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Simple Summary: Human breast cancers are not fully autonomous. They are dependent on nutrients
and growth-promoting signals provided by stromal cells. In order to instruct the surrounding cells to
provide essential growth factors, cancer cells co-opt normal signaling molecules and mechanisms.
To inhibit or potentially reverse tumor growth, our goal is to emulate this signaling and reprogram
the microenvironment. For example, in a healthy mammary gland, fibroblasts (FBs) overexpress
CD36; and the downregulation of CD36 is one of the hallmarks of cancer-associated FBs. Therefore,
in this project, we hypothesized that signaling from CD36+ FBs could cause growth suppression
in a subset of breast cancer cell lines. We then designed a series of experiments to validate this
growth suppression and identified responsible secreted factors by the CD36+ FBs. These experiments
suggested that three protein ligands are primarily responsible for growth suppression in a subset of
breast cancer cell lines.

Abstract: Reprogramming the tumor stroma is an emerging approach to circumventing the challenges
of conventional cancer therapies. This strategy, however, is hampered by the lack of a specific
molecular target. We previously reported that stromal fibroblasts (FBs) with high expression of CD36
could be utilized for this purpose. These studies are now expanded to identify the secreted factors
responsible for tumor suppression. Methodologies included 3D colonies, fluorescent microscopy
coupled with quantitative techniques, proteomics profiling, and bioinformatics analysis. The results
indicated that the conditioned medium (CM) of the CD36+ FBs caused growth suppression via
apoptosis in the triple-negative cell lines of MDA-MB-231, BT549, and Hs578T, but not in the ERBB2+

SKBR3. Following the proteomics and bioinformatic analysis of the CM of CD36+ versus CD36−

FBs, we determined KLF10 as one of the transcription factors responsible for growth suppression.
We also identified FBLN1, SLIT3, and PENK as active ligands, where their minimum effective
concentrations were determined. Finally, in MDA-MB-231, we showed that a mixture of FBLN1,
SLIT3, and PENK could induce an amount of growth suppression similar to the CM of CD36+ FBs.
In conclusion, our findings suggest that these ligands, secreted by CD36+ FBs, can be targeted for
breast cancer treatment.

Keywords: CD36+ fibroblasts; conditioned medium; breast cancer cells; 3D colonies; proteomics profiling

1. Introduction

The tumor microenvironment [1], including fibroblasts (FBs) and immune and en-
dothelial cells, influences human breast cancer progression and malignancy [2]. Cancers
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are not fully autonomous but depend on growth-promoting signals provided by support-
ing cells, including FBs, and their biochemical and physical properties that are altered
by the microenvironment [3]. Cancer-associated fibroblasts (CAFs) have emerged as po-
tential targets for reprogramming tumor microenvironment and optimizing therapeutic
strategies [4,5]. However, targeting CAFs has been challenging because of the lack of
specific biochemical markers and their functional and phenotypic heterogeneity [6]. Our
central hypothesis is that factors secreted from normal FBs that express CD36 could be
utilized as an alternative strategy to reprogram the microenvironment and suppress the
growth of certain breast tumors. CD36 is a scavenger receptor that mediates lipid uptake,
is expressed in multiple cancer types [7], and accelerates tumor growth [8]. However,
this receptor is downregulated in tumor-associated FBs and has been suggested as a CAF
marker [9]. In contrast, in normal mammary glands, FBs express CD36 (Human Protein
Atlas Database; Figure S1). Hence, understanding the normal functioning of FBs could
lead to new therapies.

Our hypothesis is formulated based on two key observations: CD36 is downregulated
in FBs of non-cancerous breast tissues with high mammographic density (MD) [10], where
MD is associated with an increased breast cancer risk [11–13]; and normal FBs have
been shown to have an anti-tumorigenic function through paracrine signaling [2,14,15].
Moreover, tissues with high MD, as well as tumor epithelial cells, secrete activin A, which
is known to downregulate CD36 in FBs in ex vivo samples [10] as well as 3D models of
MD [16]. Activin A is one of the secreted macromolecules that is overexpressed by cancer
cells [17,18]; it is a member of the TGFβ superfamily of cytokines and, like TGFβ, signals
through pSmad 2/3 effectors to activate cell cycle checkpoints in normal cells. Hence,
by identifying factors secreted by CD36+ FBs, an improved therapeutic approach may be
elucidated for breast cancer therapy.

Motivated by the above insights, in earlier work [19], we showed that CD36 in normal
primary mammary FBs is downregulated as a result of exposure to activin A; and overex-
pression of CD36 in FBs in cocultures with 3D colonies, either inhibits colony growth or
reverses aberrant basal and lateral polarities, as a function of the breast cancer subtypes. In
this study, we further investigate how the signaling from the CD36+ FBs induces growth
suppression for reprogramming the microenvironment. Our investigations encompass the
interplay between activin A and CD36 expression in normal primary FBs; growth suppres-
sion as a result of exposure of the tumor cells to the CM of CD36+ FBs in multiple cell lines
and a partial mechanism via identifying relevant transcription factors, and identifying
active factors and their effective concentrations that induce growth suppression.

