens (Work in Progress, Chapter 4)
and The adult human cell atlas [82] are produced by a coordinated sequencing effort. Many
other data consortium focused on other model organisms and organs[47, 83, 84] or specific
scientific questions such as disease mechanism [85, 86] are also providing important services
to the scientific community. Chapter 4 discusses my contribution to open-source data and
method development in the Tabula Sapiens project.

Outline of Dissertation Chapters

In this thesis we explore a few different aspects of cell type annotation. The first three
chapters are co-authored publications and the fourth chapter is a manuscript in preparation.
First we provide a simulation study of the noise structure of scRNAseq data in Chapter 1
[87]. This work is co-first-authored with Xiuwei Zhang. We separate the observed cell-to-
cell variation in scRNAseq into intrinsic variation, extrinsic variation and technical noise.
Simulation allow us to tune the amount of separation between different cell types, as well as
the type of variation (continuous or discrete). Through the simulation we gained a better
understanding of how the different sources of variation affects the data. We also gained
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the ability to generate data with different levels of sensitivity and batch effect for testing
algorithms’ ability to recover biological variation, especially their ability to detect rare cell
types. In Chapter 2, we developed a new method scANVI (Single-cell ANnotation using
Variational Inference) that along with its predecessor scVI (Single-cell Variational Inference)
can be used for data harmonization and label transfer between scRNAseq datasets [14, 43]
that are sequenced by different labs, using different technologies or from different disease or
environmental states. This work is co-first-authored with Romain Lopez. This study has
confirmed the ability of Variational Inference methods to learn about shared biological varia-
tion in the presence of large batch effects without over-correction that can destroy biological
signals. The label transfer abilities of scANVI provides a mechanism for automatically anno-
tating cell types from a reference annotation, in effect transferring knowledge from existing
studies to a new study in a data-driven way. In other words, we can discover which cells
in one study a cell type in another study corresponds to. In Chapter 3[58|, we apply the
data harmonization ability of scVI to an immune dataset containing cells from two tissues
(Cerebrospinal fluid, CSF; Peripheral Blood Mononuclear Cells, PBMC) from two disease
states (Multiple sclerosis, MS; idiopathic intracranial hypertension, ITH). We discovered both
tissue and disease specific changes in both cell type and transcript abundance. Without a
reliable data harmonization method direct comparison of these datasets would not have been
possible. The experimental work for this paper is led by David Schafflick (first author) and
Gerd Meyer zu Horste (corresponding author). In Chapter 4, we applied both the data har-
monization and label transfer methods to the Tabula Sapiens project data and developed a
new annotation pipeline named PopularVote. We aim to generate a reliable reference dataset
as well as a easily accessible robust method for the scientific community to query their own
data against the reference. Although the last two chapters are more data-focused, the code
used for the analysis are all open source and versioned on Github.

Everything in this thesis would not have been possible without extensive collaboration
both inside and outside of the lab, with collaborators who come from diverse backgrounds
including statistics, computer science, molecular and cellular biology. scRNAseq provides a
rich playground for scientists from many field to explore new ideas, develop new algorithms
and discover new biological insights. The goal of this thesis is to show the discoveries we have
made along the way, but more importantly it should be a road-map so that other scientists
can use the tools that we have developed, as well as the data that we have generated in their
own studies.

Future Directions of Single Cell Technology

Single cell technology continues to evolve. Recent advances in generating multi-modal single-
cell resolution data include spatial transcriptomics that can capture both transcriptomic
and spatial information [88, 89], CITE-seq that captures both protein and transcriptomic
information [90], scATACseq [91, 92, 93] and scNMTseq [94, 95] that measures chromatin
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accessibility data. As mentioned in the “Cell Type Concept”, the technology available heav-
ily influences the way cell types are thought about. These new assays will provide valuable
insights and testable hypothesis for defining cell types. For example methylation happens at
a slower time scale than transcription, and thus will allow us to better distinguish between
transient cell states and stable cell types. New algorithms will also be needed for the inte-
gration of the multimodal data that will be generated.



Chapter 1

Simulating multiple faceted variability
in single cell RN A sequencing:
SymSim

1.1 Introduction

The advent of single cell RNA sequencing has led to a surge of computational and statistical
methods for a range of analysis tasks. Some of the methods or the tasks that they perform
have originated from bulk sequencing analysis, while others address opportunities (e.g., iden-
tification of new cell states [96, 97]) or technical limitations (e.g., limited sensitivity [98])
that are idiosyncratic to single cell genomics [99, 100]. While these computational methods
are often based on reasonable assumptions it is difficult to compare them to each other and
assess their performance without gold standards. One approach to address this is through
simulations [b2, 101, 102, 103, 104].

Existing simulation strategies (summarized by Zappia et al [105]) rely primarily on fitting
distributional models to observed data and then drawing from these distributions. While the
resulting models provide a good fit to observed data, their parameters are often abstract and
do not directly correspond to the actual processes that gave rise to the observations. This
leaves an important unaddressed problem in designing and using a simulator: the need to
modulate and then study the effects of specific aspects of the underlying physical processes,
such as the efficiency of mRNA capture, the extent of amplification bias (e.g., by changing
the number of PCR cycles, or by using unique molecular identifiers [UMI]), and the ex-
tent of transcriptional bursting. To address this, we present SymSim (Synthetic model of
multiple variability factors for Simulation), a software for simulation of single cell RNA-Seq
data. SymSim explicitly models three of the main sources of variation that govern single
cell expression patterns: allele intrinsic variation, extrinsic variation, and technical factors
(Figurefl.1)). SymSim provides the users with knobs to control various parameters at these
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three levels. First, we generate true numbers of molecules using a kinetic model, which
allows us to adjust allele intrinsic variation and the extent of burst effect; second, we pro-
vide an intuitive interface to simulate a sub-population structure, either discrete or along a
continuum, through specification of cluster-trees, which define a low-dimensional manifold
from which the transcriptional kinetics is determined for every gene and every cell; third, we
simulate the main stages of the library preparation process and let users control the amount
of variation stemming from these steps, such as capture efficiency, amplification bias, varying
sequencing depth, and batch effect. Importantly, through this modeling scheme, SymSim
recapitulates properties of the data (e.g., high abundance of zeros or increased noise in non-
UMI protocols) without the need to explicitly force them as factors in a distributional model.

We demonstrate the utility of SymSim in two types of applications. In the first example,
we use it to evaluate the performance of algorithms. We focus on the tasks of clustering,
differential expression and trajectory inference, and test a number of methods under different
simulation settings of biological separability and technical noise. In the second example, we
use SymSim for the purpose of experimental design, focusing on the question of how many
cells should one sequence to identify a certain sub-population.

Overview of SymSim

The true transcript counts, which are the number of molecules for each transcript in each
cell at the time of analysis, are generated through the classical promoter kinetic model with
parameters: promoter on rate (koy), off rate (koss) and RNA synthesis rate (s). The values
of the kinetic parameters are determined by the product of gene-specific coefficients (termed
gene effects) and cell-specific coefficients. The latter set of coefficients is termed extrinsic
variability factors (EVF), and it is indicative of the cell state. The expected value of each
EVF is determined in accordance to the position of the cell in a user-defined tree structure.
The tree dictates the structure of the resulting cell-cell similarity map (which can be either
discrete or continuous) since the distance between any two cells in the tree is proportional to
the expected distance between their EVF values. For homogeneous populations (represented
by a single location in the tree), the EVFs are drawn i.i.d. from a distribution whose mean is
the expected EVF value and variance is provided by the user. From the true transcript counts
we explicitly simulate the key experimental steps of library preparation and sequencing, and
obtain observed counts, which are read counts for full-length mRNA sequencing protocols,
and UMI counts.
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Figure 1.1: Overview of SymSim
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Overview of SymSim.

The true transcript counts, which are the number of molecules for each transcript in each cell at
the time of analysis, are generated through the classical promoter kinetic model with parameters:
promoter on rate (kop), off rate (korr) and RNA synthesis rate (s). The values of the kinetic
parameters are determined by the product of gene-specific coefficients (termed gene effects) and
cell-specific coefficients. The latter set of coefficients is termed extrinsic variability factors (EVF),
and it is indicative of the cell state. The expected value of each EVF is determined in accordance
to the position of the cell in a user-defined tree structure. The tree dictates the structure of the
resulting cell—cell similarity map (which can be either discrete or continuous) since the distance
between any two cells in the tree is proportional to the expected distance between their EVF
values. For homogenous populations (represented by a single location in the tree), the EVFs are
drawn iid from a distribution whose mean is the expected EVF value and variance is provided by
the user. From the true transcript counts we explicitly simulate the key experimental steps of
library preparation and sequencing, and obtain observed counts, which are read counts for
full-length mRNA sequencing protocols, and UMI count.
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1.2 Results

Allele intrinsic variation

The first knob for controlling the simulation allows us to adjust the extent to which the in-
frequency of bursts of transcription adds variability to an otherwise homogeneous population
of cells. We use the widely accepted two-state kinetic model, in which the promoter switches
between an on and an off states with certain probabilities [106, 107]. We use the notation
kon to represent the rate at which a gene becomes active, ks the rate of the gene becoming
inactive, s the transcription rate, and d the mRNA degradation rate. For simplicity, and
following previous work, we fix d to constant value of 1 [106, 108] and consider the other
three parameters relative to d. Since RNA sequencing provides a single snapshot of the
transcriptional process, we resort to assuming that the cells are at a steady state, and thus
that the resulting single-cell measurements are drawn from the stationary distribution of the
two-state kinetic model. Since d is fixed, we are able to express the stationary distribution
for each gene analytically using a Beta-Poisson mixture [109] (Methods).

We show a diagram of how gene and cell-specific kinetic parameters are simulated from
cell-specific EVF and gene-specific gene effect vectors, and how the kinetic parameters are
used in a model of transcription in Figure[l.2. The values of the kinetic parameters (kop,
korr and s) are sampled for each gene in each cell using a product of cell-specific and gene-
specific factors. Specifically, each cell is assigned with three low-dimensionality vectors (here,
we use dimension 10), one for each kinetic parameter. The values inside the cell’s vectors
represent factors whose contribution is extrinsic to the noise generated intrinsically by the
process of transcription (which we model by drawing from the stationary distribution above).
These values, which we term extrinsic variability factors (EVF) represent a low dimension
manifold that generates the data and can be interpreted as concentrations of key proteins,
morphological properties, microenvironment and more. When simulating a homogeneous
population, the EVFs of the cells are drawn from a normal distribution with a fixed mean
of 1 and a standard deviation ¢ which is the within-populations variability parameter and
can be set by the user (for the results in this section o is set to 0.5). Each cell has a
separate EVF vector for k,,, korr, and s. Similarly, each gene is associated with three low-
dimensionality vectors of a similar dimension. The values inside each gene’s vectors can be
interpreted as the dependence of its kinetics on the levels of EVFs. For instance, higher
concentration of a certain EVF can give rise to a higher on rate of a certain promoter.
We term these the gene effect vector. The gene effect values are first drawn independently
from a standard normal distribution. We then replace each gene effect with a value of
zero with probability n, thus ensuring that every gene is only affected by a small subset
of EVFs. The sparseness parameter can be set by the user; in this paper we set 1 to a
fixed value of 0.7. Each kinetic parameter is generated through two steps as shown in
Figure(a): first, for each gene in each cell, we take the dot product of the corresponding
EVF and gene effect vectors. Second, the dot product values are mapped to distributions of
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parameters estimated from experimental data. The matched parameters are used to generate
true transcript counts (see Methods). The distributions of ko, koff , and s that are used
in SymSim for simulations are shown in Figure[l.2(b). These distributions are aggregated
from inferred results of three subpopulations of the UMI cortex dataset (oligodendrocytes,
pyramidal CA1 and pyramidal S1) after imputation by scVI and MAGIC. Figure(c) is a
heatmap showing the effect of parameter k,,, and k,¢; on the number of modes in transcript
counts. The value of s is fixed to 10 in this plot. The red area with low k., and k,ss have
one zero mode and one non-zero mode. The gray area with low k,, and high k,;¢ has only
one zero mode, and the blue area with high £, and low k,;; have one non-zero mode. The
yellow arrow shows how the parameter bimod can modify the amount of bimodality in the
transcript count distribution. We show the effect of bimod on the transcript count distribution
in Figure(d). Increasing bimod increases the zero-components of transcript counts and
the number of bimodal genes. In these heatmaps, each row corresponds to a gene, each
column corresponds to a level of expression, and the color intensity is proportional to the
number of cells that express the respective gene at the respective expression level.

Finally, we account for the possibility of outlier genes with unusually high-expression
level, commonly observed in real data. These outlier genes are hard to model with distri-
butional methods, and require additional parametrization [105]. This phenomena is more
pronounced in datasets from certain protocols (for example, 10x Chromium [45]) than others
(for example, Smart-seq2 [110]), possibly due to selection bias which can be exacerbated by
low capture rate. In SymSim, we model the high-expression outlier genes by designating a
small subset of genes (whose proportion is determined by the parameter prop,ge) as consti-
tutively transcribed, and adjusting their transcription rate s by a factor determined by the
parameter meanyge (>1; Methods). To ensure that the parameters used for simulation
fall into realistic ranges, we estimate the distribution of kinetic parameters of genes from
real data (Figure@, and map the results of the dot product above to the distribution of
the estimated parameters using a quantile approach (Methods). The estimation is done
by fitting a Beta-Poisson distribution to imputed experimental counts. For this analysis,
we used single cortex cells by Zeisel et al [111] as our data set and the software scVI [43]
for imputation (Methods). The distributions of estimated parameters are shown in Fig-
urell.2(b). We performed the parameter estimation on sub-populations in the same dataset
as well as another dataset of Th17 cells [112](these experimental datasets are described in
Methods) and obtained similar distribution ranges (Figure(b)). Importantly, the goal
of this analysis is not to estimate the true parameter values (which may not be identifiable),
but rather to identify the range of plausible parameter values, to be used for simulation. Fur-
thermore, our estimations are in the same range with observations from experiments using
smFISH [113, 114, 115, 116, 117, [118, 119] or transcription inhibition based [[120] methods
to measure kinetic parameters (Methods).
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Figure 1.2: Effect of the kinetic parameters on transcript count distributions
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(a) A diagram of how gene and cell-specific kinetic parameters are simulated from
cell-specific EVF and gene-specific gene effect vectors, and how the kinetic parameters are
used in a model of transcription. (b) The distributions of k,,, koff, and s that are used in
SymSim for simulations. These distributions are aggregated from inferred results of three

subpopulations of the UMI cortex dataset (oligodendrocytes, pyramidal CA1 and
pyramidal S1) after imputation by scVI and MAGIC. (¢) A heatmap showing the effect of

parameter k,, and kos¢ on the number of modes in transcript counts. The value of s is
fixed to 10 in this plot. (d) Histogram heatmaps of transcript count distribution of the true
simulated counts with varying values of bimod, showing that increasing bimod increases
the zero-components of transcript counts and the number of bimodal genes. In these
heatmaps, each row corresponds to a gene, each column corresponds to a level of
expression, and the color intensity is proportional to the number of cells that express the
respective gene at the respective expression level.
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Figure 1.3: Kinetic model parameter estimation
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(a) The Fano factor of genes across cells with different values for bimod. (b) Distribution of
kinetic parameters estimated from different experimental data. (c) Distribution of kinetic
parameters estimated for the same data (UMI cortex dataset, population pyramidal CA1,
imputed with scVI) using different starting values to obtain multiple MCMC chains. (d)

Auto-correlation diagnose plots for the three chains in (c¢). The correlation values are average over
all genes. For each lag value k, correlation is calculated between x; and z;,x, where z; is a sample
from MCMC at step t.
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An intriguing question in the analysis of single cell RNA-seq is the extent to which
the conclusion drawn from the data (e.g., clustering) may be confounded by transcriptional
bursting and transcriptional noise. SymSim provides a way to explore this. We first note
that modality [107, 109] and extent of the intrinsic noise [[107] in the expression of a gene in
a homogeneous population of cells (i.e., cells with similar EVFs) can vary for the different
ranges of ko, kors and s. Specifically, one can distinguish the following three types of gene-
expression distributions by the number of inflection points in the smoothed density function:
unimodal with highest frequency at 0 (no inflection point), unimodal with highest frequency
at non-zero value (one inflection point), and bimodal (two inflection points). Figure]l.2(c)
shows the number of inflection points for different configurations of k,, and k¢ with given
s = 10. The red area with low k,, and k,; have one zero mode and one non-zero mode. The
gray area with low k,, and high k,¢; has only one zero mode, and the blue area with high
kon and low k,s¢ have one non-zero mode. The yellow arrow shows how the parameter bi-
mod can modify the amount of bimodality in the transcript count distribution. This gives a
clear correspondence between kinetic parameter configurations and types of gene-expression
distributions. For example, when s is relatively large, we obtain bimodal distributions when
kon and k, sy are smaller than 1 (< 0 on log scale).

These results thus guide us in tuning kinetic parameters to obtain desired gene-expression
distributions to simulate. Specifically, we focus on adjustment of the bimodality of the
distribution, which can lead to large, yet transient fluctuations in gene expression at the same
cell over time, thus potentially misleading methods for cell state annotation and differential
expression. To increase the overall extent of bimodality in the data, we divide (decrease)
all ko, and k,¢; values by 104 where the parameter bimod can take value from 0 to 1.
This way, other properties such as burst frequency (kon/(kon + ko)) and synthesis rate (s)
remain the same (Figure[l.2). In Fig;ure(d)7 we show a series of histogram heatmaps of
the gene-expression distribution of all genes in a simulated homogeneous population while
we increase bimod. When bimod = 1,we have a clearly increased number of bimodal genes.
The increase of bimodality often gives rise to an increase in the fano factor which can be a
measure of intrinsic variation (Figure[l.3(a)).

Extrinsic variation via extrinsic variability factors

While the first knob focuses on variation within a homogeneous set of cells, the second knob
allows the user to simulate multiple, different cell states. This added complexity is achieved
by setting different EVF values for different cells, in a way that allows users to control cellular
heterogeneity and generate discrete subpopulations or continuous trajectories.

To this end, SymSim represents the desired structure of cell states using a tree (which
can be specified by the user), where every subpopulation (in the discrete mode) or every cell
(in the continuous mode) is assigned with a position along the tree. The tree represents the
relationship between cells. The numbers on the edges are branch lengths; the node num-
bers indicate the ID of the respective subpopulation (each subpopulation is represented by
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Figure 1.4: Hlustration of generating a diverse set of cell states with SymSim with extrinsic
variation
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(a) Tlustration of generating a diverse set of cell states with SymSim. The tree represents the
relationship between cells. The numbers on the edges are branch lengths; the node numbers
indicate the ID of the respective subpopulation (each subpopulation is represented by a single
position [leaf] in the tree). The matrix to the right depicts the derivation of EVF values. Each
row corresponds to an EVF (only two are Diff-EVF), each column corresponds to a position in
the tree, and the content specifies the distribution from which the EVF values are drawn. We use
the notation ya(b) to represent the expected value of EVF b in position a in the tree. The
rightmost plot depicts the derivation of these expected values with Brownian motion. We use
subpopulations 2 and 3 as examples for both discrete cases (sampling only cells within the
subpopulations) or continuous (sampling cells along the trajectories from the root progenitor
state [node 6] to the two target subpopulations [nodes 2 and 3]).(b) tSNE plots of five discrete
populations generated from the tree structure shown in a. Different values of o give rise to
different heterogeneity of each population. (¢) tSNE plots of continuous populations generated
from the same tree. The colors correspond to the colors on branches in the tree shown in a. When
increasing o, cells are more scattered around the main paths which follow the tree structure.

a single position (leaf) in the tree). Different positions in the tree correspond to different
expected EVF values, and the expected absolute difference between the value of an EVF of
any two cells is linearly proportional to the square root of their distance in the tree. When
SymSim is applied in a discrete mode, the cells are sampled from the leaves of the tree.
The set of cells that are assigned to the same leaf in the tree form a subpopulation, and
their EVF values are drawn from the same distribution. As above, we draw these EVF from
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a normal distribution, where the mean is determined by the position in the tree and the
standard deviation is defined by the parameter ¢. When SymSim is applied in a continuous
mode, the cells are positioned along the edges of the tree with a small step size (which is
determined by branch lengths and number of cells; Methods). The EVF values are then
drawn from a normal distribution where the mean is determined by the position in the tree,
and the standard deviation is defined by o.

The matrix to the in the middle of Figure@(a) depicts the derivation of EVF values.
Each row corresponds to an EVF (only two are Diff-EVF), each column corresponds to a
position in the tree, and the content specifies the distribution from which the EVF values
are drawn. We use the notation y,(b) to represent the expected value of EVF b in position
a in the tree. Notably, SymSim only generates a subset of EVFs from the tree, while the
remaining ones are drawn from the same distribution for all subpopulations, as shown in the
matrix in Figure@(a). The tree-sampled subset, which we term Diff-EVFs (Differential
EVFs) represents the conditions or factors which are different between subpopulations, and
they usually account for a small proportion of all the EVFEs. The number of Diff-EVFs can
be set by the user. The results in this section were produced with 60 EVFs, 20% of them
are Diff-EVFs. With this formulation, users can control the extent of between-population
variation by setting the branch lengths of the input tree, and combine it with a desired level
of within-population variation by setting the parameter o.

Take the Dif f — EV F'1 of populations 2 and 3 in Figure@(a) as an example: we can

show that
E(ly2(1) = y3(1)]) = V/ds - \/2/7

where do3 is the distance in the tree between Populations 2 and 3. As the EVF values of
Dif f — EVF1 for cells in Populations 2 and 3 are sampled respectively from distributions

N(yi(1),0%) and N(y,(2),0?) Figure, the ratio H = E(|y2(137—y3(1)|) = @a\ﬁ/_ﬁ correlates
with the separability between cells from Population 2 and cells from Population 3.

Notably, both ¢ and the square root of branch lengths in the tree are in units of EVF
values. For any given Dif f — EV F and any two given populations, the ratio of square root
tree distance to o determines the overlap between the distributions of the two Dif f — EV F's.
Thus this ratio determines the separability between the two populations. In the function of
generating multiple discrete populations, users can control the extent of between-population
variation by setting the branch lengths of the input tree, and control the within-population
variation by parameter o.

To facilitate the correspondence between EVFE values and distances in the tree we use
a Brownian motion procedure as described in [121]. Specifically, for each EVF we set the
mean value at the root of the tree to a fixed number (default set root node to 1) and then
perform Brownian motion along the branch. The rightmost plot in Figure(a) illustrates
this process using populations 2 and 3 in the tree as an example. Notably, in the continuous
mode, this formulation can give rise to a rich set of patterns of changes in gene expression
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from root (progenitor cells) to leaves (target cells). We use subpopulations 2 and 3 as ex-
amples for both discrete cases (sampling only cells within the subpopulations) or continuous
(sampling cells along the trajectories from the root progenitor state [node 6] to the two target
subpopulations [nodes 2 and 3]). As an alternative, we also implemented a mode for simu-
lating continuous data by which gene expression from root to leaves is determined explicitly
by an impulse function. This might be preferable if the user would like to generate smoother
changes in gene expression, or specific temporal patterns. In the following analyses we use
the Brownian motion model. As illustration, Figure@bc depicts the tSNE plots of cells
from the same input tree with different o in either a discrete (Figurefl.4(b)) or continuous
(Figure c)) mode. The colors correspond to the colors on branches in the tree shown
in Figurell.4a. When increasing sigma, cells are more scattered around the main paths
which follow the tree structure. Notably, both panels show that the tSNE plots reflect the
structure of the input tree well.

The third knob: technical variation

A large part of the variation observed in scRNA-seq data sets stems from technical sources
(122, 123, 124]. The technical confounders reflect noise, reduced sensitivity and bias that
are introduced during sample processing steps such as mRNA capture, reverse transcription,
PCR amplification, RNA fragmentation, and sequencing. In order to introduce realistic
technical variation into our model, we explicitly simulate the major steps in the experimental
procedures. We implemented two library preparation protocols: (1) full length mRNAs
profiling without the use of UMIs (e.g., SmartSeq2 [110]); and (2) mRNA 3’ end profiling
with UMIs (e.g., 10x Chromium [23]). The former protocol is usually applied for a small
number of cells and with a large number of reads per cell, providing full information on
transcript structure [125]. The latter is normally applied for many cells with shallower
sequencing, and it is affected less by amplification and gene length biases [122].

The workflow of these steps are shown in Figurell.4(a) (Methods). Starting from
the simulated true mRNA content of a given cell (namely, number of transcripts per gene,
sampled from the stationary distribution of the promoter kinetic model), the first step is
mRNA capture, where every molecule is retained with probability . The value of the cap-
ture efficiency associated with each cell is drawn from a normal distribution with a mean and
standard deviation , which can be set by the user. The second step is amplification, where in
every cycle SymSim selects each available molecule with a certain probability and duplicates
it. The expected amplification efficiency and the number of PCR cycles can be set by the
user in a manner similar to that of capture efficiency. As an optional step, SymSim provides
the option of linear amplification for the pre-amplification step (e.g., as in CEL-Seq [31]).
We do not consider this option in this manuscript. In the third step each amplified molecule
is broken down into fragments, in preparation for size selection and sequencing. Here, we as-
sume that the average fragment length is 400bp (fragments are sequenced double-ended with
read length 100bp) and use transcript lengths from the human reference genome. Fragments
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that are within the acceptable size range (100 to 1000 bp). The number of reads per cell
(namely, the number of sequenced fragments) is drawn from a Normal distribution whose
mean is determined by the parameter Depth, which, along with the respective standard
deviation can be provided by the user. To derive the final “observed” expression values we
do not account for alignment errors, and assume that every sequenced fragment is assigned
to the correct gene of interest. For the non-UMI option, we define the raw measurement of
expression as the number of reads per gene. If UMIs are used, SymSim counts every original
mRNA molecule only once by collapsing all reads that originated from the same molecule.
Notably, the resulting distribution of number of reads per UMI is similar to the one observed
in a dataset of murine cortex cells [111].

It has been previously shown that estimation of gene-expression levels from full length
mRNA sequencing protocols has amplification biases related to sequence-specific properties
like gene length and GC-content [122, 126], whereas the use of UMIs can correct these bi-
ases [, [126] In particular, we have observed a negative correlation between gene length and
length-normalized gene-expression in_our reference SmartSeq2 dataset (murine Th17 cells
from Gaublomme et al [[112]; Figure@(b)), and the same trend is reported by Phipson et
al [126]. To account for that, we parametrize the efficiency of the PCR amplification step
using a linear model that represents gene length bias, and other sequence-specific factors
(Methods). The effect of this addition can be controlled by a user defined MazAmpBias
parameter (Methods). As a result, our simulated data with a non-UMI protocol shows a
similar dependence of gene-expression on gene length and as in experimental data (Fig-
ure@(b), real data is from [112]). In cases where UMIs are used gene length effects are
not modeled and thus there is no observable gene length bias in the simulated data, similarly
to the experimental data (Figure S2c, real data is from [111]). In Figurell.5(c), we show
the effect of simulated technical variation obtained through: (1) non-UMI, good parameters
(v = 0.2, MaxAmpBias = 0.1, Depth = 1e6) for high quality data; (2) UMI, good parame-
ters (a = 0.2, MaxAmpBias = 0.1, Depth = 5e5) for high quality data; (3) non-UMI, bad
parameters (o = 0.05, MaxAmpBias = 0.2, Depth = 1e6) for low quality data; (4) UMI,
bad parameters (o = 0.04, MaxAmpBias = 0.2, Depth = 5e5) for low quality data. We then
compare our simulation with real data in Figurell.5(c,d). We generated with parameters
which best match the input experimental counts for three different datasets (non-UMI Th17,
UMI cortex and UMI 10x t4k datasets). First we compared 2D transcript counts histogram
heatmaps (Figure@(c)) then

In Figure@(c), we show the comparison between the simulated true mRNA content
of one cell and the observed counts obtained with or without UMI. We consider two scenar-
ios - the first scenario represents a study with a low technical confounding and the second
one represents a highly confounded dataset. Parameters which differ between these “good”
and “bad” cases in this example include capture efficiency («), extent of amplification bias
(MaxAmpBias) and sequencing depth (Depth). Using “bad” technical parameters introduce
more noise to true counts, and compared to the nonUMI simulation the UMIs reduces tech-
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nical noise. The histogram heatmaps of true counts and four versions of simulated counts are
shown in Figure(a). The quantile-quantile plots (Q-Q plots) in Figure@(b) show that
the UMIs help in maintaining a better representation of the true counts in the observed data.

Fitting parameters to real data

For a given real data set, SymSim can produce observed (read or UMI) counts which have
similar statistical properties to the real data (Figure@de), by searching in a database
of simulations obtained from a range of parameter configurations. This procedure focuses
on within-population variability (Similarly to Splatter [105]) and sets the values of eight
parameters from both the first and third knobs. We test this function with the non-UMI
Th17 dataset [112] (using a subpopulation of 130 TGF~£1°1L-6 unsorted cells) and the cortex
dataset [111] (using a subpopulation of 948 CA1 pyramidal neuron cells).



