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Abstract. We introduce a new row insertion algorithm on decreasing tableaux and increas-
ing tableaux, generalizing Edelman–Greene (EG) row insertion. Our row insertion algo-
rithm is a nontrivial variation of Hecke column insertion which generalizes EG column
insertion. Similar to Hecke column insertion, our row insertion is bijective and respects
Hecke equivalence, and therefore recovers the expansions of stable Grothendieck functions
into Grassmannian stable Grothendieck functions.
Keywords. Hecke insertion, Grothendieck polynomials
Mathematics Subject Classifications. 05E05

1. Introduction

Edelman–Greene (EG) insertion was introduced to give combinatorial expansions of Stanley
symmetric functions into Schur functions [EG87]. EG insertion achieves this expansion be-
cause it respects Coxeter–Knuth (nilplactic) equivalence (an equivalence relation on reduced
words for permutations) and satisfies a Pieri rule which guarantees that the recording tableau
is semistandard. EG insertion comes in four flavors depending on the use of increasing versus
decreasing tableaux and row versus column insertion. The four flavors are essentially the same:
the row and column versions are related by the naive transpose and the increasing and decreasing
versions are related by reversing the total order on entries. For particular applications one might
require a specific flavor. For the Stanley-to-Schur expansions both EG column insertion and EG
row insertion can be used. But there is a subtlety here. To get a semistandard recording tableau
for EG column insertion, one must use a certain kind of biword as input. Using the same biword
for EG row insertion results in a recording tableau which is the transpose of semistandard. One
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must use a different kind of input biword. The transformation between the two kinds of input
biwords involves reversing the reduced word.

Hecke column insertion was introduced in [BKS+08] to give combinatorial expansions of
stable Grothendieck functions Gw into stable Grassmannian Grothendieck functions Gλ. Hecke
column insertion realizes these expansions because it respects Hecke equivalence and satisfies
a Pieri property which guarantees that the recording tableaux be set-valued. The increasing
and decreasing versions of Hecke column insertion generalize the two flavors of EG column
insertion.

Let us consider the problem of generalizing the two kinds (increasing/decreasing tableaux)
of EG row insertion while respecting Hecke equivalence. The naive transpose of Hecke column
insertion respects Hecke equivalence and directly generalizes EG row insertion but satisfies a
Pieri property which implies that the recording tableau is the transpose of a set-valued tableau.
This also cannot be fixed by transforming the input biword; operations such as reversal will not
even recognizably transform the shape of the output tableau.

Our new insertion generalizes EG row insertion, respects Hecke equivalence and also sat-
isfies the Pieri property which produces set-valued tableaux (as opposed to the transpose of
set-valued tableaux). This novel insertion has the very unusual property that some values may
be moved which are not part of the bumping path. One application of this insertion is the ex-
pansion of Gw times a Lascoux polynomial into Lascoux polynomials, which is not achievable
by Hecke column insertion [OY23].

1.1. Various functions

The main application of these various insertion algorithms, is to expand the Stanley symmetric
functions Fw and stable Grothendieck functions Gw. We define them combinatorially using
words. A pair of words (a1 · · · an, i1 · · · in) is called compatible1 if ij ⩾ ij+1 and ij = ij+1

implies aj < aj+1 for all 1 ⩽ j < n. Each word a has an associated permutation [a]H (see §2.2).
We say a is a Hecke word for w if [a]H = w. Let CPw be the set of compatible pairs (a, i)
such that a is a Hecke word for w. Let CPRed

w consist of (a, i) ∈ CPw such that a is reduced
(i.e. len(a) = ℓ(w) where ℓ(w) is the Coxeter length). By [BJS93] and [FK94],

Fw =
∑

(a,i)∈CPRed
w

xwt(i)

Gw =
∑

(a,i)∈CPw

(−1)|wt(i)|−len(w)xwt(i) .

We define the Schur function sλ and the stable Grassmannian Grothendieck function Gλ

using tableaux. Let Y be the set of partitions. For λ = (λ1 ⩾ λ2 ⩾ · · · ) ∈ Y,
let D(λ) = {(i, j) ∈ Z2

>0 | 1 ⩽ j ⩽ λi} be its diagram under the English convention with
matrix-style indexing. A set-valued tableau T of shape λ ∈ Y is a function which
assigns to each s ∈ D(λ) a nonempty finite subset of Z>0, such that if s′ is immediately to
the right (resp. below) s in the same row (resp. column) then max(T (s)) ⩽ min(T (s′))

1These compatible sequences are the reverse words of those defined in [BJS93].
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(resp. max(T (s)) < min(T (s′))). We denote by SVT (resp. RSVT) the set of set-valued
tableaux (resp. reverse set-valued tableaux, meaning all inequalities are reversed). Let SSYT
(resp. RSSYT) denote the set of semistandard (resp. reverse semistandard) Young tableaux,
meaning set-valued (resp. reverse set-valued) tableaux in which each set is a singleton. The
following is a reverse-set-valued tableau of shape (3, 2).

5 5, 4 3,2,1

3, 2 2

Then sλ and Gλ each have two equivalent formulas ([Buc02] for Gλ):

sλ =
∑

Q∈SSYT
shape(Q)=λ

xwt(Q) =
∑

Q∈RSSYT
shape(Q)=λ

xwt(Q)

Gλ =
∑

Q∈SVT
shape(Q)=λ

(−1)|wt(Q)|−|λ|xwt(Q) =
∑

Q∈RSVT
shape(Q)=λ

(−1)|wt(Q)|−|λ|xwt(Q) .

1.2. Expansions

The Fw (resp. Gw) can be expanded into sλ (resp. Gλ). The expansion coefficients have geo-
metric meaning; they contain all cohomological (resp. K-theoretic) equioriented type A quiver
constants as special cases [BKS+08].

There are two ways to write down either of the two expansions, using either increasing
tableaux or decreasing tableaux. For a permutation w, let Incw (resp. Decw) be the set of
increasing (resp. decreasing) tableaux P whose row word row(P ) (resp. reverse row
word rev(row(P )); see §2.2) is a Hecke word for w. Let IncRed

w (resp. DecRed
w ) consists of

tableaux in Incw (resp. Decw) whose row word is reduced. Then we have ([EG87] for Fw

and [BKS+08] for Gw)

Fw =
∑

P∈IncRed
w

sshape(P ) (1.1)

=
∑

P∈DecRed
w

sshape(P ), (1.2)

Gw =
∑

P∈Incw

(−1)ℓ(w)−|shape(P )|Gshape(P ) (1.3)

=
∑

P∈Decw

(−1)ℓ(w)−|shape(P )|Gshape(P ). (1.4)

1.3. Insertion algorithms: General requirements

Let A and B be sets of tableaux of partition shape. We use the notation

A×Y B = {(P,Q) ∈ A×B | shape(P ) = shape(Q)} (1.5)
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for the fiber product over the maps A → Y and B → Y given by taking the shape of a tableau.
To give a combinatorial proof of (1.3) it suffices to produce a bijection

ΦIS : CPw → Incw ×Y SVT or ΦIR : CPw → Incw ×Y RSVT

which is weight-preserving:

(a, i) 7→ (P,Q) (1.6)
wt(i) = wt(Q). (1.7)

Similarly to prove (1.4) it suffices to supply a weight-preserving bijection

ΦDS : CPw → Decw ×Y SVT or ΦDR : CPw → Decw ×Y RSVT.

