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ELASTICALLY SCATTERED POLARIZATION OF 40-MeV 
PROTONS FROM DEUTERIUM 

Howard S. Goldberg 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

August 5, 1964 

ABSTRACT 

The polarization of the elastically scattered protons from deu

terium at 40 MeV has been measured and found to be large, reaching a 

maximum negative value of -0.3-9 2 ± 0. 018 at 8 = 114 deg and eros-
c.m. 

sing over to positive values at backward c. m. angles. Our results do 

not agree with the impulse -approximation predictions of Kowalski and 

Feldman. After development of the density -matrix formalism for a 

spin 1/2, spin 1 system, a phase -shift analysis of the data was made, 

using the elastic differential cross section results of Williams. To get 

a reasonably good fit to the data, F waves had to be included. This re

quired a 26 -parameter fit, and for 62 data points gave a minimum x2 of 

135. The large values of the mixing parameters in certain J states 

indicate the presence of tensor forces. 
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I. INTRODUCTION 

In a recent paper, Kowalski and Feldman1 have made an impulse

approximation ( IA) calculation of the polarization induced in p -d scat

tering at 150, 90, and 40 MeV, taking into account the internal motion of 

the target nucleons and off -the -energy -shell scattering. The experi

ment presented here was undertaken, at 40 MeV, to make a direct com

parison with their predictions. Also, it was hoped that the determina

tion of the polarization in nucleon-deuteron scattering would provide 

information useful to the understanding of the large difference in polari

zation induced in nucleon-nucle<.m2 scattering and that induced as a re-
3 sult of the scattering of a nucleon from a few-nucleon system. 

Since the Kowalski and Feldman predictions were not in agree

ment with our results, a different approach to the problem was attempted. 

The most direct method,and one capable of utilizing the 40 -MeV elastic 

differential cross section data of Williams 
4 

was a phase -shift analysis of 

the p-d system. An approach similar to that of Wolfenstein5 and Stapp6 

was taken, using the density-matrix formalism, now for a spin ( 1/2, 1) 

system. Attempts at a ( 1/2, 1) analysis had been formalized by 

Budianskii 
7 

and Hsueh-tan8 with conflicting results. Therefore, the 

phase -shift problem was carefully formalized along with a phase -shift 

analysis of the 40-MeV p-d scattering . 
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II. G:;ENERAL CONSIDERATIONS 

If one takes N+ as the number of particles in a beam with their 

spins up and N as the number of particles with their spins down, then 

the polarizationis defined as 

P= 

so that an unpolarized beam can be considered to be an equal mixture of 

two completely and oppo'Bitely p<>larized beams, while a partially 

polarized beam would contain a fraction IP I of a completely polarized 

beam and a fraction 1 -IP I of an unpolarized beam. 5 

If one tries an experiment and scatters an unpola:r:ized beam off 

an unpolarized target and measures the left counts (L) at 8L and the 

right counts (R) at 8R = -8L' then the resulting asymmetry E(8), de

fined as 

E( 8) 

is zero. In other words, for the elastic differential cross section we 

have the well-known a
0
(8) = a

0
( -8). However, if the incoming beam is 

polar~zed,. then E (8) is no longer necessarily found equal to zero, i. e., 

a(8) f. a( -8). 

Now, if one were to scatter an unpolarized beam from an unpo

larized target and take the resulting left-scattered beam (L) and scatter 

it off a second target, one would most likely find a
2

( 8) f. a
2

( -8). Thus, 

from the discussion of the above paragraph, the resultant left-scattered 

beam from the first target must have been polarized. The first target, 

T 
1

, was capable of inducing a polarization at some angle 8 and some 

energy E of the incoming beam, and this polarization was reflected in 

the second scattering, at T 
2

, which gave a nonzero asymJI1.etry. This 

'• 

f; 
~ 
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polarization is characterized by a number P 
1

( 8}, where 1 represents 

the kind of target T 
1

, and 8 the scattering angle. The polarization has 

a direction n1, so that 

A A A 

where n
1 

= k. X k t' k. is a unit vector in the incident beam direc-
.1n ou 1n 

tion and k t is a unit vector in the scattered beam direction. Accord
au 

ing to the Basle convention, positive polarization is taken along n. 
Finally, for a double scattering experiment, the elastic differ

ential cross section for the second scattering is5 

This will be proved in a "later section. 

If one confines oneself to scattering in a plane perpendicular to 

the direction of n1' one will have 

crp( 8L) - crp( 8R) L-R 
E( 8) = = 

crp(8L) +ap(8R) ,L+R 

= P 1
P

2
(8). 

Therefore, by scattering polarized protons of polarization P 
1 

off a deuterium target and measuring E ( 8) one can find, from 

P 
2

( 8) = E( 8)/P 
1

, the polarization that would have been induced by an un

:polarized proton beam . 
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III. 40-MeV POLARIZED PROTON BEAM 

The first step, then, in the experiment was to determine the 

polarization of the 40-MeV proton beam, which in effect necessitated a 

separate experiment. In order to clarify what follows a simple non

relativistic relation should be kept in mind: 

E 
c.m. 

M 
- m+M EL' 

where E is the total center-of-mass energy, EL is the lab energy 
c.m. 

of the incoming particle ··of mass m, and M is the mass of the station-

ary target particle. Thus, if we have an a beam impinging on a hydro

gen target, E = 1/5 EL' while a proton beam impinging on a helium 
c.m. 

target would have E · = 4/5 EL' so that for the same center -of -mass c.m. 
energy for each system -EL =4 EL , i.e., a 10-MeV proton beam 

'a . , p 
striking a helium target would have the same c. m. energy as a 40-MeV 

a beam striking a hydrogen target. 

The starting point of the polarization analysis for the 40-MeV 

proton beam was experimental data for the polarization of 10-MeV pro

tons on helium. 9 With respect to the incoming proto? direction, the 

maximum polarization occurs at Elmax = 133 deg, wi~th a value of 99o/o. 
c.m. . 

Using the results of the above discussion, on~· sees that the 10-MeV 

p-He scattering would have the 'Same center-of-mass energy as a 

40-MeV a-p scattering. The kinematical relations along with the c. m. 
max and lab angles at El are shown .in Fig. 1. Here v , v are the c. m. 
c.m. a p 

velocities of the alphas (incident in the lab) and the protons (lab target, 

particles) respectively. Thus, with respect to the alpha beam direction, 
max 

the maximum polarization occurs at ElL = 23.5 deg. By scattering a 

40-MeV a beam off a liquid-nitrogen-cooled gaseous hydrogen target, 

we produced, at El~ax = 23.5 deg, a 20-MeV proton beam polarized to 

99o/o. 

This beam was then scattered from a helium target, T 
2

, and the 

left-right asymmetry, E( El) = ( L- R)/( L + R), of the elastically scattered 

J: 
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Elab, a = 40 MeV 

.. ~~..e'-1 // 
,'2.0"':_.. // 

,.. 
/ 

_j_ 
Va- 5 Vlab, a 

't,.,o'o·~; _::: -----
4 

Vc.m. = 5 Vlab,a (a) 

Elab, a = 80 MeV 
VP Va 

t 0 
81ab=262 

(b) 

MU-34250 

Fig. 1. The nonrelativistic vectoral relations bet\yeen the c. m. 
velocities, va, vp, and vc. m.' showing the ec.m. at or close 
to the maximum polarization, along with the corresponding 
lab angle and recoil proton lab energy. 
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protons was measured. ·Since E( e)= p 1 P( e), where p 1 is the polariza

tion of the proton beam and P( B) the proton polarization induced by 

scattering unpolarized protons from T 
2

, one can determine where the 

maximum value of the polarization occurs, from E( B)= 0. 99 P( B). The 

results are given in Table I and plotted in Fig. 2. The experimental 

apparatus was the same as that used in the p-d experiment, and is de

scribed in the following sections. From Fig. 2 one can see that for 

20 -MeV p -He elastic scattering the maximum polarization occurs at 

e max= 126 deg, with a value of-+0. 828 ± 0. 02. The sign is given in ac-c.m. · · 
cord with the Basle convention (positive polarization in the direction of 

-+ -+ 
kin Xkout). Because of a hurried first analysis of the data eL was taken, 

in the subsequent experiment, to be 12 7 deg, corre~ponding to a lab 

angle of 26.5 deg. Figure 1 shows this kinematically. Repeating the 

above procedure, we started--with an 80 -MeV a. beam and extracted at 

eL =26.5 deg, a proton beam of 41.1± 0.6 MeV at the center of the hydro

gen.target, with a polarization of +0.819 ± 0.02. The intensity was 

4X 10 7 protons/sec for 10 fJ.A of incident a.-beam. 

' 
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'i' 

Proton polarization in p-He 
4 

elastic scattering at 20 MeV. Table I. 

,. ·...: eL e P(8) c.m. 

25 31.2 -0.132±0.005 
I • .. 

35 43.5 -0.199±0.005 

57 69.5 -0.393 ± 0. 005 

62 74.8 -0.452 ± 0. 006 

70 83.6 -0. 534 ± 0. 007 

76 90.0 -0.611 ±0.007 

81 95.5 -0.610±0.014 

87 101.9 -0.489±0.018 

92 106.8 -0.223 ± 0. 024 

100 114.5 +0.420 ± 0.042 

103 117.5 +0. 579 ± 0. 042 

106 120.0 +0.780±0.028 

109 129.9 +0.818±0.020 

112 125.8 +0. 828 ± 0. 020 

116 129.7 +0.811±0.020 
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IV. EXPERIMENTAL SYSTEM 

A. Beam Layout 

The beam layout is shown in Fig. 3. After being steered by the 

switching magnet, the a beam entered the vault scattering chamber, 

where it was collimated ( C 
1

} prior to hitting the vault target, T 
1

. The 

current of each half of C 
1 

was measured and balanced by using the 

switching magnet and the 88 -in. quadrupoles (not shown) to keep the 

beam centered on the target. Target T 
1 

was a liquid-nitrogen-cooled 

gaseous hydrogen target, described elsewhere.
10 

The target was run at 

114 psia. The a. energy was 84.5 MeV, which was reduced to 80 MeV at 

. the target center by loss in the hydrogen gas and in the target entrance 

window. 