2. Materials and Methods
2.1. Cell Culture and Maintenance

Primary human breast fibroblast (FBs) (Zenbio, Durham, NC, USA, FM1), human
triple-negative breast cancer cell lines MDA-MB-231 (ATCC, Manassas, VA, USA, HTB26),
Hs578T (ATCC, HTB126) and BT-549 (HTB122), human ERBB2+ breast cancer cell line
SKBR-3 (ATCC HTB30), and human non-malignant breast cell line MCF10A (ATCC, CRL-
10317) were tested for mycoplasma contamination using an ATCC 30-1012K kit. Cells were
maintained at 37 ◦C in a humidified incubator containing 5–7.5% CO2. FBs were cultured
in DMEM (ThermoFisher, Bethesda MA, USA, Technology, 11965) supplemented with
10% fetal bovine serum (FBS, ThermoFisher 10438034) and 1% Pen/Strep (ThermoFisher,
15140122). MDA-MB-231 was cultured in DMEM supplemented with 10% FBS. Hs578T was
cultured in DMEM with 10% FBS and 0.01 mg/mL of insulin (Sigma Aldrich, St. Louis, MO,
I2643). SKBR-3 was cultured in RPMI (ATCC 30-2001) supplemented with 10% FBS. BT-549
was cultured in RPMI supplemented with 10% FBS and 0.023 U/mL insulin (e.g., active
unit) (Sigma Aldrich, I2643). MCF10A cells were cultured in DMEM/F12 medium (Ther-
moFisher, 11320-033) supplemented with 5% horse serum (Cytiva, Marlborough, MA, USA,
ShH30396.03HI), 10 ng/mL epidermal growth factor (ThermoFisher, 11320-033), 50 ng/mL
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cholera toxin (Sigma Aldrich C8252), 200 µg/mL insulin (Sigma Aldrich I2643), 100 ng/mL
hydrocortisone (Sigma Aldrich H0888), and 1% Pen/Strep (ThermoFisher, 15140122).

2.2. 3D Cultures of Epithelial Cells

Epithelial cells were cultured in a 48-well plate (3–4 repeats) or 96-well plate (3–6 repeats)
using the 3D on-top method [20]. Briefly, a thin layer of approximately 200 µL or the
equivalent of (17–20 µL/cm2) of Matrigel (Corning 356243) was spread evenly on the
surface of a pre-chilled plate and incubated at 37 ◦C for 10 min to gel. Cells were suspended
in the culture medium containing 5% Matrigel at a seeding density of 10,000 cells/cm2 for
TNBC lines, 15,000 cells/cm2 for HER2+ line, and 20,000 cells/cm2 for the non-malignant
cell line unless otherwise specified. Cell suspensions were added to each well on the
base Matrigel layer and incubated in a 37 ◦C humidified chamber for 24 h. The next
day (considered as day 0), the culture medium was replaced by the treatment medium
(described later in detail for each experiment) and thenceforth replenished with a fresh
treatment medium after 48 h. On day 4 of the experiments, unless otherwise specified, the
plates were washed with PBS three times and fixed with 10% formalin (or 4% fresh PFA),
followed by DAPI staining and quantitative analysis.

2.3. CD36 Transfection of Fibroblasts (FBs) and Validation

Fibroblasts (FBs) were transfected for CD36 overexpression and knockdown using CRISPR-
cas9 technology from Santa Cruz Biotechnology (SC400233-ACT/KO2), per previously pub-
lished method [19]. The guide RNA for activation is 5′-AGCATCTGAGAATATGTTAG-3′, and
the guide RNAs for knockout are 5′-CTCACTCACCTGTACGTATA-3′, 5′-ACCTTTATATGT
GTCGATTA-3′, and TGGGCTGTGACCGGAACTG-3′. The altered CD36 expression levels
were validated using fluorescence microscopy, coupled with quantitative image analysis
methods, outlined later. Briefly, cells were seeded into 12-well tissue culture plates at a
density of 10,000 cells per well and were incubated in 2 mL of antibiotic-free standard
growth medium for 24 h. Proliferating cells, at 60–80% confluency, were then transfected
with CRISPR Activation/Knockdown Plasmid, as described by the manufacturer. Solutions
containing Plasmids or Transfection Reagent were mixed with the Transfection Medium at
defined volumes to make the CD36 Activation/Knockdown Transfection Complex. After a
20-min incubation, the antibiotic-free growth medium of the cells was refreshed, and 113 µL
of CD36 Activation/Knockdown Transfection Complex was added dropwise to each well;
the medium was gently mixed by swirling the plates, and cells were then incubated for at
least 24 h under normal culture conditions. Next, the medium containing the Transfection
Complex was removed from the cells, and cells were cultured in normal conditions for
at least three weeks to recover and confluence. Negative control cells were transfected
with empty plasmid vectors. The recovered cells were stained with an anti-CD36 antibody
(Santa Cruz Technology SC73643 or Novus NB400-144) for validation. CD36 expression
was validated for each new batch of transfection and after every passaging.

Immunofluorescence microscopy analysis of transfected cells indicated that the trans-
fection efficiency was around 75%, and the population was stable for at least four passages.
In addition, proliferation rates of CD36+ and CD36− fibroblasts did not differ significantly.

2.4. CD36 Expression in Normal Primary Fibroblasts under the Influence of Activin A

Normal mammary primary FBs were exposed to 2.25 or 20 ng/mL concentrations
of recombinant human Activin A (ThermoFisher, PHG9014) for 3–5 days. The culture
medium was replenished every two days with activin A. Samples were fixed and imaged
with wide-field microscopy. The CD36 expression was quantified per field of view per cell.

2.5. Treatment of the Tumor Cells with the CM of CD36+ FBs
2.5.1. Collecting the Conditioned Medium from FBs

Transfected normal primary FBs, CD36+ or CD36−, were seeded at 50% confluency
in T-75 tissue culture flasks and incubated for at least 3 days to establish a stable cell
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population. Samples were washed with serum- and phenol red-free DMEM (Gibco, 31053)
2–3 times and incubated in the same media in the humidified incubator. After 48 h, the CM
from CD36+ and CD36− were separately collected and centrifuged at 2000× g for 10 min
to remove the large floating residues of possibly dead cells; the supernatant was filtered
through a 0.2 µm syringe filter if needed. Then, the CM was concentrated using 3 kDa
centrifugal filter units (Amicon UFC8003) at a defined speed and time per established
protocol from the manufacturer. From the concentrated CM, the portion corresponding to
the identified number of fibroblasts was used. An equivalent of 1:10 ratio of epithelial cells
to fibroblasts was added to the growth medium of each condition in the experiments.