1.4. Edelman–Greene insertion: solution for reduced case

Historically first to be discovered were “reduced” restrictions of the above bijections. The ex-
pansions (1.1) and (1.2) are obtained via four weight-preserving bijections. These bijections are
given by four variations of the Edelman–Greene insertion (EG insertion) [EG87]:

• ΦRed
IS : CPRed

w → IncRed
w ×Y SSYT: EG column insertion into increasing tableaux, starting

from the right end of the compatible pairs.

• ΦRed
IR : CPRed

w → IncRed
w ×Y RSSYT: EG row insertion into increasing tableaux, starting

from the left end of the compatible pairs.

• ΦRed
DS : CPRed

w → DecRed
w ×Y SSYT: EG row insertion into decreasing tableaux, starting

from the right end of the compatible pairs.

• ΦRed
DR : CPRed

w → DecRed
w ×Y RSSYT: EG column insertion into decreasing tableaux,

starting from the left end of the compatible pairs.
The four “reduced” bijections are essentially equivalent: EG row insertion and EG column inser-
tion are merely transposes of each other. The relationships are summarized in the commutative
diagram in Figure 1.1.
Example 1.1. Consider the following element (a, i) ∈ CPRed.

i 3 3 3 2 2 2 1 1
a 1 2 4 1 3 5 2 4

We have

ΦDR(a, i) =

 5 4 2 1
4 3 1
2

,
3 3 3 2
2 2 1
1

ΦDS(a, i) =

 5 4 2 1
4 3 1
2

,
1 1 2 3
2 2 3
3


ΦIR(a, i) =

 1 2 3 4
2 3 5
4

,
3 3 3 2
2 2 1
1

ΦIS(a, i) =

 1 2 3 4
2 3 5
4

,
1 1 2 3
2 2 3
3


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DecRed
w ×Y RSSYT DecRed

w ×Y SSYT

CPRed
w

IncRed
w ×Y RSSYT IncRed

w ×Y SSYT

1×ev

ev×1 ev×1

ΦRed
DR ΦRed

DS

ΦRed
IR ΦRed

IS

1×ev

Figure 1.1: The four reduced bijections.

There are two kinds of evacuation maps in Figure 1.1. The map ev : SSYT → RSSYT
is defined as follows. For a T ∈ SSYT, there is a unique T ′ ∈ RSSYT such that row(T )
and rev(row(T ′)) are Knuth equivalent, where rev(·) is the operator that reverses a word.
Then ev(T ) := T ′. The computation ev : SSYT → RSSYT can be done by jeu-de-taquin
as follows. Sliding out the 1’s using the usual jeu-de-taquin we obtain

1 1 2 3
2 2 3
3

→ 2 2 2 3
1 1 3
3

→ 2 2 2 3
3 3 1
1

Then the 2’s are slid out but not past the 1s.

2 2 2 3
3 3 1
1

→ 3 3 3 2
2 2 1
1

The 3’s need no moving. The result is

3 3 3 2
2 2 1
1

The following Proposition asserts that the lower triangle in Figure 1.1 commutes.

Proposition 1.2 ([EG87, Corollary 7.22]). Let (a, i) ∈ CPRed
w and ΦRed

IS (a, i) = (P,Q)
and ΦRed

IR (a, i) = (P ′, Q′). Then P = P ′ and Q′ = ev(Q) where ev : SSYT → RSSYT is
Schützenberger’s evacuation involution (usual evacuation but without relabeling).

The upper triangle also commutes: it is the same statement but with the total order on values
reversed.

The other kind of evacuation map ev : IncRed
w → DecRed

w can be defined similarly. For
a T ∈ IncRed

w , there is a unique T ′ ∈ DecRed
w such that row(T ) and rev(row(T ′)) are Coxeter–

Knuth equivalent [EG87]. Then ev(T ) := T ′. The following result says that the triangle on the
right of Figure 1.1 is commutative.
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Proposition 1.3. Let (a, i) ∈ CPRed
w , ΦRed

IS (a, i) = (P,Q) and ΦRed
DS (a, i) = (P ′, Q′).

Then Q = Q′ and P ′ = ev(P ).

Proof. The statement for Q tableaux is proved in [EG87, Corollary 7.21]. By [EG87, Theo-
rem 6.24], row(P ) and a are Coxeter–Knuth equivalent. On the other hand, row(P ′) and rev(a)
are Coxeter–Knuth equivalent. Thus, rev(row(P ′)) and row(P ) are Coxeter–Knuth equivalent,
so P ′ = ev(P ).

Similarly, the triangle on the left also commutes. Thus, Figure 1.1 commutes. In particular,
for any fixed (a, i) ∈ CPRed

w , upon applying any of the four EG bijections, the tableau pair has
the same shape.

1.5. Solutions for general case

Hecke column insertion [BKS+08] defines a bijection ΦIS : CPw → Incw ×Y SVTw whose re-
striction to CPRed

w is EG column insertion; the insertion starts at the left end of the
word. By merely reversing the total order on entries in tableaux and inserting starting
from the right end of the input word, the resulting variant of Hecke column insertion gives a
bijection ΦDR : CPw → Decw ×Y RSVTw.

However, there are no known easy variations of the Hecke insertion which achieve the bi-
jections ΦIR or ΦDS . The Hecke row insertion is the variant of the Hecke column insertion
in which the roles of rows and columns are exchanged. A slightly restricted version of the row
Hecke insertion was considered by Patrias and Pylyavskyy [PP18], where they studied the growth
diagrams of Hecke row insertion of a (a, i) where i has distinct entries. In this case, the record-
ing tableaux are valid SVTs. Unfortunately, when the input is an arbitrary compatible pair, the
row Hecke insertion does not always produce a valid SVT as the recording tableau. We illustrate
this failure with an example.

Example 1.4 (Pathology of Hecke row insertion). Consider the compatible pair

i 3 3 2 2 2 1 1
a 1 3 1 2 3 1 3

The procedure for Hecke column insertion ΦIS : CPw → Incw ×Y SVT is(
3 , 1

)
→

(
1 3 , 1 1

)
→

(
1 3
3

,
1 1
2

)
→

(
1 3
2

,
1 1,2
2

)

→
(

1 2 3
2

,
1 1,2 2
2

)
→

 1 2 3
2
3

,
1 1,2 2
2
3


→

 1 2 3
2
3

,
1 1,2 2,3
2
3


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Decw ×Y RSVT Decw ×Y SVT

CPw

Incw ×Y RSVT Incw ×Y SVT

?