CHAPTER 1. SIMULATING MULTIPLE FACETED VARIABILITY IN SINGLE CELL
RNA SEQUENCING: SYMSIM 22

Figure 1.5: Simulating Technical Variation
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(a) A diagram showing the workflow of adding technical variation to true simulated counts. Each

gray or orange square represents a molecule of the same transcript in one cell. We implement the

following steps: mRNA capturing, pre-amplification (PCR or linear amplification of the cDNAs),
fragmentation, amplification after fragmentation, sequencing, and calculation of UMI counts or

read counts. Details of these steps can be found in Methods. (b) Gene length bias in both

simulated and experimental data for the non-UMI protocol. Error bars represent the ranges of
(mean-SD, mean+SD), where SD means standard deviation. (¢) Scatter plots comparing true

counts and observed counts. (d) 2D transcript counts histogram heatmaps for three experimental

datasets comparing simulated true counts, simulated observed counts and experimental observed

counts. (e) Q-Q plots comparing the mean, percent non-zero and standard deviation in
experimental counts and SymSim simulated observed counts. A good match is indicated by most
of the dots falling close to the red line.
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Figure 1.6: Summary Statstic Matching Q-Q Plot
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(a) The distribution of number of reads per UMI sequenced in the cortex dataset. This plot
comes from the supplementary material of the original paper [111]. (b) The distribution of
number of reads per UMI sequenced in our simulated data, when using the UMI protocol, with
100k reads per cell. (¢) The gene length bias in observed counts with UMI protocol, respectively
from experimental and simulated data. (d) TSNE plot of cells simulated for one homogeneous
population in two batches. (e) The histogram heatmap of gene expression of true simulated
counts, and observed simulated counts under “good” and “bad” parameter settings. The
parameters are the same as described in Figure 4c. In these heatmaps, each row corresponds to a
gene, each column corresponds to a level of expression, and the color intensity is proportional to
the number of cells that express the respective gene at the respective expression level. (f) Q-Q
plots of gene expression of true simulated counts and observed simulated counts under “good”
and “bad” parameter settings.
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Figure 1.7: Benchmarking of clustering methods using SymSim
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(a) Coefficients of various parameters from multiple linear regression between parameters and the
adjusted Rand index (ARI). In the left plot the ARI are averaged over all populations, and in the
right plot the ARI is only for the rare population (population 2). (b) ARI of the rare populations
using the four clustering methods when changing o (o = 0.04). Left plot: the rare population
accounts for 5% of all the cells; right plot: the rare population accounts for 10% of all the cells.
(c) ARI of the rare populations using the four clustering methods when changing a (o = 0.6).
Left plot: the rare population accounts for 5% of all the cells; right plot: the rare population
accounts for 10% of all the cells.
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Figure@(d) shows the histogram heatmaps of true mRNA levels (simulated) and ob-
served counts (simulated and experimental) for the non-UMI and UMI datasets. For a
more quantitative comparison, in Figurel.3(e), we show Q-Q plots of the distributions of
mean, percent-non-zero and standard deviation of genes between simulated and experimen-
tal data. In general, Figurell.3de show that SymSim can output simulated observed counts
which match the real data well for both UMI and non-UMI protocols. It is challenging
to match the standard deviation (sd) between simulated and real data at the lower end,
as they correspond to some lowly expressed genes (although they account for only a very
small proportion of genes) whose variation are usually noisy. For example, for the non-UMI
protocol, the lower end unmatched part is likely caused by a set of lowly expressed genes
which have lower variation than the majority of genes at the same expression level (Figure
S3c). Notably, we generated the same Q-Q plots after training Splatter [105] with the same
experimental datasets as input, and found that SymSim matches this data significantly bet-
ter (Figure). We further inspected the relationship between mean (across all cells) and
detection rate (fraction of cells in which the gene is detected) from the SymSim simulations,
and get the same relationship as in experimental.

Using SymSim to evaluate the performance of computational
methods

SymSim can be used to benchmark methods for single cell RNA-Seq data analysis as it pro-
vides both observed counts and a reference ground truth. In this section we demonstrate the
utility of SymSim as tool for benchmarking methods for clustering and differential expres-
sion in a heterogeneous sample, consisting of multiple subpopulations (using the structure
depicted by the tree in Figure 3a). The design of SymSim allows us to evaluate the ef-
fect of various biological and technical confounders on the accuracy of downstream analysis.
Here, we investigate the effect of total number of cells (N), within population variability
(0), mRNA capture rate () and sequencing depth (Depth). We also test the effect of the
proportion of cells associated with the smallest sub- population of cells (Prop), using popu-
lation number 2 in the tree as our designated “rare” sub- population.

We begin by inspecting the impact of each parameter on the performance of clustering
methods. To this end, we simulated observed counts using the UMI option, and traversed a
grid of values for the five parameters with 18 simulation runs per configuration. The values
of the remaining parameters are determined according to the cortex dataset [111] except for
that we have kept the standard deviation (SD) of o and Depth small so that the SD do not
dominate the mean in cases of low a and Depth values. We tested three clustering methods:
k-means based on euclidean distance of the first 10-principle components, k-means based
on euclidean distance in a nonlinear latent space learned by scVI [43] and SIMLR [127]. In
all cases we set the number of clusters to the ground truth value (n=5). The accuracy of
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the methods is evaluated using the adjusted Rand index (ARI; higher values indicate better
performance). To inspect the effects of the various parameters on clustering performance, we
performed multiple linear regression between the parameters and the ARI. The regression
coefficients are shown in Figure 5a. Overall, o appears to be the most dominant factor,
and the proportion of the rare population (Prop) is clearly positively associated with better
performance. Among the technical parameters, while o plays a role on the performance
especially for the rare population, the impact of Depth is minor.

Focusing on the dominant factors (except N, which we discuss in the next section), pro-
vides the expected results, with better accuracy as the quality of the data or the differences
between sub-populations increase (Figurell.7bc). Interestingly, comparing ¢ = 0.1 and
o = 0.8, we can tell that when o is high enough to make the clustering challenging, fur-
ther increasing o does not yield obvious changes (data not shown). We observe a similar
trend of saturation, inspecting increasing levels of capture efficiency («), especially with
scVI. Comparing the methods to each other, we see that scVI has the highest ARI in most
cases and that PCA and SIMLR are comparable with SIMLR, being slightly better when the
rare population accounts for 5% of all cells and the other way around when the size of rare
population increases to 10% of all cells.

Our mechanism of simulating multiple populations automatically generates differentially
expressed (DE) genes between populations (in the discrete setting; Figure@(b)) or along
pseudotime (in the continuous setting; Figure@(c)). In the following, we use SymSim to
benchmark methods for detecting DE genes, focusing on the discrete setting. We use two
criteria to define the ground truth set of DE genes. The first criterion is that the number
of Diff-EVFs that are associated with a non-zero gene effect value (which we denote as
nDif f — EV Fgene; Figure@(a)) should be larger than zero. This criterion is motivated
by our model of transcription regulation: the kinetic parameters of a gene are affected
by extrinsic factors, and changes to extrinsic factors might therefore lead to changes in the
number of transcripts. In Figure(a) how DE genes are generated through the Diff-EVFs.
Red squares in the gene effect matrix correspond to non-zero values. The two genes indicated
by the arrows are DE genes by number of Diff-EVFs they have (respectively, 2 and 1). Indeed,
when we compare the true simulated gene expression values between subpopulations (i.e.,
before introducing technical confounders), we get a uniform (random) distribution of p-
values for genes with no Diff-EVFs, and an increasing skew as nDif f — EV F gene increases
(Figure@(b), using Wilcoxon test). The numbers of Diff-EVFs used by genes can be
thought of as the degree of DE-ness. Genes with more Diff-EVFs have p-values further
diverged from uniform distribution. As expected, the log fold change of gene-expression
between subpopulations increases with nDif f — EV Fgene (data not shown). An additional
constraint for a gene being differentially expressed is that it must have a sufficiently large
fold change in their simulated true simulated expression levels (threshold of absolute log2
fold change ranges from 0.6 to 1). The DE genes are determined by log2 fold change (LFC)
of true counts with criterion |LFC| > 0.8 (Methods).
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Figure 1.8: Benchmarking of DE detection methods
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(a) Nlustration of how DE genes are generated through the Diff-EVFs. (b) Q-Q plot comparing
the p-value obtained from differential expression analysis between subpopulations 2 and 4 (using
Wilcoxon test on the true simulated counts) to a uniform distribution. Genes are grouped by the
number of Diff-EVFs and plotted in different color lines. (¢) Venn diagram showing that closely
related populations have less DE genes between them compared to distantly related populations.
(d) The AUROC (area under receiver operating characteristic curve) of detecting DE genes using

four different methods from observed counts with changing capture efficiency « (0=0.6). The
populations under comparison are 2 and 4. Three sets of criteria were used to define the true DE
genes and the final performance was the average performance from the three sets: (1)
nDiff — EV Fgene > 0 and |LFC| > 0.6; (2) nDiff — EV Fgene>0 and |LFC| > 0.8; (3)
nDiff — EVFgene > 0 and |LFC| > 1. LFC was calculated with theoretical means from the
kinetic parameters. (e) The negative of correlation between log2 fold change on theoretical mean
of gene-expression and p-values obtained by a DE detection method, with changing capture
efficiency o (o = 0.6). The populations under comparison are 2 and 4.
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An important distinguishing feature of SymSim is that it is capable of generating case
studies for differential expression analysis that consist of multiple sub-populations, with a
predefined structure of similarity. To illustrate this, consider populations 1, 2, and 4 (Fig-
urell.§(c)), which are form a small hierarchy (2 and 4 are closer to each other and similarly
distant from 1). This is reflected in the sizes of the sets of DE genes, obtained respectively
from populations 1 vs 2 (1212 genes), 1 vs 4 (1204 genes) and 2 vs 4 (680 genes). The first
two sets are larger than the third one, and there is a big overlap between the first two sets.

As an example for a benchmark study, we used four methods to detect DE genes: edgeR
[128], DESeq2 [129], Wilcoxon rank-sum test and t-test on observed counts generated by var-
ious parameter settings (Methods). As above, we tested the effect of the total number of cells
(N), within population variability (), and mRNA capture rate («) with 10 simulation runs
per parameter configuration. We use two accuracy measures: a) AUC (area under curve) of
the ROC (receiver operating characteristic) curves obtained by treating the p-values output
from each method as a predictor (Figure 6d); b) negative of Spearman correlation between
the p-values of each detection method and the LFC-Theo (Figure@(e)).

From Figure@de, one can observe that when the numbers of cells are small (30 in
each population), edgeR has the best performance while the other three methods are com-
parable to each other. When the numbers of cells increase to 300, the two naive methods
Wilcoxon test and t-test tend to improve in their relative performance, compared to edgeR
and DESeq2. When increasing capture efficiency, all methods gain performance except for
the case of AUC with 300 cells. In that case, the drop of AUC for some methods is caused
by inflation in p-values as « increases, which results in lower specificity. Finally, we noticed
that the adjusted p-values from DESeq2 can have a lot of NAs especially when « is low
(and thus counts are low), so we use its p-values in Figurell.8de. On the other hand, the
assignment of NAs filters out genes which do not pass a certain threshold of absolute mag-
nitude (explained in DESeq2 vignette [130]). To make use of this filtering, we conducted an
additional analyses where we used the adjusted p-values for DESeq2 and compare it to to all
other methods using only the non-filtered (non NA) genes. As expected, the performance of
all methods (and specifically DESeq2) is improves when considering only this set of genes,
and converges to high values already at lower capture efficiency rates.

To summarize, we find that edgeR has the best overall performance, with the t-test rank
second followed by Wilcoxon test. This ranking is consistent with results from a recent paper
which evaluated 36 methods for DE analysis with single cell RNA-Seq data (e.g., as in [131]]).

We also investigate the effects of bimodality (controlled by parameter bimod) on the per-
formance of clustering and differential expression algorithms. We increased the parameter
bimod from 0 to 1 for the same datasets used in the analysis of Section “Using SymSim to
evaluate clustering methods” and performed clustering. The comparison of clustering results
between different methods and different values of bimod is shown in Figurell.9. We see that
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Figure 1.9: Effects of the bimod parameter on the performance of clustering method
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in most cases there is a decrease of performance for the same method with increase of bimod.
We then aggregate all the values of adjusted Rand index for all methods and all the param-
eters of a and o, but only group them by the bimod value, and performed Wilcoxon test
between the two groups of values. Figurel.9(b) shows that the difference between these
two groups is small but significant (p-value < e™1?).
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Figure 1.10: Effects of the bimod parameter on the performance of clustering method
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We then perform all DE methods on the datasets with bimod = 1 and compare the re-
sults with the original dataset with bimod = 0, used in Section “Using SymSim to evaluate
differential expression methods”. From Supplementary Figurell.10a-c we can see a drop
in performance when increasing bimod, especially when the number of cells is small (Fig-
urewab). The drop is less prominent when the number of cells in the two populations
are respectively 300 and 300. Notably, the drop in the performance of clustering and DE
performance cannot be simply attributed to a global decrease in gene expression levels, since
increasing bimod does not change this statistic (Figure[l.10(d)).

Figure 1.11: Benchmark trajectory inference methods
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Using SymSim to evaluate trajectory inference methods

The ability of SymSim to generate a continuum of cell states makes it a convenient choice
to benchmark trajectory inference methods. We compare three methods including Monocle
[b5, 132], Slingshot [59], and a minimum spanning tree (MST) algorithm implemented in
the package dynverse [56] (Methods). We generate datasets with different values of o and
a with the input tree shown in Figure[l.4(c). For each parameter configuration, we repeat
the simulation 10 times. To evaluate the trajectory inference methods, we use two measures:
(1) Spearman correlation between true cell order and inferred cell order. We consider cells
on each lineage (a path from root to a leaf) separately and take the average of correlation
on all five lineages. (2) k-nearest neighbor purity (kNN purity) of cells, that is, for each cell,
we calculate the Jaccard Index between its k-nearest neighbors in the true trajectory and
that in the inferred trajectory. Results are shown in Figure. In these plots, k is set to
100. In Figure(a), we vary o and fix o as 0.1. Both the correlation and kNN purity
decrease when o increases. In Figurel.11(b), we vary « and fix ¢ as 0.6. All methods
show an overall increasing trend along with a with both measures. Consistent with a recent
benchmark study [56], we observe that overall Slingshot clearly outperforms the other two
methods.

Experimental Design

Deciding how many cells to sequence is a decision many researchers face when designing
an experiment, and the optimal number of cells to sequence depends on both the biological
system and the goal of the experiment. A previous approach to this problem [133] only
considered the aspect of counting cells (namely, having enough cells in the pool from each
subpopulation), but did not account for the identifiability of each subpopulation, which may
be hampered by both technical and biological factors as well as the performance of clustering
algorithms.

In the following we demonstrate how SymSim can be used to shed more light on this im-
portant problem. Importantly, in its current form SymSim does not use real data to model
between-population variability. We therefore interpret the results in a relative manner - how
do different variability factors shift the required number of cells, compared to each other and
to the theoretical lower bound (i.e., sampling a prespecified minimal number of cells, Meth-
ods). Our example focuses on a case of one rare subset, represented by cells from population
2 (using the same tree in Figure@(c); note that one can easily generalize this procedure
to multiple rare subpopulations). We simulate observed counts with numbers of cells (V)
ranging from 600 to 7000. These simulations were based on the parameters fit to the cortex
dataset [111] with varying levels of o and « (100 simulations per parameter configuration).

We applied the same three clustering methods as described in the previous section (k-
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means with scVI or PCA and SIMLR). We say that a given algorithm was successful in
“detecting the rare population” if at least 50 cells from this set are assigned to the same
cluster, and form at least 70% of the cells in that cluster. We use these labels to compute an
empirical success probability P for each algorithm and each parameter configuration. To get
an upper bound on performance that better reflects the data (rather than the algorithm), we
take the maximum P at each configuration, and apply cubic spline smoothing (gray curves,
Figure 7a~d). In each plot we also include the theoretical limit which only requires the
presence of at least 50 cells from the rare subpopulation (Methods). The theoretical curve
(which is independent of all parameters except N) reaches almost 1 at N=1400. Conversely,
the empirical curves vary dramatically, based on parameter values. For an easy case of
low within- population variability (¢=0.6) and high capture efficiency (a=0.1) the empirical
upper bound curve is close to the theoretical one (Figurell.11/(c)). This curve clearly de-
creases when increasing the effect of either nuisance factor (Figurefl.11bc). The reduction
is substantially more dramatic when both nuisance factors increase (Figurefl.11)(d)).

To understand the implications on the number of cells required in a given setting, we
calculated how many cells are required, in each configuration, to achieve a success rate of
0.75 (Figure(e)). As expected, the resulting numbers can be much higher than the
theoretical lower bound. For example, even when we have good capture efficiency (o = 0.1),
when the within- population variability increases (o = 0.8), we need 6225 cells, while with
the theoretical curve, we need only less than 1100 cells (for P = 0.75). Considering only
the binomial sampling of cells may therefore underestimate the number of cells needed for
a realistic scenario, and considerations of biological and technical variations with simulators
like SymSim is merited.
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Figure 1.12: The number of cells needed to detect a rare population.
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The number of cells needed to detect a rare population.
We generate five populations according to the tree structure shown in Figure @ and set
population 2 as the rare population which accounts for 5% of the cells. Other populations share
95% of the cells evenly. The criteria of detecting the rare population are that at least 50 cells

from this population are correctly detected and the precision (positive predicted value) is at least

70%. a-dThe probability of detecting the rare population when sequencing N (x-axis) cells under
different o and a configurations, with different clustering methods. The black curve represents

the theoretical probability from the binomial model, assuming that all cells sequenced are

assigned correctly to the original population. The gray curve with transparency takes the

maximum value at each data point from all four clustering methods with smoothing. Error bars

are standard deviation over 20 randomizations. (b) The heatmaps show the number of cells
needed to sequence under different configurations of o and « to detect the rare population with

success rates 0.6,0.7,0.8,0.9, always using the best clustering method.
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1.3 Methods

Simulating gene expression with the kinetic model

As shown in Figure@(a), the kinetic model of gene expression considers that a gene can
be either on or off and the probabilities to transit between the two states are ko, and koss.
When the gene is on it is transcribed with transcription rate s. The transcripts degrade
with rate d. For a given gene, based on these parameters one can simulate the number of
its transcript molecules over time. The theoretical probability distribution can be calculated
via the Master Equation, which is the steady state solution for the kinetic model. Therefore,
the gene expression values for a gene can be sampled from the Master Equation. Alterna-
tively, the kinetic model can be represented by a Beta-Poisson model, which we use in our
implementation. Calculating parameters for the kinetic model in SymSim simulation For
a gene in a cell, the parameters for the kinetic model k,,, ko¢f, and s are calculated from
the EVF vectors of this cell and the gene effect vectors for the gene (Figure(a)). To
allow independent control of the three parameters, we use one EVF vector and one gene
effect vector for each parameter. Take kon as an example: denoting the EVF vector as
(ehon ekon e’;"”),and the gene effect vector fork,, as (gF°", g5, ..., g}’jon), the cell-gene spe-
cific value for k,, is the dot product of these two vectors. Then we map these kon values
to the distribution of kinetic parameters estimated from experimental data, to obtain the
matched parameters. We sort the k,, values for all genes in all cells, sample the same num-
ber of values from the experimental k,, distribution (the number of values would be m x n,
where m is the number of genes and n is the number of cells), and update the k,, values to
the ones sampled from the experimental distribution with the same rank. The parameters

of kop¢ and s are calculated in the same way.

Estimating kinetic parameters from real data

We estimated kinetic parameters from experimental data using an MCMC approach. For
each gene, its expression X depends on p, the proportion of time it is on, and the mRNA
synthesis rate s. The parameter p itself is also a random variable determined by the kinetic
parameters ko, and k,¢rr. We model p as a Beta distributed variable with shape parameters
kon and k,¢r. We model X as a Poisson distributed variable with parameter p x s. The
distribution of X is then identical to the distribution calculated using the Master Equation
[134]. The downsampling effect is modeled as a Binomial sampling with X being the number
of trials, and f being the probability that a transcript is sampled for sequencing.

We fit this model to the experimental data using the Gibbs sampler implemented in
RJAGS. At every iteration, we sample each parameter from its marginal posterior condi-
tional on the value of all other parameters. To meet the assumption that all cells share
the same kinetic parameters we divide cells by clustering that is performed in the original
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study and fit the model to counts in a single cluster of cells at a time. We also use imputed
read counts, rather than the raw read counts since the technical biases in single cell RNA
sequencing is not a simple binomial sampling process. We use scVI [43] for the imputation.
Since MCMC is dependent on initial conditions, we fit the model independently for three
times, for each cell cluster and each imputation method. We thinned the MCMC chain to
reduce the effect of autocorrelation, and combined all results to obtain the final distribution
of kinetic parameters to use for the simulation. Ranges of kinetic parameters from literature

We look into literature for the ranges of kinetic parameters k,,, kofr, and s which are
experimentally measured [[113, [114, [115, 116, 117, 118, 119, 120]. The range of burst size, or
s, from these studies ranges from 2-4000. And the k,, and k,s¢ values ranges from 0.0001 to
1 per minute, and the half life of mRNA varies from 1-10 hours, which correspond to 0.001
to 0.01 per minute. This means that k,,/d and k,¢r/d could take values from 10-2 to 103.

Simulation of technical steps from mRNA capturing to sequencing

We simulate two categories of library preparation protocols, one does not use UMIs (unique
molecular identifiers) [23] and sequences full length mRNAs ( using procedures in Smart-seq2
[110] as template), and the other uses UMIs and sequences only the 3’ end of the mRNA
(using the Chromium chemistry by 10x Genomics as template). In the pre-amplification step,
we provide option of using linear amplification to mimic the CEL-seq protocol. As shown in
Figurel.5(a), we take one transcript with 16 molecules as an example. To implement the
UMIs, each original molecule has a variable to its count at each step. The technical steps
include the following:
1) Capturing step: molecules are captured from the cell with probability a.

2) Pre-amplification step: if using non-CEL-Seq protocols, this step involves N rounds of
PCR amplifications. We introduce sequence-specific biases during amplification, which in-
cludes transcript length bias and other bias assigned randomly. Parameter lenslope can be
used to control the amount of length bias, and MaxrAmpBias is used to tune the total
amount of amplification bias. The transcript lengths can be sampled from a pool of lengths
from human genome or mouse genome. If using CEL-Seq protocol this step is the in vitro
transcription (IVT) linear amplification.

3) Fragmentation step: the mRNAs are chopped into fragments for sequencing. If sequencing
full-length mRNA, all fragments with acceptable length are kept for sequencing. If sequenc-
ing only the 3’ end for UMI protocols, only fragments on the 3’ end are kept for sequencing.
For each transcript length, we calculate a distribution of number of fragments given expected
fragment length, and use this distribution to generate the number of fragments during our
simulation of the fragmentation step. When simulating the fragmentation step, we need the
number of fragments obtained from a transcript. This number is dependent on the transcript
length (denoted by L), the read length (r), maximum fragment length (f) and expected gap
size (g) of the reads assuming we use paired-end sequencing. The fragmentation efficiency
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which is the probability with which a cut happens to a position on the transcript is:

e=1/(2%r+g)

For nonUMI protocols where full length mRNA is sequenced, for each transcript length, we
simulate the fragmentation process many times with the probability e and remove resulting
pieces which have length smaller than r or greater than f, and we obtain a distribution of
number of valid fragments for a given transcript length. In SymSim, we just sample from
this distribution. For UMI protocols, we only need the valid fragments at the 3’ end. In this
case, we can derive theoretical distributions of the probability that a mRNA copy gives rise
to a fragment. The expressions are as follows:

I-e)y1-(1—e)V ), L>f
(I—-e),r<L<f
0,L<r

So during SymSim we sample with these probabilities to get the number of 3’ end frag-

ments (which will be either 0 or 1). In our paper, we set r = 100, f = 1000.g = 200.
Key parameters which give rise to the length bias patterns shown in Figure(b) are:
a = 0.05, lenslope = 0.023, nbins = 20, MaxAmpBias = 0.3, Depth = 1.3€6.
4) Amplification step: fragments go through another k rounds of PCR amplifications for
all protocols, including CEL-Seq and non-CEL-Seq protocols. 5) Sequencing step: ampli-
fied fragments from the previous step are randomly selected according to a given value of
sequencing depth, which is the total number of reads (fragments) to sequence. This param-
eter is denoted by Depth. 6) After the sequencing step (assuming all reads are correctly
sequenced and mapped to their original gene), we can get the UMI counts for UMI protocols
and read counts for non-UMI protocols. We omit steps like reverse transcription, library
cleaning up as the effect of these steps on the final read or UMI counts are relatively minor.
Simulation of amplification biases and how UMI corrects this We divide amplification biases
into two categories: the biases caused by transcript length (referred to as gene length bias)
and biases caused by other factors including GC contents. For the former we have observed
clear pattern from experimental data with the nonUMI simulations (Figure(b)) SO we
use a linear model to simulate it. For the latter there is no clear pattern observed or re-
ported so we use a random Guassian term to represent it. We first bin all gene lengths into
nbins bins, and get the average value in each bin: L = (lbin(1), lbin(2), - lbin(nbms)). We use
parameter lenslope to control the amount of gene length bias, then the linear function for
gene length bias is

Biengtn (1) = lenslope x median (L) — lenslope x L(7)

. Denoting the total amount of amplification bias by MaxAmpBias, then the maximum
amount of random bias 2 X MaxrAmpBias/(nbins — 1). The random bias term is generated
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by N(0, MaxRandBias) and rounded to [—MaxRandBias, M ax RandBias].
For a given gene of length [, its PCR amplification rate is

ratef2PCR + Blength (bln(l)) + Brand

. This rate is used in all rounds of the pre-amplification step. The biases then get amplified
as more PCR cycles are performed, where transcripts with higher amplification rate will
likely get more molecules. Assigning a UMI to each molecule before amplification allows us
to collapse all molecules with the same UMI after amplification, so different amplification
rates will not affect the final molecule counts.

Fitting simulation parameters to real data

To find the best matching parameters to a real dataset, we simulate a database of datasets
with a grid of parameters over a wide range. For each simulated dataset, we calculate the
following statistics: mean, percent non-zero, standard deviation of genes over all cells. Then
given a real dataset, we find the simulated dataset, which have the most similar distributions
of the statistics to the real data, and return the corresponding parameter configurations.

Applying dimensionality reduction and clustering methods

We apply three different dimensionality reduction methods to cluster cells simulated from
multiple discrete populations: PCA, scVI, and SIMLR. PCA is the naive baseline method
that is also the most commonly seen in single-cell RNA-seq analysis. scVI is a more recent
method that uses a zero-inflated negative binomial variational auto-encoder model to infer
latent space for each single cell. For both the first two methods, cluster identities are then
assigned using k-means clustering. The third method, SIMLR, performs dimensionality
reduction and cluster identity iteratively to maximize cluster separation. The fourth method,
implemented in Seurat, uses PCA for dimensionality reduction and the Louvain clustering.

Simulation of differentially expressed genes

Dift-EVFs give rise to differences between populations as well as DE genes between popula-
tions. DE genes by design are the ones with non-zero gene effect values corresponding to the
Diff-EVFs (Figure@(a)), as the gene effect vectors are sparse with a majority of values
being 0s. Nevertheless, in some cases, the actual expression values of genes with at least one
Diff-EVFs might not differ since the effects of different Diff-EVFSs or the effects of modifying
different kinetic parameters may cancel out. Differential expression might also be blurred by
a high within-population variability. Thus we also use the log2 fold change (LFC) of mean
gene-expression from the two populations as another criteria. The mean expression can be
calculated based on simulated true counts, which is subject to gene-expression intrinsic noise,
or based on the kinetic parameters themselves, directly from the theoretical gene-expression
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distribution. If the kinetic parameters of a gene in a cell is &y, koff, and s, the expected
gene-expression of this gene in this cell is s * ko, /(Ko + korr). We use multiple thresholds
ranging from 0.6 to 1 on the |LFC| to define a gene is DE, in order to avoid being biased
with one single artificial threshold.

Detection of differentially expressed genes

DE genes in observed counts are detected, respectively, with edgeR, DESeq2, Wilcoxon test,
and Student t-test. For edgeR, we used the quasi-likelihood approach (QLF) with cellular
detection rate (the fraction of genes that are detected with non-zero counts in each cell)
as covariate. For DESeq2, we use local for the fittype parameter, and we evaluate its per-
formance, respectively, based on the output p-values and adjusted p-values, which serve as
filtering of genes.

The output from each DE method is a p-value for each gene, with smaller values meaning
the gene is more likely to be a DE gene. We use two metrics to evaluate the performance of
a DE method: (a) AUROC (area under receiver operating characteristic curve), where we
apply different thresholds on the p-values to obtain different sets of predicted DE genes, and
we can then plot ROC curves with different combinations of specificity and sensitivity,
thus calculate the area under the ROC curve. (b) Negative of Spearman correlation between
the p-values of each detection method and the log fold difference of the true expression levels.
Genes with high log fold change in true transcript counts should correspond to low p-value
if the DE method works well. As the inferred p-values and log fold change in true counts
are expected to be anti-correlated, we take the negative of this correlation, such that higher
value corresponds to better performance.

Applying trajectory inference methods

We use the R packages dynwrap (https://github.com/dynverse/dynwrap, version 0.1.0) and
dynmethods (https://github.com/dynverse/dynmethods, version 0.1.0) to run the three tra-
jectory inference methods compared in this manuscript: Monocle (version 2.6.4), Slingshot
(version 0.99.12), and MST (a basic method implemented in dynmethods). All methods
were run with default parameters. Both dynwrap and dynmethods are under the collection
of R packages dynverse used in the manuscript by Saelens et al [56].

Effect of parameter bimod on gene-expression levels

To investigate if increasing bimod will cause decrease in overall gene-expression levels of genes
thus lead to the decrease in performance of both clustering and DE methods, we calculate
the percentage change of total number of transcripts of genes from bimod = 0 to bimod = 1.
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That is, for each gene, we calculate

(;.’Lj-;l‘g) /;Jf]

where z; is the number of transcripts of this gene in cell j when bimod = 0, 2 is the
number of transcripts of this gene in cell j when bimod = 1, and m is the number of cells.
From Figurell.1Q we see that there is no consistent increase or decrease of total number
of transcripts for the genes when changing bimod. Therefore, we conjecture that the drop
in the performance of clustering and DE is rather caused by change in the distribution of
gene-expression levels of genes instead of overall gene-expression levels.

Calculating the probability of detecting a population

Assuming all sequenced cells are correctly assigned to its original population, the probability
that at least x cells are detected from a population only depends on the binomial sampling.
Denote the total number of cells by N and the proportion of the cells in the given population
by r, the probability that at least = cells are detected for the population is:

1— Ii ( ]1:;7 ) rE(1— )R

k=0

This formula is used to generate the black curves in Figure .

During our simulation to estimate the number of cells needed to detect a rare population,
we simulate the random sampling process as follows: we start with a total of 10,000 cells for
all five populations with 2000 cells for each population. We set probability vector of a cell
belonging to each population as (0.25, 0.05, 0.25, 0.25, and 0.2), where Population 2 is the
rare population with smallest probability. For each randomization and given total number
of cells N (N < 7000), we randomly sample N cells from the pool of 10,000 cells according
to the probability vector.