The recoil polarized protons were taken off at the previously de

scribed angle (26.5 deg)"-and collimated by c
2 

and C
3

. The first colli

mator, c
2

, was made of 0.100-in.tantalum with a 3/8X3.5·-in. slot'which 

defined the target width. The second collimator, c
3

, was also 0.100-in. 

tantalum with a 1.5X 3.5 -in. slot which defined the solid angle. The 

second collimator defined the scattering angle to± 1 deg. With a dis

tance of 30 in. between the two collimators the penumbra region was 

negligible. The first qua-drupole position was determined by the space 

limitations in the vault. The polarities were, in the horizontal plane, 

diverging (D)- converging (C) and C-D for quadrupoles 1 and 2, 

respectively, and the beam was rendered parallel between them. A ray 

trace for a central ray is shown in Fig. 4. OPTIK, an IBM-7090 pro

gram, was used to determine--the quadrupole currents where their effec

tive lengths and positions were used as input data. During the run the 

currents were juggled .. to optimize the proton beam current and mini

mize the beam spot size. 

Shown in Fig. 3, but not used in the experiment, were a 9-ft 
... 

solenoid and a tickling magnet. Eventually, the solenoid will be used to 

flip the spin of the polarized proton beam and the tickling magnet will be 

used to center the flipped beam. 
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An ion chamber faced;with a 0.100 -in. tantalum plate containing 

a 1/16 X 1.5 -in. slot was used to scan the beam. The chamber was 

moved remotely through a selsyn unit with the slot oriented vertically 

for the horizontal profiles and horizontally for the vertical profiles. 

Typical profiles are shown in Fig. 5. At the target center the beam had, 

in the horizontal plane, a full width at half maximum of 0.22 in. and in 

the vertical plane a full width at half maximum of 0.125 in. 

Once the beam was optimized and the quadrupole currents set, 

the direction of this beam line was determined by locating, with a tran

sit, the peak horizontal profile position at two points about 30 in. apart. 

The center of the scattering table was located on the transit line and the 

zero degree marker on the table rotated to coincide with the beam line. 

During the run the possible beam drift was monitored with a split ioniza

tion chamber, which could detect a beam displacement of 0. 002 in. 

By use of a Faraday cup and an aluminum foil wheel, an integral 

range curve was taken. The results are shown in Fig. 6. The tables o0 

Williamson and Boujot
11 

were used to convert the Al foil thickness to 

energy equivalents, and the tables of Livingston and Bethe 
12 

were used 

to correct for the loss in air. With the deuterium target at 114.7 psia 

and room temperature, the beam energy at the center was 40.3 ± 0. 5 MeV. 

To check the geometrical alignment, target T 
2 

was filled with 

hydrogen gas and the asymmetry E for p -p scattering was measured. 

Since the value of p-p polarization at 40 MeV is close to zero, no asym

metry should have been observed. Since the measured asymmetry was 

< 0. 002 ± 0. 0005, the alignment was considered to be good enough so that 

any corrections due to alignment errors could be ignored. 

B. Scattering Table 

The scattering table, target, and counter arms are shown in 

Fig. 7, with a plan view of one counter setup shown in Fig. 8. The cir

cumference of the scattering table was graduated from 0 to 360 deg in 

1-deg steps. Eight c9unters could be operated at once, four on the left, 

four on the right. Two counters were on separate arms, while for the 

j:.• 
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Fig. 7. Scattering table and counter setup. 
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Fig. 8. Top view of scattering table and a pair of counters, 
showing collimators, Csi crystal orientation, and counter 
arms. 
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other six, three were on one arm, three on another. In this way, while 

slow rate data were being collected at three backward angles the for

ward counter could be swept through several angles. The trapezoidal 

brass houses were necessary to· collimate the scattered proton beam. 

Each house contained twe sl-ots~3/8 in. wide and 2.5 in. high. They de

termined the solid angle and the angular aperture. The former was 

0.01884 steradian and the latter was± 1.5 degrees. 

During the experiment the target was run at 114.7 psia and room 

temperature. The target windows were 0.015 -in. Mylar, and the separa

tion foil between the target and the cyclotron vacuum system was 

0.005 -in. Mylar. As one can see from. Fig. 9, the Mylar window ex

tended continuously most.of the way around the target so that only about 

30 deg in the back direction was lost. 

C. Detection System--Counters 

The proton detection system was a C si crystal mounted on a 

Dumont 6363 phototube with a 3 -in. photocathode. Initially the resolu

tion of each system was tested by using a Cm.
244 

a source, with the 

phototube and source mounted in an evacuated chamber. With the Csi 

crystal mounted directly ·to the face of the phototube, the a resolution 

was .on the order of 16%, not a·very satisfactory number. Using a light 

pulser and 1/4-in. D mercury lamp, the tube output was measured as 

the lamp moved over the ·face of the phototube and found to vary in spots 

by as much as a factor of 6, often being lowest in the center. A typical 

map over the phototube face of a normalized number, p, proportional 

to the tube output is shown in Fig. 10. If one tried to orient the Csi 

crystal along a.line of constant·p the resolution improved, bu~ only by 

a small amount. However, by silicon greasing on a 1/2 -in. polished 

glass pipe and aligning the crystal along a relatively constant value of 

p , the resolution was improved, by a factor of 2 to 3, to 4 to 5%. 

Another trouble with our batch of 6363 us was that the gain drifted by as 

much as 20% over a 24 -hr. period. This required careful selection of 

tubes and short experimentai runs. 
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Fig. 9 . Gaseous deuterium target. 
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MU-34257 

Fig. 10. Relative values "of light output over the face of a 
Dumont 6363 phototube. 
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The crystals were 1 in. wide by 3 in. long, and came in thicknes ·

ses of 0.400, 0.200, 0.100, 0.050, and 0.025 in. This allowed us to stop 

the high-energy protons, when counting in the forward directions, and 

minimize the background when counting in the backward directions. 

The resolution was further checked by using 30-MeV protons 

scattered on polyethylene, and found to be on the order of 1.5o/o at these 

higher energies. 

D. Detection Systern--Electronics 

The phototube base was a standard linear 150 K resistor chain. 

The signal was taken off the last dynode and fed into a charge -sensitive 

preamplifier built into the phototube base. The eight signals were taken 

directly from the experimental -area into the counting area and split into 

two groups of four. A block diagram of either group is shown in Fig. 11. 

The preamplifier signal first entered an amplifier -crossover unit. The 

amplifier section inverted the input pulse and amplified it enough to 

match the 8-volt input range of the pulse-height analyzer. The cross

over section shaped the RC pulse before sending it onto a router-mixer 

unit. Here, the amplified pulses were mixed and the single output fed 

into the PHA. The crossover signals were sent to a router section 

which triggered a shaped routing pulse. In this way counter 1 was 

routed into channel 0-99, counter 2 into channel 100-199, counter 3 into 

channel 200-299, and counter 4 into channel 300-399, or counters 5, 6, 

7, and 8, respectively. Each routing pulse produced a gating pulse 

which was set in coincidence with an on-off signal from a scaler gater 

unit. When two counter signals arrived simultaneously the gating pulse 

was suppressed. The output of the coincidence unit Wi3-S fed into the de

layed coincidence input of the PHA. In this way the PHA was turned off 

unless a single event occurred. Two PHA 1s 

counters could be operated simultaneously. 

hind T 
2

, was used to monitor the beam. 

werLused so that eight 

An ion chamber, set be-

·~ \4 ·-
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V. DATA ANALYSIS 

A. Data Reduction 

Since no conjugate counter was used, the PHA.display contained, . . ' 

along with the spectra from the elastic protons, spectra due to various 

background events. In OTder to· arrive at the final polarization the back

ground process had to be distinguished from the elastic proton events 

and subtracted from them. The-particles fromthe competing processes 

were elastic recoil deuterons, inelastic protons which arose from the 

breakup of the deuteron"i:n p+d-+ptp+n, target-empty events, and 

'( rays, which converted-in the Csi crystal to give a large low-energy 

spectrum. Figures 12, 13, and 14 illustrate typical spectra in which 

on.e or more of the above· background processes were present. 

Figure 12 was typical··of·the spectrum at forward angles 

( eL ~ 35 deg). The number of elastic protons was estimated by taking 

the counts of the high-ertergy side (BC)' of the peak (A' BC) and 

doubling them, i. e. , by making the low -energy side the mirror image 

of the high-energy side .... Since the maximum energy of the inelastic 

proton is 2.23 MeV less than the corresponding. elastic proton, or four 

or five PHA channels, the distortion due to inelastic events is much.less 

on the high-energy side of the peak. The earlier work on calibrating 

. the counters showed them to give an. inherently symmetric peak. The 

normalized tar get -empty counts were then subtracted from the counts 

under ABC to give the number t)f elastic protons. Because of the 

relatively high er1ergy of the protons ( z 36 MeV) and their relatively 

large elastic differential· cross section (z 100 mb/sr), the proton peak 

stood out well fromthe low-energy background and inelastic protons. 

For these forward angles 0.400-in. Csi crystals were used. 