? ?

ΦDR ΦDS (new)

ΦIR(new) ΦIS

?

Figure 1.2: Non-reduced analogue of Figure 1.1.

and similarly we may compute the Hecke column insertion ΦDR : CPw → Decw ×Y RSVT and
get the result  3 2 1

2
1

,
3 3,2 2,1
2
1

 .

However, the row versions of these algorithms, which we denote ΦHecke
IR and ΦHecke

DS , do not work:
the recording tableaux can fail to be set-valued (or reverse set-valued). Explicitly, if we ap-
ply ΦHecke

IR on the (a, i) above, the recording tableau fails to be set-valued after four insertions:(
1 , 3

)
→

(
1 3 , 3 3

)
→

(
1 3
3

,
3 3
2

)
→

(
1 2
3

,
3 3

2,2

)
.

For ΦHecke
DS , we suffer from a similar pathology:(

3 , 1
)
→

(
3 1 , 1 1

)
→

(
3 1
1

,
1 1
2

)
→

(
3 2
1

,
1 1

2,2

)
.

This paper introduces a new insertion algorithm Φ which gives an explicit weight-preserving
bijection ΦDS : CPw → Decw ×Y SVTw. Our algorithm is a row insertion which, like Hecke
insertion, respects the Hecke equivalence relation ≡H . Our insertion possesses a different Pieri
property than the one satisfied by Hecke row insertion; this is necessary to achieve set-valued
recording tableaux. Moreover, when restricted to CPRed

w , our algorithm recovers EG row inser-
tion. A simple variation of our algorithm (reversing the total order on entries) gives a bijec-
tion ΦIR : CPw → Incw×YRSVTw. Together with the variants of Hecke insertion, our insertion
completes the picture in §1.3: we have produced the generalization of the four diagonal maps in
Figure 1.1. Now the picture looks like Figure 1.2.

Our insertion generally gives a tableau of a different shape than row Hecke insertion.

Example 1.5. Both our insertion and (the decreasing tableau version of) row Hecke insertion
of the word 2421 produce the same tableau T . Let P and P ′ denote the tableau obtained when
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the number 3 is inserted, for our insertion and row Hecke insertion respectively. P and P ′ have
different shapes. See Example 5.7 for our insertion of 3 into T .

T = 4 2 1
2

P = 4 3 1
2 1

̸= P ′ = 4 3 1
2

.

Remark 1.6. None of the coherence properties of Propositions 1.2 or 1.3 generalize to any of the
bijections in the nonreduced setting. In general the four bijections produce 4 different groupings
of compatible pairs for the various expansions of Gw.

In addition, we are not aware of any map that can be one of the four maps labeled by the
question marks. Unlike the reduced case, these four maps have to change both the insertion
tableaux and recording tableaux. Even worse, as shown in the following examples, these four
maps are not shape-preserving. Therefore, doing an analogue of ev(·) using the K-Bender–Knuth
moves in [MPS21] would not work since the moves are shape-preserving.

Example 1.7. Consider the following element (a, i) ∈ CP31524.

i 3 3 2 2 1
a 2 4 1 3 1

We first compute ΦDS(a, i). Starting with the empty tableau pair we insert the word a starting
with the rightmost entry using our row insertion. We obtain the following sequence of tableaux,
where the ending box is green.

∅, 1 , 3

1
, 3 1

1
, 4 1

3

1

, 4 2

3 1

1

The tableau pair ΦDS(a, i) is
4 2

3 1

1

, 1 2

2 3

3

Under successive Hecke column insertions for increasing tableaux, we obtain

∅, 1 , 1

3
, 1 3

3
, 1 3

3

4

, 1 3

2

4

,

so ΦIS(a, i) is the tableau pair
1 3

2

4

, 1 2,3

2

3

.

This implies that the map on the right in Figure 1.2 cannot be shape-preserving. By simply
reversing both words in (a, i) and replacing every number j by 5− j, we obtain an example that
implies the map on the left in Figure 1.2 cannot be shape-preserving.
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Example 1.8. Consider the following element (a, i) ∈ CP24153.

i 5 4 4 4 2
a 3 1 2 4 2

We first compute ΦDS(a, i). Starting with the empty tableau pair we insert the word a starting
with the rightmost entry using our row insertion. We obtain the following sequence of tableaux,
where the ending box is green.

∅, 2 , 4

2
, 4 2

2
, 4 2 1

2
, 4 3 1

2 1

The tableau pair ΦDS(a, i) is

4 3 1

2 1
, 2 4 4

4 5

Under successive Hecke column insertions for decreasing tableaux starting with the left end, we
obtain

∅, 3 , 3

1
, 3 1

2
, 4 3 1

2
, 4 3 1

2

so ΦDR(a, i) is the tableau pair

4 3 1

2
, 5 4 4

4,2
.

This implies that the map on the top in Figure 1.2 cannot be shape-preserving. By simply re-
versing both words in (a, i) and replacing every number j by 6 − j, we obtain an example that
implies the map on the bottom in Figure 1.2 cannot be shape-preserving.

1.6. Restriction to bounded compatible pairs

A compatible pair (a1 · · · an, i1 · · · in) is bounded if aj ⩾ ij for all j ∈ [n]. Let CPb
w be the set

of bounded compatible pairs in CPw. Fomin and Kirillov [FK94] showed that the generating
function of CPb

w is the Grothendieck polynomial, which can be viewed as the non-symmetric
refinement of Gw.

Shimozono and Yu characterized the image of CPb
w under ΦDR in [SY23, Definition 4.1,

Theorem 4.2]. Shimozono and Yu used this description to expand Grothendieck polynomi-
als into Lascoux polynomials positively. This expansion was first conjectured by Reiner and
Yong [RY21].

In a follow-up work, Orelowitz and Yu [OY23] characterized the image of CPb
w under the

map ΦDS introduced in this paper. Their description also leads to the Grothendieck-to-Lascoux
expansion, as shown in [OY23, Corollary 6.15]. Furthermore, they use the restriction of ΦDS

on CPb
w to expand the product of a Lascoux polynomial and Gw into Lascoux polynomials.

See [OY23, Remark 3.4] for a discussion on why their arguments cannot work using ΦDR.
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1.7. Related and future works

We mention a few works in the literature where the usual Hecke row insertion algorithm of
(Hecke) words were applied and studied. It would be interesting to investigate how our insertion
algorithm behave in these contexts. We thank the anonymous referee for pointing out these
relevant works.