1.4 Conclusion

SymSim has the following features which are advantageous over existing simulators: (i) We
simulate true transcript counts from a kinetic model that can be interpreted in terms of
transcript synthesis rate, promoter activation and deactivation. (ii) When generating mul-
tiple discrete or continuous populations, instead of generating biological differences through
directly altering the true transcript count distribution, we set Diff-EVFs, which can be inter-
preted as biological conditions which cause the differences between subpopulations of cells.
This is a more natural and realistic way to simulate biological transcriptional differences.
It generates desirable properties such as a larger number of differentially expressed genes
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between more distantly related cell populations without manual specifications. (iii) When
generating observed counts, we simulate key steps in real experimental protocols, which au-
tomatically gives us dropout events, length bias, and distribution of library sizes. We also
provide choices to use UMI based protocols or non-UMI full length mRNA protocols, as the
properties of data output from these two categories can be very different.

The main input parameters to SymSim are self-explanatory with their own biological or
technical meanings, which facilitates decision of input parameters in practice. In particular,
we allow users to input an experimental dataset and SymSim can return the parameter set-
tings which best match the properties of the input dataset. The modular nature of SymSim
provides possibilities to generalize its application. For example, the generation of true counts
with EVFs and transcription kinetics can be replaced by learning a generative model from
real data, with methods such as scVI [43]. This kind of extension will facilitate data- driven
simulation between-subpopulation variability, albeit at the cost of using parameters that are
less interpretable biologically.

The feature of finding best parameter configurations to match an experimental dataset
not only yields large-scale simulated datasets, but also brings insights on the properties
of experimental dataset through the parameters found, as the parameters are biologically
or technically interpretable. For both the UMI and nonUMI datasets, we include the top
parameter settings for both data sets in Supplementary Material Section 4. From these pa-
rameters, one can conjecture that the cortex data set is of more heterogeneous to the Th17
dataset (higher o), and the capture efficiency of the UMI data is much lower. However,
in this paper, we do not go into comparing these parameters to the biological truth, but
rather focus on obtaining simulated datasets with similar statistical properties to the input
experimental data.
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Chapter 2

Probabilistic Harmonization and
Annotation of Single-cell
Transcriptomics Data with Deep
Generative Models

2.1 Introduction

Recent technological improvements in microfluidics and low volume sample handling [135]
have enabled the emergence of single-cell transcriptomics [136, #5] as a popular tool for
analyzing biological systems [137, 138, [139]. This growing popularity along with a contin-
ued increase in the scale of the respective assays [140] has resulted in massive amounts of
publicly available data and motivated large scale community efforts such as the Human Cell
Atlas [10], Tabula Muris [141] and the BRAIN Initiative Cell Census Network [142]. The
next natural step in the evolution of this field is therefore to integrate many available datasets
from related tissues or disease models in order to increase statistical robustness [143], achieve
consistency and reproducibility among studies [144, B3], and ultimately converge to a com-
mon ontology of cell states and types [10, 145].

A fundamental step toward the ideal of a common ontology is data harmonization, namely
integration of two or more transcriptomics datasets into a single dataset on which any down-
stream analysis can be applied. We use the term harmonization rather than batch effect cor-
rection in order to emphasize that the input datasets may come from very different sources
(e.g., technology, laboratory), and from samples with a different composition of cell types.
A wide range of methods have already been developed for this fundamental problem, ini-
tially for microarrays and later on for bulk RNA sequencing, such as ComBat [146] and
limma [[147]. These approaches mainly rely on generalized linear models, with empirical
Bayes shrinkage to avoid over-correction. More recently, similar methods have been pro-
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posed specifically for single-cell RNA sequencing (scRNA-seq), such as ZINB-WaVE [148],
which explicitly accounts for the overabundance of zero entries in the data. However, because
of their linear assumptions, these approaches may not be appropriate when provided with a
heterogeneous sample that includes different cell states, each of which may be associated with
a different sample-to-sample bias [144]. With these limitations in mind, the next generation
of methods turned to non-linear strategies. Broadly speaking, each of these methods includes
a combination of two components: (i) joint factorization of the input matrices (each corre-
sponding to a different dataset) to learn a joint low-dimensional latent representation. This
is usually done with well established numerical methods, such as integrative non-negative
matrix factorization (LIGER [149]), singular value decomposition (Scanorama [150]), or
canonical correlation analysis (Seurat Alignment [33]); (ii) additional non-linear transfor-
mation of the resulting latent representations so as to optimally “align” them onto each
other. This is usually done using heuristics, such as alignment of mutual nearest neighbors
(MNN  [144]. Scanorama [150] and Seurat Anchors [34]), dynamic time warping (Seurat
Alignment [33]) or quantile normalization (LIGER [149]). While this family of methods
has been shown to effectively overlay different datasets, it suffers from two important limita-
tions. First, an explicit alignment procedure may be difficult to tune in a principled manner
and consequently result in over-normalization. This is especially relevant when the cell type
composition is different between datasets and when technical differences between samples
are confounded with biological differences of interest. Second, the alignment is done in an ad
hoc manner and lacks probabilistic interpretability. Consequently, the resulting harmonized
dataset is of limited use and cannot be directly applied for probabilistic decision-making
tasks, for example differential expression.

Besides harmonization, another important and highly related problem is that of auto-
mated annotation of cell state. In principle, there are two ways to approach this problem.
The first is ab initio labeling of cells based on marker genes or gene signatures [33, 53, [151].
While this approach is intuitive and straightforward, its performance may be affected in the
plausible case where marker genes are absent due to limitations in sensitivity. The second
approach is to “transfer” annotations between datasets. In the simplest scenario, we have
access to one dataset where states have been annotated either ab initio, or using additional
experimental measurements (e.g., protein expression [45, 90] or lineage tracing [152]) and
another, unannotated dataset from a similar condition or tissue. The goal is to use the
labeled data to derive similar annotations for the second dataset, whenever applicable. This
task is often complicated by factors such as differences in technology (e.g., using Smart-Seq2
data to annotate 10x Chromium data), partial overlap in cell type composition (i.e., not
all labels should be transferred and not all unannotated cells should be assigned a label),
complex organization of the labels (e.g., hierarchy of cell types and sub-types [153], con-
tinuum along phenotypic or temporal gradients), partial labeling (i.e., only a subset of cells
from the “annotated” dataset can be assigned a label confidently), and the need to handle
multiple (more than 2) datasets in a principled and scalable manner. One way to address the
annotation problem with this approach is learning a classifier [[153, 65] in order to predict a
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fixed stratification of cells. However, this approach might be sensitive to batch effects, which
could render a classifier based on a reference dataset less generalizable to an unannotated
dataset. Another, more flexible approach is to transfer annotations by first harmonizing the
annotated and unannotated datasets, thus also gaining from the benefits of having a single
dataset that can be subject to additional, joint, downstream analysis.

In this chapter, we propose a strategy to address several of the outstanding hurdles in
both of the harmonization and annotation problems and use both the simulation data gen-
erated usin SymSim from Chapter 1 and published datasets to validate our strategy. We
first demonstrate that single-cell Variational Inference (scVI) [43] a deep generative model
we previously developed for probabilistic representation of scRNA-seq data — performs well
in both harmonization and harmonization-based annotation, going beyond its previously
demonstrated capacity to correct batch effects. We then introduce single-cell ANnotation
using Variational Inference (scANVI), a new method that extends scVI and provides a prin-
cipled way to address the annotation problem probabilistically while leveraging any available
label information. Because scANVT is able to model cells with or without label information,
it belongs to the category of semi-supervised learning algorithms. This flexible framework of
semi-supervised learning can be applied to two main variants of the annotation problem. In
the first scenario, we are concerned with a single dataset in which only a subset of cells can be
confidently labeled (e.g., based on expression of marker genes) and annotations should then
be transferred to other cells, when applicable. In the second scenario, annotated datasets are
harmonized with unannotated datasets and then used to assign labels to the unannotated
cells. both scVI and scANVI are used in later chapters for harmonization and cell type
annotation tasks.

The inference procedure for both of the scVI and scANVI models relies on neural net-
works, stochastic optimization and variational inference [154, [155] and scales to large num-
bers of cells and datasets. Furthermore, both methods provide a complete probabilistic
representation of the data, which non-linearly controls not only for sample-to-sample bias
but also for other technical factors of variation such as over-dispersion, library size discrep-
ancies and zero-inflation. As such, each method provides a single probabilistic model that
underlies the harmonized gene expression values (and the cell annotations, for scANVI), and
can be used for any type of downstream hypotheses testing. We demonstrate the latter point
through a differential expression analysis on harmonized data. Furthermore, through a com-
prehensive analysis of performance in various aspects of the harmonization and annotation
problems and in various scenarios, we demonstrate that scVI and scANVI compare favorably
to current state-of-the-art methods.
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2.2 Results

In the following we demonstrate that our framework compares favorably to state-of-the-art
methods for the problems of harmonization and annotation in terms of accuracy, scalability,
and adaptability to various settings. The first part of the paper focuses on the harmo-
nization problem and covers a range of scenarios, including harmonization of datasets with
varying levels of biological overlap, handling cases where the data is governed by a contin-
uous (e.g., pseudotime) rather than discrete (cell types) form of variation, and processing
multiple (> 20) datasets. While we demonstrate that scVI performs well in these scenarios,
we also demonstrate that the latent space learned by scANVI provides a proper harmonized
representation of the input datasets — a property necessary for guaranteeing its performance
in the annotation problem.

In the second part of this manuscript we turn to the annotation problem and study its
two main settings, namely transferring labels between datasets and ab-inito labeling. In the
first setting we consider the cases of datasets with a complete or partial biological overlap and
use both experimentally- and computationally- derived labels to evaluate our performance.
In the second setting, we demonstrate how scANVI can be used effectively to annotate a
single dataset by propagating high confidence seed labels (i.e., based on marker genes) and
by leveraging a hierarchical structure of cell state annotations. Finally, we demonstrate that
the generative models inferred by scANVI and scVI can be directly applied for hypotheses
testing, using differential expression as a case study.

Joint modeling of scRNA-seq datasets

We consider a collection of scRNA-seq datasets (Figure Ellab).After using a standard
heuristic to filter the genes and generate a common (possibly large) gene set of size G
(Method), we obtain a concatenated dataset that may be represented as a matrix. Indi-
vidual entries z,, of this matrix measures the expression of gene g in cell n. Additionally,
we use the integer s, to denote the dataset of origin for each cell n. Finally, a subset of the
cells may be associated with a cell state annotation ¢,, which can describe either discrete
cell types or hierarchical cell types. More complex structures over labels such as gradients
are left as a future research direction.
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Figure 2.1: Harmonization and annotation of scRNA-seq datasets with generative models

Harmonization and annotation of scRNA-seq datasets with generative models.

(a) Functional overview of the methods proposed in this manuscript. (b) Schematic diagram of
the variational inference procedure in both of the scVI and scANVI models. We show the order in
which random variables in the generative model are sampled and how these variables can be used

to derive biological insights. (¢) The graphical models of scVI and scANVI. Vertices with black
edges represent variables in both scVI and scANVI, and vertices with red edges are unique to
scANVI. Shaded vertices represent observed random variables. Semi-shaded vertices represent
variables that can be either observed or random. Empty vertices represent latent random
variables. Edges signify conditional dependency. Rectangles (“plates”) represent independent
replication. The complete model specification and definition of internal variables is provided in
the Method
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Figure 2.2: Schematic of the data harmonization problem

Schematic of the data harmonization problem
We are provided with two datasets (orange and blue), each consisting of two cell types (red and
green). Our evaluation for the harmonization problem consists of two objectives: (1) mixing the
two datasets well and (2) retaining the original structure in each dataset. Scenario 1 (top) is the
case of under correction where objective (2) is achieved while objective (1) is not. Scenario 2
(middle) is the case of over correction where objective (1) is improved while objective (2) becomes
worse. The bottom panel shows the desired scenario of mixing the datasets well while retaining
the biological signal.
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Since the problem of data harmonization of single-cell transcriptomics is difficult and
can potentially lead to over-correction (Figure @g) [156], we propose a fully-generative
method as a robust and principled approach to address it. In our previous work [43], we
built single-cell Variational Inference (scVI), a deep generative model where the expression
level z,, is zero-inflated negative binomial (ZINB) when conditioned on the dataset iden-
tifier (s,), and two additional latent random variables. The first, which we denote by [,,,
is a one-dimensional random variable accounting for the variation in capture efficiency and
sequencing depth. In practice, we noticed that this random variable is highly correlated to
the library size [43]. The second, which we denote as z,, is a low dimensional random vector
that represents the remaining variability (Figure 2.1{(b)). This vector is expected to reflect
biological differences between cells, and can be effectively used for visualization, clustering,
pseudotime inference and other tasks. Since the scVI model explicitly conditions on the
dataset identifier (in the sense that it learns a conditional distribution, see Method), it
provides an effective way of controlling for technical sample-to-sample variability. However,
scVI is unsupervised and does not make use of the available annotations ¢,, which can fur-
ther guide the inference of an informative latent representation z,. To this end, we present
a more refined hierarchical structure for z,. We draw z,, as a mixture conditioned on the cell
annotation ¢, and another latent variable u,,, accounting for further biological variability
within a cell type (Method). We name the resulting approach single-cell ANnotation using
Variational Inference (scANVI).

The variables z,, inferred either with scVI or scANVI, provide an embedding of all cells
in a single, joint latent space. Since this latent space is inferred while controlling for the
dataset of origin (s,), it inherently provides a way to address the harmonization problem.
The annotation of unlabeled cells can therefore be conducted with scVI using their proxim-
ity to annotated cells in the joint latent space (e.g., using majority vote over the k-nearest
neighbors). The scANVI model provides a more principled way to annotate cells, namely
through a Bayesian semi-supervised approach. Once fitted, the model is able to provide
posterior estimates for the unobserved cell state c,, which can be particularly useful when
labels cannot be entirely trusted. Because the marginal distribution p(z,,, ¢, | s,) if ¢, ob-
served (resp. p(,, | s,) otherwise) s not amenable to exact Bayesian computation, posterior
inference is intractable. Consequently, we use variational inference parameterized by neural
networks to approximate the posterior distribution [154] (Method).
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Figure 2.3: Robustness analysis for harmonization of the pair of datasets MarrowMT-10x /
MarrowMT-ss2 with scVI

Robustness analysis for harmonization of the pair of datasets MarrowMT-10x /
MarrowMT-ss2 with scVI. (a — ¢) We augment the number of hidden layers in the neural
network f, and track across n = 5 random initializations for the batch entropy mixing (a),
the held-out log likelihood (b) and the weighted accuracy of a nearest neighbor classifier on
the latent space (¢). (d — f) We increase the number of dimensions for the latent variable z
and track across n = 5 random initialization the batch entropy mixing (d), the held-out log
likelihood (e) and the weighted accuracy of a nearest neighbor classifier on the latent space

(f)-
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Notably, scANVI and scVI both have a certain number of hyperparameters. In the fol-
lowing evaluations, conducted on different datasets and different scenarios, we use the exact
same set of hyperparameters in order to demonstrate that our methods can be applied with a
minimal requirement of hyperparameter tuning (Method). We provide a robustness study
for hyperparameters in the context of harmonization in Figure @

Datasets

We apply our method on datasets generated by a range of technologies (10x Chromium [45,
158], plate-based Smart-Seq2 [165], Fluidigm C1 [22], MARS-Seq [166], inDrop [24] and
CEL-Seq2 [167]), spanning different numbers of cells (from a few thousand to over a hundred
thousand cells), and originating from various tissues (mouse bone marrow, human peripheral
mononuclear blood cells [PBMCs|. human pancreas, human and mouse brain). Datasets are
listed and referenced in Table ﬁ

Harmonizing pairs of datasets with a discrete population structure

We conducted a comparative study of harmonization algorithms on four different instances,
each consisting of a pair of datasets. The first pair (PBMC-CITE [90], PBMC-8K [15§])
represents the simplest case, in which the two datasets come from very similar biological
settings (i.e., PBMCs) and are generated by the same technology (i.e., 10x) but in different
labs (i.e., akin to batch correction). A second scenario is that of similar tissue but different
technologies, which we expect to be more challenging as each technology comes with its own
characteristics and biases [16§]. For instance, some methods (10x, CEL-Seq2) profile the end
of the transcript and use Unique Molecular Identifier (UMI) to mitigate inflation in counting,
whereas others (e.g., most applications of Smart-Seq2) consider the full length of the tran-
script without controlling for this potential bias. Additionally, some protocols (e.g., Smart-
Seq2) tend to have higher sensitivity and capture more genes per cell compared to others.
Finally, studies using droplet based protocols tend to produce much larger numbers of cells
compared to plate-based methods. We explore three such cases, including a bone marrow 10x
and Smart-Seq2 pair from the Tabula Muris project (MarrowTM-10x, MarrowTM-ss2 [141]),
a pancreas inDrop and CEL-Seq2 pair (Pancreas-InDrop, Pancreas-CEL-Seq2 [159]), and a

dentate gyrus 10x and Fluidigm C1 pair (DentateGyrus-10x, DentateGyrus-C1 [161]).

Successful harmonization should satisfy two somewhat opposing criteria (Figure )
On the one hand, cells from the different datasets should be well mixed; namely, the set of
k-nearest neighbors (kNN) around any given cell (computed e.g., using euclidean distance
in the harmonized latent space) should be balanced across the different datasets. For a fixed
value of k, this property can be evaluated using the entropy of batch mixing [144], which is
akin to evaluating a simple k-nearest neighbors classifier for the batch identifier (Method).



CHAPTER 2. PROBABILISTIC HARMONIZATION AND ANNOTATION OF
SINGLE-CELL TRANSCRIPTOMICS DATA WITH DEEP GENERATIVE MODELS 51

Briefly, the entropy of batch mixing is the average negative entropy of cell type proportion
of the k-nearest-neighbors of each cell in the harmonized latent space. Higher value for this
metric indicates that the harmonized latent space shows strong mixing: the neighbors of each
cell is composed of cells from different batches. While this property is important, it is not
sufficient, since it can be achieved by simply randomizing the data. Therefore, in our evalu-
ation we also consider the extent to which the harmonized data retains the original structure
observed with each dataset taken in isolation. Here, we expect that the set of k-nearest
neighbors of any given cell in its original dataset should remain sufficiently close to that cell
after harmonization. We evaluate this property using a measure we call k-nearest neighbors
purity (Method), computed as the average percent overlap of the k-nearest-neighbors of
each cell before and after harmonization. This metric takes value between 0 and 1 and higher
values indicate better retainment of structure. This criteria is important, but is maximized
by a trivial approach of simply concatenating the latent spaces. Of course, this will result
in poor performance with respect to our first measure. Our evaluation therefore relies on
both types of measures, namely mixing of data sets and retainment of the original structure.
Since our results depend on the neighborhood size k, we consider a range of values - from a
high resolution (k = 10) to a coarse (k = 500) view of the data.
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Dataset Name Tech. n cells Description Ref.

PBMC-8K 10x 8,381 peripheral blood mononuclear cells [158]
(PBMCs) from a healthy donors; la-
bels extracted from [[157]

PBMC-CITE 10x 7,667 PBMCs obtained from CITE-seq; [90]
labels generated manually by in-
spection of protein marker level on
Seurat clusters

PBMC-68K 10x 68,579 fresh PBMCs collected from healthy — [45]

PBMC-Sorted 10x 94,655 dB%{al(()il:puriﬁed PBMCs collected [45]
from the same donor as PBMC68K

MarrowTM-10x 10x 4,112 Mouse bone marrow cells collected [141]
from two female mice

MarrowTM-ss2 Smart- 5,351 FACS sorted cells (B cells, T cells, [141]

seq2 granulocytes and Kit (4), Sca-1
(+) and Lin (-) hematopoietic stem
cells) from 3 male and 2 female
mice,

Pancreas-InDrop inDrop 8,569 Human Pancreas [159]

Pancreas- CEL-Seq2 2,449 Human Pancreas [160]

CELSeq2

DentateGyrus-10x | 10x 5,454 Mouse Dentate Gyrus [161]

DentateGyrus-C1 | Fluid. C1 2,303 Mouse Dentate Gyrus [161]

CORTEX 10x 160,796 Mouse Nervous System 48]

HEMATO-Tusi inDrop 4,016 Hematopoeitic Progenitor Mouse [162]

HEMATO-Paul MARS-seq 2,730 Elgglsatopoeitic Progenitor Mouse [163]

SCANORAMA Mixture 105,476 Eggban cells from 26 diverse scRNA-  [150]
seq experiments across 9 different
technologies

SN-human 10x 10,000 Subsampled brain cells from human [149]
Substantia Nigra

SN-mouse Drop-seq 10,000 Subsampled Brain cells from mouse

List of dataset used in this paper. Note that for the PBMC-Sorted 11 cell types were collected

Substantia Nigra [164]

Table 2.1: List of datasets used in this paper

according to the paper but only 10 are available from the 10x website [15§].
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Figure 2.4: Visualization of the benchmark PBMC-8K / PBMC-CITE
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Figure 2.8: Benchmarking of scRNA-seq harmonization algorithms

Each row is a different dataset. Each column is a metric. (a) k-nearest neighbors purity that
ranges from 0 to 1, with higher values meaning better preservation of neighbor structure in the
individual datasets after harmonization. (b) Entropy of batch mixing where higher values means
that the cells from different datasets are well-mixed. (¢) The trade-off between the kNN purity
and entropy of batch mixing for a fixed K = 150. Methods on the top right corner have better

performances. (d) The trade-off between entropy of batch mixing and the preservation of
biological information using an alternative unsupervised statistic k-means clustering preservation.
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We compare scVI to several methods, including MNN [144], Seurat Alignment [33],
ComBat [146], Harmony [169], Scanorama [150] and principal component analysis (PCA).
In addition, and in order to compare our methods to unpaired data integration approaches
based on generative adversarial networks [170], we also tested MAGAN [171]. However,
even after manual tuning of the learning rate hyperparameter, the input datasets remain
largely unmixed (data not shown). This might be due to the fact that MAGAN was not
directly applied to harmonize pairs of scRNA-seq datasets and need more tuning to be ap-
plicable in that context. For each algorithm and pair of datasets, we report embeddings
computed via a Uniform Manifold Approximation and Projection (UMAP) [172] ( Fig-
ure - R.7) as well as quantitative evaluation metrics (Figure R.§). Overall, we observed
that scVI compares favorably to the other methods in terms of retainment of the original
structure (Figure (a)) and performs well in terms of mixing (Figure @(b)) for a wide
range of neighborhood sizes and across all dataset pairs. The trade-off of these two aspects of
harmonization for a fixed k is shown in Figure 2.8(c), and again scVI and scANVI performs
favorably and show up on the top right corner of the scatter plot. scANVI performs slightly
better than scVI. Furthermore, because the conservation of k-nearest neighbors might be
more indicative of a local stability of the algorithm and misses the clustering aspect of the
data, we also quantified the conservation of cluster assignments. Towards this end, we used
the adjusted Rand index to compare the agreement of a k-means clustering algorithm, before
and after harmonization (Figure 2.8(d)). Reassuringly, our positive results for preservation
of the output of a clustering algorithm indicates that scVI and scANVI are also stable with
regards to more global aspects of the data.

While scANVI was designed for the problem of cell state annotation, we also wanted to
evaluate its ability to harmonize datasets, which can be seen as a prerequisite. To evaluate
this, we consider each dataset pair twice, each time using labels from one of the datasets
(exploiting the semi-supervision framework of scANVI) and leaving the other one unlabeled.
Reassuringly, we found that scANVI is capable of effectively harmonizing the datasets, with
a similar performance to that of scVI in terms of entropy of batch mixing and retainment of
the original structure (Figure @) We further explore the performance of scANVTI in the
annotation problem in the subsequent sections.

Harmonizing datasets with a different composition of cell types

One of the primary challenges of the harmonization problem is handling cases in which the
cell types present in the input datasets only partially overlap or do no overlap at all. Since
this is a plausible scenario in many applications, it is important to account for it and avoid
over-normalizing or “forcing” distinct cell populations onto each other. To evaluate this,
we performed several stress tests in which we artificially manipulated the composition of
cell types in the input datasets prior to harmonization. As our benchmark method we use
Seurat Alignment, which performed better than the remaining benchmark methods in our
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first round of evaluation (Figure )
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Figure 2.9: Harmonizing datasets with different cellular composition

(a — d) show the case when no cell type is shared. PBMC-8K contains all cells other than cell
type ¢o while PBMC-CITE contains only cell type ¢y. (a —b) UMAP visualization for the case
where ¢ corresponds to natural killer cells. (¢ — d) entropy of batch mixing and k-nearest
neighbors purity, aggregating the six experiments (setting co to a different cell type in each
experiment). (e — i) show the case when cell type ¢g is removed PBMC-8K but not from
PBMC-CITE. (e — f) UMAP visualization for the case where ¢y corresponds to CD4+ T cells.
(g) entropy of batch mixing for the removed cell type. (h) entropy of batch mixing for the
remaining cell types. (i) k-nearest neighbors purity, aggregating all 6 experiments. Red arrows
indicate the desired direction for each performance measure (e.g., low batch entropy is desirable
in (d)). The boxplots are standard Tukey boxplots where the box is delineated by the first and
third quartile and the whisker lines are the first and third quartile plus minus 1.5 times the box
height. The dots are outliers that fall above or below the whisker lines.
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PBMC-8K PBMC-CITE

cell-type proportion proportion
NK cells 0.036 0.178
CDS8 T cells 0.119 0.091
B cells 0.133 0.104
FCGR3A+ 0.028 0.029
Monocytes

CD14+

Monocytes 0.186 0.159
Ch4 T 0.421 0.436
Dendritic Cells 0.026 0
Megakaryocytes 0.008 0
Other 0.043 0.004

Table 2.2: Composition of cell-types in the PBMC-8K and the PBMC-CITE dataset

As a case study, we used a pair of PBMC datasets (PBMC-CITE [90], PBMC-8K [158])
that initially contained a similar composition of immune cell types ( Table ) We were
first interested in the case of no biological overlap (Figure a-d). To test this, for a given
cell type cg (e.g., natural killer cells), we only keep cells of this type in the PBMC-CITE
dataset and remove all cells of this type from the PBMC-8K dataset. In Figure @a—b, we
show an example of UMAP visualization of the harmonized data, with natural killer cells
as the left out cell type cy. Evidently, when harmonizing the two perturbed datasets with
scVI, the natural killer cells appear as a separate cluster and are not wrongly mixed with
cells of different types from the other dataset. Conversely, we see a larger extent of mixing
in the latent space inferred by Seurat Alignment. A more formal evaluation is provided in
Figure c-d, which presents our harmonization performance metrics for each cell type
averaged across all perturbations (in each perturbation, ¢y is set to a different cell type). We
also included scANVI with the true number of cell types (C' = 6) in this analysis, using the
cell labels from the PBMC-CITE dataset.

Under the ideal scenario of a successful harmonization, we expect both a low entropy of
batch mixing (since the datasets do not overlap), and retainment of the original structure.
Evidently, both scVI and scANVI exhibit a consistently low level of batch mixing that is
better or comparable to that of Seurat Alignment, while retaining the original structure
more accurately.

As an additional scenario, we investigated the case where the input datasets contain a
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similar set of cell types, with the exception of one cell type that appears in only one of the
datasets. To simulate this, for a given cell type cq, we removed cells of this type from the
PBMC-8K dataset, and then harmonize the remaining cells with the unaltered PBMC-CITE
(which still contains ¢g). We show an example of UMAP visualization in Figure R.9e-f,
removing CD4+ T cells from the PBMC-8K dataset. Evidently, in the scVI latent space,
the PBMC-CITE “unique” CD4+ T cell population is not wrongly mixed with cells from the
perturbed PBMC-8K dataset, but rather appears as a distinct cluster. For a more formal
analysis, Figure @g—i shows the harmonization statistics for perturbing the six major cell
types present in the PBMC datasets. As above, we also evaluated scANVI in this context,
using the labels from the unperturbed (PBMC-CITE) dataset.

Figure @(g) shows that the entropy of batch mixing from the “unique” population
(averaging over all six perturbations) is low in all three methods (scVI, scANVI and Seurat
Alignment), with a slight advantage for scVI and scANVI. Figure @h-i shows the harmo-
nization statistics for each population, averaging over all shared cell types between the two
datasets. Evidently, for the populations that are indeed common to the two datasets, scVI
and scANVI are capable of mixing them properly, while preserving the original structure,
comparing favorably to Seurat Alignment on both measures. Overall, the results of this
analysis demonstrate that scVI and scANVI are capable of harmonizing datasets with very
different compositions, while not forcing erroneous mixing. These results are consistent with
the design of scVI and scANVI, which aim to maximize the likelihood of a joint generative
model, without making a priori assumptions about the similarity in the composition of the
input datasets.
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Figure 2.10: Supplementary study of harmonizing datasets with different cellular composi-
tion
Supplementary study of harmonizing datasets with different cellular composition.

We show here the case where each of the two datasets has a unique cell types and share all the
others. For each box plot, we report over all the possible combinations of left-out cell types. (a)
Entropy of batch mixing for the unique population (lower is better). (b) k-nearest neighbor
purity (unique and non-unique; higher is better). (¢) Entropy of batch mixing for the non-unique
populations (higher is better). The boxplots are standard Tukey boxplots where the box is
delineated by the first and third quartile and the whisker lines are the first and third quartile plus
minus 1.5 times the box height. The dots are outliers that fall above or below the whisker lines.
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In a similar but more complex experiment, we also study the case when the two datasets
both have their own unique cell types but also share several common cell types. Populations
unique to each dataset have low mixing (Figure 2.10(a)), especially with scVI and scANVI.
Conversely, the shared populations have a substantially higher mixing rate (Figure 2.10(c)).
Specifically, scANVI and scVI both mix shared populations better than Seurat, with a better
overall performance for scANVI. Finally, the preservation of original structure is higher scVI
and scANVI when compared to Seurat across all cell types, especially for B cells, NK cells
and FCGR3A™ Monocytes (Figure @(b)) Overall, these results demonstrate that our
methods do not tend to force wrong alignment of non-overlapping parts of the input datasets.