2.5.2. Treatments of 3D-Cultured Epithelial Cells

3D-cultures of MDA-MB-231, BT-549, and SKBR-3 cells were treated for 4, 4, and
6 days, respectively. Untreated cells were also used as control. The CM, augmented with
the secretome of FBs, was replenished every other day.

2.5.3. Heat Inactivation Assay

MDA-MB-231 cells, seeded at a density of 5000 cells/cm2 in 3D culture, were treated
with heat-inactivated CM of CD36+ FBs. Three experimental conditions were investigated
by boiling the CM, followed by adding RNase or DNase. First, the conditioned medium,
collected from CD36+ FBs, was boiled at 95 ◦C for 10 min to denature the large proteins
and to break up exosomes to release their contents, and then centrifuged at 5000× g
for 10 min at 4 ◦C. Second, either RNase A (Thermo Scientific EN0531) was applied at a
concentration of 100 µg/mL and incubated at 37 ◦C for 30 min, or DNase (QIAGEN 1010395)
was applied at a concentration of 100 µg/mL (containing 5 mM Mg2+) and incubated in
room temperature (RT) for 20 min. Next, to completely inactivate the DNAs and RNAs,
all solutions were transferred separately to glass tubes and boiled again, followed by
centrifugation at 5000× g for 10 min at 4 ◦C. Finally, for each condition, treated CM was
supplemented with 10% FBS, added to corresponding wells in the 48-well plate on 3D
cultured MDA-MB-231 cells, and replenished every two days for a total of 7 days.

2.5.4. Protein Fractionation of the CM of CD36+ FBs

The growth properties of the MDA-MB-231 cells, seeded at a density of 5000 cells/cm2

in 3D culture, were used to identify to which protein fractions contribute to growth inhi-
bition. Untreated cells were used as the negative control, and cells treated with CM from
CD36+ FB were used as the positive control. The CM collected from CD36+ fibroblasts was
filtered using 50 kDa (Amicon UFC505024) filter units at 14,000× g for 10 min at RT, and
the CM containing proteins larger than 50 kDa was collected. The flow-through containing
the proteins smaller than 50 kDa was filtered with 3 kDa filter units (Amicon UFC500396),
and the medium containing proteins between 3–50 kDa was collected. The fractioned CM
was supplemented with FBS as needed, added to corresponding wells in the 48-well plate
on 3D cultured MDA-MB-231 cells, and replenished every two days for a total of 7 days.

2.5.5. Analysis of Factors Associated with Exosomes

Secretion of exosomes by CD36+ FBs was reduced or increased by adding with 1 µM
tipifarnib (low exosome) or 10 µM sitafloxacin (high exosome), respectively, for 72 h per
published protocol in serum-free media [21]. Conditioned medium from untreated CD36+

FBs was used as the control. Next, the conditioned media containing low or high exosomes
were collected and added to the 3D-cultured MDA-MB-231 and incubated for five days.
The CM was replenished once.

2.6. Apoptosis Assay

3D-cultured MDA-MB-231 cells were used to investigate the role of apoptosis in
growth inhibition. Positive and negative controls included apoptosis inducer Staurosporine
(STS) from Abcam (ab120056) at 5 µM concentration, and pan-caspase inhibitor (Z-VAD-
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fmk from AdooQ Bioscience 187389-52-2) at a concentration of 20 µM. The experimental
conditions included CD36+ CM with or without pan-caspase inhibitor. Another control
was DMSO (as an empty vehicle), which is the solvent for the pan-caspase inhibitor. The
culture continued for 24 h until apoptosis in the positive control was observed. At this
time, samples were first stained with propodium iodide (PI) and Hoescht and imaged. The
same samples were washed and fixed with 10% Formalin and stained for cleaved caspase-3
(Abcam, ab32042) and DAPI.

2.7. Proteomics Profiling

225 µg of proteins were collected from the CM of four million cells from CD36+ or
CD36− FBs. For each condition, three replicates, each containing 50 µg, were constructed.
The rest were used to build the library. Subsequently, the UNR proteomics facility utilized
the following protocol.

2.7.1. Protein Digestion

Isolated protein samples were digested and desalted in triplicate according to pro-
tocols in the published literature [22]. Protein concentration was determined using a
bicinchoninic acid assay (BCA) (Thermo-Fisher Scientific, San Jose, CA, USA). Proteins
were reduced and alkylated and subjected to methanol-chloroform precipitation prior to
digestion with endoproteinase Lys-C (Wako, Richmond, VA, USA), followed by digestion
with trypsin (Promega, Madison, WI, USA), desalting, and concentration using C18 Sep-Pak
cartridges (Waters).

2.7.2. Peptide Quantification

Peptides were mass tagged using Thermo-Fisher’s TMT 10-plex isobaric label kit (Cat
# 90061) following the included protocol. Labeled samples were pooled for analysis.

2.7.3. Basic Reversed-Phase Fractionation

The pooled TMT-labeled peptides were fractionated by basic pH reversed-phase
(BPRP) fractionation on an Ultimate 3000 HPLC (Thermo Scientific) using an integrated
fraction collector. Elution was performed using a 10 min gradient of 0–20% solvent B fol-
lowed by a 50 min gradient of solvent B from 20–45% (Solvent A 5.0% acetonitrile, 10 mM
ammonium bicarbonate pH 8.0, Solvent B 90.0% acetonitrile, 10 mM ammonium bicarbon-
ate pH 8.0) on a Zorbax 300Extend-C18 column (Agilent) at a flow rate of 0.4 mL/min. A
total of 24 fractions were collected at 37 s intervals in a looping fashion for 60 min, then
combined to produce a total of 12 fractions. Peptide elution was monitored at a wavelength
of 220 nm using a Dionex Ultimate 3000 variable wavelength detector (Thermo Scientific).
Each fraction was then centrifuged to near-dryness and desalted using C18 Sep-Pak Car-
tridges, followed again by centrifugation to near-dryness and reconstitution with 20 uL of
5% acetonitrile and 0.1% formic acid.