In [TY11], Thomas and Yong studied the row insertion of a Hecke word through the lens
of sampling algorithms for probability measures and proved a symmetry property of the in-
sertion tableaux. In [GP20], Guo and Poznanović proved that the number of 0-1 filling of a
stack polyomino subject to certain restrictions only depends on the set of row lengths, using the
Hecke insertion algorithm as a main technical tool. Their work was extended by Bloom and
Saracino [BS24]. These works exploit the properties of the longest increasing/decreasing sub-
sequences of a word being encoded in the insertion tableau. We leave the investigation of similar
properties for our algorithm for future work.

2. New reverse row insertion

2.1. Ejectable values in decreasing tableaux

To define the new reverse insertion algorithm on decreasing tableaux, we require the notion of
an ejectable value in a decreasing tableau. This is defined recursively.

In this article English notation is used for partitions and tableaux. A tableau is decreasing
if its entries strictly decrease from left to right along each row and strictly decrease from top
to bottom in each column. For a decreasing tableau P let P>r denote the decreasing tableau
obtained by removing the first r rows of P . Let P⩾r = P>(r−1).

Definition 2.1. Let P be a decreasing tableau. A value x is P -ejectable if x occurs in the first
row of P and either x− 1 is not in the first row of P , or x− 1 is in the first row of P and x− 1
is P>1-ejectable.

Example 2.2. The value 3 is P -ejectable for the tableau P depicted below.

P =

7 6 3 2

5 2 1

3 1

Since 3 and 2 both occur in the first row, 3 is P -ejectable if and only if 2 is P>1-ejectable.

P>1 =
5 2 1

3 1

Since 2 and 1 occur in the first row of P>1, 2 is P>1-ejectable if and only if 1 is P>2-ejectable.

P>2 = 3 1

Since the first row of P>2 has a 1 but no 0, 1 is P>2-ejectable. Hence 3 is P -ejectable.
The value 7 is not P -ejectable because there is a 6 in the first row but not in the second.
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2.2. Ejectable values and Hecke equivalence

The 0-Hecke monoid is the quotient of the free monoid of words on the alphabet Z>0 by the
relations

ii ≡H i

i(i+ 1)i ≡H (i+ 1)i(i+ 1)

ij ≡H ji for |i− j| ⩾ 2.

The minimum-length elements of each ≡H class are the reduced words of some permutation w,
giving a canonical bijection between the ≡H classes and permutations of Z>0 moving finitely
many elements. We denote by [a]H the permutation associated with the ≡H class of the word a.

The row-reading word row(P ) of a tableau P is the word · · ·u(2)u(1) where u(i) is the word
given by reading the i-th row of P from left to right.

Lemma 2.3. Let P be a decreasing tableau. If x is an ejectable entry of P then
row(P ) ≡H row(P )x.

Proof. This is proved by induction on the number of rows in P . Let w be the decreasing word
given by the first row ofP and letR be the set of letters inw. By definition row(P )=row(P>1)w.
It suffices to show that

row(P>1)w ≡H row(P>1)wx. (2.1)

If x ∈ R and x − 1 /∈ R then w ≡H wx and hence (2.1) holds. Otherwise x, x − 1 ∈ R and
the x− 1 is ejectable in P>1. By the inductive hypothesis, row(P>1) ≡H row(P>1)(x− 1). In
this case (x− 1)w ≡H wx and

row(P>1)wx ≡H row(P>1)(x− 1)w ≡H row(P>1)w

and again (2.1) holds as required.

2.3. Bumping paths

Let D(λ) = {(i, j) ∈ Z2
>0 | i ⩾ 1, j ⩽ λi} be the diagram of the partition λ. The elements

of D(λ) are called the cells of λ and have a matrix-style indexing: the cell (i, j) is depicted as
a box in the i-th row and j-th column. For a partition λ, a λ-removable cell is one that is at the
end of its row and bottom of its column. For a tableau P , a P -removable cell is a λ-removable
cell where λ is the shape of P .

Definition 2.4. Let (r, c) be a removable cell for the decreasing tableau P . The (reverse) bump-
ing path of (r, c) in P is the following sequence of numbers mr < mr−1 < · · · < m1 together
with their positions in P . Let mr be the value of P in (r, c). With the entry mi+1 in row i + 1
defined, let mi be the smallest number in row i such that mi+1 < mi.
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Example 2.5. A decreasing tableau and the bumping path for its removable cell (3, 2) are pic-
tured below.

8 7 6

5 4 2

3 2

1

In the example above, notice that the column index is weakly increasing, as you go up in
bumping path. This is true in general.

Lemma 2.6. Let mr < mr−1 < · · · < m1 be a bumping path in P . For r ⩾ j > i ⩾ 1, the mi

in row i of P is weakly right of the mj in row j of P .

Proof. We only need to prove this claim for j = i+ 1. Let y be the number immediately above
the mi+1 in row i+ 1 of P , We have y > mi+1. Thus, y ⩾ mi, The mi in row i is weakly right
of the y in this row, which implies our claim.

The element in the first row of any bumping path is ejectable.

Lemma 2.7. Let mr < · · · < m1 be the bumping path of a removable cell of P . Then m1 is
ejectable in P .

Proof. The proof proceeds by induction on the number of rows in P . Let R be first row of P .
If m1 − 1 /∈ R then m1 is ejectable in P . Otherwise m1,m1 − 1 ∈ R. Since m1 is the smallest
in R such that m1 > m2, it follows that m2 = m1 − 1. It suffices to show that m1 − 1 = m2

is ejectable in P>1. This follows from the inductive hypothesis since mr < · · · < m2 is the
bumping path of a removable cell in P>1.

2.4. New reverse insertion

The reverse insertion algorithm is a map Ψ

(P, s, α) 7→ (P ′,m)

where the input triple consists of a decreasing tableau P , a P -removable cell s = (r, c),
and α ∈ {0, 1}. The output pair consists of a decreasing tableau P ′ and m ∈ Z>0 such that

shape(P ′) =

{
shape(P ) if α = 0

shape(P )− {s} if α = 1.
(2.2)

For conceptual clarity we precompute the bumping path in P starting at (r, c). For 1 ⩽ i ⩽ r
let mi denote the entry in the i-th row of the bumping path. The output value m is by definition
the value m1 in the first row of the bumping path.

The output tableau P ′ will only differ from P along the bumping path. It is only necessary
to specify whether each mi on the bumping path gets replaced, and if so, by what value. Un-
like most insertion algorithms, the replacement value might not come from the bumping path,
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but does come from the row below. The behavior on each row is determined iteratively by de-
creasing i based on the values mi and mi+1, the i-th row of P , the subtableau P ′

>i, and a status
indicator αi+1 ∈ {0, 1}. The i-th iteration updates the i-th row of P (which becomes the i-th
row of P ′) and produces αi ∈ {0, 1}.