Harmonizing continuous trajectories

While so far we considered datasets that have a clear stratification of cells into discrete
sub-populations, a conceptually more challenging case is harmonizing datasets in which the
major source of variation forms a continuum, which inherently calls for accuracy at a higher
level of resolution.
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Figure 2.11: Follow-up analysis on continuous trajectory harmonization with scANVI

Follow-up analysis on continuous trajectory harmonization with scANVI
(a — b) Continuous trajectory obtained by the Seurat Alignment procedure for the HEMATO-Tusi
and the HEMATO-Paul datasets. (¢ — d) Continuous trajectory obtained by the scANVT using
the Tusi cell type labels for semi-supervision. (e — f) Continuous trajectory obtained by the
scANVI using the Paul cluster labels for semi-supervision. All locations for scatter plots are
computed via UMAP in their respective latent space.
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Figure 2.12: Harmonizing developmental trajectories

Harmonizing developmental trajectories
(a — b) UMAP visualization of the scVI latent space, with cells colored by the original labels from
either the HEMATO-Paul (a) or HEMATO-Tusi (b) studies. The cells from the other dataset are
colored in gray. (c¢) Entropy of batch mixing along 20 bins of the HEMATO-Tusi cells, ordered by
the potential of each cell. Potential is a pseudotime measure that describes the differentiation
state of a cell using the population balance analysis algorithm (center: common myeloid
progenitors; moving left: erythrocyte branch; moving right: granulocyte branch). (d) k-nearest
neighbors purity for scVI, Seurat, and scANVI. (e) Expression of marker genes that help
determine the identity of batch-unique cells.
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To explore this, we use a pair of datasets that provides a_snapshot of hematopoiesis
in mice (HEMATO-Tusi [162], HEMATO-Paul [163]; Figure @I; These datasets con-
sist of cells along the transition from common myeloid progenitor cells (Figure 2.12a-b;
middle) through two primary differentiation trajectories myeloblast (top) and erythroblast-
megakaryocyte (bottom). Notably, the HEMATO-Tusi dataset contains cells that appear
to be more terminally differentiated, which are located at the extremes of the two primary
branches. This can be discerned by the expression of marker genes (Figure @(e)) For
instance the HEMATO-Tusi unique erythroid cell population expresses Hba-a2 (hemoglobin
subunit) and Alas2 (erythroid-specific mitochondrial 5-aminolevulinate synthase) that are
known to be present in reticulocytes [173, [174]. At the other end, the granulocyte subset
that is captured only by HEMATO-Tusi expresses Itgam and S100a8. S100a8 is a neutrophil
specific gene predicted by Nano-dissection [[175] and is associated with GO processes such
as leukocyte migration associated with inflammation and neutrophil aggregation. Itgam is
not expressed in granulocyte-monocyte progenitor cells but is highly expressed in mature
monocytes, mature eosinophils and macrophages [176]. We therefore do not expect mixing
to take place along the entire trajectory. To account for this, we evaluated the extent of
batch entropy mixing at different points along the harmonized developmental trajectory. As
expected, we find that in most areas of the trajectory the two datasets are well mixed, while
at the extremes, the entropy reduces significantly, using either scVI or Seurat Alignment
(Figure 2.12(c)). Overall, we observe that scVI compares well in terms of both mixing the
differentiation trajectories in each dataset and preserving their original, continuous, structure
(Figure R.12a-d).

To validate scANVT in this context as well, we provided it with the categorical labels of
cells along the two developmental trajectories, indicating their cell state (Figure R.12c-d
and Figure ﬂ) Even though this labeling scheme does not explicitly account for the
ordering between states, we observe that scANVT is capable of mixing the two datasets, while
retaining their original structure, achieving a level of accuracy comparable to that of scVI
and better than that of Seurat Alignment. We also test the effect of low quality data in this
example where cell types are not clearly demarcated. We observe consistent results, in terms
of relative performance between methods, for decreasing rates of sampling in Figure 2.13.

Harmonizing datasets across species

Another more challenging data harmonization scenario is when the two datasets come from
different species. Although species share homologous genes, more dataset specific expres-
sion patterns are expected in across-species comparison. We harmonized two datasets from
mouse [164] and human [149] Substantia Niagra after mapping homologous genes using
the Informatics Web Site [177]. We visualized the UMAP of the harmonized latent space
by scVI and Seurat Alignment (Figure 2.14/(a)). Both methods perform well in terms of
preserving the cluster structure in the original mouse dataset, as well as mixing the cells
from different species. We compare the different harmonization methods more systemati-
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Figure 2.13: Evaluation of harmonization metric when data quality is corrupted

Evaluation of harmonization metric when data quality is corrupted
Average kNN purity by scVI, scANVI and Seurat Alignment when lower quality data is simulated
by downsampling to 10-90% of the original transcript counts. 10% of the reads are removed from
the dataset at each step, and the change in average kNN Purity score is shown on the y-axis.

cally using the kNN purity and entropy of batch mixing (Figure (b)) In this test, we
find consistently superior performance of scVI and scANVI.

Rapid integration of multiple datasets

To demonstrate the scalability of our framework in the context of harmonizing multiple (and
possibly large) dataset, we ran scVI to integrate a cohort of 26 datasets spanning 105,476
cells from multiple tissues and technologies, which was made available by the authors of
Scanorama (a method based on truncated singular value decomposition followed by nearest
neighbor matching []) Using the hardware specified in the original paper [@] (Intel
Xeon E5-2650v3 CPU limited to 10 cores with 384 GB of RAM), Seurat Alignment and MNN
required over 24 hours, while Scanorama completed its run in 20 minutes. Using a simpler
configuration (eight-core Intel i7-6820HQ CPU with 32 GB RAM) along with one NVIDIA
Tesla K80 GPU (GK210GL; addressing 24 GB RAM), we found that scVI integrates all
datasets and learns a common embedding in less than 50 minutes. This running time is
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Figure 2.14: Evaluation of harmonization metrics in cross-species comparison

Evaluation of harmonization metrics in cross-species comparison. The harmonization
performance of scVI and scANVI on datasets from human and mouse Substantia Nigra.
(a) shows the distribution of mouse cell clusters and species origin on scVI and Seurat
alignment latent space visualized by UMAP. The mouse cell cluster ids are provided by the
original publication. (b) shows kNN purity and Batch Entropy Mixing of different methods
on the cross species comparison as a function of the K-Nearest Neighborhood size.

competitive considering the reduced memory availability and the increased complexity of
our model, compared to that of Scanorama. Notably, all the downstream analyses, such as
annotation, differential expression or visualization can be operated by accessing the latent
space or via forward passes through the neural networks. Since these access operations can
be conducted very efficiently [43], the dominant factor, on which we focused our run time
analysis, is the time required for model fitting. Considering the results, the latent space of
scVI recapitulates well the major tissues and cell types (Figure 2.15), and the position of
cells in the latent space provides an effective predictor for the cell type label (Figure 2.15
and Method).

We also evaluated the runtime of scVI and scANVI on the four smaller dataset pairs
we used for benchmarking. We report this metric as a function of the size of the dataset,
and compared it to other models used in this paper. The runtime of scVI and scANVI
increases as the number of genes increases (Appendix Table @), but depends largely on
the computational resources available at the time, and scales sublinearly. It is thus feasible
to run scVI and scANVI with a much larger geneset. However, using more genes does not
guarantee better performance, as performance decreases when the number of genes becomes
comparable to the number of cells [178].
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Figure 2.15: Large-scale data integration with scVI

Large-scale data integration with scVI.
(a —b) UMAP visualization of the scVI latent space colored by datasets (a) and by cell types (b).
(c) accuracy of a nearest neighbor classifier based on scVI latent space

Transferring cell type annotations between datasets

We next turned to evaluate scVI and scANVTI in the context of harmonization-based anno-
tation. Here, we test the extent to which annotations from a previously annotated dataset
can be used to automatically derive annotations in a new unannotated dataset. For scVI
and Seurat Alignment, we derive the annotations by first harmonizing the input datasets
and then running a k-nearest neighbors classifier (setting k& to 10) on the joint latent space,
using the annotated cells to assign labels to the unannotated ones. Conversely, scANVI
harmonizes the input datasets while using any amount of available labels. The prediction of
unobserved labels is then conducted using the approximate posterior assignments gg(c | )
of cell types, directly derived from the model (Method). An alternative approach that we
benchmark against was taken by scmap-cluster [65]. scmap directly builds a classifier based
on the labeled cells (instead of performing harmonization first) and then applies this classifier
to the unlabeled cells. Finally, we also applied the domain adaptation method Correlation
Alignment for Unsupervised Domain Adaptation (CORAL, []) This method was not



CHAPTER 2. PROBABILISTIC HARMONIZATION AND ANNOTATION OF
SINGLE-CELL TRANSCRIPTOMICS DATA WITH DEEP GENERATIVE MODELS 70

Dentate Gyrus MarrowTM
ngenes 733 1,527 3,146 6,100 10,665 ngenes 876 1,731 3,407 6,546 11,224
Seurat 13.7 20.7 26.5 46.0 78.7 Seurat 21.9 34.5 424 71.6 123.4
PCA 1.6 1.6 1.7 1.8 1.7 PCA 2.0 2.0 2.0 2.0 2.1
scVI 223.8 2419 2504 2684  281.2 scVI 289.4 290.5 298.0 305.1 419.6
scANVI1 126.9 1374 1589 169.1 2754 scANVI1 159.5 151.2 162.2 1785  236.7
scANVI2 59.6  66.2 76.2 81.3 130.6 scANVI2 | 1153 129.5 1278 143.0 1875
SCMAP 52.1 51.6 53.1 66.7 69.6 SCMAP 748 785 82.5 84.9 134.1
MNN 154.7 2739 5914 1141.6 2060.3 MNN 410.6  769.1 14249 2471.2 4082.2
Combat 11.4 7.8 26.2 33.2 52.7 Combat 6.3 11.0 214 44.9 100.6
scanorama | 50.3  29.1 37.5 61.7 37.8 scanorama | 48.0  50.9 78.9 66.2 105.5
Harmony 13.0 6.2 11.1 10.5 6.5 Harmony 20.6  20.3 21.0 20.9 27.8
PBMCSKCITE Pancreas

ngenes 664 1309 2699 5623 10352 ngenes 688 1,346 2,674 5,326 10,481
Seurat 36.8  63.0 67.2 111.6  186.0 Seurat 23.3 335 38.8 61.9 109.1
PCA 3.3 3.1 3.0 3.0 3.2 PCA 2.2 2.2 2.3 2.3 2.2
scVI 409.0 441.0 421.3 458.6  498.7 scVI 324.6 3327 340.6 3504  346.9
scANVI1 208.6 298.5  230.2 2549 293.5 scANVI1 211.4 210.0 2439 239.1 260.6
scANVI2 | 182.0 1728 2450 2145 2353 scANVI2 | 182.0 172.8 245.0 2145  235.5
SCMAP 48.8 509 49.1 56.3 64.5 SCMAP 75.9  73.0 75.5 78.3 87.0
MNN 866.4 1412.1 1547.8 4915.6 8644.6 MNN 211.2 436.5 721.2 1335.2 2790.0
Combat 12.6 11.9 17.1 36.9 61.4 Combat 14.3 15.0 27.2 37.0 66.8
scanorama | 39.5 49.9 48.1 51.8 58.6 scanorama | 52.7  54.2 55.1 58.6 60.0
Harmony 11.4 11.5 10.6 12.9 13.3 Harmony 249 254 25.3 25.7 25.7

Table 2.3: Runtime in seconds for all the algorithms considered in this study.

initially developed for single-cell analysis but is an insightful benchmark from the machine
learning literature.

We start by exploring the four dataset pairs in Figure @, which have been annotated
in their respective studies. In each experiment, we “hide” the cell type annotations from one
dataset and transfer the second dataset labels to the first one. As a measure of performance,
we report the weighted accuracy, which is the percent of cells that were correctly assigned to
their correct (hidden) label, averaging over all labels (Method). Importantly, the annota-
tions in this first set of case studies were derived computationally. For example, by first clus-
tering the cells, looking for marker genes expressed by each cluster and then assigning labels
to the clusters accordingly. This level of annotation therefore makes the prediction problem
relatively easy, and indeed, while we find that overall scANVI predicts unobserved labels
more accurately, the differences between the methods are mild (Figures 2.16 and )
Notably, CORAL achieves overall competitive performance except when transferring labels
on the MarrowTM pairs, from 10x to Smart-Seq2. In this specific instance, CORAL maps
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Figure 2.16: Annotation results for all four dataset pairs (boxplot)

Annotation results for all four dataset pairs.

PBMC-8K / PBMC-cite (a — b), MarrowMT-10X / MarrowMT-SS2 (¢ — d), Pancreas
InDrop-CELSeq2 (e — f) and Dentate Gyrus 10X / Fluidigm C1 (g — h). Accuracies for
transferring annotations from one dataset to another from a k-nearest neighbors classifier on
Seurat Alignment, and scVI latent space, scANVI, SCMAP and CORAL classifier are shown. The
aggregated results across for cell types that are shared between the two datasets is shown in box

plots.

most of the cells to a single label (incidentally, while this label marks cells that are tran-
scriptionally similar, it is defined by the authors as an unknown class “NA”, corresponding
to cells that cannot be confidently assigned or low quality cells according to the authors of
[]), which might be due to its linear transformation of the feature space.
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Figure 2.17: Annotation results for all four dataset pairs (bubbleplot)

Annotation results for all four dataset pairs. PBMC-8K / PBMC-cite (a — b),
MarrowMT-10X / MarrowMT-SS2 (¢ — d), Pancreas InDrop-CELSeq2 (e — f) and Dentate
Gyrus 10X / Fluidigm C1 (g — h). Accuracies for transferring annotations from one
dataset to another from a k-nearest neighbors classifier on Seurat Alignment, and scVI
latent space, scANVI, SCMAP and CORAL classifier are shown. The prediction accuracy
for each cell type that is shared between the two datasets is shown on the y-axis and the

size of the dots are proportional to the proportion of a cell type in the total population.
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Figure 2.18: Validation of cell type annotations using additional metadata

Validation of cell type annotations using additional metadata. (a-b) UMAP plot of the
scANVT latent space inferred for three harmonized datasets: PBMC-CITE, PBMC-sorted,
and PBMC-68K. Cells are colored by the dataset of origin (a) and the PBMC-sorted labels

(b). Cells from the PBMC-CITE and PBMC-68K are colored in gray in (b). (c¢) The
consistency of the harmonized PBMC-CITE mRNA data with the respective protein
measurements, evaluated by mean squared error and for different neighborhood size. Lower
values indicate higher consistency. (d) UMAP plot of the scANVT latent space, where cells
are colored by normalized protein measurement. Only PBMC-CITE cells are displayed. (e)

UMAP plot of the scANVT latent space, with cells from the PBMC-68k dataset colored
according to their original label. For clarity of presentation, only cells originally labeled as
dendritic cells or natural killer cells are colored. Evidently, a large number of these cells are

mapped to a cluster of T-cells (right side of the plot).
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Figure 2.19: Supplementary study of labels concordance. (a) k-nearest neighbors purity
of the merged latent space on the protein expression space as a function of the size of the
neighborhood. (b) Protein expression heatmap showing consistency of PBMC-Sorted labels
and protein expression in PBMC-CITE. The protein expression per cell type is based on
k-nearest neighbors imputation from the harmonized latent space obtained from scANVI
trained with pure population labels. (¢) We select individual cells that were labeled as
dendritic cells or Natural Killer cells in the original publication of the respective datasets,
and compare the raw transcript count from cells inside the scANVI T cells cluster (DC*,
NK*) against cells outside the T cells cluster (DC, NK). The expression of marker genes
suggest that DC* and NK* is more likely to be T cells and thus the scANVI latent space
is more accurate. (d) The batch entropy mixing of the three datasets in scVI, scANVI and
Seurat Alignment merged space.
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Cell Types # cells
B cells 10,085
CD14+ Monocytes 2,612
CD34+ cells 9,232
CD4 T cells 11,213
CD56 NK cells 8,385
CD8 T cells 10,209
Memory T cells 10,224
Naive CD8 T cells 11,953
Naive T cells 10,479

Regulatory T cells 10,263

Table 2.4: Cell types present in the PBMC-sorted dataset

To evaluate the accuracy of annotations without the need for computationally-derived la-
bels, we turned to the PBMC-CITE dataset which includes measurements of ten key marker
proteins in addition to mRNA [90], and the PBMC-sorted dataset [45], where cells were
collected from bead purifications for eleven cell types (Appendix Table @) We applied
scVI and scANVI to harmonize and annotate these two datasets along with a third dataset
of PBMC (PBMC-68K [45]). Our analysis contains a combined set of n = 169, 850 cells
from the three datasets altogether. To generate a realistic scenario of cell type annotation,
we only provide access to the experimentally-based labels from the PBMC-sorted dataset
(Figure 2.18a-c). As an additional benchmark, we also evaluate Seurat Alignment, which
was tested after removal of a randomly selected subset (40%) of the two large datasets
(PBMC-68K and PBMC-sorted) due to scalability issues. Considering our harmonization
performance measures (i.e., retainment of the original structure and batch mixing), we ob-
serve as before that scVI and scANVI perform similarly and compare favorably to Seurat
Alignment. We then evaluated the accuracy of assigning unobserved labels, focusing on the
PBMC-CITE dataset. Instead of using the labels from the original PBMC-CITE study as
ground truth (which were computationally derived), we used the protein data, which provides
an experimentally-derived proxy for cell state. To this end, we quantified the extent to which
the similarity between cells in the harmonized mRNA-based latent space is consistent with
their similarity at the protein level (Method). We first computed the average discrepancy
(sum of squared differences) between the protein measurements in each cell and the average
over its k-nearest neighbors. As a second measure we computed for each PBMC-CITE cell
the overlap between its k-nearest PBMC-CITE neighbors in the harmonized mRNA-based
space and in the protein space. We then report the average across all cells in Figure 2.19.
Evidently, scANVI outperformed both scVI and Seurat Alignment for a wide range of neigh-
borhood sizes, providing a representation for the mRNA data that is more consistent with
the protein data (Figure @(c))
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Cell type annotation in a single dataset based on “seed” labels

An important variant of the annotation problem lies within the context of an ab initio labeling
of a single dataset where only a subset of the cells can be confidently annotated based on
the raw data. This increasingly prevalent scenario may result from limited sensitivity of the
scRNA-seq assay, where marker genes may only be confidently observed in a small subset of
cells. One common way to address this problem is to compute some form of a distance metric
between cells (e.g., after embedding with scVI or using Seurat PCA) and then assign labels
based on proximity to annotated cells [@] To benchmark our methods, we consider two such
predictors: the first is clustering the cells and taking a majority vote inside each cluster, and
the second is taking the majority vote of the k-nearest neighbors around each unannotated
cell (k= 10). While these approaches are quite straightforward, their accuracy might suffer
when the data do not form clear clusters [], or when differences between labels are too
subtle to be captured clearly by a transcriptome-wide similarity measure. To address these
issues, scANVTI takes an alternative approach, namely learning a latent embedding that is
guided by the available labels, and then producing posterior probabilities for assigning labels
to each cell.

Partial Annotation with Marker Gene

Seed Labels for sCANVI Labels from PBMC-Sorted

Highly variable genes
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Figure 2.20: Cell type annotation in a single dataset using “seed” labeling

Cell type annotation in a single dataset using “seed” labeling. (a) discrepancies between
marker genes that can be used to confidently label cells and highly variable genes in
scRNA-seq analysis. (b —d) UMAP plot of the scVI latent space. (b) Seed cells are colored
by their annotation (using known marker genes). (¢) PBMC-sorted cell type labels from
the original study based on marker-based sorting (d) The posterior probability of each cell
being one of the four T cell subtypes obtained with scANVI.
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As a case study, we compiled a dataset consisting of several experimentally sorted and
labeled subsets of T cells from the PBMC-sorted dataset, including CD4 memory, CD4 naive,
CD4 regulatory and CDS8 naive. To make our analysis more realistic, we assume that the
labels are completely unknown to us and therefore assign each T cell to its respective subset
using marker genes (12 altogether; see Method). Notably, several important biomarkers
(CD4, CTLA4, and GITR) are detected in less than 5% of the cells. This renders their
use for annotation not straightforward. Furthermore, many of these biomarkers are sparsely
expressed to the extent that they are likely to be filtered out in the gene selection step of
most harmonization procedures (Figure 2.20(a)).
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Figure 2.21: Other methods of classifying T-cell subsets of the PBMC-Pure dataset

Other methods of classifying T-cell subsets of the PBMC-Pure dataset. Coordinates for the
scatter plots are derived from UMAP embedding based on the latent space of scANVI. (a)
Ground truth labels from the purified PBMC populations (b) k-nearest neighbors
classification labels when applied on scVI latent space from the seed set of cells (c)
k-nearest neighbors classification labels when applied on Seurat Alignment latent space (d)
k-means clustering based labels when applied to scVI latent space (¢) DBSCAN clustering
based labels when applied to scVI latent space. DBSCAN returns only one cluster but
return some cells as unclassified. (f) PhenoGraph clusters on scVI latent space
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To analyze this dataset, we first computed a signature score for each cell and for each
label (i.e., T cell subset) using the scaled raw expression values of the respective marker
genes (Method). We then designated the top 50 scoring cells in_each subset as the seed set
of cells that are confidently annotated for that subset (Figure 2.20(b)). Reassuringly, this
partial annotation is in agreement with the experimentally-derived cell type labels available
for this dataset (Figure (c)) However, this dataset does not form clear clusters,
and in particular the seed sets of cells are not well separated. Such an observation makes
clustering-based approaches potentially less precise. Indeed, using k-means clustering on the
scVI and Seurat PCA latent space, we find that 74% and 72% of the cells were assigned
with their correct label. Similar analysis with two additional popular clustering algorithms
(DBSCAN [180] and PhenoGraph [181]) further emphasizes the challenge of a cluster-based
approach on this data. Specifically, DBSCAN does not partition the data into more than one
cluster (scanning through a large number of parameter values; Method), and PhenoGraph
predicts 9 clusters and achieves an accuracy of 41% (Figure @)

Consistent with these results, the application of a k-nearest neighbors classifier resulted

in a similar level of accuracy in the Seurat PCA latent space (71%), which is slightly im-
proved when replacing it with the scVT latent space (73%; Figure ). Conversely, after
fitting the sScANVI model based on this partial labeling, the annotation posterior ¢ (c | z)
(Figure (d)) provides a substantially more accurate cell type assignment, with 84% of
cells annotated correctly.
While scANVT has been designed to handle discrete (but not continuous) labels, we hypoth-
esized that gradual transition between cell states may still be captured by the uncertainty
of label assignment. We tested it using simulated data [87] that consists of a set of “end-
point” states along with intermediary states that connect them (Method, Figure @a).
We provided labels only to end-point cells, and investigated the label assignment scores
calculated for the intermediary cells. We find that scANVI provides a range of assignment
probability values and that these values are proportional to the distance from the respective
end points (Figure 2.22b-g). Conversely, the scores provided by scmap tend to be more
extreme (Figure 2.22h-i), thus less reflecting the continuous nature of the data.
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Figure 2.22: Continuous trajectory simulated using SymSim

Continuous trajectory simulated using SymSim.

(a) Tree structure from which the cells are sampled. Each grey dot represent a cell sampled along
the trajectory. Colored dots with a black edge are treated as labeled, while the others are treated
as unlabeled. Each path simulates a continuous phenotypical variation. (b — g) The same tree
with each cell colored by the posterior probability of being assigned to a specific label. (h — 1)
Another visualization of the gradual change of posterior probability by plotting the posterior
probability of root (h) and population 3 (7). The x-axis represents the pathwise distance (paths
are defined in (a)), and the y-axis represents the probability, or confidence of the assignment.
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Cell type taxonomy and hierarchical classification with scANVI

Another subtle yet important variation of the annotation problem is when the labels are
not mutually exclusive but rather form a taxonomy of cell types or states. To effectively
annotate cells in this setting, we extended scANVI to perform hierarchical classification,
which as before we carry out from first principles, relying on probabilistic graphical models
(Method). To demonstrate this extended version, we use a dataset of the mouse nervous
system [48] that was annotated using a cell type taxonomy with several levels of granularity.
At the lowest (most granular) level, the cells are stratified into 265 cell sub-types. At the
second lowest level of granularity these 265 subtypes are grouped into 39 subsets, each
corresponding to a more coarse definition of a cell type.

We evaluate the ability of scANVI as well as the competing methods at inferring the
most granular level of labels when provided with partial “seed” annotation — namely label
information for 5 randomly selected cells per label (which accounts for an overall of 0.8%
of the cells). We first observe that Seurat PCA followed by a k-nearest neighbors classifier
provides a weighted accuracy of 23% (averaging over all cell types). While this might seem
like a low accuracy, it is in fact far from trivial since the expected weighted accuracy of a
random classifier or a constant predictor is of around 1/265 ~ 0.3%. Such low numbers are
due to the high number of labels at this highly granular scale. scVI provides a substantially
better, yet still low level of accuracy at 32%. Interestingly, when scANVI is used without
accounting for hierarchy, its performance is similar to the unsupervised scVI (at 32%), which
might result from very large number of labels that may require hyperparameter tuning (e.g.,
increasing the number of classifier training epochs. However, when we take the hierarchy of
the labels into account, the performance of scANVI increases to 37%, thus outperforming
the other methods by a significant margin. Notably, while we tested the extrapolation of
seed labeling and the hierarchical mode only in the context of a single dataset, this variation
of the scANVI model can also be directly applied in the context of multiple datasets (i.e.,
transferring hierarchical annotations between datasets).

Hypotheses testing in harmonized datasets: the case of
differential expression

With their probabilistic representation of the data, scVI and scANVTI each provide a natural
way of performing various types of hypotheses testing (Method). This is different from
other approaches [144, B3, [149, [150, B4] where the dataset alignment procedures do not
carry direct probabilistic interpretation, and the resulting harmonized data can thus not be
directly used for these purposes.
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Figure 2.23: Presentation of the simulated dataset used for differential expression bench-
marking

Presentation of the simulated dataset used for differential expression benchmarking. (a)
The tree used to sample the cells in SymSim. We sample cells from the five leaves nodes
representing five different cell types derived from the same root node. (b) UMAP of scVI
latent space colored by cell types and batch identifier (¢) UMAP of scVI latent space
without batch correction, proving that the data is indeed subject to batch effects. (d)
Entropy of batch mixing for all the algorithms (e) Weighted accuracy using a k-nearest
neighbors classifier on the latent space (f) Per cell type accuracy for the label transfer.
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Figure 2.24: Differential Expression on multiple datasets with scVI

Differential Expression on multiple datasets with scVI. (a) distribution of true log fold
change between all pairs of cell types for the simulated data. The pairs of cells are chosen
to represent different levels of distance on the tree as in Figure E(a). The pairs of
population from most distant to least distant are ‘12’, 24’ ‘23", ‘45" (b) Evaluation of
consistency with rank correlation and Kendall-Tau is shown for comparisons of multiple
pairs of cell types in the simulated data. (¢) Evaluation of consistency with the AUROC
and Kendal Tau metric is shown for comparisons of CD4 vs CD8 T cells and B cells vs
Dendritic cells on the PBMC-8K only (A), the PBMC-68k only (B) and the merged
PBMC-8K / PBMC-68K (A+B) for scVI and edgeR. Error bars are obtained by multiple
subsampling of the data to show robustness. boxplots are standard Tukey boxplots where
the box is delineated by the first and third quartile and the whisker lines are the first and
third quartile plus minus 1.5 times the box height. The dots are outliers that fall above or
below the whisker lines. (d) Mislabeling experiment in differential expression in both the
SymSim simulated datasets and in the PBMC8K and PBMC68K dataset. The top row
shows differential expression results for the correctly labeled population pair (Population 1
v.s. Population 2 in simulated dataset and CD4 T cells v.s. CD8 T cells in PBMC dataset.
The bottom row shows differential expression results for the mislabelled population pair (
Population 2 v.s. Population 3 in simulated dataset and Dendritic Cells v.s. B cells in

PBMC dataset). For all, x-axis represents the proportion of flipped labels.
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To demonstrate this, we focus on the problem of differential expression. As a first case
study, we use two of the PBMC datasets (PBMC-8K and PBMC-68K) and looked for dif-
ferentially expressed genes in two settings: comparing the B cells to dendritic cells, and
similarly for CD4+ versus CD8+ T cells. For evaluation, we used reference sets of differen-
tially expressed genes that were obtained from published bulk-level analysis of similar cell
subsets (microarrays, [182, 183], as in [43]). While this benchmark relies on real data, a
clear caveat is the lack of a well defined ground truth. To address this, we used a second
benchmark based on simulations with Symsim [87]. The simulated data consists of five sub-
populations of varying degrees of transcriptional distance, profiled in two different “batches”
of different technical quality (Method). This framework allowed us to derive an exact log
fold changes (LFC) between every pair of simulated subpopulations, which enable a more
accurate evaluation of performance (Figure 2.24 a).

In both benchmark studies, we assume that labels are only available for one of the two
input batches or datasets (in the real data we assume that PBMC-8K is the annotated one).
To apply scVI, we first harmonized the input pair of datasets and transferred labels using a
k-nearest neighbors classifier on the joint latent space (k = 10). We then consider these an-
notations (predicted and pre-labeled) as fixed and sample 100 cell pairs, each pair consisting
of one cell from each population. For each cell pair we sample gene expression values from
the variational posterior, while marginalizing over the different datasets, to compute the
probability for differential expression in a dataset-agnostic manner. Aggregating across all
selected pairs results in approximate Bayes factors that reflect the evaluated extent of differ-
ential expression (Method). Since scANVI assigns posterior probability for associating any
cell to any label, it enables a more refined scheme. Specifically, instead of sampling pairs of
cells we are sampling pairs of points in the latent space, while conditioning on the respective
label. This approach therefore does not assume a fixed label for each cell (or point in latent
space) as in the scVI scheme, but rather a distribution of possible labels thus making it
potentially more robust to mis-labeling. For reference, we also included edgeR [184] using
the same labels as scVI. Notably, edgeR was shown to perform well on scRNA-seq data [185]
and uses a log-linear model to control for technical sample-to-sample variation.