At backward angl·es ( eL ,~ 65 deg) with. the proton energy reduced 

( ~ 20 MeV) and the elastic cross section down by at least a factor of 25 

[a( B) ~ 4 mb/ sr], 4 the elastic peaks would have been indistinguishable 

from the inelastic background had not the crystals been made much 

thinner than 0.400 in. The very back counters were 0. 025 in. thick, and 
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Fig. 12. Pulse -height spectra at equal left and right angles 
( e = 20 deg) showing the elastic proton peak. 
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Fig. 13. Pulse -height spectra at e = 39 deg, showing the 
elastic proton peak and recoil deuteron peak. 
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Fig. 14. Pulse -height spectra at 8 = 65 deg, showing the 
elastic proton peak. 
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counters of 0.050 and 0.100 ir;t. were used at mqre forward angles. Th.e 

counters were reduced in thickness in order to cut down the number of 

gammas converting in the Csi, but were left large enough. to stop the 

elastic proton at the partic.:u.lar -angle in question. A typical spectrum 

is shown .in Fig. 14. To find the elastic proton counts the high -energy 

_.side of the peak ( BC) was again doubled, but this time to the line AC, 

which was determined by extrapolating the high-energy tail. Subtract

ing the counts under AC fr-om those under ABC gave the number of 

elastic protons. 

At 8 = 3 0, 35,. 39, and 45 deg, along with the ela1stic protqn peak 

was a peak due to the recoil --deuterons. This can be seen. clearly in 

·.Fig. 13. The number of- rec-oil---deuterons was the number of counts 

under DEA' minus the number ef counts under DA'. It was assumed 

that the recoil deuterons were sitting on the background spectra of the 

inelastic events. The recoil deuteron asymrn,etry gave the asymmetry 

of the associated backward-scattered proton, and provided a check on 

the backward-angle data. The elastic proton peak was treated in.the 

same way as the above de scribed forward angle case, i.e. by doubling 

the high-energy side of the prohm peak and subtracting the target

empty background. 

In. this way the elastic peak counts were determined on the left 

( L) and right ( R), and the asymmetry E( 8) = ( L - R)/( L + R) was calcu-

lated. Since ~( 8) = P 
1 

P(8 ), where P 
1 

is the polarization of the pre

viously described 40-MeV proton beam, we have P(B) = £(8)/0.819. The 

results are listed and discussed in a later section. 

B. Errors 

In each spectru;rn there w'as a peak area (PL' PR) qeneath which 

were the elastic proton counts ( L, R) and the various competing back

ground processes (BiL' BiR). Therefore, we have 

L=PL-IBiL' 

i 
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The counting errc::rr is· the statistical fluctuation in the number of 

counts in the peak (PL' ·PR), the statistical fluctuation in the number of 

counts in the target-empty background, and the statistical fluctuation in 

the number of counts in the inelastic background. 

where 

and 

Since E( 8) = f( L, R), we have, assuming a Poisson distribution, 13 

DoEL = o E D.L 
aL ' 

DoE = 0 E D.R 
R oR 

I'>L "[(I'>Pd2 + ~ (I'>BiL)2] 1/2 

" [p L + ~ BiL l/2 

D.R = [p + \B. ]1/2 
R L 1R. 

i 

How do we get ~ BiL? For an example, take Fig. 14. P L was 

equal to the counts under (A 1 BC )L. By symmetrizing the peak we got 

the curve (ABC )L and subtracted the counts under AC to get L. Since 

~ BiL = P L- L, we have the sum over the various background counts. 

In this way we avoided separating out each B., which, because of the 
1 

overlap of the inelastic processes, would have been a very tedious if not 

impossible job. That is, it was much easier to determine the peak 

counts and the elastic counts and take the summed background as their 

difference than to estimate each background process and then sum them. 

In the case of the recoil deuteron peak the process was more 

straightforward, since ~ BiL is the number of counts under DA'. 
1 

Finally, we have 
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and 

so that 

b.E = 

At the very backward angle, 8L = 114· deg, the proton peak was 

so buried ~n the i11-elastic ·back~round that no unambiguous background 

subtraction.could have been made. For this point this uncertainty in 

_the inelastic subtraction was the- greatest contribution to the error. At 

the other backward angles the l0cation.of the point A' was opento ques

tion. This results in an.uncertainty in determining the peak counts 

(PL, PR). Since L or R was fairly uniq1..).ely determined by doubling 

the counts on the high-energy side of the peak, this uncertainty in PL 

gave an equivalent uncertainty in 2: BiL' This in turn led to an. increase 

in D.E. 

Alignmep:t errors were insignificant, as the small value of the 

p -p asymmetry showed, and were ignored. 

Because the counters have a dimension. in the vertical direction 

they detect particles out of the plane which is perpendicular to the po

larization direction. of P-
1

, i.-e.-~ out of the plane of the scattering table. 

This would necessitate a correction to the polarization P( e), but was 

small enough to be ignored. 

Half way through each run, left-right detector pairs with their 

associated electronics were interchanged in order to minimize syste

matic errors and to correct for differences in detector efficiency and 

geometry. 

Since E( 8) = P 
1

• P( 8), one might expect that the error in P 
1 

should be included. However, -since P is a normalization factor and 

does not contribute in a random way it was not added to D. E. The un·

certainty in P 
1 

would just normali~e the whole P( e) curve and not 

change its shape. 
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VI. THEORY 

A. Impulse Approximation 

The 40 -MeV p -d polarization data are shown in Table II and 

plotted in Fig. 15, along with the various impulse -approximation pre

dictions by Kowalski and Feldman. Much of what follows is a summary, 

in a very condensed form, of their 1963 Physical Review article. 

The usual method for studyi11g high-energy (E> 100 MeV) p-d 

scattering has been the Chew 14 form of the impulse approximation. 

Here, the scattering process is taken as a simple superposition of the 

single scattering of the incident nucleon from each of the quasi -free 

target nucleons. Usually, the internal motion of the target nucleons is 

ignored. For small momentum transfer this seems to work very 

ll 15, 16 
we . 

\ 

However,. with large momentum transfer several effects enter 

and the above picture of the scattering fails. Among these effects are 

the internal motion of the target nucleons, multiple scattering, binding 

forces, and pickup scattering. -Kowalski and Feldman neglected binding 

forces and ignored pickup scattering in their calculations. The role 

played by the first two effects is discussed below. 

The first problem is to define the various quantities used to dis

tinguish the p -d system from the system made up of the incident parti

cle and one of the target nucleons. 

The. p-d system is compvsed of three particles --the incoming 

proton, 1, and two target nucleons, 2 and 3. In the laboratory system 

we have k
1

, k
2

, and k
3

, the momentum of particles 1, 2, and 3, re

spectively. We can then define 

-q = 

as the momentum of nucleon 2 with respect to the c. m. of the deuteron, 

and q will be used to take into account the internal motion of the target 

nucleons. 
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Table II. P;rotpn polarization in p -d elastic scattering at 40 MeV. 

Column 3 indicates whether the proton (p) or recoil deuteron (d) 
~ 

asy:rpmetries were used to give the polarization. 

eL e Particle P(e) 
c.m. 

20 30.1 p +0. 093 ± 0. 008 

25 37.5 p +0.123±0.012 

30 44.9 p +0.103±0.011 

35 52.1 p +0.128±0.012 

39 ~7. 9 p +0.098 ± 0.010 

45 66.2 p +0. 040 ± 0. 016 

50 73.0 p -0.012±0.017 

55 79.7 p -0.095±0.016 

45 87.7 d -0.250 ± 0.022 

65 92.5 p -0.294±0.018 

70 98.6 p -0.281 ±0.015 

39 100.3 d -0.327 ±0.061 

76 105.6 p -0.331 ±0.023 

35 109.7 d -0.374±0.033 

84 114.3 p -0.392 ± 0.018 

30 119.8 d -0.385 ± 0.045 

95 125.3 p -0.310 ± 0.030 

100 129.9 p -0.366 ± 0. 036 

106 135.1 p +0.060 ± 0.041 

114 141.5 p +0.490 ± 0. 20 
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Fig. 15. Proton polarization, P (8 ), in p -d elastic scattering 
at 40 MeV. The curves labeled CA, LA, and FA are 
results from impulse approximation calculations of Ref. 1. 
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-Another quantity needed is Y], one -half the momentum transfer, 

-Y] = where 

and is the momentum of the incident particles with respect to the center 

of mass of the deuteron, in the overall barycentric system, and 

kf = ('2/3} {k
1

.:. [(k
2 

+ k
3
}/2] }f for the final particle. 

Finally, we have Pi and Pf, which are, respectively, one-half 

the momentum of particle 1,- before and after scattering, taken rela

tive to the target nucleon off which it is scattering, which in. this case 

is number 2. Since the -impulse approximation was taken as the single 

s~attering of the incident particle off one target nucleon, if the incident 

momentum of particle 1 relative to the c~ m. of the deuteron. is k. then 
I 1 - -its final momentum is ki -1; 211 , while for particle 2 if initially its mo-

mentum relative to the c. m. of' the deuteron is q after colliding with 1 - -it will be q - YJ. Since 3 is the :spectator it undergoes no change in mo-

mentum. Therefore, 

- -- ( k1 -k2)i 
2. k. -P. = = - g_ 

1 2 .A 1 2 

- ( k 1 -k2)f 3-
- q/2 +; /2 pf = = -k 

2 4 f 

-+ -+ 
The coordinate system used to calculate k., q, and P. is ill us-

.1 1 

trated in Fig. 16. 

the prot<?n mass. 

Here k ~ 2/3 Mx., q:= M:i-/2, P. = My./2, where M is 
1 1 . 1 . 1 

Similarly, for the final particle, kf' Pf, etc. 

Since we are dealing with the nucleon-nucleon scattering off a 

deuteron target, the two -nucleon transition operator is defined as t c 
with matrix elements 

where S are the total spin functions. 