Let P ′ be a working tableau which is initialized to P . In the initialization step, if α = 1,
remove from P ′ the removable cell in row r and its contents mr and set αr = 1 and i = r − 1.
If α = 0 set mr+1 = 0, αr+1 = 0 and i = r.

The algorithm does the following for i = r, r − 1, · · · , 2, 1. Let R be the set consisting of
numbers in row i of the current tableau P ′ (or equivalently P , since P and P ′ only differ under
row i). By definition, mi ∈ R.

There are several cases. We give each a nickname and mnemonic.

• Dummy (D): If mi − 1 ∈ R (which implies mi+1 = mi − 1) do not change the i-th row
and set αi = αi+1.

• Direct Replacement (DR): Otherwise if αi+1 = 1 and mi+1 /∈ R, replace mi by mi+1 in
row i of P ′ and set αi = 1.

Suppose neither of the two above cases hold. Find the smallest ejectable entry x in P ′
>i such

that mi > x > mi+1.

• Indirect Replacement (IR): Suppose x exists. Replace mi by x in row i of P ′ and
set αi = 1.

• No Replacement (NR): Suppose x does not exist. Do not change the i-th row and
set αi = 0.

Example 2.8. In the following example, the input parameters are s = (5, 1) and α = 0. To
initialize, set (m6,m5,m4,m3,m2,m1) = (0, 1, 2, 5, 6, 8), i = 5, and α6 = 0. The shaded
box in the i-th row indicates the value mi. The label on the arrow leaving this tableau is the
mnemonic for the case of Ψ.

10 9 8
8 6 3
7 5 2
4 2 1
1

10 9 8
8 6 3
7 5 2
4 2 1
1

10 9 8
8 6 3
7 5 2
4 2 1
1

10 9 8
8 6 3
7 4 2
4 2 1
1

10 9 8
8 5 3
7 4 2
4 2 1
1

10 9 6
8 5 3
7 4 2
4 2 1
1

α6=0

NR
α5=0

D
α4=0

IR
α3=1

DR
α2=1

DR
α1=1

3. Properties of the reverse insertion

In this section the reverse insertion map Ψ is shown to be well-defined and some of its properties
are established.

Lemma 3.1. For r ⩾ i ⩾ 1, αi = 0 if and only if mi is ejectable in P ′
⩾i.
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Proof. Note that after the i-th row is processed, the subtableau P ′
⩾i remains the same thereafter:

only bumping path entries in rows above may be changed.
The proof proceeds by descending induction on i. For the initial step, if α = 1, the algorithm

sets αr = 1 and mr gets removed and is therefore absent from the r-th row of P ′. Thus, mr is
not ejectable in P⩾r. If α = 0, during the first iteration, mr is replaced in the r-th row of P ′ if
and only if αr = 1. Hence our claim holds for i = r.

Now suppose the claim holds for row i+1. In the Dummy case, mi+1 = mi−1 and mi is not
replaced. Thus mi is ejectable in P ′

⩾i if and only if the entry mi − 1 = mi+1 is ejectable in P ′
>i

(by definition of ejectable) if and only if αi+1 = 0 (by induction) if and only if αi = 0 (since
in the Dummy case αi = αi+1). Otherwise suppose the Dummy case does not hold. Then mi

and mi − 1 cannot both live in row i of P ′. Thus mi is ejectable in P ′
⩾i if and only if it is not

removed from row i. This happens only in the No Replacement case and αi = 0 only in that
case. Thus our claim holds for row i as required.

Theorem 3.2. The reverse insertion is a well-defined map.

Proof. It must be shown that the output tableau P ′ is a decreasing tableau. We show P ′ is a
decreasing tableau after each iteration of the algorithm.

During initialization, if α = 0, the iteration for i = r either leaves P ′ unchanged or re-
places mr in the removable cell (r, c) by a smaller number. If α = 1, after the initialization
step P ′ is a decreasing tableau, since it is obtained from a decreasing tableau by removing a
corner entry. In either case P ′ is a decreasing tableau before the i = r − 1 iteration.

Suppose P ′ is a decreasing tableau after the iteration for row i + 1. It is enough to check
thatP ′ is still a decreasing tableau after the iteration for row i. In the Dummy or No Replacement
cases there is nothing to check. In the two remaining cases, the number mi is replaced by a
smaller number. We need to make sure this smaller number is larger than all numbers on its
right and under it.

Consider P ′ before this iteration. By the definition of a bumping path, numbers on the right
of themi in row i are at mostmi+1. By Lemma 2.6, numbers below thismi are also at mostmi+1.
Next, we consider the two cases.

• Direct Replacement: mi is replaced bymi+1. We need to make suremi+1 is not on the right
or under this mi in P ′ before this iteration. First, mi+1 cannot be in row i by the condition
of this case. Now assume toward contradiction that mi+1 is immediately below mi. This
part of P ′ looks like

mi a

mi+1 b

Since αi+1 = 1, mi+1 is not ejectable in P ′
⩾i+1. Thus, b = mi+1 − 1. Then a > mi+1 − 1

and mi+1 ⩾ a, so a = mi+1. Since mi+1 is not in row i a contradiction is reached. Thus,
after replacing the mi by mi+1, P ′ is still a decreasing tableau.

• Indirect Replacement: mi is replaced by x. We know x > mi+1. After replacing mi by x,
P ′ is still a decreasing tableau, since numbers on its right and under it are at mostmi+1.
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The reverse insertion respects Hecke equivalence.

Lemma 3.3. Let Ψ(P, (r, c), α) = (P ′,m). Then row(P ) ≡H row(P ′)m.

Proof. Letw be the decreasing word given by the first row ofP and letR be the set of letters inw.
Define R′ and w′ similarly for P ′. Notice that row(P )=row(P>1)w and row(P ′)=row(P ′

>1)w
′.

It suffices to show that

row(P>1)w ≡H row(P ′
>1)w

′m. (3.1)

The proof proceeds by induction on r, the row index of the entry in the input of Ψ. The base
case is r = 1. In this case row(P>1) = row(P ′

>1). If α = 1, then w = w′m. Otherwise, in the
first iteration, the algorithm searches for the smallest ejectable x < m in P>1. If x does not exist
then w ≡H wm = w′m. Otherwise w′ is obtained by changing m in w into x. We see that (3.1)
holds:

row(P>1)w ≡H row(P>1)xw ≡H row(P>1)w
′m.

For the inductive step let r > 1. Before the last iteration the algorithm behaves as if doing Ψ
on (P>1, (r−1, c), α). By the definition ofΨ the result is (P ′

>1,m2). By the inductive hypothesis,
row(P>1) ≡H row(P ′

>1)m2. It is enough to check

row(P ′
>1)m2w ≡H row(P ′

>1)w
′m.

Consider the first two cases of the last iteration.