In our simulations, we considered differential expression between every possible pair
out of the five simulated subpopulations. For evaluation, we computed the Spearman and
Kendall rank correlation coefficients between the true LFC and the inferred Bayes factors
(for scVI and scANVI) or estimated LFC (for edgeR). Our results in Figure @(a) show
that with this artificial, yet more clearly defined objective, scVI was substantially more ac-
curate than edgeR and that in the harmonized data scANVI provided more exact and stable
estimates than scVI. The difficulty of each paired comparison is visualized by histograms of
the simulated LFC (Figure b).

To evaluate performance on the real data, we defined genes as differentially expressed
if the adjusted p-value in the reference bulk data (provided by [182, [183]) was under 5%.
Considering these genes as positive instances, we calculated the area under the ROC curve
(AUROC) based on rank ordering the inferred Bayes factors (for scVI and scANVI) or
p-values (for edgeR). Since the definition of positives genes required a somewhat arbitrary
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threshold, we also used a second score that evaluates the reproducibility of gene ranking (bulk
reference vs. single-cell; considering all genes), using the Kendall rank correlation coefficient
( Figure 2.24/(c)). As a reference, we look at the accuracy of differential expression analysis
in each PBMC dataset separately (using their prior annotations to define the sets of cells
we are comparing), which can be computed with scVI (as in [43]) and edgeR. Reassuringly,
we observe that the performance of scVI on the joint data is not lower than it is in either
dataset in isolation. We also find that while scVI performs moderately better than scANVI,
both methods compare favorably to edgeR in terms of accuracy.

Mislabeling of a certain proportion of cells in a dataset is a plausible scenario that may
occur in any study. An important challenge is therefore to maintain the validity of down-
stream analysis despite such “upstream”annotation errors. To evaluate robustness in this
setting, we repeated the simulation analysis, while introducing labeling errors at different
rates. Specifically, prior to evaluating differential expression between two simulated sub-
populations, we flip the labels of a certain proportion (up to 30%) of the respective cells
in the annotated batch. We then proceed as before and assign labels to cells in the unan-
notated batch by scVI or scANVI, followed by differential expression analysis. Our results
(Figure @(d)) suggest that scANVI is clearly more robust to this type of mislabeling
than scVI (or edgeR, applied on the scVI- derived labels). Repeating the same analysis on
the PBMC data (where the differential expression ground truth is obviously not available),
we observe similar level of robustness in scANVI, albeit with not much difference compared
to scVI and edgeR.

Overall, our results demonstrate that both scVI and scANVI are capable of conducting
differential expression effectively, while working directly on a harmonized dataset. Fur-
thermore, we observe that both methods and especially scANVI are robust to mislabeling,
providing further motivation for explicitly modeling label uncertainty.

2.3 Method

scANVI: an extension to scVI for semi-supervised annotation

scVI is a hierarchical Bayesian model [[186] for single-cell RNA sequencing data with con-
ditional distributions parametrized by neural networks. The graphical model of scVI (Fig-
ure (c)) is designed to disentangle technical signal (i.e., library size discrepancies, batch
effects) and biological signal. We propose in this manuscript an extension of the scVI model
to include information about cell types in the generative model. We name this extension
scANVT (single cell ANnotation using Variational Inference).

The generative model for scANVI

In our generative model, we assume each cell n is an independent realization of the following
generative process. Let K be the number of datasets and C' be the number of cell types
across all datasets (including cell types that are not observed). Let ¢ describe the expected
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proportion of cells for each cell type. As in general this information is not available to the
user, we consistently use a non-informative prior ¢ = /¢ in the manuscript. Although some
prior information about proportions of cell type is generally accessible, we observe that using
the non-informative prior allows us to recover the correct proportion of cells. In addition, in
comparative studies such as disease case-control comparisons, or between tissue comparisons
of immune cells [58] we might not want to bias the estimate of cell-type proportion by prior
knowledge. All in all, adjustment of the prior ¢ is not required. Latent variable

¢, ~ Multinomial(c), (2.1)
describes the cell type of the cell n. Latent variable
u, ~ N(0,1), (2.2)

is a low-dimensional random vector describing cell n within its cell type. Conceptually,
this random variable could describe cell-cycles or sub-cell types. By combining cell type
information ¢, and random vector u,,, we create a new low-dimensional vector

Zn NN(f;(unvcn)afg<unvcn)>a (2.3)

where f! and f7 are two functions parametrized by neural networks. Let s, encode the
dataset information. Given [, € RE and [, € RY specified per dataset as in [43], latent
variable

l, ~ LogNormal(l5", "), (2.4)

w oy
encodes a cell-specific scaling factor. As the prior are adjusted per dataset, our inference
procedure will shrink the posteriors towards dataset specific values. This is particularly useful
when aligning datasets with dramatically different library size values. Let 6 € Rf encode
a gene specific inverse dispersion parameter (inferred as in [43]). Conditional distribution
Tng | Zns ln, Cn, Sy 18 conform to the one from the scVI model

Wyg ~ Gammal( f7 (2, Sn), 0,)
Yng ~ Poisson(l,,wy,)
g ~ Bernoulli(f} (2, sn))

n if h,, =0
S S (2.8)
0 otherwise

where f,, and f;, are functions parametrized by neural networks. f,, has a final softmax
layer to represent normalized expected frequencies of gene expression as in [43]. Let us note
that the resulting distribution for the counts is zero-inflated negative binomial. However, it is
straightforward using our implementation to use a negative binomial or a Poisson noise model
instead. In this model, annotation ¢, can be either observed or unobserved following [[155,
187], which is useful in our applications where some datasets would come partially labeled
or unlabeled. Only the first part of the generative model, as separated above, differs from
the original scVI formulation. This corresponds to the top part of the new representation of
the graphical model in Figure El](b)



CHAPTER 2. PROBABILISTIC HARMONIZATION AND ANNOTATION OF
SINGLE-CELL TRANSCRIPTOMICS DATA WITH DEEP GENERATIVE MODELS 87

Approximate posterior inference for scANVI

We rely on collapsed variational inference, a standard approximate Bayesian inference proce-
dure that consists in analytically integrating over some of the random variables [188] before
optimizing the parameters. As we proved in [43], we can integrate the random variables
{Wng, Yng, Png} to simplify our model at the price of a looser though tractable lower bound
(Zng | #n, ln, Sp is zero-inflated negative binomial). This procedure reduces the number of la-
tent variable and avoids the need for estimating discrete random variables, which is a harder
problem. We then use variational inference, neural networks and the stochastic gradients
variational Bayes estimator [154] to perform efficient approximate inference over the latent
variable {z,, uy, ¢n, [, }. We assume our variational distribution factorizes as:

Q@(cnu Zn, lnuun | Ty Sn) = q@(zn | xn)Q‘P(Cn | Zn)q<1>(ln | xn)qq)(un | Cn, zn) (29)

Following [155, [187], we derive two variational lower bounds: one £ in the case of ¢,
observed for pg(z,,c, | s,) and a second U in the case of ¢, non-observed for pg(z, | s,)
where O are all the parameters (neural networks and inverse-dispersion parameters). We
optimize the sum evidence lower bound (ELBO) ELBO = £ + U over the neural networks
parameters and the inverse-dispersion parameters (in a variational Bayesian inference fash-
ion). Remarkably, the approximate posterior gg(c, | z,) can be used as a classifier, assigning
cells to cell types based on the location on the latent space.

We sample from the variational posterior using the reparametrization trick [154] as well
as “mini-batches” from the dataset to compute unbiased estimate of the objective gradients’
with respect to the parameters. We use Adam [[189] as a first-order stochastic optimizer to
update the model parameters.

Choice of hyperparameters

For all harmonization tasks in this paper, we consistently use the same set of hyperparame-
ters. Each network has exactly 2 fully-connected layers, with 128 nodes each. The number
of latent dimensions is 10, the same as other algorithms for benchmarking purposes (e.g., the
number of canonical correlation vectors used in Seurat Alignment). The activation functions
between two hidden layers are all ReLU. We use a standard link function to parametrize the
distribution parameters (exponential, logarithmic or softmax). Weights for the first hidden
layer are shared between f,, and f,. We use Adam with n = 0.001 and € = 0.01. We use
deterministic warmup [190] and batch normalization [191] in order to learn an expres-
sive model. When we train scANVI, we therefore assume that the data come from a set
of Copserved + Cunobserveda POpulations, each generated by a different distribution of z, val-
ues. This set includes the Cjpservea Populations for which annotated cells are available, and
Clnobserved POpulation that accounts for cell types for which an annotation is not available to
the algorithm.
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Hierarchical classification of cells onto a cell type taxonomy

For hierarchical label propagation in scANVI, we propose a extension of the formerly pre-
sented model by modifying the variable ¢, to be a tuple where each entry denotes the label
at a given level of the hierarchy. Our approach is similar to previous work in robustness to
noisy labels [192] and hierarchical multi-labels flavors of classification problems [193]. We
extended scANVI to handle a two-level hierarchical structure for the cell types annotation
though our approach can in principle be adapted to arbitrary depths. This can in principle
be adapted to any arbitrary tree representation of cell types taxonomy, but is left for future
work. In our setting, the taxonomy needs to be hard-coded and known a priori. We do
not modify the generative model but only the structure of the variable ¢, in the variational
distribution. Notably, we formally pose:

cn = (Yn,y2) €{0,---,C} x {0,--- ,C}, (2.10)

where C' denotes the number of cell types and CY the number of cell type groups. The
parametrization of the full variational distribution g(c | 2) = ¢q(y,y? | z) must be further
defined. For this, we notice that the prior taxonomy knowledge encapsulates whether the
assignment (y9,y) = (i, 7) is biologically possible (i.e cell type i is a sub-population of group
cell type 7). We encode this biological compatibility into a parent function 7 : {0,--- , K} —
{0,---, K9} that maps a cell type to its parent in the hierarchy. We note for simplicity:

q(i, vl | 2) =qly=1i,97 =3 | 2). (2.11)

We then use two neural networks f and f, (with softmax non-linearities) to map the latent
space to the joint approximate posterior ¢(y,y? | z) with the following rules:

iy |2) = {O otherwise. (2.12)
q(yj | 2) = f7(2).

Then, we can derive the marginal probability over finer cell types classes using the chain
rule and Bayes rule:

q(i | 2) = qi | Yrir 2)a(Ym, | 2) (2.13)
q(y(ﬁm\ L:;U) (i 12) (2.14)
- Zgl(y;’(z:iyf)| x)q(%iV) (2.15)
j€c(m) !
- Zf‘(jﬂj() w2, (2.16)
j€c(mi)

where ¢(m;) denotes the set of children of node 4 children.
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Bayesian differential expression

Extending differential expression for scVI to the case of multiple batches For
each gene g and pair of cells (z,, 2,) with observed gene expression (z,,x;) and dataset
identifier (s,, sp), we can formulate two mutually exclusive hypotheses:

7-[éll = Esfff,(za, S) > ]Esfg;(zbv S) V8. HQ = Esfg)(za7 S) S Esf,g(Zb, S)’ (217)

where the expectation E; is taken with the empirical frequencies. Notably, we propose a
hypothesis testing that do not calibrate the data to one batch but will find genes that are
consistently differentially expressed. Evaluating which hypothesis is more probable amounts
to evaluating a Bayes factor [194] (Bayesian generalization of the p-value) which is expressed
as:

p(Hf | Lq, xb)
P(H3 | 0, 26)

The sign of K indicates which of H{ and Hj is more likely. Its magnitude is a significance
level and throughout the paper, we consider a Bayes factor as strong evidence in favor of a
hypothesis if |K| > 3 [195] (equivalent to an odds ratio of exp(3) ~ 20). Notably, each of
the probabilities in the likelihood ratio for K can be written as:

K =log, (2.18)

pH | 20) = 3 // Ly oyt op(8)dp(za | 2)dp(zy | @), (2.19)
s Za sRb

where p(s) designated the relative abundance of cells in batch s and all of the measures are
low-dimensional. Since we cannot in principle achieve efficient posterior sampling, the naive
Monte Carlo estimator obtained by replacing the real posterior p(z | x) by the variational
posterior ¢g(z | x) is biased. The resulting Bayes factors are therefore approximate though
yield very competitive performance, as explained in the original publication of scVI [43].
Since we assume that the cells are independently distributed, we can average the proba-
bilities for the hypotheses across a large set of randomly sampled cell pairs, one from each
subpopulation. The Bayes factor from the averaged probability will provide an estimate of
whether cells from one subpopulation tend to express g at a higher frequency.

Differential expression with scANVI In the case of scANVI, we need not rely on
specific cells since labels are given during the training. We still use the generative model but
with the following probability for p(H{ | 4, cy) where ¢, (resp. ¢p) is the first (resp. second)
cell type of interest:

p(HY | cascp) = Z/]lfg,(za,s)<f5,(zb,s)p(3)dp(za | Uq, Ca)dp(2y | up, cp)dp(uq)dp(us).  (2.20)

Notably, we draw here data from the prior distribution and not the posterior for given cells.
As a consequence, these Bayes factors can be approximated in a unbiased fashion using a
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naive Monte Carlo estimator. We noticed in the case of the real dataset that the aggregate
posterior on w might not perfectly match the prior for rare cell types. Consequently, we
replaced the prior by the aggregate posterior for all the analyses in this manuscript.

Datasets

We report an extensive list of datasets at Appendix Table El] For all UMI based datasets
we took the raw counts without any normalization as input to scVI.

Gene Selection A common practice in data harmonization is to perform gene selection
prior to harmonization. This assumption is critical when the number of genes that can
be taken into account by the algorithm is small and potentially biological signal could be
lost. scVI is however designed for large datasets which do not fall into the high-dimensional
statistics data regime [43]. Remarkably, there is no need for crude gene filtering as part
of our pipeline and we adopt it as part of this publication only for concerns of fairness in
benchmarking. For real datasets, we calculated the dispersion (variance to mean ratio) for all
genes using Seurat in each dataset and selected g = 1,000 genes with the highest dispersion
from each. The performance of scVI is not as affected by gene set and we use the same gene
selection scheme as in [B3] to ensure fairness in our comparison. We then took the union
of these gene list as input to Seurat Alignment, MNN and scANVI. One exception is the
differential expression study for which we kept the gene set (g = 3,346) to have it match the
bulk reference as in [43].

Cell type labeling for the Tabula Muris Dataset For the Tabula Muris dataset, cell
types are defined by first reducing the dimensions of the data by principal component analysis
and then performing nearest-neighbor-graph-based clustering. The labels for Smart-Seq2 and
10x data are derived independently. All cells in both dataset are labeled, but there is also a
possibility that they are mislabelled since the labels are computationally derived. Since cells
used in Smart-Seq2 are first FACS sorted into each plate, some cell types might have been
lost during the sorting process, resulting in incomplete overlap in cell types between the two
datasets.

Hierarchical cell type labeling for the mouse nervous system dataset The multi-
level labels are generated through an iterative process that is described in detail in the
original publication [48]. The clustering was performed with strict quality filters, takes
into account anatomical information and were validated at different levels using existing
scRNAseq dataset, osmFISH, RNAscope and others. The cell types taxonomy is derived
differently for each level and the details can be found in the original publication. Cell type
clusters were obtained by Louvain clustering on a multiscale k-nearest neighbors graph and
DBSCAN. The first level separates neurons and non-neuronal cells. The second level sep-
arates peripheral neuronal system from central neuronal system. The third layer separates
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anterior posterior domain, and the fourth layer is split by excitatory versus inhibitory neuro-
transmitter. At this level, all cells are divided into 39 subsets, each corresponding to a coarse
cell type definition. Then, within each subset the authors defined (N=28) enriched genes
and used linkage (correlation distance and Ward method) to construct the dendrogram.

Normalization of CITE-seq data Since we did not explicitly model the CITE-seq data
in scVI or scANVI, we normalized it by fitting a Gaussian mixture model to each individual
protein with two components. We then transformed each individual protein count as x
(z — #1342) , where iy and po designate the mean of the mixtures and ., is the positive part
of a real number.

Normalization of SmartSeq2 data For the MarrowMT-ss2 dataset, we normalized the
read counts per gene by relative transcript length (average transcript lengths of a gene
divided by average gene length over all genes), and subsequently took the integer part of
the normalized count. This is different from standard normalization procedures in that we
do not normalize by cell size because cell size normalization can be performed by scVI. And
we only keep the integer part of the counts, due to the distributional assumptions made by
scVI. The scVI model can to be extended to fit data with amplification bias, however we
have not done so for this paper and thus have to perform this normalization heuristic.

Simulation of continuous gene expression using SymSim First we simulated the
true expression matrix for a tree with 5 cell types using the function SimulateTrueCounts.
Instead of sampling cells only from the leaf populations, we uniformly sample cells along all
branches by using the parameter evf type=*“continuous” We then added noise to the data
with the function True20bservedCounts with the parameters

protocol="nonUMI", alpha_mean = 0.1, alpha_sd = 0.05,
rate_2PCR = 0.7, nPCR1 = 16,depth_mean=1e5, depth_sd=3e3

Simulation for DE benchmark using SymSim First we simulated the true expression
matrix for 20,000 cells from 5 cell types using the function SimulateTrueCounts. We then
randomly split the cells into two batches. We then added noise to the data the function
True20bservedCounts with the parameters

Batch 1: protocol="UMI", alpha_mean=0.03, alpha_sd=0.009, gene_len=gene_len,
depth_mean=5e5, depth_sd=1.5e4

Batch 2: protocol="UMI", alpha_mean=0.1, alpha_sd=0.03, gene_len=gene_len,
depth_mean=1e6, depth_sd=1.5eb5
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Algorithms for benchmarking

Seurat Alignment We applied the Seurat Alignment procedure from the R package Seu-
rat V2. The number of canonical correlation vectors is 10 for all the datasets, which is also
identical to the number of latent dimensions used for scVI and scANVI.

Seurat PCA We applied the Seurat PCA procedure from the R package Seurat V2. This
method is a simple PCA based after normalization by Seurat. Seurat PCA is used to obtain
the individual dataset latent space to evaluate the k-nearest neighbors purity for all non-scVI
based methods. The number of principal components is 10.

Matching Mutual Nearest Neighbors We used the mnnCorrect function from https:
//rdrr.io/bioc/scran/man/mnnCorrect.html with default parameters. In order to com-
pare with other methods, we applied a PCA with 10 principal components on the output of
the batch-corrected gene expression matrix.

scmap We applied the scmap-cluster procedure from the R package scmap. As the scmap
manuscript insists heavily on why the M3Drop [196] gene filtering procedure is crucial to
overcome batch effects and yield accurate mapping, we let scmap choose its default number
of genes (g = 500) with this method.

ComBat We used the R package sva with default parameters.

UMAP We used the umap class from the UMAP package with a default parameters and
spread=2.

DBSCAN We used the DBSCAN algorithm from the Python package from the python
package scikit-learn V0.19.1 and we searched for an optimal hyperparameter combination
by a grid search over eps and min_samples from the range of 0.1 — 2 and 5 — 100 re-
spectively. Although some combinations of parameters yield more than one clusters, the
smaller clusters comprise of less than 1% of the data. We then evaluated DBSCAN with
eps=1.23, min\_samples=10 and default values for all other hyper-parameters.

PhenoGraph We used the phenograph.cluster function from the Python package Pheno-
Graph 1.5.2 downloaded from https://github.com/jacoblevine/PhenoGraph with its de-
fault parameters.

CORAL We used the implementation from https://github.com/jindongwang/transferlearning/
tree/master/code/traditional/CORAL.
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MAGAN We used the implementation from https://github.com/KrishnaswamyLab/
MAGAN.

Harmony We used the implementation from https://github.com/immunogenomics/harmony.

Scanorama We used the implementation from https://github.com/brianhie/scanorama.

Evaluations metrics

Entropy of batch mixing Fix a similarity matrix for the cells and take U to be a uniform
random variable on the population of cells. Take By the empirical frequencies for the 50
nearest neighbors of cell U being a in batch b. Report the entropy of this categorical variable
and average over T' = 100 values of U.

k-nearest neighbors purity Compute two similarity matrices for cells from the first
batch, one from the latent space obtained with only cells from the first batch and the other
from the latent space obtained using both batches of cells. We always rely on the euclidean
distance on the latent space. Take the average ratio of the intersection of the k-nearest
neighbors graph from each similarity matrix over their union. Compute the same statistic
for cells from the other batch and report the average of the two.

Weighted and unweighted accuracy We evaluate the accuracy of cell type classification
algorithms by comparing the predictions to previously published labels. The unweighted
accuracy is the percentage of cells that have the correct label. The weighted accuracy
corresponds to first calculating accuracy for each cell type, and then averaging it across cell
types. The weighted accuracy assigns the same weight to each cell type and thus weighs
correct prediction of rare cell types more heavily than the unweighted accuracy. We report
the weighted accuracy throughout this manuscript.

Maximum Posterior Probability We evaluate the performance of the scANVT classifier
at transferring labels from an annotated dataset to an unannotated dataset by looking at
the maximum posterior probability for the observed classes. By default scANVI classifier
sets the number of classes to the same number of cell types in the merged dataset. In the
case of NV observed labels from the annotated dataset and one unannotated dataset (thus the
cell type label is “Unlabeled”) scANVI assumes N + 1 classes. For each cell, scANVT assigns
a posterior probability for each of the N + 1 classes. The maximum posterior probability
for the observed classes is the highest probability of a cell being assigned to one of the N
observed classes.
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Signature for sub-division of T cells in human PBMCs

Gene sets For ranking the cells, we used both positive and negative sets of genes:
« CD4 Regulatory: GITR+ CTLA4+ FOXP3+ CD25+ S100A4- CD45- CDSB-
« CD4 Naive: CCR7+ CD4+ S100A4- CD45- FOXPS3- IL2RA- CD69-
« CD4 Memory: S100A4+ CD25- FOXP3- GITR- CCR7-
o« CD8 Naive: CD8B+ CCR7+ CD4-

Signature calculus To compute the signature of a cell, we followed the normalization
procedure from [151] which consists in dividing by total numbers of UMIs, applying a
entry-wise transformation z + log(1+ 10*z) and z-score normalization for each gene. Then,
we aggregated over the genes of interest for each cell by applying the sign from the gene-set
and averaging.

2.4 Discussion

In this study, we demonstrated that scVI provides a principled approach to harmonization
of scRNA-seq data through joint probabilistic representation of multiple dataset, while ac-
counting for technical hurdles such as variable library size and limited sensitivity. We have
demonstrated that scVI compares favorably to other methods in its accuracy and that it
scales well, not only in terms of the number of cells (as in [43]) but also the number of input
datasets (as opposed to other methods that work in a pairwise fashion and therefore scale
quadratically with dataset size [150]). We have also shown that the harmonization step of
scVI provides an effective baseline for automated transfer of cell type labels, from annotated
datasets to new ones.

While the performance of scVI in the annotation problem compares favorably to other
algorithms, it does not make use of any existing cell state annotations during model training,
but rather after the latent space has been learned. To make better use of these annotations
(which may be available for only some of the input datasets or only some cells within a
dataset), we developed scANVI, a semi-supervised variant of scVI. While the latent space
of scVI is defined by a Gaussian vector with diagonal unit variance, scANVI uses a mixture
model, which enables it to directly represent the different cell states (each corresponding
to a mixture component; see Method) and provide a posterior probability of associating
each cell with each label. We have demonstrated that similar to scVI, scANVTI is capable of
harmonizing datasets effectively. In addition, scANVI provides a way to address a number
of variants of the annotation problem. Here, we have first shown that it performs well in the
most prevalent application of transferring labels from a reference dataset to an unannotated
one. We then demonstrated that scANVI can be used in the context of a single unannotated
dataset, where high confidence (“seed”) labels are first inferred for a few cells (using marker
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genes) and then propagated to the remaining cells. Finally, we have shown that scANVI
is especially useful in the challenging case where the differences between cell states are too
subtle to be captured clearly by a transcriptome-wide similarity measure, as well as in the
case where the labels are organized in a hierarchy.
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Figure 2.25: The effect of the choice of number of classes on the scANVI model

The effect of the choice of number of classes on the scANVI model likelihood (a),
classification accuracy (b) and entropy of batch mixing (¢). We trained scANVI using
PBMCSK as the labelled dataset, and varied the number of classes in scANVI from 6(true
number of labelled cell types) to 14. The thicker line show the mean of 9 replicates, while
the colored shading show the 95% confidence interval. We used a subsampled
PBMCSK-CITE dataset, where NK cells are removed from the PBMCS8K dataset and B
cells are removed from the PBMC-CITE dataset. As we expect, the two unique dataset
have low mixing in (¢) while the other cell types have high mixing. Although there is no
labelled B cells, scANVI does not cluster B cells from the PBMC8SK dataset with other cell
types in PBMC-CITE. The three metrics we use to evaluate scANVI performance are

minimally affected by the increase in the number of classes.
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Notably, although scANVI achieves high accuracy when transferring labels from one
dataset to another, it was not designed to automatically identify previously unobserved
labels. Indeed, in Figure 2.25 we demonstrate that increasing the number of labels in the
model (C') to values beyond the number of observed labels does not alter the results much.
Nevertheless, we observed that unannotated cell populations that have an unobserved label
are associated with low levels of mixing between the input datasets. We therefore advocate
that clusters from an unannotated dataset that do not mix well should be inspected closely
and, if appropriate, should be manually assigned with a new label.

One concern in applying methods based on neural networks [197, 198, [199, 200, 201] in
single-cell genomics and other domains is the robustness to hyperparameters choices [202].
This concern has been addressed to some extent by recent progress in the field, proposing
search algorithms based on held-out log-likelihood maximization [200]. In this manuscript,
we used an alternative approach that is more conducive for direct and easy application of
our methods — namely we fix the hyperparameters and achieve state-of-the-art results on a
substantial number of datasets and case studies.

An important distinguishing feature of both scVI and scANVI is that they rely on a
fully-probabilistic model, thus providing a way to directly propagate uncertainties to any
downstream analysis. While we have demonstrated this for differential expression analysis
and cell type annotation, this can be incorporated to other tasks, such as differential abun-
dance of sub-populations in case-control studies, correlation between genes and more. We
therefore expect scVI, scANVI and similar tools to be of much interest as the field moves
toward the goal of increasing reproducibility and consistency between studies and converging
on to a common ontology of cell types. In particular, we expect scANVI to be especially
useful for transferring labels while taking into account the uncertainty, or in the case of a
more complex label structure such as hierarchical cell types. Finally, as recent preprints pro-
pose proof of concepts for integrating single cell data across different data modalities such as
Single molecule fluorescent in situ hybridization (smFISH), RNA-seq, ATAC-seq and DNA
methylation [149, B4|, further work can utilize probabilistic graphical models that quantify
measurement uncertainties in each assay, as well as the uncertainties of transferring infor-
mation between modalities (e.g., predicting unmeasured gene expression in smFISH data as
in [203]).
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Chapter 3

Integrated single cell analysis of blood
and cerebrospinal fluid leukocytes in
multiple sclerosis

3.1 Introduction

Single-cell transcriptomics is a transformative and rapidly evolving technology that has
mostly been used to re-define the heterogeneity of complex tissues from healthy rodents or
humans [25, 204, 205]. Diseased tissues have also been analyzed with single-cell technologies
(82, 206]. Proponents of the technology posit that insights from single-cell transcriptomics
are likely to enable precision medicine in the not-too-distant future [207, 208]. However,
outside of the field of cancer, few studies have used the technology to compare tissue sam-
ples from disease-affected vs. control donors in a clinically relevant setting [49]. This leaves
many methodological and conceptual questions unexplored. In this chapter we use the data
harmonization method scVI tested in Chapter 2 to conduct a tissue-specific case-control
study to understand the cellular mechanisms of Multiple Sclerosis. All the sequencing pro-
cedures and experiments outside of scRNAseq are conducted by my collaborators and the
results are only shown to confirm the scRNAseq analysis results.The code for reproducing
the results in this chapter that are unique contributions from me has been deposited at
https://github.com/chenlingantelope/MSscRNAseq2019.git

Cerebrospinal fluid (CSF) is a clear liquid that envelops and protects the central nervous
system (CNS) [209] and forms a unique local immune compartment [210]. Under healthy
conditions, the non-cellular fraction of CSF is mostly an ultra-filtrate of serum [211]. In
contrast, CSF cells that derive exclusively from the hematopoietic lineage exhibit a tightly
controlled cellular composition considerably different from the blood [212, 213], but the
underlying mechanisms remain largely unexplored [214]. Clinically, CSF facilitates the diag-
nosis of inflammatory and degenerative diseases of the CNS. However, the concentration of
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CSF cells is approximately 1,000-fold lower than in blood and limited volumes can be safely
sampled in every patient. Technical approaches must therefore be compatible with low input
and a comprehensive transcriptional characterization of single CSF cells under homeostatic
conditions and in inflammatory CNS diseases is unavailable [215, 216].

Multiple sclerosis (MS) is a paradigmatic chronic inflammatory, demyelinating disorder
of the central nervous system (CNS) causing substantial disability [217]. This complex dis-
ease is likely of autoimmune origin, but many questions remain unanswered despite a vast
amount of available literature. In fact, evidence supports the involvement of both T cells
and B cells in MS, but the relative contribution of each cell type to disease aetiology is
unknown. On the one hand, production of immunoglobulins and expansion of B lineage cells
[218, 212] occurs in the CSF with evidence of antigen-driven maturation [219, 220] and B
cell depleting therapies are effective in MS [221]. On the other hand, T cells are abundant
in MS lesions [222, 223] and T cells are affected by many established MS treatments and
induce an MS-like condition named experimental autoimmune encephalomyelitis (EAE) in
rodents [224]. Whether a pathological interaction of T cell and B cell subsets may occur
locally in human CSF remains unknown.