Lastly, we have the quantity <j> (q}, which is the Fo'trier trans

form of the S-state deuteron wave function and defines the 'momentum 
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MU-34401 

Fig. 16. The coordinate systems used to calculate K., q, and P. 
1 1 

(or k£, q, and P £). 
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distribution of the struck target nucleon before the collision; <I> ( q- n) 
describes the momentum distribution of the struck target nucleon after 

collision. 

The matrix element, then, that describes the scattering of an 

incident particle off a deuteron in the IA is 1 

( 1) 

Kowalski and Feldman found that the Watson 1?' 18 form of the 

two-body transition operator, t , gave the best results when compared 
c 

with the Chew form. 19 Although the Watson form of t is an operator 
c 

which encompasses multiple scattering, only the single scattering term 

was used. 

The first approximation used to solve ( 1) was the Chew approxi

mation ( CA). Here q is taken as zero so that ( 1) separates into 

where 

and l);Ci=) is the S-state deuteron wave function. 

Taking q = 0 is justified only when In I is small. This is be-
-+ -+ 

cause <j> ( q) peaks at q = 0, so that for small 11 the major contribution 

to ( 1) comes from a region about q = 0. Therefore, (tc) is independ

ent of q, and since the momentum transfer is small, IPii=IPfl' so 

that one has on-the-energy-shell scattering. 

The second approximation was the linear approximation (LA). 

The average value of q was defined as 

1 -+ 

2 '11 (2) 

Then ( tc) was expanded in a power series about q, retaining 

only the zero-order and linear terms. This gave 
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which, when plugged into ( 1), gave 

But from Eq. ( 2) the bracketed term is zero, so that again ( 1) is 

in a separated form, and solvable. 

Since ( q) = 1/2 ;j, one ·can go to large momentum transfer by 

considering the internal motion of the ta·rget nucleons, thus extending 

the CA approximation. Since jkij = jkf I, I Pi I = I P f j, so that one is 

still on the energy shell. 

The final approximation is called the off -the -energy -shell - -; approximation (FA) where q = q( "Y7 'Y'/). The results are much more com-

plicated to convey than either of'the previous two cases, and are not 

given here. However, it does allow a solution of ( 1) for large momen

tum transfer, and--as can be seen from the equations for Pi and Pf-

now includes off -the -energy -shell scattering. 

With elastic differential cross section data available at 40, 95, 

and 15 0 MeV and with polarization data available at 15 0 MeV, Kowalski 

and Feldman found the FA gave the best fit to the data, although at 

backward angles even the FA predictions were not very good. This is 

probably due to the neglect of pickup scattering which, being an exchange 

effect, would show up at backward angles. However, as Fig. 15 shows, 

the discrepancy between the experimental and calculated res1.1lts in

cr~ases in going to the more complete version of the calculation. At 

backward angles the prediction seems to break down completely, again 

possibly because of the neglect of pickup scattering, but the calculated 

curves are quite far off even at forward angles. Here, since pickup is 

not involved, the reason is probably the neglect of multiple scattering 

effect and possibly a breakdown of the IA, itself. As one goes to lower 

energies, multiple scattering19--effects become more important, and 

will probably have to be considered before the impulse approximation is 

abandoned. 
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B. Density Mq.trix Formalism of the p-d Problem 

With the predictions of Kowalski and Feldman in such poor agree

ment with our 40-MeV polarization data, and with the inclusion of multi

ple scattering correction& being a very tedious job, a phase -shift 

analysis presented itself as a straightforward way of analyzing the data. 

Although much work has been done on the ( 1/2, 1/2) system, 
5 

very 

little has been done in formulating the ( 1/2, 1) problem. Two articles 

held out hope: one by Budianskii, 
7 

the other by Hsueh-tan, 8 each tackl

ing the problem along the li-nes -set up by Wolfenstein, that is, a 

density -matrix formalism. However, reflecting this age of ideological 

conflict, Hsueh-tan refuted the Russian work, "It may be immediately 

seen that the corresponding formulas in the previous work (Budianskii) 

are erroneous." This disagreement led us to try to reformulate the 

problem, to see who was correct, and then proceed with a phase -shift 

analysis. Unfortunately, it seems that there are errors in both papers. 

Therefore, in what follows the work is presented in some detail, much 

more so· than would be necessary had a correct set of equations existed. 

We feel this is necessary in order to clarify our formalism of the prob

lem. The discrepancies between the Russian and Chinese papers will 

be noted as they arise. 

The combined spin space of two particles of spin 8
1 

and 8
2 

will 

have (281 +1) (282 +1) basic states, xi' i going from 1 to 

(28
1 

+ 1) (28
2 

+ 1). Any state will be a linear combination of these 

(28
1 

+ 1) (28
2 

+ 1) basic states. -For 8
1 

= 1/2, 8
2 

= 1 there are six basic 

vectors, which could be the four quartet states and the two doublet 

states. Any operator that describes the component system must be a 

(28
1 

+ 1) (28
2 

+ 1) by (28
1 

+ 1) (28
2 

+ 1) matrix. Any arbitrary operator 

can be written as a linear combination of ( 28
1 

+ 1) 2 ( 28
2 

+ 1) 2 
basic 

operators 8u, u going from 1 to ( 28
1 

+ 1 )2 ( 28
2 

+ 1 )2 . This complete 

set of basic operators satisfies 

( 1) 
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A state function xn, in a pure state n, can be expanded as a 

linear sum of the basic vectors X.: 
1 

m 

n 2: n X = a. X· 
1 1 

m = ( ZS 
1 

+ 1) ( zs
2 

+ 1) , 

i=1 
n 

where X can be written as a column vector 

(:0 
n n + ':'n ':'n 

The Hermitian conjugate of X is a row vector X = (a
1 

···am ). 

Therefore 

n+ n n nt 
X X = Tr (X X ) 

The expectation value of. an operator S in the pure state n is 

= (xnl sJ xn) = 

(xnlxn) 
1 

nt n 
X X 

Since SXn is a column vector we have 

= Tr (SX~nt) 
Tr( XnXnt) 

If we have a mixed state, which is an incoherent sum of pure 

states, each with a statistical weight wn, then we have 

n n 

= Tr(s L wnxvtJ!Tr ( L wnxnr) 
n n 

If we define the density matrix p as 
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we have as the average value of any operator S, when the measure

ments are made on particles in the incident beam, 

Tr ( S p. . ) 
lnC 

Tr ( p. ) 
lnC 

( 2) 

We next take the asymptotic form of the scattered wave in each 

pure spin state as 

n n ikr/ 
ljJ f ( e, cj> ) = Xf ( e, <!>) e r 

Then the amplitude of the scattered wave is given by 

n n 
X£ (8, cj>) = M(e, cj>) X· . lnC 

This defines M, a Hermitian matrix which transforms the 

initial spin space into the final spin space. Therefore, 

p f = I: wn X£ nX£ nt = .L wn Mxinc nxi:C:t Mt = 

n n 

t Mp. M . lnC 

Since p is a matrix in our combined spin space, it can be 

written as 

=\au Su. 
Pine L inc 

u 

By using ( 1) we have 

so that 

u 
a. 

lnC = 
(2S

1 
+ 1) (2S

2 
+ 1) 

P inc = ( ) ( ) 2S 
1 

+ 1 2S
2 

+ 1 

using (2), we get 

(2S
1 

+ 1) (2S
2 

+ 1) p. = Tr(p. ) . \ (Su). Su 
lnC lnC L lnC 

u 
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p = Mp. Mt, we have 1nc 

(2S 1 + 1) (2S2 + 1) Pf = Tr(pinc)· [ MSuMt (su)inc 

u 

The differential cross section is 

I = T r ( p f) / T ( p . ) . r 1nc 

For an unpolarized beamthe only (s) that is nonzero is 

the identity matrix. For s
1 

= 1/2, s
2 

= 1, we have 

u 
for S = I

00
, 

pf=Tr(p. )(MMt)/6 
lnC 

and 

For a polarized beam there are -two ( S) that are nonzero. One is the 
-+u -+ 

previously described identity matrix, the other is for S = (]. The 

average value (s
2
). (<J)inc =P;;_ 1 is the polarization of the incident beam. 

This gives 

and 

I =I [ 1 + Tr(MaMt). p n]. 
f . O Tr ( M Mt) 1 1 

If we evaluate (u) for an unpolarized incident beam we have, using (2), 

--_1 -+ t 
I0 (CJf)- b Tr(MCJM ) . 

· Since (a) is the polarization of the scattered beam, we have 

so that 



-40-

which is the formula given in Sec. II, to show that the asymmetry 

E(8)=P
1
P

2
(e). 

What we will do in the succeeding pages is first to expand M in 

terms of a set of basic matrices, and then, substituting this form of M 

into the expression for r
0 

and P
2

, evaluate the traces. This will relate 

r
0 

and P 
2 

to the M matrix coefficients. Then the M matrix coeffi

cients will be expressed in terms of the matrix elements of M, and 

finally these matrix elements will be related to the phase shifts. In this 

way r
0 

and P 
2 

will be functions of the phase. shifts. 

We start with the fact that the transition matrix M must be in-

variant under rotation, space reflection, and time inversion. We would 

like to set up 36 independent matrices. For the spin-1/2 particle there 

will be four independent matrices in its spin space and for the spin 1 

particle there will be nine independent matrices in its spin space. The 

composite space will be the product of these two spaces and have 36 in

dependent matrices. 