• Dummy: In this case, m,m− 1 ∈ R and m2 = m− 1. We have m2w ≡H wm = w′m.

• Direct Replacement: In this case, m − 1,m2 /∈ R. We know w is obtained from w by
changing m into m2. We have m2w ≡H w′m.

We may assume the above two cases do not hold. Then either m2 ∈ R or α2 = 0 (m2

is ejectable in P ′
>1). In either case we claim row(P ′

>1)m2w ≡H row(P ′
>1)w: If m2 ∈ R,

then m2w ≡H w since m2 + 1 is not in w and m2 is in w. If the m2 is ejectable in P ′
>1

then row(P ′
>1)m2 ≡H row(P ′

>1) by Lemma 2.3.
With this claim, it must be shown that

row(P ′
>1)w ≡H row(P ′

>1)w
′m.

It must be verified that this holds in the remaining two cases:

• Indirect Replacement: Since x is ejectable in P ′
>1, row(P ′

>1) ≡H row(P ′
>1)x. w′ is ob-

tained by changing m to x in w. Thus xw ≡H w′m.

• No Replacement: We have w ≡H wm = w′m.

Our reverse row insertion satisfies the following Pieri condition, which is not satisfied by
Hecke reverse row insertion.
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Lemma 3.4. Let α, α′ ∈ {0, 1}, P a decreasing tableau with removable corner (r1, c1),

Ψ(P, (r1, c1), α) = (P ′,m) and Ψ(P ′, (r2, c2), α
′) = (P ′′,m′)

with (r2, c2) a removable corner of P ′ with c2 < c1. Then m′ > m.

Proof. Let mr1 < · · · < m1 be the bumping path for Ψ on (P, (r1, c1), α) and nr2 < · · · < n1

the bumping path for Ψ on (P ′, (r2, c2), α
′). By definition m1 = m and n1 = m′ so it is enough

to show that n1 > m1.
When mi is ejected from P ′

⩾i, ni is a number in the top row of P ′
⩾i. Moreover, since ni is the

last number in a bumping path in P ′
⩾i, ni is ejectable in P ′

⩾i. We check ni > mi for all 1 ⩽ i ⩽ r1
by descending induction on i; in the case α = 0 the initial index is i = r1 + 1.

For the base case consider the value of α. If α = 1, mr1 is removed from row r1 and ejected.
Clearly nr1 > mr1 . If α = 0, mr1+1 = 0 < nr1+1.

By induction we assume that mi+1 < ni+1. We consider the cases of the two reverse inser-
tions when they process row i.

• (Dummy case): In this case, mi = mi+1 + 1. We have ni > ni+1 ⩾ mi.

• (Direct Replacement case): In this case, we replace mi by mi+1 in row i. Then ni is a
number in row i of P ′, and since ni > ni+1 > mi+1 it must be to the left of mi+1. Thus ni

is to the left of mi in row i of P . We conclude that ni > mi.

• (Indirect Replacement case): In this case, we replacemi by x on row i. Since ni+1 > mi+1

and ni+1 is ejectable in P ′
>i, ni+1 ⩾ x by the choice of x. Thus ni is a number in row i

of P ′, and since ni > ni+1 ⩾ x, it must be to the left of x. Similar to the previous
case, ni > mi.

• (No Replacement case): In this case, there is no x that is ejectable in P ′
⩾i+1

and mi+1 < x < mi. Since ni+1 is ejectable in P ′
⩾i+1, ni+1 ⩾ mi. Thus ni > mi.

Example 3.5. Let P be the following decreasing tableau:

4 3 1
2 1

.

Invoke the reverse insertion with input (r1, c1) = (2, 2) and α1 = 1. We obtain (P ′,m)
where m1 = 3 and P ′ is the following decreasing tableau

4 2 1
2

.

If we invoke the reverse insertion on P ′ with input (r2, c2) = (2, 1), the output number will
be m′ = 4. This aligns with Lemma 3.4 since c2 < c1 and m′ > m.

The reverse insertion algorithm is a generalization of EG reverse insertion.
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Lemma 3.6. Let P be a decreasing tableau such that row(P ) is reduced.
Let Ψ(P, (r, c), 1) = (P ′,m). Then we also get (P ′,m) if we apply EG reverse row insertion
at (r, c) in P .

Proof. Since the Dummy and Direct Replacement cases agree with EG reverse insertion, it is
enough to show that during each iteration, one of these cases must apply.

For α=1 the initial step agrees with reverse EG insertion. By induction we assume αi+1=1.
We will assume the iteration for row i is not in the Dummy nor the Direct Replacement cases
and reach a contradiction. Let R be the i-th row of P . We assume mi − 1 ̸∈ R and mi+1 ∈ R.
By the minimality of mi, mi+1 + 1 ̸∈ R. Let w be the row word of the first i rows of P . We
have mi+1w ≡H w. Then notice that

row(P ) = row(P>i)w ≡H row(P ′
>i)mi+1w ≡H row(P ′

>i)w.

Then row(P ) is not reduced and we obtain the required contradiction.

4. The insertion

This section gives a direct description of the inverse of Ψ, an insertion algorithm Φ which “in-
serts m into P ”:

(P,m) 7→ (P ′, s, α)

where the input pair consists of a decreasing tableau P and m ∈ Z>0, and the output triple
consists of a decreasing tableau P ′, a removable cell s = (r, c) of P ′, and α ∈ {0, 1} such that
the following holds:

shape(P ′) =

{
shape(P ) if α = 0

shape(P ) ∪ {s} if α = 1.
(4.1)

The working tableau P ′ has initial value P . The i-th iteration consists of an insertion of a
number N ∈ Z>0 into P ′

⩾i. At this point P ′
⩾i = P⩾i; only values in rows before the i-th have

been changed. Let R be the set consisting of numbers in row i of P . Find the largest n1 ∈ R
such that n1 ⩽ N .

• Terminating case 1 (T1): If n1 does not exist, putN at the end of row i inP ′ and terminate
the algorithm. The output P ′ is the current tableau. The output (r, c) is the coordinate of
this newly added N . Set α = 1.

Otherwise n1 exists. Change the n1 in row i of P ′ into N .

• Dummy case (D): If n1 = N and N − 1 ∈ R: insert N − 1 into P ′
>i.

• Direct Replacement case (DR): If n1 < N and n1 is not ejectable in P>i: insert n1

into P ′
>i.
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Otherwise assume none of the above cases hold. Let n2 be the number to the right of n1 in
row i of P , or n2 = 0 if n1 is the rightmost number in this row. Find the largest ejectable y
in P>i such that n1 > y > n2.

• Indirect Replacement case 1 (IR1): If y exists: insert y into P ′
>i.

• Indirect Replacement case 2 (IR2): If y does not exist and n2 > 0: insert n2 into P ′
>i.