Here, we apply single-cell transcriptomics to blood and CSF cells from patients with MS
and controls and validate key findings. First, we identify a compartment-specific composi-
tion and transcriptome including an unknown enrichment of myeloid dendritic cells in the
CSF. Second, we find that MS mainly affects the cellular composition of the CSF, but the
transcriptional phenotype of blood cells. We also identify an expansion of CD41 T cells
with a cytotoxic phenotype and late-stage B lineage cells in the CSF in MS. Third, we
newly introduce cell set enrichment analysis (CSEA) to identify cluster-independent cellular
changes and thereby observe an expansion of B cell-helping T follicular helper (TFH) cells.
In a reverse-translational approach, we fourth confirm that such TFH cells promote CNS
autoimmunity and local B cell infiltration in two distinct animal models of MS. We thus
demonstrate how an unbiased approach aids our understanding of a unique human immune
compartment and identifies mechanisms locally driving CNS disease.

3.2 Results

Single cell transcriptomics reconstructs cell types in cerebrospinal
fluid and blood

We first aimed to identify the compartment-specific composition and expression of CSF cells
compared to blood using an unbiased approach (FigureB.1l(a)). We recruited patients with
idiopathic intracranial hypertension (ITH) as controls and treatment-naive patients with clin-
ically isolated syndrome (CIS) or relapsing-remitting MS (together termed MS, Methods)
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donating blood and CSF. Both cohorts were well matched and CSF parameters exhibited
known MS-associated changes. Negativity for oligoclonal bands was 18% in accordance with
early MS [225]. Using microfluidics-based single cell RNA-sequencing (scRNA-seq) we ob-
tained in total 42,969 blood single cell transcriptomes (5 control vs. 5 MS donors) and
22,357 corresponding CSF single cell transcriptomes (4 control vs. 4 MS donors). Genes
detected per donor were 934.4 + 379.1 SEM in PBMCs and 1,021.4 4+ 374.0 SEM in CSF.
After filtering and normalization, we performed multi-step clustering of the merged 65, 326
blood/CSF cell dataset. We thereby classified 61,051 single cells into 17 final cell clusters
(Figure@(b)) after removal of red blood cells and low quality cell clusters (Methods).
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Figure 3.1: Single cell transcriptomics reconstructs cell types in cerebrospinal fluid and blood
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CSF and blood.

a. Schematic of the study design (Methods). b Uniform Manifold Approximation and Projection
(UMAP) plot representing 17 color-coded cell clusters identified in merged single cell
transcriptomes of blood (42,969) and CSF (22,357) cells from control (n = 4) and multiple
sclerosis (MS) (n = 4) patients (Methods). Cluster names were manually assigned. ¢ Dotplot
depicting selected marker genes in cell clusters. Dot size encodes percentage of cells expressing
the gene, color encodes the average per cell gene expression level. d UMAP plots comparing blood
(left) and CSF (right) cell clustering. MegaK cluster is disregarded for higher resolution. e
Volcano plot depicting differences of cluster abundance in CSF compared to blood plotting fold
change (logl0) against p-value (-logl0) based on beta-binomial regression (Methods). Horizontal
line indicates significance threshold.
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Based on marker gene expression (Figure@(c),selec‘ced protein names in non-italic),
we identified a8 T cells (CD3E, LCK, TRAC, TRAJ16) subsetting into CD4™" T cells (IL7R,
CD4), activated CD8+ T cells (CD8a, CD8B, CCLJ5), non-activated CD8+ T cells (CD8na;
CD8B, CCRT), regulatory T cells (FOXP3, CTLA/J) and a small cluster of v6 T cells
(TRDC). Two NK cell clusters (GNLY, NKG7) most likely represented the more cytotoxic
and mature CD569™ (NK1; FOCGR3A/CD16, PRFI1) and more naive CD56bright (NK2;
SELL/CD62L, XCL1) subsets. Three B lineage clusters (CD74, CD79A, IGH gene family)
corresponded to naive B cells (B1; CD37, IGHD), activated B cells (B2; CD27, IGHM),
and plasma blasts (plasma; IGHG, CD38, TNFRSF17/CD269; negative for MS4A1/CD20,
SDC1/CD138). Myeloid lineage cells (LYZ) separated into myeloid dendritic cells (mDC)
type 1 (mDC1; WDFY/, XCR1,BATF3), mDC type 2 (mDC2; FCER1A, CD1C, CLEC10A),
and granulocytes (granulo; S100A8, S100A9). Two additional monocyte cell clusters were
mostly blood-derived (Monol; FCGR3A/CD16) or CSF-derived (Mono2; CD14). Additional
clusters represented plasmacytoid dendritic cells (pDC; TCF4/E2-2, TNFRSF21/DR6) and
megakaryocytes (MegaK; GNG11, CLU). Microfluidics-based scRNA-seq thus successfully
reconstructed leukocyte lineages from CSF and blood.

Cerebrospinal fluid leukocytes exhibit a compartment-specific
composition and transcriptome

CSF cells have not been characterized with unbiased approaches. We therefore next ana-
lyzed the compartment-specific cell type composition identified by unbiased scRNA-seq in
CSF compared to blood. As expected for CSF [212, 226], non-hematopoietic cells (e.g. neu-
rons, glia, ependymal cells), megakaryocytes, granulocytes, and RBC (removed from final
clustering) were absent or strongly reduced compared to blood (FigureB.lde). We also
found CD56%™ NK1 cells reduced among CSF cells, while the NK2 cluster was not different
(Figure@de). Both the mDC1 and mDC2 clusters had a significantly higher proportion
in CSF than in blood (Figure@de). Notably, mDC1 cells expressed markers indicating
cross-presenting capacity (XCR1, WDFY}, [227]; Figure@(c)). Among T cells, total CD4
cells and Tregs were more abundant in the CSF, while CD8 T cell clusters were not different
(Fi ure@de). Flow cytometry confirmed this unique composition of CSF leukocytes Fig-
ure@abc). Cell proportions in CSF and blood did not correlate by either scRNA-seq or
flow cytometry (data not shown) supporting an independent regulation of their cell compo-
sition. In summary, we confirmed a highly compartment-specific composition of CSF cells
and identified a previously unknown enrichment of mDC1 and Tregs in the CSF.

We also found a CSF-specific pattern of myeloid lineage cells. The Mono2 cluster was al-
most exclusively CSF-derived (FigureB.1/(d)) and canonical markers indicated an intermedi-
ate CD14+FCGR3A/CD16int phenotype (Figure@(c)) as described for CSF [22§]. It also
expressed a unique transcriptional signature including genes previously identified in classical
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(CDY, CD163, EGR1, BTG2) and in non-classical (C1QA, C1QB, MAF, CSF1R/CD115)
monocytes [229]. Notably, the CSF-derived Mono2 cluster also expressed (Suppl. Tab.
4) markers of perivascular macrophages (LYVFE1; [230]), microglia (TREM2, TMEM119,
GPRS34; [231]) and CNS border associated macrophages (STAB1, CH25H; [232, 233]) pre-
viously identified in rodents. In a systematic comparison (Methods), the Mono2 gene
signatures resembled homeostatic microglia described previously [234]. We thus identified a
distinct phenotype of CSF monocytes.

We next aimed to identify further compartment-specific gene expression signatures on a
per cluster level (Suppl. Tab 5). We focused on genes identified independently as differen-
tially expressed (DE) by two methods (Mann-Whitney U test, edgeR [235]) and supported
by Bayesian model comparison in scVI ( [43], Methods). Due to the stringency of this
approach, most of such ‘triple-consistent’ genes were DE in CSF vs. blood cells in only one
(18.9% of all expressed genes) or two (5.1%) clusters , although measures of differential ex-
pression were positively correlated especially between related clusters Figure indicating
co-regulated gene modules in related cell types.
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Figure 3.2: Flow Cytometry Validation
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Flow cytometry characterization of all CSF and blood samples
(a) Representative gating strategy for identifying and quantifying cell types by flow cytometry in
the CSF. Population names are indicated next to the respective gates. (b) Heatmap depicting the
average proportion of cells in each population in control (co, n = 22) and multiple sclerosis (MS,
n = 26) patients as quantified in all samples by flow cytometry. Heatmap color is scaled in each
row to row average with color indicating higher (red) and lower (blue) than average. (¢) CSF flow
cytometry data are depicted as dot-boxplots if significantly (t-test statistics) different between
control and MS samples. Comparisons not depicted are not significantly different. Please note
that none of the analyzed flow cytometry parameters was different between co and MS in blood.
(d) Flow cytometry data are depicted as dot-boxplots if significantly (t-test statistics) different
between blood and CSF. * P < 0.05, ** P < 0.01, *** P < 0.005. Bc B cells, CD4 CD4™" T cells,
CD8 CD8+ T cells, dimNK / briNK CD564™ / CD56bright natural killer cells, Be B cells,
plasma plasma cells, class mono / int mono / nc mono classical / intermediate / non-classical
monocytes, granulos granulocytes.
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Figure 3.3: Differential Gene Expression Correlations
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(a) Matrix of Spearman rank correlation r of the different measures of differential expression of
individual genes within clusters in the CSF vs. blood comparison. For example, the Bayes1 factor
of all genes in the CD4 cluster is more closely correlated (i.e. yellow) with all genes in the CD8na
cluster than with all genes in the Gran cluster. (b) Matrix of Spearman rank correlation r of the

different measures of differential expression of individual genes within clusters in the MS vs.
control comparison within CSF.
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Figure 3.4: Inter-individual donor heterogeneity of cell cluster abundance
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Inter-individual donor heterogeneity of cell cluster abundance.

(a) UMAP plot depicting all cells shown in Fig. 1A color-coded by tissue of origin after 2nd level
clustering with blue indicating blood cells and purple indicating CSF cells. (b) Heatmap depicting
cell numbers in each cell cluster in each donor sorted by tissue of origin and by disease-status.
Numbers in the heatmap represent cell numbers in each cluster after 2nd level clustering. Color
code indicates the relative abundance of cell types per donor, compared to the row average. (c)
Dotplot depicting selected genes differentially expressed in at least one cluster of CSF cells
compared to blood. Purple dot size encodes the average expression in CSF and turquoise dot size
encodes the average expression in blood. Dots are partially transparent thus overlap is dark blue.
Purple edge around dark blue circle indicates higher expression in CSF, while turquoise edge
around dark blue circle indicates lower expression in CSF compared to blood.

Genes induced in multiple (i.e. > 3) CSF clusters included FGFY, previously implicated
in inflammatory CNS tissue damage [@] and Metallothionein E, potentially involved in CSF
metal ion homeostasis [] Cell cycle (e.g. CCNC/Cyclin-C) genes were induced in CD4* T
cells in line with their activated phenotype in CSF [@, ] Genes induced in CD4™ T cells
in the CSF were also related to lipid antigen recognition (CDI1E), interaction with antigen-
presenting cells (CD81, CD83, CD8/4, CD209) and adhesion and migration (CD99). In fact,
CSF T cells expressed a specific pattern of chemokine and integrin transcripts including an
induction of CXCL16 and CXCR5 and downregulation of ITGAL/VLA4 in CSF CD4* T
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cells and of ITGB7 in myeloid cells (Figure@). Genes consistently downregulated in CSF
T were associated with naive cell state (SELL/CDG62L), cytokine responses (IL2RG/common
7 chain). Interestingly, CD48 previously associated with CSF translocation of bacteria [240]
was upregulated in CSF T cells. In accordance, GSEA showed enrichment of pathogen re-
sponse pathways in CSF induced genes (e.g. KEGG pathways hsa05169, hsa05168). B cell
clusters (B1, B2, plasma) showed no transcriptional changes between compartments. Genes
associated with memory formation (ID3,CCR2) were induced in the CD8a cluster. Single
cell transcriptomics thus identified a location-specific transcriptional phenotype and traffick-
ing molecule expression of CSF leukocytes (Supplementary Table 3.1).

Multiple sclerosis preferentially alters transcription of blood and
composition of CSF cells

Next, we analysed our dataset for MS-associated changes. Blood cells exhibited no signifi-
cant dlfferences in composmon in MS compared to control (Flgure@ab) as confirmed by
flow cytometry (Flgure . In contrast, blood cells exhibited diverse ‘triple-consistent’ (see
above and Methods) transcriptional changes including an induction of activation markers
(ICOS), specific cytokine receptors (IL17RA), and trafficking molecules (PECAM1/CD31,
ITGA5/ab integrin) in T cells (Figure@(c)).

In contrast to blood, the cell type composition of CSF was clearly different in MS pa-
tients compared to controls (Figure3.6). Using binomial regression modelling (Methods),
all B lineage cell clusters (B1. B2, plasma) significantly expanded in the CSF in MS com-
pared to controls ( Flgureﬁab) in accordance with flow cytometry (Flgurebc) and
previous studies [218, 241, 242]. Heavy chain gene expression in mature B cell clusters (B2,
plasma) was dominated by IGHG/IgG genes, although some cells expressed IGHA /IgA genes
(Suppl. Fig. 6A-D). Most B lineage cells in the CSF are thus class-switched because heavy
chain usage in blood evolves from IGHD to IGHM to IGHG/IGHA during maturation. The
IGKC/k-to-IGLC/lambda ratio was at 2.75 in CSF and 1.92 in blood. Additional compar-
ison with published signatures confirmed our B cell cluster annotation and suggested some
germinal center (GC) and plasmablast phenotype cells in the plasma cluster.
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Figure 3.5: MS vs. Control UMAP, Cell Abundance and Expression Levels in Blood
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Unlike CSF, multiple sclerosis does not affect cluster composition in blood
(a) UMAP plot depicting all blood cell clusters separated by disease status from control (left) and
multiple sclerosis (MS, right) patients. (b) Volcano plot depicting differences of cluster abundance
among all blood cells in MS samples compared with control plotting fold change (logl0) against
p-value (-logl0) based on binomial regression modeling (Methods). Horizontal line indicates
significance threshold. (¢) Dotplot depicting selected genes differentially expressed in some
clusters of blood cells in MS compared to controls. Purple dot size encodes the average expression
in MS and turquoise dot size encodes the average expression in controls. Dots are partially
transparent thus overlap is dark, blue purple edge around dark blue circle indicates higher
expression in MS, while turquoise edge around dark blue circle indicates lower expression in
controls.



Figure 3.6: MS vs. Control UMAP, Cell Abundance and Expression Levels in CSF
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MS predominantly alters CSF cell composition and blood cell transcription
(a) Comparative UMAP plots depicting only CSF cells from control (12,705 cells, left plot) and
MS (9,652 cells, right plot) donors. Color coding and cluster names are as in Figure 1. (b)
Volcano plot showing differences of cluster abundance of only CSF cells in MS samples compared
to controls plotted as fold change (logl0) against p-value (-log10) based on beta-binomial
regression. (c¢) Dotplot depicting selected genes differentially expressed in at least one cluster of
MS cells compared to controls in CSF. Dot size encodes percentage of cells expressing the gene.
Purple indicates higher, turquoise indicates lower expression in MS, respectively. (d) Bayes Factor
(BF) frequency histogram in all cluster-specific case-control differential expression (DE) analyses
colored by tissue. Higher magnification in bottom panel. Only clusters with a minimum of 10
cells per tissue per disease state are included. Please note that the BF is proportional to the
likelihood of differential expression (i.e. higher BF indicates more likely DE) [@]
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Figure 3.7: Late B lineage cells accumulate in the CSF in MS
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Late B lineage cells accumulate in the CSF in MS
(a) Feature plot showing the expression level of heavy chain genes IGHD /IgD, IGHM /IgM,
IGHA /IgA, IGHG/IgG in the B cell clusters identified as B1/B2 in Figure 1A. Please note that
IGHG summarizes IGHG1-4 genes and IGHA summarizes IGHA1-2 genes. (b) Cells expressing
the respective IGH genes in the B cell clusters at maximum are highlighted. (c¢) Feature plots
showing expression of heavy chain genes in the plasma cluster identified in Figure 1A. (d)
Maximum expression of heavy chain genes in the plasma cluster. (e) B cell-related gene
signatures described previously [] were obtained from GEQ, accession number GSE12366.
UMAP feature plots for B cell clusters representing VISION signatures with significant VISION
consistency scores (P < 0.01), from left to right: GC vs. naive B cells , memory vs. naive B cells,
naive vs. memory B cells and plasma vs. naive B cells. (f) Feature plots for the plasma cell
cluster representing VISION signatures with significant VISION consistency scores (P < 0.01),
from left to right: plasma vs. GCB, GCB vs. plasma, naive vs. memory B cells and plasma vs.
naive B cells. GC germinal center, GCB germinal center B cells.
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Among other cell lineages, both CD56%™ NK1 and CD56" NK2 cell clusters and the
CD8na cluster increased in the CSF in MS compared to controls (FigureB.6) as confirmed
by flow cytometry (Figurebc) and in line with a previous study [244]. In addition, we
identified a previously undescribed increase of mDC1 cells and Tregs in the CSF in MS, while
79 T cells (Tdg) were significantly decreased ( Figure@ab). Alternative t-test statistics
returned comparable results (data not shown). MS thus induced complex changes of the
composition of CSF leukocytes that are characterized by a simultaneous expansion of cell
types with the capacity for antibody production (B1, B2, plasma), cytotoxicity (CD8na,
CD569™ NK1) and with regulatory potential (Tregs, CD56"" NK2).

We next tested for disease-associated ‘triple-consistent’ transcriptional changes in CSF
cell clusters. In CSF T cells, we found an induction of genes associated with immune activa-
tion (HLA-C, CD5) and with interferon responses (IL12RB1, IL18RAP) and related down-
stream signaling molecules (IRF3, IRFS) (Figure@(c)). Specific trafficking molecules
(e.g. ITGB1/integrin-f1) were also up-regulated in MS. The CD8a cluster showed signs of
increased memory formation (ID3). The Treg cluster showed induction of the transcription
factor STAT1 and some interferon-regulated genes (MUMI1, NUCB2). The mDC2 cluster
induced B cell related genes (e.g. CD79A, CD74) and signs of 1L-2 signaling (STAT5A) and
a co-inhibitory molecule (TNFRSF18/GITR). B cell clusters did not exhibit differentially
expressed genes potentially indicating that MS preferentially induces numerical rather than
phenotypic differences in B lineage cells in the CSF. The MS-associated cellular response in
CSF was thus diverse and lineage specific and showed signs of interferon-regulated responses.

When directly comparing effects of MS between CSF and blood, we found that surpris-
ingly a greater proportion of genes was differentially expressed in blood than in CSF. For
example, when performing the MS vs. control comparison, more genes (n = 354) were differ-
entially expressed (DE) within the CD8a cell cluster in blood than within the same cluster
in the CSF (n = 24). This trend towards more DE genes in blood than in MS was main-
tained across all cell clusters. Overall, when plotted across all clusters and genes, the Bayes
factor (a measure of likelihood of differential expression that does not depend on sample
size) of the MS vs. control comparison showed more extreme values in blood than in CSF
(Figure@d). Then we subsampled each cluster to have the same number of cells in blood
and CSF and ran the Mann-Whitney U test and observed that the blood case-control had
more significant P-values and those P-values were more extreme (data not shown). In blood,
MS thus preferentially increased transcriptional diversity, while in CSF it preferentially in-
creased cell type diversity suggesting compartment-specific disease mechanisms.
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T helper cells with cytotoxic phenotype are increased in multiple
sclerosis

We had tentatively handled the CD4" T cell cluster as one cell type, because this popu-
lation did not form clearly distinct sub-clusters (FigureB.l(b)) and because many well-
established T cell protein markers are expressed lowly on transcript level. We therefore next
aimed to better characterize the CD4™ T cells using dedicated approaches. We performed
sub-clustering of the CD4" T cell cluster (Figure@). As expected for an unsupervised
clustering approach [245], we found a minor population of CD8 T cells (CD8B; CD4" T cell
sub-cluster (CD4Tc) #8; 7.54% of all CD4™1 T cells) ‘remaining’ within the tentative CD4"
T cell cluster (Fig. 3A,B). The CD4* T cells broadly separated into naive-like (SELL, CCRT;
CDA4Te #5,11,1,2) and memory-like (CD44; CD4Te #9,4,0,3,6,7) clusters based on marker
gene expression (Fig. 3B). Memory cells further separated into subsets with mostly effector
memory-like (CD69; CD4Tc #3,0,4) and central memory-like (CD27; CD4Tc #7,6,9) phe-
notype. We also identified a cluster of likely Treg identity (FOXP3, CTLA4, CD4Tc #10,
Fig. 3B) located at the intersect between naive and memory cells. Notably, this cluster
expressed individual markers of T cell exhaustion (TIGIT) [246] previously associated with
loss of suppressive capacity of Tregs in the tumour micro-environment [247].

We next used VISION (previously named FastProject [248]) to identify transcriptional
signatures rather than individual marker genes to better interpret the CD4% T cell sub-
clustering. Transcriptional signatures identified a transcriptional gradient ranging from naive
to memory T cell state. This was in line with previous findings in rodents [249], and po-
tentially indicated that CD4% T cells generally form transcriptional gradients rather than
distinct subclusters also explaining the poor applicability of clustering approaches alone for
this cell type.

We next sought to identify compartment- and disease-specific changes among CD4" T
cell sub-clusters. We found that several memory-type clusters (CD4Tc #3,4,0,9) were more
abundant in CSF compared to blood while naive clusters (CD4Tc #1,11,2) and exhausted
Tregs (CD4Tc #10) were less frequent using t-test based statistics (Figure@(c)) in accor-
dance with previous studies [238, 239]. Disease-associated changes in blood were limited to
a reduction of a single memory-like cluster (CD4Tc #4) in MS compared to control (Fig-
ure@(d)). Transcriptional changes in blood and CSF did not encompass any of the key
T helper cell lineage transcripts (e.g. TBX21, GATA3, RORC). In CSF, a CD4" T cell
sub-cluster (2,240 cells) of memory cells was significantly more abundant in MS vs. control
(CD4Te #0; (Figure@)). This cluster expressed multiple genes associated with cytotoxic
function (GZMB, PRF1, CCL5) despite similar levels of CD4" T cell marker genes (CD/,
IL7R), low doublet probability (predicted doublet t-test p value 0.68), and absence of CD8
or NK cell markers (CD8B, NKG7,; Figure@(e)) in this population. This gene signature
showed considerable similarity with a recently described population of cytotoxic CD4™ T cells
[67] that is enriched within the CD41 T cells effector memory recently activated (TEMRA)
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compartment. To independently confirm this, we quantified CD4"CD45RATCD27- TEMRA
cells and CD4+CD25"8*CD127'°% Tregs by flow cytometry in the CSF of newly recruited
donors (data not shown). Both populations were significantly more abundant in MS than in
controls). This indicates that cytotoxic CD41 T cells and Tregs [250] expanded in the CSF
in MS.

Cell set enrichment analysis (CSEA) identifies
cluster-independent transcriptional changes.

Although the clustering analysis was informative about the general cell states, it was not
readily able to identify a stratification of the cells into specific T helper cell subsets. We
therefore developed a novel procedure —cell set enrichment analysis (CSEA) —which reuses
the GSEA test for working on ranked lists of cells rather than genes (Methods, Figure@).
Available bulk expression data are used to identify gene signature sets characterizing immune
cell populations (top left). These gene sets are used for either (i) gene set enrichment anal-
ysis (GSEA) of our scRNA-seq differential expression results (top middle) or (ii) single-cell
VISION signature scores, input to both VISION consistency testing and cell set enrich-
ment analysis (CSEA) testing (bottom). See Methods section for details. The red line is
the enrichment score (ES) trajectory of the signature gene set, while the blue lines are the
ES trajectories of all randomized genesets. A more extreme positive value in the left-most
part of the figure indicates enrichment of cells expressing the signature set, compared to
cells expressing the randomized genesets. In this procedure, the cells are first ordered by a
transcriptional phenotype of interest (e.g., summed expression of genes in a pathway). The
statistical test can then detect cases in which a subset of cells from one group (e.g., MS)
exhibit unusually high or low values of that transcriptional phenotype compared to cells from
the second group (e.g., control). We used this analysis with signature scores obtained from
the VISION pipeline based on signatures obtained from databases and literature curation
(Methods) to specifically analyze CD4" T cells from CSF and blood.

Our CSEA testing procedure returned lists of cell sets significantly (Methods) enriched
in MS and expressing a certain gene signature. The cell sets that were enriched in MS when
compared to controls expressed signatures of T helper cell type 1 (Thl) [b4] and T follicular
helper (TFH) cells [251] (FigureB.9bc). We found that the TFH signature was enriched in
the CSF (P = 0.002) but not in the blood (P = 0.889). Thl cells are significantly enriched
in both blood (P=0.012) and CSF (p=0.0). The leading edge size reflects the number of
cells driving the high enrichment score (ES). In all cases the leading edge is small (< 600
cells) indicating that a subset of cells is driving the enrichment. We also generated a random
geneset that is matched to the original signature set in both number of genes and the aver-
age expression of each gene (Methods). The enrichment score (ES) of the signature set is
higher than that of the random genesets. Similar results were also obtained with more loose
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average expression matching (results not shown). Thus, CD4" T cells expressing a Th1™ and
TFH-like signature were enriched in MS in the CSF, but were spread across sub-clusters.
Our novel analytical approach could therefore decouple clustering of cells from disease-state
or differentiation-state enrichment of cells, providing a new framework for interpreting com-
plex scRNA-seq datasets. Interestingly, TFH cells are required for B cell maturation [252].
This lead us to hypothesize that TFH might be functionally related with the MS-specific B
cell-expansion in the CSF.
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Figure 3.8: Cytotoxic-like population of CD4 T cells is induced in the CSF in MS
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(a) UMAP plot showing sub-clustering of all CD4" T cells combined from blood (13,933 cells)
and CSF (11,172 cells). Sub-clusters are numbered 0-11. (b) Heatmap depicting per cluster
average expression of selected T cell subset marker genes. (¢) Volcano plot showing differences of
CD4" T cell cluster abundance in CSF compared to blood as fold change (logl0) against p-value
(-log10) based on Student’s t-test. (d) Volcano plot showing differences of CD4" T cell cluster
abundance in MS compared to control within CSF based on Student’s t-test. (e) Heatmap
showing average gene expression of selected cytotoxicity markers derived from [@] (f) The
proportion of TEMRA cells (CD45RA+CD27-) among live lymphocytes in the CSF of control
(co; n = 5) and MS (n = 12) patients was quantified by flow cytometry. (g) The proportion of
Treg cells (CD25highCD127low) among live lymphocytes in the CSF of donors as in panel F was
quantified by flow cytometry. * P < 0.05, ** P < 0.01 .
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Figure 3.9: Cell set enrichment analysis (CSEA) identifies cluster-independent transcrip-

tional changes
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(a) Scheme of GSEA/VISION/CSEA Analysis. (b — e) Two selected CSEA analysis using TFH
marker gene set (B,C) and Thl marker gene set (D,E) in the CD4+ T cell analysis. TFH cells are
significantly enriched in MS cells in CSF (b), but not in blood (c¢), while Thl cells are enriched in

both (D,E)Top row shows UMAP plots highlighting the leading edge cell sets from MS (orange)
and control (green) samples. Cells depicted in grey are not part of the leading edge cell set of the
respective signatures. Bottom row shows the enrichment score (y-axis) as a function of the rank of
the cells by their Vision signature score (x-axis). The red line indicate the position of the leading

edge. The 1D density plot shows the Vision signature score data with all MS cells in orange and
control cells in green with the x-axis being the rank of the cells by their Vision signature score.
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B cell-helping T follicular helper cells expand in the CSF in
multiple sclerosis and exacerbate corresponding animal models

Figure 3.10: TFH cells expand in the CSF in MS and promote MS animal models
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T follicular helper (TFH) cells expand in the CSF in MS and promote MS animal models
(a) Representative flow cytometry dot plot of CSF cells from a control and MS patient after
gating on live CD3+ cells. (b) Proportion of CXCR5+ (left), of PD-1TCXCR5™ (middle), and of
ICOSTPD-1TCXCR5™ (right) cells among live CD3TCD4" T cells in CSF of control (co; n = 9)
and MS (n = 9) patients quantified by flow cytometry. (¢) Active EAE was induced in Bcl6fl/fl
(wildtype, circles, n = 6) and CD4CreBcl6fl/fl (squares, n = 7) mice using MOG35-55 peptide
(Methods). Mice were monitored daily for clinical EAE signs. One representative of three
independent experiments is shown. (d) At day 28 after EAE induction, the density of CD3-B220+
leukocytes was quantified in spinal cord paraffin cross-sections by histology (left). The proportion
of Ki67+ among B220+ cells was quantified (middle). The proportion of B220+ cells was
quantified by flow cytometry at peak of EAE (right). (e) Naive CD4™ T cells were sorted from
Bel6fl/f12D2tg mice (circle) and CD4CreBcl6fl/f12D2tg mice (squares), differentiated in vitro
(Methods), and intravenously injected into wildtype recipient mice (n = 6-8 per group) at 5x106
cells per mouse. Recipients were monitored for signs of EAE. One representative out of five
independent experiments is shown. (f) At day 28 after transfer, the proportion of CD3-CD19+
leukocytes in brain and spinal cord was quantified by flow cytometry. * P < 0.05, ** P < 0.01,
kP < 0.005.

We therefore next tested whether TFH cells are in fact altered in the CSF in MS. We iden-
tified CD3TCD4"CXCR5' TFH cells in the CSF by flow cytometry and found a significantly
é 10

increased proportion of TFH cells in MS patients (FigureB.10ab) in accordance with previ-
ous studies in the blood [26, 253] and CSF [254]. Activated PD-1+ and PD-1+ICOS+ TFH
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cells were also increased in the CSF (Figure) while the alternative CD4TCXCR5PD-17
subset [255] was unchanged (data not shown). The percentage of PD-14+ TFH cells in CSF
positively correlated with the proportion of CSF plasma cells quantified by flow cytometry
(r =0.70, p < 0.05). Next, we performed bulk population RNA-seq from sorted TFH cells
from the CSF of MS patients (n = 7) vs. controls (n = 6) to better characterize this cell
type. Surprisingly, no genes reached the significance threshold for differential expression.
This indicated that CSF-resident TFH cells increase in abundance, but do not considerably
alter their phenotype in MS. We then performed GSEA and found an enrichment of gene-
sets (not individual genes) associated with T cell memory and pathogenicity in MS-derived
TFH cells (P < 0.01, Bonferroni correction). Genes recurring in these enriched gene-sets
were associated with cytotoxicity (e.g. GZMA, GZMK, CASP3, CASP/) and co-inhibitory
function (e.g. KLRG1, TIGIT, CTLA/). Although statistically less stringent, this approach
indicated that pathogenic TFH cells may expand in the CSF in MS patients.