2.7.4. Liquid Chromatography and Mass Spectrometry

This step processed each fraction to identify and quantify the sample. Peptide fractions
were separated using an UltiMate 3000 RSLCnano system (Thermo Scientific, San Jose, CA,
USA) on a self-packed UChrom C18 column (100 um × 35 cm). Elution was performed
using a 180-min gradient of solvent B from 2–27% (Solvent A 0.1% formic acid, Solvent
B acetonitrile, 0.1% formic acid) at 50 ◦C using a digital Pico View nanospray source
(New Objectives, Woburn, MA, USA) modified with a custom-built column heater and
an ABIRD background suppressor (ESI Source Solutions, Woburn, MA, USA). Briefly, the
self-packed column tapered tip was pulled with a laser micropipette puller P-2000 (Sutter
Instrument Co, Novato, CA, USA) to an approximate id of 10 µm. The columns were
then packed with 1–2 cm of 5 µm Magic C18 followed by 35 cm of 1.8 µm UChrom C18
(120A) at 9000 psi using a nano-LC column packing kit (nanoLCMS, Gold River, CA).
The mass spectral analysis was performed using an Orbitrap Fusion mass spectrometer
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(Thermo Scientific, San Jose, CA). TMT analysis was performed using an MS3 multi-notch
approach [23]. The MS1 precursor selection range was 400–1400 m/z at a resolution of
120 K and automatic gain control (AGC) target of 2.0 × 105 with a maximum injection
time of 100 ms. Quadrupole isolation at 0.7 Th for MS2 analysis using CID fragmentation
was performed in the linear ion trap with a collision energy of 35%. The AGC was set
to 4.0 × 103 with a maximum injection time of 150 ms. The instrument was operated in
a top-speed data-dependent mode with a most intense precursor priority with dynamic
exclusion set to an exclusion duration of 60 s with a 10 ppm tolerance. MS2 fragment
ions were captured in the MS3 precursor population. These MS3 precursors were isolated
within a 2.5 Da window and subjected to high energy collision-induced dissociation (HCD)
with a collision energy of 55%. The ions were then detected in the Orbitrap at a resolution
of 60,000 with an AGC of 5.0× 104 and a maximum injection time of 150 ms. The data were
extracted using a Proteome Discoverer (Thermo Scientific, San Jose, CA, USA). All samples
were analyzed using Sequest (Thermo Fisher Scientific, San Jose, CA, USA), version v.27,
rev. 11. Scaffold PTM and Scaffold Q+ (version Scaffold_4.2.1, Proteome Software Inc.,
Portland, OR, USA) were used to validate the site of phosphorylation and quantified using
the TMT reporter ions.

2.7.5. Signal Normalization

Normalization factors were computed per sample as the sum of the raw protein values
(across all proteins) divided by the maximum pool sum, following the TMT Thermo-Fisher
protocol and manual. Principal component analysis (PCA) was applied to experimental
conditions, performed in triplicate, to assess and remove any outliers. Raw values were
normalized by dividing by the sample-specific normalization factor. Normalized data were
log2-transformed, and ANOVA was performed followed by a Tukey posthoc test on any
proteins with a statistically significant change (adjusted p-value < 0.05). Bioinformatics
analysis was performed using Scaffold DIA (Protomesoftware).

2.8. Human Recombinant Proteins

Human recombinant proteins, secreted by HEK293 cells, were commercially acquired
for SLIT3 (Novus Biological, 9255-SL-050), FBLN1 (Novus Biological, 9007-FB-050), PENK
(Novus Biological, H00005179-P01-2ug), and TIMP2 (Novus Biological, NBP2-61356). To
validate their growth inhibitory effects, neutralizing antibodies for SLIT3 (Novus Biological,
AF3629-SP), FBLN1(Novus Biological, NBP1-84725-25ul), and PENK (Novus Biological,
NBP1-90944-25ul), at a concentration of 1 µg/mL, were added to the CD36+ CM and
applied to 3D-cultured MDA-MB-231 cells for 4 days. In all experiments, cells were fixed
and stained with DAPI. The positive control was the CM of CD36+ FBs, which is estimated
to have 1.5 µg/well of proteins.

2.9. Inhibition of KLF10 Transcription Factor

CD36+ CM with or without 12 µg/mL of KLF10 inhibitor (Sigma #533976) was added
to 3D-cultured MDA-MB-231 cells for 4 days. The toxicity of the KLF10 inhibitor and its
solvent (DMSO) was evaluated by adding it to the growth medium.

2.10. Immunofluorescence Staining

For detecting live and dead cells, a culture medium containing 10 µg/mL of pro-
pidium iodide (PI) (Alfa Aesar, Haverhill, MA, J66764MC) and Hoechst (BD Biosciences,
Franklin Lakes, NJ, 561908) was added directly to cell cultures prior to fixation, followed
by fluorescent microscopy.