• Terminating case 2 (T2): If y does not exist and n2 = 0: terminate the algorithm. The
output P ′ is the current tableau. The output (r, c) is the coordinate of this N in row i of P ′.
Set α = 0.

Example 4.1. In the following example, we let P be the leftmost tableau and insert m = 8
into P . The output is the rightmost tableau P ′, s = (5, 1), and α = 0. The unshaded part of
each tableau is the part being considered by the insertion in each step.

10 9 6
8 5 3
7 4 2
4 2 1
1

10 9 8
8 5 3
7 4 2
4 2 1
1

10 9 8
8 6 3
7 4 2
4 2 1
1

10 9 8
8 6 3
7 5 2
4 2 1
1

10 9 8
8 6 3
7 5 2
4 2 1
1

10 9 8
8 6 3
7 5 2
4 2 1
1

N=8

DR
N=6

DR
N=5

IR2
N=2

D
N=1

T2

Example 4.2. In the following example, we insert m = 5 into the leftmost tableau P . The
output is the rightmost tableau P ′, s = (3, 2), and α = 1.

7 4 2
4 3 1
3

7 5 2
4 3 1
3

7 5 2
4 3 1
3

7 5 2
4 3 1
3 1

N=5

IR1
N=3

IR2
N=1

T1

5. Properties of the insertion

In this section the well-definedness of the insertion algorithm Φ is established and some of its
properties are studied.

Lemma 5.1. Consider an iteration of Φ in which N is being inserted into P ′
⩾i in Indirect Re-

placement case 2. Consider the value n1 in row i of P . If there is a number below this n1, it
must be at most n2.

Proof. Let t1 be the number below this n1. This part of P looks like

n1n2

t1 t2

Now assume toward contradiction that t1 > n2. The number t2 either does not exist or we
have t2 < n2 ⩽ t1 − 1. In either case, t1 is ejectable in P ′

>i. By n1 > t1 > n2, we should go to
Indirect Replacement case 1. Contradiction.
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Lemma 5.2. The insertion algorithm is well-defined.

Proof. The algorithm initializes the working tableau to equalP which is decreasing. To show the
output tableau is decreasing it suffices to assume that before any particular iteration the working
tableau is decreasing and show that after that iteration, the resulting tableau is decreasing.

Let P ′ be the working tableau at the beginning of the current iteration, in which N is being
inserted into P ′

⩾i. Let P ′′ be the working tableau after this iteration. During the iteration, in
row i the number n1 is replaced by N or N is appended at the end; let (i, j′) be the position of
this N . After this iteration, the row will clearly be strictly decreasing. We may assume i > 1
and must show that there is a number M in position (i− 1, j′) of P ′′ and it satisfies M > N .

If n1 = N , then we are done since this iteration does not change the working tableau at
all. We assume n1 < N , so the previous iteration is not in the Indirect Replacement case 1.
Consequently, N is in row i− 1 of P , say at (i− 1, j). We have j′ ⩽ j by the choice of n1. In
particular there is a number M in position (i− 1, j′) of P ′′. It remains to show that M > N .

If j′ < j then we obtain the required inequality M > N since the (i− 1)-th row was strictly
decreasing before the previous iteration. So we may assume j′ = j.

We consider the cases of the previous iteration:

• Dummy case. N + 1 and N are in row i− 1 of P . Below this N + 1, we have a number
at most N , so j′ ⩽ j − 1, contradiction.

• Direct Replacement case. During the previous iteration, the N in cell (i−1, j) is replaced
by a larger number. Thus, there is an M > N at (i− 1, j) of P ′′.

• Indirect Replacement case 2. By Lemma 5.1, the n1 is in the first j − 1 columns, a con-
tradiction.

Since the row i− 1 iteration was not terminal and we ruled out Indirect Replacement case 1, all
cases are covered.

Theorem 5.3. Φ and Ψ are mutually inverse functions.

We prove Theorem 5.3 directly by splitting the proof into two lemmas.

Lemma 5.4. Let Ψ(P, (r, c), α) = (P ′,m). Then Φ(P ′,m) = (P, (r, c), α).

Proof. Let R (resp. R′) consist of the numbers in row 1 of P (resp. P ′). The proof proceeds by
induction on r.

For the base case, assume r = 1. If α = 1, m = min(R) and R′ = R − {m}. When we
insert m into P ′, the first iteration is in Terminating case 1. We will just append m at the end of
row 1 and terminate at this cell. If α = 0, we study the cases of the only iteration in the reverse
insertion:

• Indirect Replacement case: In this case, R′ = R− {m} ⊔ {x} where x < m and x is the
smallest number in row 2 of P . When we insert m into P ′, it sets n1 = x. Since n1 is
ejectable in P ′

>1, it does not go to the first 3 cases. Then we have n2 = 0. There are no
ejectable numbers in P ′

>1 between n2 and n1. Thus, it goes to the Terminating case 2. It
replaces x by m and ends at this cell with α = 0.
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• No Replacement case: In this case, R = R′ and there are no ejectable numbers in P ′
>1 that

are less than m. When we insert m into P ′, it sets n1 = m and n2 = 0. Thus, it goes to
Terminating case 2. It replaces m by m and ends at this cell with α = 0.

Now assume r > 1. Consider the reverse insertion. Before the last iteration, a num-
ber m2 > 0 is ejected from P ′

>1. During the last iteration, it changes at most one number in R
and get R′. Then it ejects m. By induction it suffices to show that when m is inserted into P ′,
the first iteration of insertion changes R′ back to R and inserts m2 into P ′

>1. Let us do a case
study on the last iteration of the reverse insertion.

• Dummy case: m2 = m − 1 and m2,m ∈ R. The algorithm fixes row 1 of P
so R = R′. The first iteration of insertion goes to the Dummy case. It fixes row 1 and
inserts m− 1 = m2 into P ′

>1.

• Direct Replacement case: m2 was ejected with α2 = 1. Thus m2 is not ejectable in P ′
>1.

The algorithm replaces m by m2. The first iteration of insertion sets n1 = m2. It goes to
the Direct Replacement case: m2 is replaced by m and m2 is inserted.

• Indirect Replacement case: m is replaced by xwhich is ejectable inP ′
>1. By the choice of x

there are no ejectable numbers in P ′
>1 between m2 and x. The first iteration of insertion

sets n1 = x and replaces it by m. It will not go to the first 3 cases. Since m is the smallest
number in R that is larger than m2, m2 ⩾ n2. If m2 > n2 then α2 = 0. Thus m2

is ejectable in P ′
>1. During the subsequent insertion, the algorithm sets y = m2 and

inserts m2. Now assume m2 = n2. Then the first iteration of the insertion cannot find
such a y. It inserts n2 = m2.

• No Replacement case: R = R′. There are no ejectable numbers inP ′
>1 betweenm2 andm.