We then tested whether TFH cells in fact promote neuro-inflammation to a function-
ally relevant extent using common animal models of MS. We generated mice with T cell-
restricted deficiency of Bcel6™ the lineage-defining transcription factor of TFH cells [252].
Such CD4¢Bcl6"/" mice lack TFH cells and fail to mount antigen-specific B cell responses
[252], while the differentiation of other T helper cell hneages(Figure@(a)) and the com-
position of the peripheral immune compartment after immunization were unchanged (Fig-
ure(b)) as previously described [256].

We induced active EAE using myelin oligodendrocyte glycoprotein (MOG)s5.55 peptide
in these mice and EAE severity was significantly reduced in CD4¢Bcl6%/% mice compared to
Cre-negative littermates (Figure3.10(c)). Accordingly, the number of inflammatory lesions
and infiltrated area in the spinal cord of CD4°Bcl6%/f mice were lower than in controls.
We tested how the absence of TFH cells influenced B cells in the CNS and found a lower
proportion of B cells (B2207CD3") infiltrating the CNS in CD4¢"Bcl6%/® mice by flow cy-
tometry and in the spinal cord by histology (Figure@(d)).

Pan-T cell deficiency of Bel6 in CD4°™Bel6%/f mice will affect the priming phase of
EAE and target both TFH cells and T follicular regulatory (TFR) cells [257]. To make a
contribution of these potential confounders less likely, we next generated 2D2CD4*Bcl61/1
mice expressing a T cell receptor transgene recognizing MOG [258] to enable immunization-
independent adoptive transfer EAE induction. After transfer of interleukin (IL)-17 producing
myelin-reactive T helper cells into wildtype hosts (Methods), 2D2%2CD4*Bcl6%/# control T
cells induced consjderably more severe EAE than Bcl6-deficient 2D2%5CD4*Bcl6%/" donor
cells (Figure@(e)). This was despite comparable pre-transfer polarization of donor T
cells. Control recipients also showed a higher proportion of B cells in the CNS than recipients
of Bcl6-deficient T cells. Taken together, our data indicated that TFH cells locally drive B
cell responses in the CNS and promote MS-like autoimmunity.
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3.3 Methods

Patient recruiting and inclusion

A total of 54 control patients and 60 MS patients were screened for eligibility. After screen-
ing, a total of 39 treatment-naive patients with MS or clinically isolated syndrome (CIS)
receiving a lumbar puncture (LP) for diagnostic purposes, were prospectively recruited. The
control group consisted of 27 patients diagnosed with idiopathic intracranial hypertension
(IIH). Patients were recruited in four consecutive cohorts. Cohort 1: single-cell RNA-seq of
unsorted CSF cells (named scRNAseq; 6 IIH vs. 6 MS patients). Cohort 2: CSF cell flow
cytometry only using a general flow cytometry staining panel (named flow only; 7 IIH vs.
12 MS patients; gating in Figure), cohort 3: flow sorted CD3TCD4TCXCR5" TFH cells
from CSF for bulk RNA-seq (named TFH RNAseq; 9 ITH vs. 9 MS patients), cohort 4: CSF
cell flow cytometry using a staining panel designed to quantify CD4"™ TEMRA cells and
Treg cells (named validation; 5 ITH vs. 12 MS patients; gating in (Figure). All patients
were of Caucasian ethnicity and gave written informed consent. The study was performed
in accordance with the declaration of Helsinki and approved by the ethics committee of the
Westfalische Wilhelms University Miinster under reference number 2015-522-f-S.

Generation of single-cell libraries and sequencing

Single-cell suspensions were loaded onto the Chromium Single Cell Controller using the
Chromium Single Cell 3’ Library & Gel Bead Kit v2 (both from 10X Genomics) chemistry
following the manufacturer’s instructions. Sample processing and library preparation was
performed according to manufacturer instructions using AMPure beads (Beckman Coulter).
Sequencing was carried out on a local Illumina Nextseq 500 using the High-Out 75 cycle kit
with a 26-8-0-57 read setup.

Preprocessing of sequencing data

Processing of sequencing data was performed with the cellranger pipeline v2.0.2 (10X Ge-
nomics). Raw bcl files were de-multiplexed using cellranger mkfastq. Subsequent read align-
ments and transcript counting was done individually for each sample using cellranger count
with standard parameters. Cellranger aggr was employed, to ensure that all samples had the
same number of confidently mapped reads per cell. The cellranger computations were car-
ried out at the High Performance Computing Facility of the Westfélische Wilhems-University
(WWU) Miinster.
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Single-Cell Sample Filtering

Initial exploratory data analysis identified one MS sample and one ITH sample whose cluster-
ing did not overlap with any of the other samples (data not shown). This suggested strong
batch effects. Both samples were excluded from further analysis, leaving 4 control- and 4
MS-derived samples from CSF and 5 control and 5 MS-derived samples from PBMC. Nine
barcode-level quality control (QC) metrics were computed for the unfiltered 10x Cell Ranger
output: (1) number of unique molecular identifiers (UMIs), (2) number of reads, (3) mean
reads per UMI, (4) standard deviation of reads per UMI, (5) percent of reads confidently
mapped to the gene, (6) percent of reads mapped to the genome but not a gene, (7) percent
of reads unmapped, (8) percent of UMIs corrected by the Cell Ranger pipeline, and (9) the
number of cell barcodes corrected by the Cell Ranger pipeline. These metrics were used for
filtering and normalization. We applied the gene and sample filtering using a scheme previ-
ously described [259]. This involved four steps: Define common genes based on UMI counts:
Genes with nu or more UMIs in at least 25% of barcodes, where nu is the upper-quartile of
the non-zero elements of the UMI matrix.

Filter samples based on QC metrics. Remove samples with low numbers of reads, low
proportions of mapped reads, or low numbers of detected common genes. The threshold for
each measure is defined data-adaptively: A sample may fail any criterion if the associated
metric under-performs by zcut standard deviations from the mean metric value or by zcut
median absolute deviations from the median metric value. Here we have used zcut = 2. This
function is implemented in scone::metric_sample_filter (see below).

Remove barcodes from donors with fewer than 100 barcodes following sample filtering.
These donors have contributed too few high-quality samples to reliably estimate donor-
specific effects. Only seven cells were removed in this step.

Filter genes based on UMI counts: Genes with nu or more UMIs in at least ns barcodes,
where nu is the upper-quartile of the non-zero elements of the sample-filtered UMI matrix.
We have set ns = 5 to accommodate markers of rare populations. This sub-step ensures that
included genes are detected in a sufficient number of samples after sample filtering. For the
CD47"-only analysis this step was applied again after the data matrix was subset to include
only CD4™ clusters.

Single-Cell Analysis
Harmonization

We utilized a Bayesian variational inference model scVI [43] to infer a shared latent space of
dimension 10 for all single cells from different tissue, condition and batches. Visualizations
were generated using UMAP to further reduce the latent space to two dimensions. scVI is a
deep generative model that learns a probabilistic representation of the transcriptional states
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of single-cells conditional on the sequencing batches, thus no explicit library size and batch
correction is needed.

Level 1 Clustering Analysis

After sample filtering, we performed louvain clustering on the scVI latent space as im-
plemented in https://github.com/taynaud/python-louvain. We first constructed a k-
nearest-neighbor graph from the scVI latent space, and then used the louvain.find _partition
function with the Modularity VertexPartition method to recover a total of 25 clusters. Three
of these clusters correspond to CD4 T cells and were tentatively combined into a single
cluster for further analysis resulting in 22 first level clusters. From this, we removed one red
blood cell (RBC) cluster (2,333 cells; HBA1, HBA2, HBB), three clusters with high doublet
probability (see below) and one blood-derived cluster with low quality (mitochondrial genes,
no canonical marker genes) (361 cells) for further analysis.

Doublet Detection

We computed a doublet score for each single cell using the function scrub_doublets in the
Scrublet package [260] with all default parameters. We then removed all clusters with greater
that 20% of cells labeled as doublets (1,186, 290 and 105 cells) including one cluster of lower
quality cells, one cluster expression Monocyte marker genes, and one cluster expression B
cell marker genes.

Level 2 Clustering Analysis

For cells that were classified as a single cluster but two distinct clusters were visible on UMAP
visualization (Monocytes, B cells and mDC cells), we performed further clustering on the
scVI latent space using Spectral Clustering from the scikit-learn package SpectralClustering
with number of cluster set to 2 and affinity matrix computed using k-nearest-neighbor with
k=15 . The clusters we visually identified on UMAP were confirmed to be the same as the
results of Spectral Clustering. With further validation using signature genes, we included
the second level clusters into the main analysis. Monocyte cluster separated into Monol and
Mono2, B cell clusters separated into clusters B1 and B2, and mDC1 separated into mDC1
and mDC2.

T cell clustering analysis

For all CD4 T cells (excluding regulatory T cells), we performed Louvain clustering on
the scVI latent space, excluding all other cells. With the same parameters as the Level 1
clustering analysis. We partitioned the CD4 T cells into a total of 12 clusters.


https://github.com/taynaud/python-louvain
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Systematic comparison with published microglia and CSF datasets

We obtained the key marker genes of myeloid lineage cell clusters from recent publications
(234, 261, 262, 216] and plotted their expression onto our combined dataset. We extracted the
combined oligodendrocyte markers from a study performing single nuclei RNA-sequencing
of frozen brain parenchyma [261] and selected genes that are also highly variable in our
dataset (genes APOE, CD7/, HLA-DRA, PTPRC, C3). We extracted markers of five
myeloid clusters from a CSF-based study [216] (genes C1QB, C1QC, APOE, C1QA, LYVEI,
SEPP1, FCGBP, APOC1, C3, A2M, MSR1, EPB/1L2, MARCO, RNASE1, F13A1). We
also obtained microglia markers (TMEM119, CCL4, P2RY13, EGR2, CX3CR1, CCL2,
SLC2A5, EGR3, CD83) and markers of MS-associated microglia markers (CTSD, CD74,
SPP1, APOC1, HLA-DRA, PADI2, GPNMB, HLA-DRB1, ANXA2, HLA-DPB1, CPM,
LGALS1, LYZ, LIPA, APOE, MAFB) [234]. We extracted marker genes from a rodent
study (NLRC5, IL12RB1, PSMBY, TAP1, TAP2, IFIH1, IRF7, ZBP1) [262]. We then
plotted the combined expression level of the respective gene signatures into our combined
blood and CSF dataset.

VISION Analysis
We passed raw and normalized UMI data to the VISION pipeline (https://github.com/YosefLab/VISION)

[248]. Mean expression per gene symbol was calculated prior to the analysis in order to make
the features relatable to general gene signatures. The goal of FastProject analysis —on which
VISION is based —is to uncover biologically meaningful gene signatures that vary coherently
across single-cell neighbourhoods [248]. These signatures can help assign meaning to the
dominant expression differences between clusters. In addition to raw data, we passed QC,
donor, status, and Seurat cluster covariates for exploratory analysis and visualization. VI-
SION quantifies the extent to which cell signature values cluster across the cell manifold by
using “consistency testing.” VISION scores the extent to which neighbouring cells (similar
expression profiled) are predictive of a cell’s signature value using autocorrelation (Giri’s C)
statistics, comparing against random permutations in order to assign statistical significance
with respect to a uniform null model. We also included the Seurat t-SNE as a precomputed
projection. Our signature set includes: Human cell cycle genes described before [25], rep-
resenting sets of genes marking G1/S, S, G2/M, M, and M/G1 phases. The MSigDB C7
immunological signature collection [263]. TH signatures compiled previously [54]. NetPath
database signatures [264]. Curated T cell signatures [249]. Curated TFH [251] signature sets.
Curated Temra signature [57] Housekeeping genes were referenced from the same source as
the SCONE negative controls above [265].
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Comparing gene expression and cluster composition
Differential Composition Analysis

For both the initial and the CD4"-only clustering, we used t-test and beta-binomial gen-
eralized linear model in package aod::betabin [266] to test the difference in cluster abun-
dances (cell counts) between MS donors and control donors. We used both methods because
when cell types are rare, the estimated proportions of a cell type in each donor might be
over-dispersed. The two methods show consistent results and thus we show the differential
composition analysis from the beta binomial distribution comparison. For the beta-binomial
regression model unless indicated in the figure legends, we set the count of the cell type of
interest and the total count of cells of each donor to be the response variable and the state
of the donor (MS or control) or the tissue of origin (CSF or blood) to be the independent
variable. We tested for Pearson’s correlation between the frequency of each B cell cluster
and cluster 0 in CD4 T cells. We adjusted the P value threshold to 0.05/15 = 0.0033, since
we tested for significant correlation using three B cell subsets in 5 different sample partitions
(all samples, CSF only, blood only, MS only and control only). The abundance of cluster
0 in CD4 T cells is not signifiantly correlated to B cell subset abundances in any of these
comparisons.

Differential Expression Analysis

We used three different tests for the discovery of differentially expressed genes between two
groups of cells. First we computed Bayes Factor using the imputed counts from scVI. Bayes
Factor is a generalization of the p-value and is computed as

logP(zaxy)P(xp > 24)

where x, is the gene expression of the gene of interest in group a. and x; in group b. We use
the generative model of scVI to obtain the batch-corrected mean of the negative binomial
distribution of transcript counts. Second we used the library-size corrected UMI counts for
Mann-Whitney U test. At last we followed the methods of the best performing method in a
single-cell specific DE method assessment paper [267] and we used EdgeR [235] with cellular
detection rate and batch id as covariates.

Gene Set Enrichment Analysis (GSEA)

After deriving lists of differentially expressed (DE) genes, we applied GSEA tests [268] to
all cluster specific DE gene lists DE between CSF and blood. We used the enrichr function
in gseapy v0.9.12 to find overlap between the DE genes and function genesets. We used
signed significance scores based on the Adjusted P-value provided by the enrichr function.
Sets considered in this analysis include all MSigDB C7 signature sets and all curated T cell
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signature sets described previously [249] with 10 or more genes quantified in the present
study; “UP” and “DN” signature subsets were tested separately.

Cell Set Enrichment Analysis (CSEA)

For the CD4™ T cells analysis we developed a novel adaptation of the GSEA method, apply-
ing the technique to cell sets: CSEA (Figure@). CSEA is a hypothesis testing method for
simultaneously uncovering enrichments and identifying subsets of cell sets of importance. In
this procedure, a collection of cells is first ordered by a transcriptional phenotype of interest
(e.g., sum expression of genes in a pathway). The resulting statistical test is sensitive to cases
in which only a subset of cells from one group (e.g., MS) exhibit unusually high values of
the transcriptional phenotype. The input to this method is a list of N cells, rank-ordered by
some input signal. Our analysis uses VISION signature scores, reflecting known axes of bio-
logical variation. VISION signature scores —based on FastProject signature scores [248] —are
computed by first centering and scaling each normalized log expression cell profile. Following
scaling, the sum of gene expression values in the negative signature subset are subtracted
from the sum of gene expression values in the positive signature subset. Signatures are nor-
malized to the total number of genes in the set. For example, a signature set that describes
a dichotomy between naive and memory T cells may be used to score individual cells, in-
dicating that some cells have higher expression of genes characterizing the naive state and
lower expression of genes characterizing the memory state. Using the notation previously
described [268] we will use r; to denote the cell j's signature score; indices have been sorted
so that r; > r; +1 . The test involves considering all cells up to a specific position, 7. A
“hit”score is defined as the signature score optionally exponentiated by parameter p(|r;|p)
for members of cell set S, divided by the sum over all set members in the list. A “miss”
score is similarly calculated for non-members of S, but without weighing by signature score
magnitudes.

The CSEA enrichment score (ES) is defined as the maximum of the difference between
the running cumulative sum of hit scores and miss score with respect to index . When p = 0,
the ES reduces to a one-sided KS test statistic for differential signature analysis between cell
sets. When p = 1, the cells in S are weighted by their signature score, normalized by the
sum of the score over all the cells in S. We apply the same permutation scheme as described
for GSEA above. For p > 0, CSEA cannot be seen as a simple differential signature test:
CSEA tests for enrichment of a cell set at the high tail of the signature score distribution,
but additionally weighs the set elements according to their signature value. This reduces
the effects of low-magnitude cells in S, whereas all cells not in S are treated the same no
matter the magnitude of their signature score. CSEA tests if high magnitude (positive or
negative) cells are enriched at a specific tail, applying permutation tests to account for the
additional variability induced by the magnitude weights. The set of indices up to where the
objective score reaches its maximum also holds significance —in GSEA [268] referred to as
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the “leading-edge” of the enrichment test. The intersection of the set S and the leading-
edge is the leading-edge subset, representing an important core subset of cells driving an
enrichment. For each VISION signature, we treated the computed signature scores as cell
signature scores r;. The sets under consideration were the mutually exclusive sets of MS
and control cells. The goal of this approach is to identify core sets of cells that drive each
biological condition’s enrichment for high signature values.

To screen a set of gene signatures, we computed the Vision signature score for 64 gene
signatures related to CD4 T cell states, cell cycle, interlukin expression and T cell subsets.
To determine the P-value of the CSEA enrichment score (ES) for a geneset, we shuffle the
disease state labels for cells 100 times and compute the probability that the maximum ES
computed with the true labels is greater than the ES computed with the shuffled labels.
We also generated a random geneset that is matched to the original signature set in both
number of genes and the average expression of each gene. This is done by finding the top 20
gene that has the closest mean expression to each gene in the original signature set, and then
randomly sampling one of them. We then corrected for multiple testing using the Benjamini-
Hochberg procedure to generate the corrected P-values. We filtered the result based on three
criteria: the corrected P-value of the true signature set is smaller than 0.05, the corrected
P-value of the control signature set is greater than 0.05, and that the leading edge is smaller
than 1000. This results in 2 significant signatures, TFH and Th1l. We then validated this
result by computing the ES of 1000 matched control genesets for each signature set. We
then report the P-value as the probability that the true signature set’s maximum ES being
greater than the maximum ES in the matched random genesets. We also computed the ES
for enrichment in control and found that the enrichment score is significantly larger than
the control set but the leading edge is much larger than for enrichment in CSF.

We also tested the performance of our model on varying match levels of the randomized
geneset to the original signature set. The match levels do not affect the results significantly,
showing that our conclusion is not driven by the gene-matching procedure itself. However
when randomized genesets are selected completely randomly, the ES become extremely vari-
able, showing that some degree of matching is required.

Bulk RNA-Seq of sorted TFH cells

TFH cells were sorted from the CSF of 9 MS donors and 9 ITH donors using a BD FACS Aria
IIT cell sorter using an 85 pm nozzle and the drop delay was determined using BD Accudrop
beads. Sorting was performed using sort precision mode “purity” for live CD3*CD4+*CXCR5*
cells. Antibodies against CD3 (UCHT1), CD4 (OKT4), CXCR5 (J252D4), PD-1 (EH12.2H7)
and ICOS (C398.4A) were from Biolegend. Cells were sorted directly into 1.5 ml reaction
tubes containing 100 pl RNA Lysis Buffer (Zymo Research). After sorting, tubes were vor-
texed, briefly centrifuged and frozen at -80 °C until RNA isolation. Data were analyzed using
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FlowlJo software v10.4.1 (Tree Star, Inc.). Samples for bulk RNA-sequencing were prepared
using a modified version of the SmartSeq2 protocol [269]. Briefly, unquantified purified RNA
was used as input. Reaction volumes were scaled up and the number of PCR cycles during
cDNA amplification adjusted accounting for the higher number of input cells compared to
the original protocol [269]. Library Preparation was done by the Next Ultrall FS DNA
Library Prep Kit (New England Biolabs) using 1-3 ng of cDNA as input. Sequencing was
carried out on a NextSeq500 using the High-Out 75 cycle kit (Illumina).

Bulk expression quantification

RNA-seq reads were aligned to the RefSeq hg38 transcriptome (GRCh38.2) using Bowtie2
[270]. The resulting transcriptome alignments were processed using the RNA-Seq by Expec-
tation Maximization (RSEM) toolkit to estimate expected counts over RefSeq transcripts
[271]. Several genes were quantified multiple times due to alternative isoforms unrelated by
RefSeq annotation. Before expression data normalization, the gene entry with maximum
counts was selected to represent the gene in further analysis.

Sample and gene filtering were similar to the scRNA-seq filtering method above, en-
forcing (> 107k reads, > 10% read alignment (forced), > 93.3% common genes detected;
corresponding to zcut = 20). Out of 18 initial samples (9 control vs. 9 MS), 5 total samples
(3 control vs. 2 MS) were removed after QC. Setting ns = 1, we analysed 11,383 genes below.
For each sample, we computed transcriptome alignment and quality metrics using FastQC
(Babraham Bioinformatics), Picard tools (Broad Institute), and custom scripts. Computed
metrics included: (1) number of reads; (2) number of aligned reads; (3) percentage of aligned
reads; (4) number of duplicate reads; (5) primer sequence contamination; (6) average insert
size; (7) variance of insert size; (8) sequence complexity; (9) percentage of unique reads; (10)
ribosomal read fraction; (11) coding read fraction; (12) UTR read fraction; (13) intronic read
fraction; (14) intergenic read fraction; (15) mRNA read fraction; (16) median coefficient of
variation of coverage; (17) mean 5’ coverage bias; (18) mean 3’ coverage bias; and (19) mean
5" to 3’ coverage bias.

Data were normalized using SCONE. 569 positive controls were derived from MSigDB
CT7 entries annotated to include TFH cell types, including the most frequently included gene
symbols in those entries. Negative controls for RUVg and evaluation were derived from the
housekeeping gene list. Control lists were sampled down to 186 genes per list so as to match
mean expression of genes in each list. The study group included two batches with 4/3 and
3/3 MS/ITH samples respectively. Biological condition was used only for evaluation. SCONE
recommended TMM scaling and adjustment for 2 factors of RUVg and batch condition.

We performed PCA on the scaled log-transformed normalized data for visualization. DE
between MMS and ITH donors was performed with limma-voom, using RUVg factors and
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batch in the model to adjust for unwanted variation. Per-gene DE significance scores were
computed from log-transformed P-values. No single gene reached significance after correc-
tion for multiple hypothesis testing. The 42 most frequent core members of the significant
enrichments (Bonferroni adjusted P-value less than 0.01) —genes driving 7 or more of these
enrichments —were selected and their normalized log values were correlated against each-
other and represented in a sorted heatmap using pheatmap defaults.

3.4 Discussion

In this study, we constructed the first unbiased comparative single-cell map of blood and
CSF cells. We identified a compartment-specific leukocyte transcriptome and composition
including an unknown enrichment of mDC1 and Tregs in the CSF. Monocytes in the CSF
were especially distinct and partly resembled CNS border-associated macrophages. These
findings emphasized the unique immune microenvironment of the CSF. We used MS to test
how a paradigmatic autoimmune disease would affect leukocytes in a compartment-specific
fashion. Surprisingly, we found that MS preferentially increased transcriptional diversity in
blood, while it increased cell type diversity in CSF thus providing evidence for compart-
mentalized mechanisms driving human autoimmunity in the brain. In MS-derived CSF, we
found an expansion of cytotoxic-phenotype CD4™ T cells [57] that could be involved in local
MS pathology. We also found that clustering-based methods alone poorly capture disease-
associated changes within CD4" T cells and developed CSEA as a new cluster-independent
analytical approach to address this. This lead us to investigate TFH cells and these cells in
fact expanded in MS within the CSF and promoted B cell accumulation and disease severity
in MS-like animal models. Our study thereby provides a signature case for reverse transla-
tion from unbiased single cell transcriptomics in humans to disease mechanisms in rodents.

Our unbiased approach considerably extended the available flow cytometry-based charac-
terization of CSF leukocytes [212, 226]. Notably, mDC1 cells abundant in the CSF expressed
markers of cross-presenting capacity (XCR1, WDFYJ; [227]) while NK2 cells in the CSF ex-
pressed the corresponding ligands (XCL1, XCL2) indicating that cell types equipped for
cross-presentation and anti-viral defence circulate the CSF. We also replicated the known
activated/memory phenotype [239, 214] of CSF-resident T cells and identified a distinct
pattern of adhesion molecule expression in CSF leukocytes (Figure@). Such a repository
of compartment-specific gene expression signatures could allow specifically targeting CSF
cells in the future (e.g. CCL3 in CSF myloid cells (Figure@(c)). This also allowed us to
provide a human confirmation beyond a previous single case study in HIV [216] of the rodent
border-associated macrophage cell phenotype [232, 233]. Our findings thus lended further
support to a species-independent ‘peri-CNS immune system’ involved in local autoimmunity
and anti-pathogen defense.



CHAPTER 3. INTEGRATED SINGLE CELL ANALYSIS OF BLOOD AND
CEREBROSPINAL FLUID LEUKOCYTES IN MULTIPLE SCLEROSIS 128

A plethora of studies have analyzed mechanisms of neuro-inflammation [272, 273] albeit
often equating rodent models with human MS. Unlike our CSF-focussed study, purely hu-
man transcriptional studies often relied on easily accessible peripheral blood mononuclear
cells [274] sometimes even using unsorted cells [275]. Some transcriptional studies of blood
cells focussed on T cells [276], different treatments [277, 278, 279], or myelin antigen-specific
T cells using pre-defined gene-sets [274]. However, whether blood leukocytes actually consti-
tute a suitable surrogate of disease mechanisms in MS remains unknown. A single available
transcriptomic study of unsorted bulk CSF cells in MS returned signs of local B cell ex-
pansion [215]. Invasive lumbar punctures are rarely justifiable in healthy individuals, which
limits access to optimal controls in any CSF-based study [280]. Others have used somato-
form disorders with the inherent risk of misdiagnosis [226]. We chose ITH controls, because
they require large volume CSF removal, are well matched with MS patients with regard to
sex and age, and because basic CSF parameters and B cells are unchanged in ITH [281), 226].
Some of the complex cellular changes we observed in MS vs. ITH may still be biased by this
specific choice of controls. We also preferentially recruited untreated MS patients in (first)
relapse to limit clinical complexity. The phenotype of CSF cells in remission or under MS
treatments may be considerably different. The specificity of CSF cell changes in MS vs.
other inflammatory CNS diseases such as neuromyelitis optica spectrum diseases remains
unknown. The transcriptomics cohort of our study is also clearly under-powered (and is not
designed) to address the known intra-disease heterogeneity of MS [282]. Our study, however,
provides an essential reference point for future studies with this focus.

Specific T helper (Th) cell lineages have long been associated with MS-like pathology in
rodents, while evidence in human MS is more ambiguous [283, 284]. Notably, blood T cells
in our dataset showed some induction of Th17 cell-related signalling (IL6R) although most
core Th17 transcriptional modules were not differentially expressed [285]. In contrast, CSF
cells showed signs of Thl cell-related signalling on the individual gene level (e.g. IL12RBI,
IL18RAP, IRFS8), by GSEA, and when using CSEA (Figure@g). We also found an ex-
pansion of CD4% T cells with cytotoxic phenotype (CD4 Tc cluster #0) in MS vs. control
patients in the CSF, but not in blood (Figure@). One of the marker genes in this cluster
was EOMES (Figure@(e)) and notably EOMES is also a genetic risk locus for RRMS
[286]. Previously, EOMESTCD4* T cells were shown to increase in the blood of patients
with secondary progressive (SP), albeit not relapsing-remitting (RR)MS and in late-stage
EAE [287]. However, the previous study was underpowered to detect MS vs. control differ-
ences in the CSF (5 total samples). Another set of studies defined cytotoxic CD4™ T cells
by the lack of CD28 expression and these cells expanded in EAE [288] and in the blood of
RRMS patients [289]. A quantification of such cells in the CSF is unavailable. Another re-
cent study used CytOF to quantify 35 predefined chemokine and cytokine markers in blood
cells from MS patients [290]. A population of GM CSF* CXCR4* T helper cells expanded
in the peripheral blood of RRMS patients and was enriched in the CSF compared to the
blood as expected for a memory population [290]. But again, no MS vs. control comparison
in the CSF was provided. This highlights the unique CSF vs. blood design of our study. It
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remains to be tested to what extent GM CSF*CXCR4" T helper cells represent a popula-
tion with cytotoxic capacity and may overlap with our CD4 Tc cluster #0. Neither CSF2
(encoding GM-CSF) nor CXCR/ were detected in our dataset. In summary, although cell
type definitions vary considerably between studies, CD4" T cells with cytotoxic potential
may locally contribute to MS pathogenesis.

We also found that TFH cells enhanced B cell enrichment in the CNS in EAE and
correlated with B lineage cell abundance in the CSF. We used a genetically more rigorous
approach than a previous study [291] and our application of adoptive transfer EAE makes
a contribution of TFR cells [257] unlikely, because effector cells do not convert to Tregs in
EAE [292]. We and others [254] speculate that a pathological interaction between TFH cells
and B cells in the CSF may locally drive CNS autoimmune reactions. In fact, B cell clones
have long been known to, at least partially, expand in the CSF in MS [220, 293] together
with migration from the periphery [218, 241)]. Previous studies support both an influx of B
cells that have matured (i.e. class-switched) in the periphery and a local maturation of B
cells in the CSF [218, 241], 294, 295]. Our approach is in accordance with these studies and
is unlikely to return false positives as it is unbiased and corrected for multiple-hypothesis
testing. The relevance of B cells in MS is also supported by the efficacy of B cell-depleting
therapies [221]. It will be exceptionally interesting to extend our single cell study design
to MS patients receiving B cell-depleting treatments or in later disease stages. Our study
provides an essential reference point for such future studies of human CSF and will likely
facilitate understanding of diverse neurological diseases such as Parkinson’s and Alzheimer’s
disease in the future.
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Chapter 4

Automated and Crowd-Sourced
Annotation Cell Types using Tabula
Sapiens

4.1 Introduction

Cell type annotation is a crucial task in scRNAseq analysis because it determines the quality
of all downstream analysis including marker discovery and cell type abundance comparison.
It is also highly time consuming and requires domain specific knowledge as well as familiarity
with scRNAseq data. As scRNAseq becomes an increasingly standard lab technique, being
able to generate automatic annotation will make accurate analysis a lot more accessible to
the scientific community. We developed a probabilistic method scANVI to perform label
transfer in scRNAseq datasets in Chapter 2. However there are several major challenges
of automatic annotations. 1. Automatic annotation algorithms rely on either annotated
reference datasets [14, [153, 65], or curated marker lists of known cell types [6§8]. If there is
a new cell type unique to a newly sequenced dataset, the automatic annotation algorithms
will not be able to generate accurate predictions. This issue is especially pronounced for rare
cell types. Therefore, expert knowledge input is constantly needed for cell type annotation
despite being very time consuming. 2. There is no gold standard ground truth in the cell
type annotation task. Biology is complex and cell states might change due to environmen-
tal changes across different experiments. Most currently existing cell type annotations are
done on the cluster level, and when cell states are varying continuously, even human experts
might disagree on what a cell is. The lack of ground truth makes it difficult to pick one ‘best
method’ across different applications. 3. cell types are not isolated from each other and are
related by similar functions and origins. Thus there are many different levels of granularity
in which cell types can be annotated. This often makes it difficult to generalize annotations
across different datasets. Therefore, it is crucial for automatic cell type annotation pipelines
to 1. be easily accessible and facilitate the process of manual annotation; 2. highlight the
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disagreement between different methods and 3. focus on building an ontology and meaning
of cell type relationships rather than having a single label per cell.