These matrices can be set up as Cartesian matrices or as irre

ducible tensors. For example, the spin-1/2 system has r
00

, ax, ay' and 

a as four independent Cartesian matrices, while r
00

, (a + i a )j,Jz, 
Z X y 

(ax-i ay)/.J2, and az are the four independent matrices corresponding 

to a tensor of rank zero and a tensor of rank one. The same is true of 

the spin-1 spin space, where we have one matrix of zero rank, three of 

the first rank, and five of the second rank, giving a total of nine. The 

irreducible -tensor method was chosen since it is an easy way to gener

ate various matrices, unique scalar products can be formed, and it is 

easily extended to higher spins. This approach was taken in the paper 

of Hsueh -tan. 

Therefore, for the spin space of the spin-1/2 particle the zeroth

order and the first-order tensors are 

0 
roo (the identity matrix) ao = 

1 1 ( . a ) ' a1 = --- a +1 ,_,[2 X y 
0 

a1 = a 
z 

-1 1 (a i ay) . a1 = --
,)2 X 
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In the spin space of a particle with spin 1, the zeroth-first-, and 

second-order tensors are 

T 1 
1 

T 0 
1 

::: - fi_. _!__, (S + i S ) 
'\/2 ..j2 X y' 

{3 
= 02 8 z ' 

T 
1
-1 ::: [I_ . -1- . ( S - i S ) , ,Jl ..j2 X y 

T 
2 

::: r-[3 [( S 2 - S 2 ) + i( S S . + S S ) 
1j 

2 2 x y xy yx ' 

T 
2 

1 
== 03 rl( s s + s s ) + i( s s + s s ) ] . 

2 zx xz yz zy 

T O ::: rJ3 [- ( S 2 + S 2 ) + 2S 2 ] 
2 tJb X y Z ' 

T 
2
-1 :::0 3 ( S S + S S ) - i ( S S + S S ) ] , 

2 zx yx yz zy 

T -z::: ,j3 [( S 2 - S 2 ) - i ( S S + S S )] . 
2 2 x y xy yx 

T r has been normalized by .J3/2 and T ;n _by 03, so that 

holds true. 

The T zm's are derived from the S r•s through 

u 

where c
11 

(2, m; u, m-u) is the well-known Clebsch-Gordan coefficient. 

The a 1 s and S 's are 6-by-6 matrices and are derived shortly. 
X X . 

We now define a set of ·perpendicular unit vectors in the overall 

barycentric system: 

fi ::: k. X k t , 
ln ou 

A A A 

p::: k t + k. ' ou ln 
A A A 

K::: k t - k. . ou ln 

From each of these we form a tensor of ranks one and two. For 

the first-order tensors for P we have P
1
1 ::: -1/..f2 (P + i P ), P

1
°::: P , 

X y Z 
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P
1
- 1 =1/""l(P ~i·P ), and similar expressions for nand K. 

X y . 
second-rank tensor we have, for example, 

(PP)zm=LC11(2, m;u, m -u)P1up1m-u, 

u 

(Pn)
2
m = Lc

11
(2, m;u, 

u 

u m-u· 
m - u) P 

1 
n

1 

For the 

In Table III are shown how the various spins and momenta trans

form under space reflection and time inversion. We then take a variety 

of scalar products between the a 
1
m, T 

1
m, and T 

2
m on one side and the 

m m m m . 
P 

1
_ , n

1 
, K

1 
·, (PP)

2 
, etc. on the other. These are listed in 

Table IV. The notation of summing over duplicated indices is used. No 
· m Tm . scalar product is taken between a 

1 
and 

1 
, s1nce 

m m m m. m m, .m m m m m m m m 
a1 ·T1 =(a1 ·P1 .)(T1_•P1 )+(a1· ·K1 )(T1_·K1 )+(a1_·n1 )(T1 ·n1 }, 

and therefore a~· T ~ is nDt independent of the other scalar products. 

Similarly we can express T ~· (nn);n in terms of 100 , T ~- (PP)~, and 

T ~· (KK};n, and so it need not be included. Using the results of 

Table III the sign of the transformations under space reflection and 

time inversion are listed for each scalar product. 

By taking the products between a and T terms with the same 

space time signature and expanding M in terms of these, we can form 

a scalar which is invariant under space reflection and time inversion. 

Instead of having to describe M in terms of 36 independent matrices we 

have reduced the total to twelve. Therefore, M becomes: 

m mf. m m m m m m] + a
1 

·n
1 

lc +B T
1 

·n
1 

+H T
2 

· (PP} 2 +J T 2 · (KK)
2 

mm mm mm mm mm[";in m] 
+ E (a 

1 
· P 

1 
) ( T 

1 
·P 

1 
) + F (a 

1 
· K 

1 
) ( T 

1 
· K 

1 
) + K (a 1 · P 

1 
) LT 

2 
· (PK)

2 
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Table III. Transformation properties of the spins and momenta under 
space reflection and time inversion . 

Space reflection Time inversion 

(J --
(J (J -- -(J 

s- s s- -S 

k. _., - k. k. -~ -k 1n 1n 1n out 
A 

A 

- k. k _., -k k _., 
·out out out 1n 

m_., m m m m_., m m_., m 
(J1 (J1 n _., n1 (J1 -(J1 n1 - n1 1 

T m_., 
T1 

m p m_., - p 1 
m T m_., -T m p m_., pm 

1 1 1 1 1 - 1 

m m m -K m m Tm m Km T2 _., T2 K1 _., 1 T2 _., 2 K1 _., 1 

(PP)
2 

m 
(PP)

2 
m (PP);n _., (PP)

2 
m _., 

(Pn)
2 

m m (Pn)
2 

m 
(Pn)

2 
m _., -(Pn)

2 
-+ 

(PK) 2 
m 

(PK)
2 

m 
(PK)

2 
m _., - (PK)

2 
m 

-+ 

(nK)
2 

m 
(nK)

2 
m (nK)

2 
m _., - (nK) 

2 
m 

-+ 
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Table IV. Scalar products and their signs under space 
reflection and time inversion" 

.. 

Scalar Space Time Scalar Space Time 

ro + + Io + + 

m 
p1 

m 
T1 

m pm + (]'1 + 1 

m Km 
T1 

m Km (]'1 1 1 

m m + + T1 
m m + + (]'1 n1 n1 

T2 
m 

(PP) 2 
m + + 

T2 
m 

(KK) 2 
m + + 

T m" (PK)
2 

m + 2 . 

T2 
m (Kn) 2 

m 

T2 
m . ~ m 

(Pn) 2 
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Using 

T ~· n~ = JI S · n = J I Sn 

m m .r::>[ 2 2 ] . 1-T 2 · ( PP)2 = "'3 ( S · P) - 3" I • = "'3 Spp 

and absorbing the normalization factors into the coefficients, we can 

simplify M to 

In Stapp 1 s the sis 6 he has listed in Table F a variety of trace re

lations for the S .. and S. when they are 3-by-3 matrices (i and j run 
lJ 1 

over P, K, and n). In Table V we have listed some of these relations 

for 6-by-6 matrices. With these trace relations we can evaluate the 

differential eros s section and the polarization in terms of the M coeffi

cients from 

This gives 

ro IAI2 + ~ IDI2 + 2 
IGI

2 
+ ~ 111

2 
+ ICI

2 
+I IBI

2 + 2 
IHI2 = -

3 9 9 

+ 2 
IJI2 +I IEI2 + 2 

IFI2 + 2 
IKI2 + 2 

ILI2 - - -
9 3 3 3 

- ~ Re ( cr':' + HJ':') 
9 

and 

2 Re [ Ac':' + 2 ,,, 2 ,,, 

~IJ ::::::: 1 ::::::: 1 ~'] .,, GH··-r
0

P = - DB + 9 + GJ -
9 

IH·~ . 
3 9 9 
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Table V. Some useful traces of the S .. and S .. 

s.s. 
1 J 

(S.S. + S.S.) 
1 J J 1 

2 

1. TrS. - Tr S .. = 0 
1 1J 

2. TrS. S. = 48 .. 
1 J 1) 

3. 

1J 1 

2 

3 



.. 

-47-

It should be noted here that the above form of M differs from 

Budianskii 's version. Part of this difference is only in appearance but 

part of it is real. What Budianskii failed to notice was that his values 

of H and K (p. 691) are equal, which reduces some of his terms to 

those given in Hsueh-tan's paper. This bears out the correctness of 

Hsueh -tan 1 s approach to the problem. However, one real difference is 

the neglect by Budianskii to consider a term of the form (Spp- Skk). 

Unfortunately, as will be pointed out later, Hsueh-tan made several mis

takes in evaluating the above M coefficients in terms of the M matrix 

elements, thus making his final results unusable. 

Now we want to set up a and S as 6-by-6 matrices and do so in 

a quartet-doublet representation. Since similar manipulations were 

carried out in deriving the explicit forms of a and S, only the deriva

tion of a will be outlined. 
X 

We take as our six basis vectors the elements of the quartet and 

doublet spin states. For the quartet state we have 

3/2 
1 = x3/2 

and for the doublet state, 

A linearly independent set of these basis vectors can be represented as 

1 0 0 0 0 0 
0 1 0 0 0 0 

1 
0 0 

3 
1 4 

0 
5 

0 
6 

0 
= 2 = = = = = 0 0 0 1 0 0 

0 0 0 0 1 0 
0 0 0 0 0 1 
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·We know· when a t · ± 112 t 1=1/2. · x opera es on a. 1; 2 · we ge · a.
1

/2. , 1. e., 

1/2. 
0.1/2. 