For CD36, YY1, Ki67, Cyclin E1, and KLF10 staining, cell cultures were washed
three times with PBS (with Ca2+ and Mg2+, ThermoFisher14040-133) and fixed at room
temperature in 4% PFA (ThermoFisher, 28908) for 15 min. After three PBS washes, cells
were permeabilized using a Triton X-100 solution (Sigma Aldrich, T8787) for 10 min and
then incubated for 1 h in a blocking solution containing bovine serum albumin (BSA, Sigma
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Aldrich, A7638) in PBS on a shaker at RT. The primary antibody was diluted in the blocking
solution and applied to cells overnight at 4 ◦C. The following day, samples were washed
three times in PBS (15 min per wash). Secondary antibody was diluted in blocking solution
applied to samples for 1 h. Cells were washed three times in PBS (15 min per wash). Finally,
the nuclei were counterstained with 250 ng/mL 4′-6-diamidino-2-phenylindole (DAPI,
ThermoFisher, D1306). For cleaved caspase-3 staining, the same procedure was applied,
except that 1% BSA containing 0.06% Triton X-100 was used as the washing buffer instead
of PBS. Specific conditions and concentrations for each target are indicated in Table 1.

Table 1. Details of the immunofluorescent staining for each molecular endpoint.

Target CD36 YY1 Ki67 KLF10 Cleaved
Caspase-3 Cyclin E1

Permeabilization
(Triton X-100) 0.5% 0.5% 0.5% 0.5% 0.3% 0.5%

Blocking
Solution

(BSA)
1% 1% 1% 1%

5% BSA +
0.3% Triton

X-100
1%

Primary
Antibody

Santa Cruz
SC-7309

Or
Novus

Biological
NB 400-144

Abcam
Ab232573

Abcam
Ab16667

Novus
Biological

NBP3-04586

Abcam
Ab32042

Novus
Biological

NBP2-67760

1:250 1:250 1:500 1:100 1:100 1:100

Secondary
Antibody

Abcam
Ab150113

Or
Ab150077

Abcam
Ab175471

Abcam
Ab150077

Abcam
Ab150077

Abcam
Ab150077

Abcam
Ab150077

1:250 1:250 1:500 1:250 1:250 1:250

2.11. Fluorescence Microscopy

The readout for each molecular endpoint is based on fluorescence microscopy, where
our lab has excelled in the development of quantitative assays [24,25]. Typically, 60 to
300 cells are present per field of view with a 10× objective, which provides significant
power for data analysis. On average, two to five fields of view are imaged per well, and
there are three to six wells sampled per condition. Samples were imaged with an EVOS
FL Auto Imaging System equipped with an AMEP 4633 10× phase objective (0.25 of NA
and 6.9 mm of WD) and a 40× objective (0.8 ND and 3.3 mm working distance). The
excitation lasers were set at 385, 488, and 568 nm for DAPI, Alexa 488, and 568 fluorophores,
respectively. All other imaging parameters were kept constant for all specimens.

2.12. Quantification of Molecular Endpoints

For quantitative analysis of CD36, YY1, Ki67, KLF10, propidium iodide, and cleaved
caspase-3, samples were DAPI stained to provide a context for each molecular endpoint.
All images were background corrected against an empty well for each excitation frequency.
Quantitative analysis of each molecular endpoint utilizes robust image analysis that has
been developed in our laboratory by first segmenting each nucleus in the image [26].

To quantify the CD36 expression in fibroblasts, nine fields of view were captured
per condition with a 10× objective. Images were binarized with the same threshold. The
total fluorescent signal per field of view was averaged against the number of nuclei in the
same field.

To quantify the nuclear-bound YY1 transcription factor, 10 fields of view per condition
were randomly selected and imaged with a 10× objective. Colonies were segmented from
the background with a constant threshold on the DAPI stained channel. Subsequently, the
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average YY1 expression was computed in each colony. Having quantified the average YY1
expression per colony, consensus clustering [27] was applied to conclude that there were
two populations of low and high-YY1 expressing colonies for all conditions. Finally, the
number of colonies in each population, per condition, was computed.

To quantify the Ki67 expression, 30 fields of view per condition were imaged with a
10X objective, and the average Ki67 signal per nucleus per field of view was computed.
The two populations were identified by consensus clustering [27], and the number of cells
in each population per condition, was also computed.

One of the reasons for using consensus clustering is automatic threshold selection for
identifying different populations that can be statistically validated.

To quantify the frequency of the cleaved caspase-3 positive cells per condition, the
mean fluorescent signals for positive (e.g., STS treatment) and negative controls (e.g.,
untreated, inhibitor) were computed, a threshold was set in the middle and applied to
all conditions. Next, the frequencies of positive cleaved caspase-3 were quantified and
normalized to the total number of cells per condition.

To quantify the KLF10 and Cyclin E1 expression, 12 to 20 images per condition were
segmented using the DAPI channel, and the total fluorescent signal per field of view was
averaged against the number of nuclei in the same field. KLF10 was measured within the
cell area, and Cyclin E1 was measured within each nucleus.

2.13. Visualization of Images

All images in a study (e.g., positive and negative controls, treatment) were enhanced
on the same linear scale between min and max intensities. However, all quantitative
analyses were performed with raw data. In some cases, a 5× or 40× objective was used
for visualization.

2.14. Figures and Statistical Analysis

Results are shown in the scatter bar chart, where each point, in a bar chart, represents
either the total number of cells per field of view or the average fluorescent per cell per field
view. The error bar corresponds to the standard error of the mean for all fields of view and
replicates per condition. Differences between groups were identified using the student’s
t-test, and their significance is displayed with either one or two asterisks.