During the insertion, the algorithm sets n1 = m and will not go to the first three cases.
The proof proceeds as in the Indirect Replacement case.

Lemma 5.5. Let Φ(P,m) = (P ′, (r, c), α). Then Ψ(P ′, (r, c), α) = (P,m).

Proof. Let R (resp. R′) consist of the numbers in row 1 of P (resp. P ′). The proof proceeds by
induction on r.

In the base case r = 1, the insertion has only one iteration. If α = 1, this iteration is in
Terminating case 1. It appends m at the end of row 1. During the subsequent reverse insertion,
m will be removed from row 1 and ejected. Now assume α = 0. If n1 = m, then the insertion
leaves row 1 unchanged. There are no ejectable numbers in P>1 that are less than m. During the
reverse insertion, the sole iteration goes to the No Replacement case: row 1 is unchanged and m
is ejected. If n1 < m, then the insertion replaces n1 by m. Since it is in the Terminating case 2,
n1 is smallest ejectable number in P>1. During the reverse insertion, the only iteration goes to
the Indirect Replacement case: the m is changed to n1 and m is ejected.

Now assume r > 1. Consider the insertion. During the first iteration, it changes n1 into m
in row 1. Then it inserts a number into P ′

>1. Let z be that number. Now consider the reverse
insertion. By our inductive hypothesis, before the last iteration, z is ejected under row 1 of the
tableau. Moreover, currently the tableau below row 1 is identical to P>1. We need to make sure
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the last iteration changes R′ back to R and ejects m. Let us do a case study on the first iteration
of the insertion.

• Dummy case: m,m − 1 ∈ R, R = R′, and z = m − 1. The last iteration of the reverse
insertion goes to the Dummy case: it fixes the first row and ejects m.

• Direct replacement case: n1 is changed to m and z = n1 < m. Moreover z is not ejectable
in P>1. When z is ejected from P>1, α2 = 1. The last iteration of the reverse insertion
goes to the Direct Replacement case: It changes m into n1 and ejects m.

• Indirect Replacement case 1: n1 is changed to m and z = y. y is the largest ejectable
number in P>1 less than n1. Moreover y > n2. Consider the last iteration of the re-
verse insertion. Before this iteration, by induction and Lemma 3.1 y is ejected from P>1

with α2 = 0. Then it sets m1 = m. It looks for x, which is the smallest ejectable number
in P>1 between y and m. If n1 = m, then it goes to the No Replacement case: Row 1 is
fixed and m is ejected. If n1 < m then n1 must be ejectable in P>1 and x = n1. It goes to
the Indirect Replacement case: m is replaced by n1 and m is ejected.

• Indirect Replacement case 2: n1 is replaced by m and z = n2 > 0. There are no ejectable
numbers between n2 and n1 in P>1. Consider the last iteration of the reverse insertion. It
sets m1 = m. Since n2 is already in row 1, it must go to the last two cases. If n1 = m, then
it goes to the No Replacement case: The first row is fixed and m is ejected. If n1 < m,
then n1 must be ejectable in P>1. It goes to the Indirect Replacement case: m is replaced
by n1 and m is ejected.

Our insertion satisfies a Pieri property.

Lemma 5.6. Let Φ(P,m) = (P ′, (r1, c1), α) and Φ(P ′,m′) = (P ′′, (r2, c2), α
′). If m′ < m,

then c1 < c2.

Proof. Let mr1 < · · · < m1 be the bumping path of (r1, c1) in P ′. By the definition of Ψ
on (P ′, (r1, c1), α), the output value is m1. Since Ψ is inverse to Φ, Ψ(P ′, (r1, c1), α) = (P,m).
Thusm1 = m > m′. IfΦ on (P ′,m′) ends in the first iteration, we are done. Otherwise, after this
iteration, another number is inserted into P ′

>1. It is enough to ensure that this number is smaller
than m2. During this iteration, Φ finds a number n1 in row 1 of P ′. We have n1 ⩽ m′ < m1.
Since mr1 < · · · < m1 is a bumping path, m2 ⩾ n1. Now consider the case of the first iteration.

• Dummy case: The number m′−1 is inserted into P ′
>1. We have m2 ⩾ n1 = m′ > m′−1.

• Direct Replacement case: The number n1 is inserted into P ′
>1. Notice that m2 is ejectable

in P ′
>1 since it is the end of a bumping path in P ′

>1. However, n1 is not ejectable in P ′
>1

by the condition of this case. Thus m2 ̸= n1. Since m2 ⩾ n1 we deduce that m2 > n1.

• Indirect Replacement case 1: The number y is inserted into P ′
>1. We have m2 ⩾ n1 > y.

• Indirect Replacement case 2: The number n2 is inserted intoP ′
>1. We havem2 ⩾ n1 > n2.
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Example 5.7. Let P be the following decreasing tableau:

4 2 1 .

After inserting the numberm = 4 to P , we obtain (P ′, (r1, c1), α)where (r1, c1) = (2, 1), α = 1
and P ′ is

4 2 1
2

.

Next, insert m′ = 3 to P ′ and get (P ′′, (r2, c2), α
′) where (r2, c2) = (2, 2), α = 1 and P ′′ is

4 3 1
2 1

.

This aligns with Lemma 5.6 since c1 < c2 and m′ < m.

To summarize, our new reverse insertion satisfies the following Pieri property.

Theorem 5.8. Let P be a decreasing tableau. Apply successive reverse insertions

Ψ(P, (r1, c1), α) = (P ′,m)

Ψ(P ′, (r2, c2), α
′) = (P ′′,m′)

Then c2 < c1 if and only if m′ > m.

Proof. Follows from Lemma 3.4, Lemma 5.6, and Theorem 5.3.

The following is an equivalent restatement for insertion.

Corollary 5.9. Let P be a decreasing tableau and m,m′ ∈ Z>0. Applying successive inser-
tions Φ(P,m) = (P ′, (r1, c1), α) and Φ(P ′,m′) = (P ′′, (r2, c2), α

′), we have m > m′ if and
only if c1 < c2.

Given a compatible pair (a, i) and starting with the empty tableau pair, use Φ to insert a1,
then a2, and so on, recording the insertion of ak by ik, producing a tableau pair (P,Q) where P
is decreasing. Denote this map by Φ̃(a, i) = (P,Q).

Corollary 5.10. Φ̃ is a weight-preserving bijection CPw → Decw ×Y SVT.

Proof. Corollary 5.9 implies that Q is set-valued. Moreover it also implies that the process can
be inverted: if (P,Q) ∈ Decw ×Y SVT, then using Ψ at the sequence of removable boxes given
by the entries of Q, one recovers (a, i) ∈ CPw.

Remark 5.11. Reversing comparison of values, one obtains a weight-preserving bijection
Φ̃Inc : CPw

∼= Incw ×Y RSVT.
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