Therefore, when we operate with a 
X 

on 3/2. 
X 3/2. we get 

which in terms of our representation of the basis vectors is 

=if 
0 
1 
0 
0 
0 
0 

-Jf 
0 
0 
0 
0 
1 
0 

0 

Jf 
= 

Now ax is a 6 -by -6 Tnatrix; X ;j~ is a column vector. · The 

product of these is a column vector which is just the first column of 

{ 3) 

a , 
X 

given by Eq. { 3 ). By operating with a 
X 

on each of the basis vectors in 

turn, we project out each column of ax. In a similar manner, by oper

ating with a and a on these basis vectors we project out their y z 
columns. In an analogous way S , S , S are calculated. For refer

X y Z 

ence the matrices are listed in Table VL 

Since we want a , aK, and a we have to consider 
p ' n 

-p = k.. + k = [cos { 8) + 1] ~+sin e sin <J>y +sin 8 cos <1> x 
m out Z.cos{8/2.) 

K. = k. _ k = [cos< 8) - 1] ~ -sin 8 sin <J>y - sin 8 cos <1> x 
.1n out 2. sin {8/2.) 

""" ...... ,., 
n = k. X k = -sin <j>x + cos <j>y . 1n · out 

' . 



I 0 Jf 0 0 -if 0 0 -Jf 0 0 H 0 0 0 0 0 0 

Jf 0 2 0 0 .J2 Jf 0 2 
0 0 .J2 1 0 0 z.JZ 0 3 3 3 3 3 

-3-

0 2 0 Jf .J2 0 0 2 0 -J[ .J2 0 0 0 1 0 0 2.J2 
3 3 3 3 3 

u = u = i 

Jf 
u = 

X 

Jf Jf y 

Jf 
z 

0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 

-Jt 0 .J2 0 0 1 

\~ 
0 .J2 0 0 .! 0 2.J2 0 0 1 0 - 3 -3- - 3 

0 .J2 0 Jf 0 _.JZ 0 -Jf 1 
0 0 0 2.J2 0 0 -3 - 3 3 

-3- 3 

Jf 
I 

0 Jf 0 0 0 0 -Jf 0 0 -Jf 0 0 0 0 0 0 ~ 
-.i:) 
I 

Jf 0 2.J2 0 0 1 Jf 0 2.J2 
0 0 0 0 0 _.JZ 0 -3-

3 3 3 

0 2.J2 
0 Jf 1 0 0 2.J2 0 -Jf 1 0 0 0 1 0 0 _.JZ 

3 3 
- i 

-3-
3 3 

s = s s = 
X 2 -Jf y -.JZ Jf -H z 

0 0 3 0 0 0 0 0 0 0 0 0 - 1 0 0 

Jf 0 0 0 
2.J2 Jf 0 1 0 0 2.J2 0 .J2 0 0 2 0 

3 3 3 
--3- -3 3 

0 0 -Jf 2.J2 0 0 1 
0 Jf 2.J2 0 0 0 .J2 0 0 2 

3 3 3 
-3-

Table VI. Quartet-doublet representation of the a and S matrices. 



This gives, setting <J>.· = 0, 

=[(cos8+1}CT 
z 

=[(cos e + 1} (J' 
z 

(J' = (J' 
n y 
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+ sin e (J' ] /2 cos 8/2 ' 
X 

sine (J' ] /2 sin (8/2}' . 
X 

with similar expressions for S , SK' and S . p n 
We also want a quartet-doublet representation for M. This 

means M will have the form 

M33 M31 M3-1 M3-3 

M13 M11 M1-1 M1-3 
0 

M 
-13 M 

-11 
M 

-1-1 
M 

-1-3 
M = 

M-33 M 
-31 

M 
-3-1 

M 
-3-3 

0 

where Mm' 'm. ; represen'ts an initial state with spin projection m , and 
S• S S 

a final state with spin projection m~. Here the <j> dependence of M has 

been dropped by setting <j> = 0. 

Following Blatt and Beidenharn, 
20 

we write,. for the matrix ele

ments of M, 

M 
m m 1 

s' s 

m_e, J 
where Y_e 1 are the spherical harmonics and SSf' Sf are the S-matrix 

' elements which determine the amplitude of probability flux of the out-

going waves from the amplitude of probability flux of the incoming 
...... -+ ...... ...... -+ 

waves. Also J = f + S':= f' + S, where f, f 1 are the angular moments of 

the initial and final states respectively, and S is the total spin of inci

dent state, which is either 3/2 or 1/2. 

.. 
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_...,.. ~ --+ ~ 

Since 1 = r X p, 1 is perpendicular to the z direction and 

therefore m 1 = 0. This gives the total spin projection M as 

~ . M I ho h 0 0 I = m = mn 1 - m w 1c 1n turn g1 ve s mn 1 = m - m . 
S X S X S S · 

Using the characteristics of Cle bsch-Gordan coefficients, 8 

we can write 

1+1 1 . 
=(-1) Cn (J, -m ;0-m )Cn 1 [J, -m -(m -m 1 ) -m'] 

xs s s x s s' s s ' s 0 

Therefore the elements M 1 and M 1 will have the same 
ms ,ms -ms, -ms ,, 

products of Clebsch-Gordan coefficients. Since Yf =( -1)m Yim-·', we 

will have 

a = M33 = M g = M3-1 = M 
-3-3 -31 

d = M
11 = M b = M13 = -M 

-1-1 -1-3 

c = M31 = -M k = M1-3 = M -3-1 -13 

h = M3 -3 = -M f = M1-1 = -M 
-33 I -11 

u = M11 = M -1-1 

v = M1-l = -M-11 

F h f h 1
0 8 urt ermore, rom t e re ahon 

we will have 

and thus 

g=M3-1=M1-3=k. 
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Therefore we can write 

a c g h 

b d f g 

g -f d -b 
0 

M --
-h g -c a-

u v 
0 

-v u 

Now we can go back to our earlier -expression for M and solve 

for the coefficients, using the properties of tlie traces. For example, 

the coefficients D and H would be 

D=Tr{MS )/Tr(S S ), n · n n 

Using the 6-by-6 representation for O"n' O"P' O"K' Sn..j3P' Sk, and 

SPP = SPSP- 2/3- I, SPn = {SPSn + Sn · Sp)_ , etc., and the simplified 

form of the M matrix, we get the M-matrix coefficients as functions of 

the M-matrix elements and e. These are listed in Table VII. 

The M-matrix elements are related to the phase shifts through 
·•. :.t 

the S-matrix elements. However, because the quartet spin is greater 

than 1/2 there are mixing parameters ir;t the M-matrix elements describ

ing that state. Also, the Coulomb field must be included, since we are 

dealing with charged particles. 

What we mean by 'tllixing'paramete:r;s is the following. I£ we have 
I 

an initial state characterized by a fixed J and a total spin of 1/2, then 

the values of 1, the angular momentum, that are possible are l = J ± 1/2. 

This means, in going to a final state 1 1 , that 1 1 =l, l + 1, or l - 1. A 

mixing parameter would tell us to what extent the various l' states were 

mixed. However, because of parity ~::onservation we are limited to 

6.1 = 0,. 2, 4, etc. For a total spin of 1/2, 6.1 can only be 0 or 1, there

fore, 1 must equal 1' and there is no mixing .. 

For a total spin of 3/2 this is not the case. Here we can have 

6.1 = 0, 1, 2, 3 but, because of parity conservation, this is limited to 

6.1 = 0, 2. Consider then the following: 

.. 
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Table VII. M-matrix coefficients expressed in terms of the 
M-matrix elements. 

1 
A='3' 

1 
D=-:-

2 

[a+d+u] 

1 
[ - (c- b) + 2/3 (£- v)] 

•.[3 

G = .~·. 
4 

3. 
I= 4 

1 c = -
3 

[(b +c) sine + 

t{3 

[ - ( b + c) sin e 
..[3 

[(c-b)+.?:_f+ 
3 3 

B = ..!_ [d - u - tJ3 g] 
3 

_g_ (1-cose)+ (a-d) (1+3 cose)] 
..J3 6 

+ ~ ( 1 +cos e) + (a- d) ( 1 - 3 cos e)] 
t{3 6 . 

.! v] 
3 

H = 3i [ (c -b) ( 1 + 3 cos e) + ~ ( 1 _cos e) _ _!'_ ( "}_ _cos e) + 4v ] 
4 6~ 2 2 9 9 

J = ~ i [ ( c -b) ( 1 - 3 cos e) + ~ ( 1 +cos e) - _!'_ ( "}_+cos e) + 4 v ] 
4 6.J3 2 2 9 9 

E = ..!_ [(a+ ~ - 4 u + 2 g ) + (a - d - 2g) cos e + 2 (b +c) sine] 
4 3 3 t{3 ..J3 t{3 

F = ..!_ [(a+ ~ - 4 u + ~ ) - (a - d - 2 g ) cos e - 2 (b +c) sin e] 
4 3 3 .[3 rf3 .[3 

i [ ( c ~ b) h £ 2rJ2 ] K = ~ ( 1 +cos e) + -( 1 -cos e) - ----=-( 1 + 3 cos e) + -- v 
2'\/ 2 .[6 .J2 . 3..J 2 3 

L = i [ (c~(1- cos e)+J:_ (1 +cos e) __ £_ (1- 3 cos e)+ 2,_[2 v] 
2,[2 "' 6 J2 3,[2 3 
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Initial state Final state 

£ £1 = £ £1 = £ + 2 £1 = £ - 2 

A{~ - 3/2 J - 3/2 J + 1/2 J - 7/2 

+ 1/2 J + 1/2 J + 5/2 J - 3/2 

B { J - 1/2 J - 1/2 J + 3/2 J - 5/2 

J + 3/2 J + 3/2 J + 7/2 J - 3/2 

where the possible values of £ and £ 1 are given in terms of J. The 

states with 5/2 and 7/2 terms are impossible, since they can be reached 

only from a total spin of 7/2. Now, the states A mix as do the states 

B, but A and B do not mix with each other. That is, if we were in a 

J - 3/2 state to start with, we could reach only a J - 3/2 or J + 1/2 state, 

but not a J + 3/2 or J- 1/2 state. If we call these £ states 

-3 = J - 3/2 

1 = J + 1/2 ' 