A good algorithm however is not sufficient for automatic annotation. Training data for
the algorithm is just as important. A good reference dataset to train the automatic annota-
tion algorithms should contain as many cell types as possible in a variety of environments.
Tabula Sapiens is a highly collaborative effort to build a first-draft human cell atlas at a
single cell level. It is built to be a public dataset that can be easily browsed from a hosted
online portal for exploration of cell types and gene expression profiles in multiple human
organs. The objective is to sequence two million cells from 25 organs from 8 donors and
the dataset currently consists of 14 organs and 156,559 cells. Many organ expert groups
have collaborated with the Chan-Zuckerberg Biohub to generate this dataset (manuscript in
preparation, data portal [296]). The comprehensiveness of Tabula Sapiens in tissue and in
cell type means that it is an ideal reference dataset when annotating new datasets. Tabula
Sapiens also includes cells sampled from different organs and individual and sequenced using
different technologies, allowing the annotation algorithms to control for environmental and
technical variation.

Using Tabula Sapiens as a reference dataset, we designed an automatic annotation
pipeline that takes in unannotated count matrices from scRNAseq experiments, transfer
labels from an annotated dataset and generates predicted annotation with a predictabil-
ity score indicating the confidence of the prediction (Figure@). We name our method
PopularVote because we use a total of 7 automatic annotation methods to compute the ma-
jority vote prediction as well as a predictability score based on the agreement of different
algorithms. The annotation methods we use include random forest (RF), support vector
machine (SVM)), scANVI [117], onClass [297], and k nearest neighbours (kNN) after batch-
correction using single cell harmonization methods (scVI [298], BBKNN [299], Scanorama
[150]. These methods encompass supervised methods that are trained only on labelled data
(RF, SVM, OnClass), unsupervised harmonization methods trained with data without la-
bel information (BBKNN, Scanorama, scVI) and a semi-supervised method trained with
both labelled and unlabelled data(scANVI). OnClass is the only method currently available
that can use the full ontology information for cell type annotation in single cells. BBKNN|
Scanorama and OnClass are graph-based methods, scVI and scANVI are Bayesian Neural
Network methods, SVM uses a linear model, and Random Forest uses a decision tree ap-
proach. The unsuperviwsed methods are coupled with kNN for generating label predictions.
OnClass is the only method that uses ontology in its training procedure and is therefore
able to predict cell types that does not exist in the reference dataset. PopularVote also
produces a number of diagnostic plots to facilitate user evaluation of annotation results, and
is evaluated based on cell ontology terms.

While this chapter mainly focused on the task of developing an automatic cell type an-
notation method, we also participated in the Tabula Sapiens project in the annotation of
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the scRNAseq data and designing mechanisms in which the scientific community can access
this data. PopularVote had played an important role in this process. We used PopularVote
to generate initial annotations to guide manual annotations. Once the organs had been
manually annotated, we used it to check annotation consistency and fill in annotations for
cells that the tissue experts cannot confidently identify. Besides using it internally, we also
built a public-facing interface for PopularVote so that biologists can use the Tabula Sapiens
as a reference dataset for annotating their own dataset. At last, it is important for Tabula
Sapiens as a resource to update as our knowledge of human cells are updated. Thus we build
a mechanism for biologists to suggest new annotations to our data from the Tabula Sapiens
Portal. The Crowd Sourcing annotations will be processed and Incorporated into the official
versioned annotations. In summary, PopularVote have been used in many annotation tasks
in the Tabula Sapiens project, and we hope that it will also become a resource for other
projects.
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Figure 4.1: PopularVote and Annotation Tasks
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We show a diagram of how the automatic annotation pipeline facilitates the three components of
annotation in the Tabula Sapiens project. (a) Diagram of the input and output of PopularVote.
(b) Example output table. (¢) There are three main annotation tasks in the Tabula Sapiens
Project: Reference Annotation, User Data Annotation and Crowd-Sourcing Annotation.
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4.2 Results

Design of Automatic Annotation Pipeline

The automatic annotation pipeline consists of two main component: the reference dataset
and the annotation algorithms. We named our annotation pipeline PopularVote because
we generate the final prediction using the majority vote of a number of common algorithms
using Tabula Sapiens as reference data. Our pipeline can generate predicted labels for each
cell in an un-annotated scRNAseq dataset as well as a predictability score. Predictability
is defined as the fraction of automatic annotation algorithms which agree with the majority
vote prediction. The predictability score indicates how much the user can trust the auto-
matically generated labels.

A comprehensive and trust-worthy reference dataset is the basis of any prediction pipeline.
We decided to use Tabula Sapiens as our reference dataset because it contains a large number
of cells from multiple organs and therefore provides ample training data for computational
models for cell type annotation. It also contains cells sequenced with two different tech-
nologies and multiple donors, allowing annotation algorithms to learn about batch effect so
that technical variation is not confounded with cell type specific variation. This dataset is
curated by a centralized bioinformatics team for data quality control but is annotated by
a team of biologist with domain-specific knowledge. In addition all of the annotations are
verified with cross validation. The high quality data and labels of Tabula Sapiens is what
enables the annotation algorithms to generate reliable predictions. Another notable feature
of the Tabula Sapiens dataset is that all cells are annotated within the OBO Foundry can-
didate ontology Cell Ontology (CL) [Il] vocabulary. In addition to using the existing OBO
cell ontology information, we contributed to the OBO cell ontology endeavor by suggesting
additional terms including alveolar fibroblast, capillary aerocyte, immature enterocyte and
mature enterocyte to be added. These are cell types that have been known in the literature
that we also found in our dataset, but could not find the appropriate terms to annotate them
within cell ontology. Other single cell functional genomics databases such as the Human Cell
Atlas [10] and the Brain Initiative [142] also use the OBO cell ontology naming conventions.

For the annotation algorithms we picked a mix of standard machine learning methods
(random forest (RF), support vector machine (SVM)), single cell specific annotation meth-
ods (scANVI, onClass), and k nearest neighbours (KNN) after batch-correction using single
cell harmonization methods (scVI [298], BBKNN [299], Scanorama [150]). We chose these
methods because they are shown to have good prediction accuracy in [71] and/or good har-
monization performances [178]. Users can specify a subset of these methods if they find some
of the methods to be not applicable to their dataset. The main advantage of this pipeline is
that it is entirely implemented using the Jupyter Notebook and Docker container framework
so the users do not need to set up the software environment. The accessibility allows the
user to not be limited by a single method in a platform that they are familiar with. Com-
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paring a variety of methods also allows the user to gain intuition about the agreement and
disagreement of the methods, which we measure by our predictability statistic.

Benchmark

We evaluate the performance of PopularVote on an annotated lung dataset [300]. The Lung
Atlas is annotated carefully to a high level of granularity and contains a large number of
high quality cell sequences, making it suitable for the evaluation task. PopularVote achieves
high accuracy on the lung benchmark dataset as shown in Figured.2. We visualize the
majority prediction of lung cell types in Figure(a) and demonstrate that the predicted
cell types correspond well to the cluster structure of the query dataset. PopularVote not
only generates cell type prediction but also a predictability score based on the agreement
of the different prediction algorithms. Figure(b) shows the per cell type prediction
accuracy of each prediction method of 7 annotation methods as well as the majority vote
prediction. The error bar indicates how variable the accuracy is depending on the cell type.
ENN on either scVI or Scanorama harmonized latent space and the majority vote prediction
give the best average prediction accuracy. We also show that predictability is an important
feature to determine the trust-worthiness of cell type predictions, as the prediction accuracy
increases for every method when we limit the accuracy computation to only cells with high
predictability score (Figure(b)). We note that the variation of prediction accuracy is
much higher between different cell types compared to among different methods.

To evaluate the quality of our predictions, we compute both the exact match and ontol-
ogy match accuracy (blue and orange in the stacked bar plot in Figure@(c), see Methods)
of each_method and show the results for the majority vote prediction as an example in
Figure(c,d,e). Ontology match is a measure of accuracy that takes cell ontology into
account. Intuitively, a prediction algorithm that predicts one cell type as another similar cell
type has better performance than one that predicts it as something unrelated. Cell ontology
encodes similarity in a tree structure, and we define a ontology match for a cell type as all
of its offspring cell types and all of the cell types on its path to the root of the ontology.
This measure is especially useful if a cell type label only exist in the query and not in the
reference. For example mucus secreting cell and naive CD4 T cells are both labels unique to
the query dataset but their ontology match accuracy is close to 1. This is because they are
predicted as a child term (lung goblet cell) or a parent term (CD4 T cell) that does exist in
the reference dataset.
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Figure 4.2: Lung Benchmark Results
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A few of the poorly predicted cell types include lung neuroendocrine cells, mature nat-
ural killer T cells, megakarocytes, mast cells and myofibroblasts. All of these cell types are
unique to the query dataset and not sampled or labeled in the Tabula Sapiens lung reference
data. However these cell types are often mis-annotated as the most similar cell types that
are present in the reference. These cell types are related to the true cell type but do not con-
stitute a ontology match because they are not found along a single lineage on the ontology
tree. For example mature natural killer T cell are annotated as CD8 T cell and natural killer
cell, and dendritic cells are annotated as other myeloid immune cells such_as macrophage
and non-classical monocyte. These disagreemnts are highlighted in Fi ure(d). Details
of all predictions can be observed in the prediction heatmap (Figured.2(e)) where rows
correspond to ground truth labels in the dataset and columns correspond to the predicted
labels and the commonly mis-annotated cell types are highlighted in Figured.2(d). By
comparing automatic annotation and manual annotations, the users of PopularVote can fo-
cus their efforts on easily confounded cell types.

Finally we show the predictability score (Figure@(f)) on the UMAP projection of query
dataset and the batch mixing (Figure(g)) of the UMAP projection of both datasets. We
notice a higher predictability score in regions of the UMAP where the query and reference
dataset is well mixed.

Using PopularVote to Evaluate the Consistency of Manual
Annotations

First we use PopularVote in the annotation of Tabula Sapiens reference data. Tabula Sapiens
is annotated by a large number of experts and will in the future be annotated collectively
through our crowd-sourcing platform, we would like to perform quality control (QC) on the
manual annotations. We realized that PopularVote can be useful for automating the QC
process. Briefly, we hide 20% of the cell type labels from a manually annotated dataset,
and use the other 80% of the labelled cells to generate labels for the first 20% of cells. We
then repeat this procedure 5 times to generate a predicted label for every cell in the dataset.
We can then compare the prediction with the original manual labels of those cells. If a cell
type is difficult to classify, we would expect the automatic annotation algorithms to make
mistakes more often. In this process we also generate a predictability score for each cell.
If the cells annotated as the same cell type are transcriptionally distinct from all other cell
types, then the classification algorithms should be able to easily classify those cells and agree
with each other. In other words, when the annotation is consistent with the data, our cross
validation analysis should return high predictability scores and high accuracy. It should be
noted that consistency is not the same as accuracy: if one cell type is substituted as another
one, the consistency score will remain the same. The purpose of the cross validation study
is to bring attention to cell types that are potentially mis-annotated. One caveat is that for
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cell types that are functionally distinct but have high transcriptional similarity, the cross
validation consistency might be low even when the original labels are accurate. This will
require manual examination to distinguish from true mis-classification errors. However we
can argue that in this case, since the cell types are indeed easy to confound, the PopularVote
cross validation does achieve what it is designed to do. We applied PopularVote to all organs
in Tabula Sapiens Pilot 1 and 2 and generated predictability score for all cells by running a
5-fold cross validation.

In Figure we show the output of the cross validation pipeline for Muscle and Lymph
Node. The majority vote prediction in muscle agree with the manual annotation, showing
that the manual annotation is highly self-consistent (Figure@(a,b)). In Lymph Node the
same is true for most cell types except for the T cell subsets. In Figured.3(c) we observe a
confusion between CD4 memory T cell and CD4 naive T cell, mature NK T cell and natural
killer cell, CD4 memory T cell and regulatory T cells. CD4 T cells is known to not have
clear clustering boundaries from transcriptional data, and the cross validation results indi-
cates that the boundaries proposed in the manual annotation does not correspond well to the
transcriptional similarity in the data. This analysis is especially useful as the crowd-sourced
data from the Tabula Sapiens Portal accumulates. It is not feasible to manually exam-
ine each manual annotation input, and this analysis will give a first pass idea of the quality
of the manual annotation as well as highlight cell types that might have been mis-annotated.
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Figure 4.3: Using PopularVote for Manual Annotation Consistency Check
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Using Popular Vote in the Wild to Annotate New Samples

After we demonstrated the use of PopularVote in Tabula Sapiens, we decided to make it
available for general public for their annotation tasks. PopularVote can be accessed through
both Google Colab Notebooks and Docker Containers. Both Colab and Docker share the
same backend code, but have different advantages. Google Colab requires less computational
set up and can make use of the Google cloud GPU for users who are not familar with pro-
gramming and deep learning, or do not have local access to GPUs. The use of GPUs speeds
up PopularVote significantly for training scVI, scANVI and OnClass. However Google Co-
lab has limited RAM and needs to be relaunched when disconnected, thus is not suitable
for large datasets. Docker containers require local or cloud computational resource set up
from the user, but also comes with all required packages pre-installed. It is more suitable
for users with large datasets. Both implementations can be customized easily by editing the
PopularVote backend Python code.

PopularVote outputs the predictions of 7 prediction algorithms (scVI+ANN, BBKNN-+ENN,

Scanoram+kNN, SVM, RF, OnClass and scANVI), the aggregate majority vote prediction
and the predictability score. The users can explore these results in an automatically gen-
erated data _object. It can be used for downtream analysis in Scanpy [35] or visualized in
CellxGene [301]. CellxGene allows user to interactively visualize gene expression, meta data
associated with each cell on a 2D latent space of choice. We also generate evaluation figures
focused on the overall and per cell-type agreement and batch mixing in Figured.4.
Unlike in the benchmark example, new datasets do not come with any manual annotation,
but we can use other unsupervised measures to evaluate the performance of annotation.
Namely the quality of data harmonization can be used to highlight mismatch between the
query and reference dataset, and the agreement between multiple prediction algorithms can
be used to highlight cell types that are difficult to predict. These quality measures are auto-
matically generated at the end of the prediction pipeline. They can help users identify both
outlier methods and outlier cell types. We use the lung atlas dataset as an example for how
these measures can be useful.

First, we explore how to evaluate the prediction performance using the predictability
score in the absence of ground truth. The agreement between individual algorithms and
the majority vote prediction can be used as basis to exclude outlier prediction methods or
to highlight difficult to predict cell types. We show the heatmap comparing the individ-
ual prediction algorithms (scANVI and OnClass) compared to the majority vote predictions
(Figure@(g,h)). scANVT has high concordance with the majority vote prediction except
in natural killer cell (predicted as CD8-positive, alpha-beta T cell), and respiratory goblet
cells (predicted as respiratory goblet cell). These disagreement fall within cell types that
are transcriptionally and functionally similar. OnClass on the other hand, does not have
these two disagreement with the majority vote predictions. One distinct feature of OnClass
is its ability to predict cell types that do not exist in the original reference. However these



CHAPTER 4. AUTOMATED AND CROWD-SOURCED ANNOTATION CELL TYPES
USING TABULA SAPIENS 142

predictions needs more scrutiny than cell types that are manually annotated as can be shown
in (Figured.4(h)). Bronchial smooth muscle cells are predicted as several other types of
smooth muscle cell from other organs, and these errors can be easily caught by looking at
the confusion matrix heatmap. Tissue experts can gain insights from the disagreement to
identify cell types that are easily confounded. This can facilitate further improvement of the
cell type annotations.

In Figure@(e), we show the percentage of cells that agree with majority vote pre-
diction, sorted from low to high. Users can identify cell types that have high chances of
disagreement between algorithms, such_as intermediate monocyte in the lung benchmark
dataset. From the heatmap in Figure(e) we know that cells annotated as intermedi-
ate monocyte are predicted as classical monocyte in around half of the time. Intermediate
monocytes develops from classical monocytes and are transcriptionally similar. This indi-
cates that agreement is also a good indicator of mis-annotations when ground truth labels
are not available. We can also evaluate the overall performance in a dataset by looking at
the distribution of algorithm agreement over all the cells (Figure@(f)). We see that there
are very few cells where none of the algorithm agree with each other, and most cells are
agreed upon by all seven algorithms (Figureyd.4)).

Secondly accuracy of the annotation depends on harmonization. If the datasets do not
share the same cell types, or the harmonization methods are not sufficient to correct batch
effect, the annotation algorithms will also have difficulty transferring labels between differ-
ent datasets. We can use the harmonization quality as a basis to exclude methods that over
or under-correct batch effects. We use kNN Purity and Batch Mixing Entropy (see Chap-
ter 2) to evaluate unsupervised data harmonization performance.These two metrics measure
two opposing yet necessary aspects of data harmonization: kNN purity measures the con-
servation of nearest neighbor structure before and after harmonization, while batch mixing
entropy measure how well cells from both datasets mixes in local neighborhood. In the ideal
case, cells that are biologically similar from both query and reference dataset will cluster
together in the harmonized latent space, resulting in both high ANN Purity and high Batch
Mixing Entropy. However batch effect could be under or over corrected, and there could be
composition or cell state differences between the two datasets.
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Figure 4.4: Additional User Report Figures
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We look at the variation in kNN Purity and Batch Mixing Entropy by different cell types
and harmonization methods to highlight cases when our pipeline might fail. In our example
dataset, all cell types have reasonably high kNN Purity values (the expected value at random
is around 0.066) (Figure a)). The per cell type Batch Mixing Entropy is variable across
different methods (Figure c)). BBKNN has the highest Batch Mixing Entropy score over
the entire dataset (Figure(d)) but has the lowest score in kNN Purity, suggesting that
it has the tendency to over-correct batch effect. scANVI is not the best performing method
in either kNN Purity or Batch Mixing Entropy but achieve a good balance. Therefore we
conclude that the harmonization methods have different trade-offs but all have reasonable
performances, and do not exclude any method in this example.

We can also examine the harmonization results on a per cell type basis. Cell types with
low Batch Mixing Entropy means that the cells from the query and reference dataset are
separated in the latent space. Some cell types are separated before harmonization (neu-
trophil and natural killer cell) but all harmonization algorithms increase the batch mixing
entropy, indicating that the technical differences between the query and reference dataset
in these cell types are accounted for. Cell types such as the macrophage have low batch
mixing entropy except in scANVI latent space which was trained with cell type labels, in-
dicating that although the cells of this cell type share similar transcriptional profile there
might be significant biological differences. We manually examined the marker expression of
the macrophage cells from both the query and reference dataset, and found that they both
express essential macrophage markers. Although in this specific case the degree of mixing
does not affect prediction accuracy or predictability, the ability of PopularVote to highlight
such populations is still useful.

Tabula Sapiens Portal Software of PopularVote

Tabula Sapiens data is hosted on a public data portal to facilitate access to this data for
the scientific community with or without prior programming experiences. Figure shows
the many ways the Tabula Sapiens Dataset can be accessed. Users can download either
the raw data through Amazon Web Services (AWS) or the processed data from Figshare
(Figure@(a)). The final data release on the data portal contains in the data layers a
normalized and logged gene count matrix, a raw count matrix, and another count matrix
after we used decontX [37] to decontaminate the original count matrix for ambient RNA.
The data object contains the UMAP projection of the scVI latent space for visualization.
For each cell, the data object contains its organ and anatomical information, the technology
the cell was sequence with, its annotation and wheter the annotation was derived manually
by a tissue expert, or automatically using PopularVote’s majority vote prediction. Users
can query their own data against the Tabula Sapiens reference using PopularVote without
painstakingly setting up computational environment using either Google CoLab or Docker
Containers (Figure@?b)). The annotation pipeline is well annotated and is intended to
require minimal programming experiences. However, the annotation pipeline is hosted on
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Github and open source so that power users can easily change parameters of the algorithms
used in PopularVote or add new methods. Users who are not interested in processing the

data themselves can directly browse the dataset using a hosted session of CellxGene (Fig-
ureld.5(d)).

For future development, we would like to allow users to not only access the data that
we have generated but also to revise our annotations. Currently, users can create a new
annotation category tied to their user ID on the hosted sessions and view both their own
annotations and existing meta data by coloring cells by one of the meta-data columns on Cel-
IxGene. The annotations is then saved and collected for crowd-sourced annotations. There
are certainly challenges associated with crowd-source annotations: How do we identify high
quality annotations and low quality annotations? How do we incorporate new information
while keeping our data tractable? How do we motivate and credit the contributors? Part of
the solution is that we can then use PopularVote to scrutinize the crowd-sourced annotation
as mentioned in the ”"Using PopularVote to Evaluate the Consistency of Manual Annota-
tions” section. We can prioritize crowd-sourced annotations that have high consistency score,
are mostly similar to our original annotation but add new information such as a new cell
type, or higher resolution in the cell ontology tree. The Tabula Sapiens annotation can be
updated regularly with versioned history with all changes that are accepted during a certain
time period, to keep the changes tractable.
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Figure 4.5: Tabula Sapiens Portal and Crowd-Sourcing
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We show the web interfaces for accessing the Tabula Sapiens data using multiple approaches. (a)
Tabula Sapiens data can be downloaded from the online portal through Amazon Web
Services(AWS) or Figshare. (b) Querying Tabula Sapiens using unannotated data with Google
Colab and Docker Containers. (¢) CellxGene sessions are also hosted online and can be accessed
from the Tabula Sapiens Portal.
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4.3 Methods

Preprocessing and Manual Annotation of Tabula Sapiens Data

Each organ is sequenced by both 10X and Smart-seq2 technology and could have data from
multiple donors. We first harmonize the multiple batches of data to generate a harmonized
visualization of the cells using scVI and shared in a data object compatible with both Scanpy
and CellxGene [301]. CellxGene is a data visualization tool that allows user to interactively
explore any scRNAseq dataset in the Scanpy standard format. The data object contains
three main component: gene count data, cell-wise metadata, and gene-wise metadata. Cel-
IxGene allow the user to color cells by any cell metadata such as donor, technology and
cell type annotations. The user can also select cells based on any meta data features, or
using a lasso tool. The tissue experts on the Tabula Sapiens project visualize the data
and marker gene expression on CellxGene to generate manual annotation. We then gen-
erate a data object containing the new annotation, perform marker discoveries and check
the consistency of annotations with current cell ontology terms. In this process we noticed
several data quality issues such as ambient RNA and missing cell types due to over-strict
filtering scheme. After correcting for such issues we updated the data object and performed
multiple rounds manual annotation. and generated a final object containing all of the organs.

Crowd Sourcing Annotation Pipeline

We created a pathway for generating crowd-sourced annotation using a web-hosted version
of CellxGene. Users can go on the Tabula Sapiens Portal and visualize the data on Cel-
IxGene, create an annotation category. CellxGene automatically generate a .csv file that
then can be checked for consistency and incorperate into the next version of official reference
annotation. The three task of annoations are connected through the use of a common anno-
tation pipeline (PopularVote). In addition, the user data annotation function will motivate
users to look closely at the reference dataset, motivating them to add new terms and correct
annotation errors through the crowd-sourcing platform, which will eventually improve the
reference annotation.

Implementation of PopularVote

All of the algorithms used in PopularVote are from published sources and here we explain the
hyper-parameter choices and the exact implementation we used. For all classic machine learn-
ing algorithms we use the implementations from scikit-learn [302] release 0.22.2.post1 with
the following parameters: KNeighborsClassifier(n_neighbors=15, weights="uniform”), Lin-
earSVC(max_ iter=1000),RandomForestClassifier. We use the Scanpy [35] version >= 1.6
implementation for BBKNN, and Scanorama version >= 1.7. For scVI and scANVI we use
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the scvi-tools release 0.91.1. Onclass was still in development when PopularVote was devel-
oped and we used the 1c4c3f332ae3effceaed6¢1bb82a6104€92901cd commit for our pipeline.
One challenge in applying machine learning algorithms on scRNAseq dataset is the unbal-
anced nature of the training data. Unbalanced training data has been a topic of research
in the machine learning community and the three options for alleviating its effect on the
classifier are 1. cost-sensitive learning 2. down-sampling and 3. over-sampling [303]. Unbal-
anced training set is a common issue in most sScRNAseq dataset especially because there are
many rare cell types that carry out important biological function. We choose to use down-
sampling of our data and set an upper limit of number of labelled cells to be 100. If a cell
type contains more than 100 cells then only 100 of them remained labelled in the training
set. The down-sampling increases the average per-cell-type prediction accuracy as well as
reduces training time without compromising the accuracy of the common cell types because
most of the cell types that have lower prediction accuracy are the rare cell types (Figureyd.2).

Ontology match Accuracy

In order to take cell type ontology into account while computing accuracy, we defined a
new statistic called ontology match accuracy. We base our ontology on the OBO Foundry
candidate ontology Cell Ontology (CL) [1], and included modifications based on organ expert
feedback. Each cell type is represented by a class with a unique id, and are related to its
parents or children term by a directional edge. This measure is particularly useful when
different datasets are annotated at different levels of granularity. For example, a cell can be
annotated as T cell if the annotator is not familiar with different T cell subsets and states, but
a more T cell-focused researcher might annotate it as naive CD4 T cell. Neither annotation
is wrong but an exact match algorithm will count the two versions of annotations as mis-
matched. Cell Ontology allows us to define for each cell type a set of acceptable matches: all
of its offspring and ancestors. When comparing ground truth and predictions, or different
versions of annotations, we compute a hierarchical accuracy that is either equal or greater
than the simple exact match accuracy because it better reflects the biological correspondence
between different terms. A extension of this measure would be to assign different weights to
matches at different distances on the tree, but since the OBO Cell Ontology does not provide
edge length for the connections, and we have noticed a bias of having more levels in the tree
structure in more studied systems we have decided to evaluate annotation consistency based
on a combination of exact and ontology match, reasoning that the more detailed weighted
accuracy will be upper and lower bounded by these two measures of accuracy.

4.4 Conclusion

We present in this chapter an automatic annotation pipeline PopularVote that was devised
as part of the Tabula Sapiens project. It was essential for the annotation of the large amount
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of data in this project, and will serve as a community resource to facilitate the querying of
the reference dataset. PopularVote provides a robust automatic annotation framework using
multiple algorithms. It also provides an estimate of automatic annotation confidence by
computing the agreement, highlighting cells that might have been mis-annotated for expert
revision. The accuracy of any automatic annotation pipeline depends on the quality of the
reference dataset and Tabula Sapiens is a comprehensive dataset that is ideal for serving this
purpose. We show with a published dataset that the predictions and diagnostic figures of
PopularVote is accurate and can help biologists identify mis-annotations. The PopularVote
scheme can be easily expanded to include more algorithms, and can also incorporate other
wisdom of the crowd aggregation methods other than the majority vote approach. We
demonstrate the use of PopularVote through Google Colab and Docker Containers. We also
set up a data portal for the scientific community to generate crowd-sourced annotation for
Tabula Sapiens data. This will facilitate feedback in order to improve the Tabula Sapiens
annotation to reflect the most up-to-date understanding of cell types. PopularVote will
be used in this process to evaluate the consistency of the crowd-sourced annotations. In
conclusion, we show the use of PopularVote in multiple application scenarios in the Tabula
Sapiens project, and how it could serve as a useful tool for the general public.
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Conclusion

In my dissertation I showcase a number of tools (SymSim in Chapter 1, scVI and scANVI
in Chapter 2, PopularVote in Chapter 4) that my co-authors and I had developed for the
analysis of scRNAseq data. SymSim is a simulation method that can be used for benchmark-
ing inference methods. scVI is a Bayesian model that accounts for statistical uncertainty
in scRNAseq data using Variational Inference, and can be applied to many tasks such as
dimensionality reduction, data harmonization and differential gene expression. scANVI is
a semi-supervised extension of scVI that uses the same framework for the cell type anno-
tation task. PopularVote is an automatic cell type annotation pipeline that uses wisdom
of the crowd to generate cell type annotation and predictability estimate for unannotated
scRNAseq datasets. These methods are applied in experimental studies. We used data har-
monization to enable to comparison of immune cells across tissues and donors to understand
the cellular changes associated with Multiple Sclerosis. We also used data harmonization
and automatic cell type annotation in Tabula Sapiens to build a cell atlas for the human
body. scRNAseq is a rapidly growing technology and these methods have shown to be useful
in real world applications. In the near future, the computational biology community will be
creating an easily accessible ecosystem of single cell analysis methods. scVI and scANVT are
already part of the package scVI tools that also include other statistical methods. Popular-
Vote is hosted on Google CoLab and Docker Container along with the Tabula Sapiens data
for the automatic annotation task. The data in this thesis including the Multiple Sclerosis
immune profile and the Tabula Sapiens atlas has also been shared with the public, and has
already been used by other studies or annotation pipelines. The open code and data I hope
will contribute to future scRNAseq studies to speed up the discovery process.
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