3. Results
3.1. CD36 Expression in FBs Is Reversible and Anti-Correlated with the Exposure to Activin A

In a previous work [19], we showed that activin A secreted from tumor epithelial
cells decreases CD36 expression in FBs in a coculture assay and that CD36 expression was
inversely correlated to the concentration of activin A in a dose-dependent manner. In the
present study, primary FBs were treated with a nominal concentration of activin A [28]
in tumors, at a minimal concentration of 2.25 ng/mL and as high as 20 ng/mL, and the
CD36 expression in FBs was quantified under three experimental conditions: (i) three days
of treatment followed by fixation, (ii) five days of treatment followed by fixation, and
(iii) three days of treatment followed by replacing activin A-containing medium with the
normal culture medium, followed by two days of incubation before fixation. In addition,
the CD36 expressions for transfected and normal FBs were used as controls. We found
that activin A-induced downregulation of CD36 expression is reversible once activin A
is removed from the medium (Figure S2). Reversion of the CD36 in FBs is one of the
requirements for reprogramming the microenvironment.

3.2. Growth Suppression by the CM of CD36+ FBs Is Subtype Dependent

The number of cells or colonies was used as an endpoint to quantify growth suppres-
sion as a result of exposure to the CM of CD36+ FB for each cell line.
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3.2.1. The Triple-Negative Breast Cancer (TNBC) Cell Lines MDA-MB-231, BT-549, and
Hs578T Are Sensitive to the CM of CD36+ FBs

MDA-MB-231, originating from a patient with adenocarcinoma pathology, represents
a mesenchymal phenotype and grows along a two-dimensional plane on Matrigel [24].
Previously, we showed that coculture of CD36+ FBs with MDA-MB-231 induced growth
suppression in the absence of direct epithelial-fibroblast contact in Boyden chambers [19].
Here, 3D colonies of MDA-MB-231 cells were exposed to the CM of primary normal, CD36+,
or CD36− FBs. After four days of incubation, the samples were fixed, stained with DAPI
and Ki67, and the number of cells was counted using automated image analysis. When the
tumor cells were exposed to the CM from CD36+ or CD36− FBs, there was a significant
growth suppression or promotion, respectively (Figure 1), in terms of the number of cells.
In addition, proliferation analysis of MDA-MB-231 for all treatment conditions revealed
two subpopulations of low and high Ki67 expressing cells. Compared to the CD36+ CM,
exposure to the CM from CD36− produced a larger population of high-expressing Ki67
levels. It is feasible that there are two subpopulations of MDA-MB-231, with one being
more resistant to the CM of CD36+ FBs. Besides, there is evidence for two subpopulations
of MDA-MB-231, with one being hyaluronan (HA) receptor-positive with higher local
metastasis [29].

Figure 1. The 3D growth of MDA-MB-231 is suppressed as a result of exposure to the CM from CD36+

FBs. (A) The number of cells (DAPI) and their proliferation status (Ki67) is monitored and visualized
by fluorescent microscopy under control and exposure to the CM from normal, CD36+, or CD36−

FBs. (B) The number of cells was quantified for each condition based on the nuclear counterstain.
(C) Frequency of low and high expressing Ki67 cells was quantified for each condition. For (B,C),
quantitative data were normalized to control (untreated cells). ** p < 0.001.



Cancers 2021, 13, 4521 10 of 22

BT-549 and Hs578T are TNBC with infiltrating ductal carcinoma and carcinoma
sarcoma features, respectively. Both grow as stellate colonies [30,31]. These cell lines
were cultured and exposed, separately, to the CM of CD36+ or CD36− fibroblasts for four
days. Subsequently, the number of cells was quantified using automated image analysis
(Figure 2), with the results indicating growth suppression in both cell lines.

Figure 2. The 3D growths of BT-549 and Hs578T are suppressed as a result of exposure to the CM
from CD36+ FBs. (A,B) The numbers of cells for BT549 and the frequencies of high versus low
expressing Ki67 cells are quantified. (C,D) The numbers of cells for Hs578T and the frequencies of
high versus low expressing Ki67 cells are quantified. Quantitative data were normalized to control
(untreated cells). * p < 0.05, ** p < 0.001.

3.2.2. ERBB2+ Cell Line of SKBR3 Is Resistant to the CM of CD36+ FBs

SKBR3 cells, known to form three-dimensional “grape-like” colonies, were exposed
to the CM of FBs, as before. After six days of treatment, the colonies were fixed, and
no significant growth suppression was observed. Previously, we showed that the YY1
transcription factor plays a role in reversing aberrant polarity [19] and has a causal effect
on the regulation of ERBB2 [16]. YY1 is involved in differentiation and proliferation,
is overexpressed in cancer [32], and its genetic manipulation has been associated with
phenotypic reversion between MCF10A and MCF7 [33]. Thus, we opted to investigate the
regulation of YY1 as a result of exposure to the CM of CD36+ FB for this cell line. Consensus
clustering identified two subpopulations of YY1-expressing colonies, and further analysis
quantified the frequencies of low- and high-YY1-expressing colonies in each condition.
Although the frequency of high-YY1-expressing colonies was significantly reduced after
exposure to the CM of CD36+ FBs (Figure S3), downregulation of YY1 had no impact on
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the endpoint (e.g., number of colonies, size of colonies). Resistance to the CM of the CD36+

FBs may be due to the non-reversible expression of ERBB2 in SKBR3 that lead to the loss of
proliferative suppression.

3.3. MDA-MB-231 Is Used to Investigate Properties of Growth Suppression as a Function of
Exposure to the CM of CD36+ FBs

We selected the sensitive cell line of MDA-MB-231, cultured on Matrigel, for a more
in-depth study that includes investigating growth suppression as a result of acute versus
continuous exposure and apoptosis versus growth arrest. We also examined whether
growth suppression is induced by nucleic acid sequences or proteins and the involvement
of exosomes.

3.3.1. Acute or Continuous Exposures to the CM of CD36+ FB Induce Growth Suppression

To investigate the difference in growth suppression, in cancer cells, between continu-
ous and acute exposures to the CM of CD36+ FBs, we designed an experiment with three
conditions: (i) control, (ii) acute exposure for two days, and (iii) continuous exposure with
three replenishments over a seven-day period. Both acute and continuous exposure in-
duced growth suppression, with the continuous exposure having an increased suppression
response (Figure S4).