-1 J 1/Z 

3 J + 3/2 

and define a state column vector ( 3, -1, 1, -3 ), then the S matrix must 

have the form 

Because each submatrix is a symmetric, unitary 2 -by-2 matrix, each 

will have 3 degrees of freedom, two phase shifts, and a mixing parame

ter. Although S is not diagonal, we can always start from some repre

sentation in which the phase shifts are the diagonal elements, and obtain 

S through a unitary transformation. Because of the convenience in 

handling the Coulomb phase shifts we choose the "nuclear -bar 116 repre-
'oN ·oN sentation, where S = e 1 U e 1 . When the entire Coulomb effect can be 

considered to act outside the nuclear region the 0 N are the pure 

nuclear phase shifts. 6 U is a symmetric unitary matrix and will depend 

.,J, 
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only on the mixing parameters. In this representation we have 

·oN 
1 3 

e 0 

·oN 
1 3 

0 e 
8

3-1 
= 

·oN 1' 
0 

-1 
e 

·oN 
0 

1 -1 
e 

·oN 
1 1 

0 e 
8

1-3 
= 

·oN 
0 

1 -3 
e 

cos 2 'IJ i sin 2'{J 

1
. . 2 J J s1n 'I cos 2'{ 

·oN 
1 1 

0 e 

·oN 
0 

1 -3 
e 

which on carrying out the matrix multiplication gives the expression in 

Fig. 1 7a, where the phase shifts are in the form off. The superscript 

N notes that these are the "nuclear" phase shifts, as distinct from 

those phase shifts in which the Coulomb field is included. 

To include the Coulomb effect21 we take the asymptotic form of 

the wave function for the Coulomb scattering of two nonidentical parti

cles as 

Then 

ljJ = f 
c 

f = 

i(kr -nln 2kr+2<T 
0

) 
e 

. 
1 

(1-costl) 
-n -1n n 2 e 

c k(1 - cos 8) 

where n is a parameter that determines the importance of the Coulomb 

effect, n :::::: ( 13 713f \ and 

2i<T 0 
e = r ( 1 +in) 1 r ( 1 -in) 

The radial wa:ve equation has regular and irregular solutions F
1 

and G1 , where 

= sin(kr nln2kr +cp1 ) 
l'TT ---
2 

and where 
1 

=[ arctan ( n/x) . 

x=1 



0 \ 
J . ( Nl cos 2'{ exp 2i o

1 
. . 2 J r. (< N < Nl--; 
1 sm '{ exp Ll u 1 + u _

3 
J 

0 

( a ) 

0 \ 
0 

( b ) 

MUB-3941 

Fig. 17. 

f 



.. 

-57-

When the nuclear force is turned on this solution is modified so 

that the asymptotic behavior of the radial function is now 

u1 (r) = sin(kr -
1
; - nln2kr + cp1 + o1N), 

where o
1
N is the previously defined nuclear phase shift. 

Now it is only in this representation that the nuclear and 

Coulomb phase shifts are additive. This may become more obvious if 

we go back to the SN matrix. We chose the representation for SN as 
·~N ·~N 

S = e 1 v U e 1 v . From the above we see that the Coulomb field added a 

phase change, cp1 to the basis vectors. In this re-Nresentation the new 

S matrix will be S = ei<j> SN ei<j> = ei(<j>+ON) U ei(<j>+o )_ Here the Coulomb 
N ·0N 

and nuclear phase shifts add. However, had we chosen S = U e 1 U, 

which is a perfectly acceptable representation, 20 then S = ei<j> U eioN U ei<j> 

and the phase shifts would not have added in so simple a fashion. 

The previously defined M matrix had a partial-wave expansion 

which depended on ( 1 - S). If we introduce the R matrix as R = S - 1, we 

can write 

R=S-1=S-S +(S -1) 
c c 

=a+R c 

If this is put back into the partial-wave expansion the Coulomb part, 

R , has an exact solution 
c 

finally expanded in terms 

we have, for the spin 3/2 
J N 

f . 
c 

The newly defined matrix, a, is what is 

of partial waves. Since S is diagonal in 1 
c 

state, the expression in Fig. 17b, where 

01 = 01 +<j>1 
It should be noted that for J = 1/2, E 

1
/

2 
and y 

1
/

2 
are identi-

cally zero. For the ( -3, 1) state, J = 1/2 means that 1' is 1 or -1. The 

latter is clearly impossible, ther_efore E
1

/ 2 = 0. For the (3, -1) state 

1 1 would be 0 or 2. At first glance this might seem all right, but for 

1' = 0 the only possible J is J = 3/2 and therefore E
1/ 2 

must equal zero. 

The M-matrix elements, when the Coulomb effects and the mix

ing parameters have been included, will be, for the quartet state, 
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M 
m 1 m 

s' s 

('IT )112 L ( -,n 112 = ik (..X.+1) Cn(J,m;O,m)Cn(J,m;m-m',m 1
) 

. ..tS S S ..tS S S S S 

1,J 

('11")112 [(21+5 }112 I. I I • -
2

n +
1 

Cn (J, m , m -m , m ) C n+
2 

(J, m , 0, m ) 
ik ..t ..t s s s s s ..t ' s s s 

1 'J =1+ 312 ,1+ 112 

( 'IT) 1 I 2 L ( 21 - 3 ) 1 I 2 . . . 
- · -- C ·(J m' · m -m' m') C (J m · 0 m ) 

ik 21 + 1 1 s ' s' s s' s 1-2' s ' s' ' s 
. J. ,J=l-112,1-312 m -m' 

Jy s s X a 1 

+ f < e, cJ>) o I c m ,m 
.S S 

where ai are the diagonal elements and a J are the off -diagonal ele

ments. For the doublet state, 

2icj>+ 
0 - e 

a(J) = 

lioJ -0 e - e 

where oi is for the state with 1 = J + 112 and o: for the state with 

I J N J. = J - 1 2 and where 0 1 = o1 +cj>1 Then the matrix elements for the 

doublet state will be 

M 
m 1 m 

s' s 

('IT) 112 I . 112 
= ( 21 + 1) C n ( J, m ; 0, m ) C n ( J, m 1 

; m - m 1 
, m 1 

) .ik ..t s s s ..t s s s s s 
J. 'J m -m' 

J s s 
X a1 Y 1 (8, cj>) 

+f(B,cj>)O I c m ,m 
s s 
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The M-matrix elements in terms of the phase shifts are given 

in Table VIII. Here we found it convenient to sum over J first and 

leave the elements as a sum over 1. Therefore we write the -3 state, 
J 1+3/2- +3 a_

3
, as a

1 
=: a1 , etc. 
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Table VIII. The M-matrix elements expressed in terms of the associated 
Legendre polynomials and the Cl. -matrix elements containing 

the phase shifts and mixing parameters. 

1 

max { 
a(e) = f (e)+ _1_ \ PO(e) _! ((1+2)(1+3)) a+3 + ~ ((1+1){1+2)) a+1 

c 2ik L 1 2 21 + 3 1 2 21 + 3 1 
1 =0 

+ ~ (1 (1 -1)) a -1 + _! ((1-2) (l -1)) a -3 _ .-f3 (~) [(1 + 3 ) (l + i)]i/2 a +3 
2 21 -1 1 2 21 -1 1 2 21 +3 

- ..[3(~) [1(1+2)] 1/ 2 a+1_.J3 (-
1
-) [(1-1)(l+1)] 1/ 2 a- 1 - ..[3(~) (1(l-2)] 1/ 2 a- 3} 

2 21+3 2 21-1 2 21-1 

1 I, 

d(e) = f (e)+ _1_ ~x Po(e){~ (<1+2){1+1)) a+3 +.! (1(1+1)) a+1 
c 2ik L 1 z 21 + 3 1 2 21 + 3 1 

1 =0 

+ .! (1(1 +1)) 
2 21 - 1 

a-1 + ~ (1(1-1)) a-3 + .J3 (1+2) [(1 +i)(1 + 3)]1/2 a+3 
1 2 21 - 1 1 2 21 +3 

+ ..J3 (!...:!:._!_) 
2 2l +3 

[1(l +2)]1/2 +1 + .J3 (-1-) [(1 +1) (1 -1)]1/2 a -1 + .J3 (~) 
a 2 21-1 2 21-1 

1 

c (e) 

max ( 

= _1_ \ Pi(e)\..[3 (1+2) a+3 + ..J3 (.!.:!:..!._) a+i- .J3 (-1-) a-1 
2 ik L 1 2 21 + 3 1 2 21 + 3 1 2 21 - 1 1 

1 =1 

_ ..[3 (~) a-3 + .!(1+2) [~]1/2 a+3 + ~ (1+1) [1~2] 1/2 a+i 
2 21 -1 1 2 21 +3 1 +3 2 21 +3 X 

- ~ (211-1) [~:~r/2 a-1- I (:1--~) [1;2r/2 "-3} 

1 

b(e) 
max { 1 \ pi ..J3 '((l+2) (l+3)) a+3 + ..J3 ((1+2){1-3)) a+1 

=-2ikL 1 z (1+1)(21+3) 1 2 (21+3)1 1 
1 =1 

_ ..J3 ( (1 +4) (l -1)) a -1 _ ..J3 ((l -2) (1 -1)) a -3 _ ~ (~) [~]1/2 
a +3 

2 ( 21 -1) (1 +1) 1 2 ( 21 -1) 1 1 2 21+3 1+1 

_ .! (!....:1...) [1+2 ]1/2 a +1 + .! ( 1 + 4 ) [~]1/2 a _1 + ~ (~) [.!2]1/2 a -31 
2 21 + 3 1 2 21 -1 l+ 1 2 21 -1 1 J 

.• 
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Table VIII. Continued. 

1 

f ( 8) 
max { 

1 \"' pi ~ (1+2) a+3 _ .!_ (1+3) a+i + .!_ (~) a-1 _ ~ (~) a-3 
= 2ik L 1 2 21 +3 1 2 21 +3 1 2 21 -1 1 .2 21 -1 1 

1 =1 

+ ..[3 ( 1+2) [1+3]
1
/

2 
a +3 _ ..[3 ( 1+2) [1+2]

1
/

2 
a +1 + ..[3 (~) [~]1/2 a-1 

2 21 +3 1+1 2 21 +3 1 2 21 -1 1+1 

g(8) --a +---a ( 
1 ) -1 ..[3 ( 1 ) -3 

21 -1 1 2 21 -1 1 

+ 1 ( 1 ) [1+3]
1
/

2 
a +3 - ..[3 (-1 ) [1+2]

1
/

2 
a +1 - ..[3 (-1 ) r1-1]

1
/

2 
a -1 

2 21 +3 1+2 2 21 +3 1 2 21 -1 L1+1 

+ ~ ((21-1:(1+1)) a;i ~ ~ ((21~1)1) a;
3

- '7 (21~3) [(1+3):1+1)r/

2 

a+
3 

+ ~ (21~3) [u+~)1r12 
a+i- '7 (2/_1) [(1+1):1-i)r/

2 

a-i+ ~ (2/-1) [(1-~)1r/
2 

a-
3
} 

u(8) 

1 
max 

v(8) = - 1 
\"' 

2ik L 
1 =1 
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VII. RESULTS OF PHASE-SHIFT ANALYSIS 

Using the equations for I
0 

and P on page 45, and Tables VI 

and VII, we can calculate the elastic differential cross section, 

I 0 calc (8i)' and the polarization, P calc (8i)' for a given set of phase 

shifts and mixing parameters. Using the variable metric minimization 

. f D "d - 22 h d f f . h h routine o av1 on, we searc e or a set o parameters w ic mini-
. h 0 2 m1zes t e quantity X , 

where I 0 (8.) and P (8.) are the experimental values of the 
exp 1 exp 1 

elastic differential cross section and polarization respectively, and 

L:::!.I
0 

and .6.P are the experimental errors; x 2 
is a statistical criteria 

of how well the calculated values fit the experimental points. If the 

errors .6.I0 and L:::!.P obey a normal distribution and the partiaL waves 

.£ are zero, then X 
2 

will have a normal distribution about 
max 

beyond 
2 

Xo = M-N, where M is the number of data points, 62 in our case, 

and N is the number of fitted parameters. The total number of param-

eters depends on the maximum partial wave involved and for .£ ~1, 
max 

isN=8.£ +2. 
max 

2 
Since X is a function of N variables it can be looked at as a 

23 
surface in an (N + 1) -dimensional space. There are valleys in this 

2 
surface corresponding to various local minima of X . Starting with 

a set ofparameters N
0

, Davidon's routine finds that set of phase shifts 

which gives the local minimum of X 
2

. By choosing a sufficient number 

of N
0

' s one can find the various valleys in the x 2 
surface, and fr9m 

these see if any good solutions exist. 

For an S- and P-wave fit there are 10 parameters with X 0 
2 = 52. 

We tried five random sets of initial parameters N
0

, and found all the 

minimum X 
2 

to be larger than 5000. The probability that a good set 

of phase shifts--i.e. , a set whose calculated curves follow the mean 

value of the experimental points of a repeated set of experiments- -will 
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have a X 2 greater than 100, when calculated for a given experiment, 

is less than 0.003%. Therefore, a good set of phase shifts that has a 

X 
2 

of 5000 is so extremely unlikely we have to regard that set as a 

poor fit to the data. 

By including D waves, we have 18 parameters with X 
0 

2 
= 44. 

Here 10 random sets were tried, of which five led to X 
2 

between 290 

and 320. This is a considerable improvement over the 10-parameter 

fit, but still leads to rather small probability that they represent good 

fits. 

With the addition of F waves there are 26 parameters with · 
2 2 X 

0 
= 36. We tried 20 random sets and found three that led to X be-

tween 13 5 and 149. These smaller values of X 
2 

and the reduction of 

x 2 /x 
0 

2 
from the previous 10- and 18-parameter fits shows that F 

waves have to be incluP,ed. This should not be surprising, since 
24 

Johnston and Swenson show that F waves were necessary to fit their 

40-MeV p-p data. The large values of the mixing parameters in several 

of the J states indicate the presence of tensor forces. 

Table IX lists the nuclear phase shifts and mixing parameters, 

in radians, that gave the best values of X 
2 

for the 26-parameter fit. 

The best fit is plotted in Figs. 18 and 19. Our search has been rather 

limited, since only a few random sets were tried. Because of the length 

of time needed to fit one set we decided to give the above results and 

bring the paper up to date as a more complete analysis is made. This 

might include, beside a continued random search, looking at other 

energies so that only those phase shifts which are smooth functions of 

energy are retained. Also, the depolarization parameter, D, when 

measured, will give further valuable information. 
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Table IX. The nuclear phase h'£ 25 +1x d · · s 1 ts, ZJ, an m1x1ng parameters, _, 

E(ZJ) and '{(ZJ), in radians. The brackets following E and '{ contain 
the particular angular momentum states that are coupled. The error 

represents the amount that when added to the parameters, changes '• 

x2 by 1o/o. xJ- = 36. 

I ir III ,, 
Type 

2 
= 13 5.1 

2 
= 145.7 2 

= 148.6 X X X 

4s 
3 

0. 15054 ± 0.0060 0.53942 ± 0. 0043 0.15678 ±0. 0070 

4p 
5 

0.16213 ± 0.0032 0.60370 ± 0. 0030 -0.043769 ± 0. 0031 

4p 
3 -0.22093 ± 0. 0088 0. 50596 ± 0. 0041 0.33973 ± 0. 0085 

4p 
1 0. 74220 ± 0.0089 -0.011161 ±.0. 0022 -0.014755 ±0.0015 

40 
7 0.26501 ± 0.0019 0. 063043 ± 0. 0038 -0.033233 ± 0. 0022 

40 
5 0.13339 ± 0.0080 0. 28907 ± 0. 0087 0. 00074131 ± 0. 0004 

40 
3 

0.14344 ± 0. 0143 0. 20882 ± 0. 0062 -0.23458 ±0.0010 

40 
1 0.21261 ± 0.0064 -0.27771 ± 0. 0056 0.12358 ±0.0056 

-4 
F9 -0.069461 ± 0.0028 0. 055192 ± 0.0033 0.072745 ± 0.0043 

4F 
7 

-0.023055 ±0.0037 1.6124 ± 0.0016 0.16130 ± 6.0073 

4F 
5 0.10461 ± 0.0073 0.19498 ± 0.0039 0.065418 ± 0.0046 

4F 
3 

-0.37122 ± 0,0037 0. 018139 ±0.00218 0.12588 ± 0. 0050 

E(3) [S,O] 0.43266 ± 0.0030 -0.036171 ±0-.0037 -0.51123 ± 0.0051 

E(5) [P,F] 0.076970 ± 0.0025 0. 049191 ± 0.0034 -0.097443 7' 0.0029 

E(7) [O,G] 0.036107 ± 0.0054 0.15583 ± 0.0047 0. 059628 ± 0. 0042 

E(9) [F,H] -0.022572 ± 0.0023 -0.12011 ± 0. 0042 0.29921 ± 0. 0045 

y(3) [P,F] 0.29136 ± 0.0064 -0.14440 ± 0. 0065 0. 081863 ± 0.0057 

y(5) [O,G] 0.10586 ± 0.0063 0. 7 0083 ± 0. 0053 -0.082578 ±0.0058 

y(7) [F,H] -0.41340 ±0.0049 1.2303 ± 0.0061 +0. 064639 ± 0. 0052 

2s 
1 0.057110 ±0.0086 0.16178 ± 0. 0097 -0.012506 ± 0.0018 

2p 
3 0.30103 ± 0.0066 0. 084603 ±0.0047 0.056637 ±0.0056 

2p 
1 

-0.-25147 ± 0.0101 -0.0093 561 ± 0. 0023 0.55511 ± 0.0056 

20 
5 0.34293 ±0.0034 -0.06398 ± 0,0042 0.052231 ± 0.0040 

20 
3 0.00247 ± 0.0006 -0.067405 ±0.0047 0.64727 ± 0.0051 

2F 
7 0.33387 ±0.0040 0.13039 ± 0.0052 0.10152 ± 0.0041 

2F 0.15623 ± 0.0055 -0.10837 ± 0.0065 0. 59465 ± 0. 0060 
\.. 

5 " 



.. , 

r' 

... 
en 

£ 
E 

E 
c.) 

c; 
"0 

.......... 
b 
"0 

-65-

so~-~~--~\--~~----~~~---~~--~~----~~-----~~---~~--~ 

40 ~ • \ -

30 I-

20 I-

I 0 r-

\ 
\ 
I\ 

I 

-

' I-I' ~ 
~, ,' 

I'-I l 
'· -~ -. ~ 

-

-·-~·--!~·--
o~----~~--~~----~~--__ _.1 ____ ~----------~----~1----~ 
0 20 40 60 80 100 120 140 160 180 

8 ( deg) c.m. 

MU-34565 

Fig. 18. The 40-MeV p-d elastic differential cross-section data from 
Williams. The curve is calculated from the phase shifts of Solution I. 
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Fig. 19. The 40 -MeV p-d polarization data from this experiment, and 
the curve calculated from the phase shifts of Solution I. 
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