3.3.2. Growth Suppression Is Primarily due to Apoptosis

Phase image microscopy of the MDA-MB-231 cell exposed to the CM of CD36+ FB
indicated potential apoptotic signatures because of the shrinkage of the cell membrane
and/or fragmentation of cellular components. In addition, the number of cells at the
end of the culture was always less than the initial seeding density. Hence, MDA-MB-231
was stained on day two with Hoechst and PI (stains cells with damaged membrane) and
cleaved caspase-3 antibody to verify dell death. The rationale for selecting day 2 is to
avoid cells be detached and washed. The control cells were exposed to staurosporine as an
apoptosis inducer, a pan-caspase inhibitor, and DMSO. These experiments revealed a higher
frequency of cell death and cleaved caspase-3 expressing cells when samples were exposed
to the CM of CD36+ FBs (Figure 3). Conversely, the addition of pan-caspase inhibitor to the
CM of CD36+ FBs reduced the frequency of apoptotic cells by approximately 30%.

In addition, staining for cyclin E1 did not indicate G1/S arrest in samples exposed to
the CM of CD36+ FBs (Figure S5). This is potentially due to earlier results of Section 3.2.1,
where we showed that there is a sensitive and resistive subpopulation of the MDA-MB-231
cell line. While the sensitive subpopulation goes through apoptosis and, detached and
washed out on day 2, the resistive subpopulation continues to proliferate. Hence, the
resistive subpopulation continues to express cyclin E1.

3.3.3. Growth Suppression Is Likely Induced by Proteins

A heat inactivation assay was used to determine whether nucleic acid sequences
or protein complexes in the CM of CD36+ FBs were responsible for growth suppression.
The heat inactivation assay denatures large proteins, degrades RNA, and breaks up lipid
membranes of the vesicles to release their contents. Subsequently, RNase or DNase enzymes
were added to the heated CM to remove any remaining RNA or DNA compounds. The
number of MDA-MB-231 cells, after seven days, was used as an endpoint for each treatment
of the CM of CD36+ FBs. Because the heat inactivation assay and the addition of DNase or
RNase interfered with the growth suppression (Figure 4), proteins are likely candidates.

A follow-up experiment was performed to fractionate protein complexes based on
their size and quantify the effect of each fraction on the growth of MDA-MB-231. Fractiona-
tion included ranges of 3 to 50 kDa and larger than 50 kDa. Both fractions induced growth
suppression independently (Figure 5). The selection of the filter size was a compromise
between the known range of cytokines [34] and the commercial availability of the filters.
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Figure 3. Exposure to the CM of CD36+ FBs increases the frequency of apoptotic cells. (A,C) PI staining indicated a
higher frequency of cell death with exposure to the CM of CD36+ FBs. (B) Cleaved caspase-3 staining was monitored
with fluorescent microscopy. (C,D) Inducer and inhibitor of apoptosis pathway enabled the selection of a threshold for
quantitative analysis. In both cases, the frequencies of apoptotic cells, as the result of exposure to the CM of CD36+ FB, were
the same as the treatment with apoptosis inducer. * p < 0.05, ** p < 0.001.
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Figure 4. The heat inactivation assay coupled with the enzymatic treatment of the CM of CD36+ FBs
indicates that proteins are likely to be involved in growth suppression. The cell count, on day 7, was
quantified as a result of exposure to the boiled CM (i) by itself (third bar from right), (ii) with DNase,
and (iii) with RNase. ** p < 0.001.

Figure 5. Proteins in the range 3–50 KDa or larger than 50 KDa induce growth suppression in
MDA-MB-231. * p < 0.05, ** p < 0.001.

3.3.4. Exosomes Are Not the Predominant Factors in Growth Suppression

In physiological conditions, signaling proteins can be soluble or encapsulated in
exosomes and microvesicles. Since the biogenesis of the exosomes can be manipulated [21],
we investigated their impact on growth suppression. The culture condition of the CD36+

FB was supplemented with 1 µM tipifarnib or 10 µM sitafloxacin for low and high exosome
production, respectively [21]. For each condition of low or high exosome biogenesis,
the CM was collected, added to the culture condition of MDA-MB-231, incubated, and
samples were then fixed, stained, and imaged with fluorescent microscopy to count the
number of cells. The results indicated that only at high biogenesis of exosomes, a slight
increase in growth suppression was observed (Figure 6). In other words, protein ligands or
microvesicles appear to be the major factors in growth suppression.

3.4. Secretomes of CD36+ versus CD36− FBs Reveal Differentially Expressed Proteins

To identify proteins responsible for growth suppression, we profiled the CM of CD36+

and CD36− FBs. For each condition, 225 µg of total protein was collected. Three techni-
cal replicates were carefully constructed, and samples were tryptic digested and eluted
using an Orbitrap Fusion Mass Spectrometer (LC/MS/MS) for proteomics analysis. The
raw data were processed by Proteome Discoverer 2.2 and searched against the UniProt
database using Sequest; the Scaffold toolkit quantified the identified proteins. Following
quality control (e.g., principal component analysis) and data normalization, 9000 peptides
corresponding to 1260 proteins were identified. Next, the differentially-expressed proteins
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were filtered through statistical analysis, including missing value imputation, data nor-
malization, and t-test. The bulk of these proteins were within the range of 11–100 KDa;
some were in the range of 100–200 KDa, and a few were in the range of 400–500 KDa.
Overall, 187 differentially-expressed proteins (78 from the CM of CD36− FBs and 109 from
the CM of CD36+ FBs) had a p-value of less than 0.05 (Figure 7). Proteomic profiling was
continued with additional bioinformatics analysis to identify ligands and exosomes and
validate pertinent factors that induce growth suppression.

Figure 6. Induced high biogenesis of exosomes marginally increases growth suppression. At low
exosome production, there was no statistical significance in growth suppression compared to the
treatment with the CM of CD36+ FB. ** p < 0.001.

Figure 7. Differential profiling between the CM of CD36+ and CD36− FBs identifies 187 proteins
with p-values of less than 0.05.

3.5. The Ligand-Receptor Bindings Are Identified

A total of 26 ligands, each with one or more receptors, were identified by compiling a
master list from three databases of HPMR, STRING, and HPRD [35,36]. The ligand-receptor
pairing in the CM of CD36+ FBs also indicated the enrichment of pathways involved in
cytokine signaling of the immune systems, integrin cell surface interactions, insulin-like
growth factor-2, and ECM organization. Table 2 shows the top four ligands that are
overexpressed in the CM of CD36+ FBs, which were likely to induce growth suppression
following bioinformatics analysis:
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Table 2. Four potential candidate ligands (Figure 7) in the CM of CD36+ FBs are listed.

Ligand Receptors p-Value Log2 (Fold Change)

TIMP2 (24 KDa) ITGA3, ITGB1 0.00005 0.7

FBLN1 (77 KDa) ITGB1 0.001 0.5

PENK (31 KDa)

MRGPRX1,

0.001 0.5
OGFR,

OPRD1,
OPK1,

OPRM1

SLIT3 (168 KDa) ROBO2 0.03 0.7

• TIMP2 has been shown to suppress the growth and metastasis of triple-negative breast
cancer in a murine model by disrupting Wnt and PI3K signaling [37].

• Slit and Robo receptors are silenced in many types of cancer, play an important role
in tumor growth, migration, and the tumor microenvironment [38], and have been
suggested as a signaling pathway for tumor suppression [39].

• FBLN1, a glycoprotein member of ECM, is epigenetically downregulated in bladder
cancer [40] and interacts with ADAMTS to reduce the proliferation of the breast
cancer cell lines MCF7 and MDA-MB-231. ADAMTS-like protein 1 is also one of the
differentially secreted proteins in the proteomics data.

• The literature on the PENK ligand in the context of growth suppression in breast
cancer is minimal and very recent [41], but there is evidence that high expression of
PENK is associated with favorable outcomes in patients with gastrointestinal stromal
tumors [42].

Finally, 106 and 72 differentially-secreted proteins from the CM of CD36+ and CD36−

FBs, respectively, were included in the Vesiclepedia [43], which indicates that a large
proportion of proteins are transferred through exosomes or microvesicles.

3.6. SLIT3, FBLN1, and PENK Induce Apoptosis in MDA-MB-231

Candidate recombinant human proteins of Table 2 were commercially acquired.
TIMP2 did not affect growth suppression (Figure S6A). The remaining three ligands were
added one at a time and then as a mixture. Controls included the (i) neutralizing antibody
for each of the corresponding recombinant proteins and (ii) colony formation assay for
MCF10A. With respect to the concentration of recombinant proteins, we initiated with the
published approximate ranges of SLIT3 [44] and FBLN1 [45,46] followed by serial dilution
experiments of 0.1, 1, and 10 µg/mL for SLIT3 and FBLN1, and 0.1 and 1 µg/mL for PENK.
SLIT3 and PENK at the concentration of 10 µg/mL and 1 µg/mL, respectively, induced
growth suppression. However, FBLN1 induced growth suppression in a dose-dependent
manner (Figure S6B–D). Each ligand, at its highest concentration, was added to the culture
condition, and the growth suppression was quantified, with FBLN1 being the most effective
(Figure 8A).

Additional controls included adding the neutralizing antibody of each ligand to the
CM of CD36+ FBs separately, where the interference with the growth suppression was
observed and quantified (Figure 8B). To investigate whether the three candidate ligands
have an additive growth suppression effect, they were added at their highest concentrations
to the 3D cultures of MDA-MB-231. The mixture indicated a similar growth suppression
effect as the CM of CD36+ FBs (Figure 8C), and each ligand-induced apoptosis through
the caspase-3 pathway after one day of treatment (Figure 8D). Finally, the toxicity of each
ligand and their mixture were evaluated in premalignant 3D colonies of MCF10A with
only FBLN1, at the high concentration, and mixture showing approximately 30% growth
suppression in colony formation (Figure S7).
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Figure 8. The mixture of three ligands added to the normal culture induces a similar level of growth
suppression as the CM of CD36+ FBs. (A) The addition of each recombinant protein to the MDA-MB-
231 medium induced partial growth suppression. (B) The addition of each neutralizing antibody
to the CM of CD36+ FBs interfered partially with the growth suppression. (C) Mixed recombinant
proteins of SLIT3, PENK, and FBLN1 induced an additive growth suppression that was similar to the
CM of CD36+ FBs. (D) Protein ligands induced apoptosis via the caspase-3 pathway after one day of
treatment. * p < 0.05, ** p < 0.001.

3.7. KLF10 Is One of the Transcription Factors Involved in Growth Suppression

Model-based analysis of the regulation of gene expression (MARGE) [47] was used to
predict the key transcription factors (TFs) corresponding to differentially expressed proteins
in Figure 7. MARGE uses a comprehensive library of publicly available human H3K27ac
ChIP-seq profiles and DNase I-hypersensitive regions to make inferences about the cis-
regulation of gene expression by defining a regulatory potential for each gene summarizing
nearby H3K27ac ChIP-seq signals. MARGE predicted the KLF family of TFs [48,49] with
KLF15 (p-value < 1 × 10−5) as the top candidate and KLF10 and KLF11 that are structurally
similar. KLFs play an important role in metastasis, including epithelial–mesenchymal
transition (EMT), changes in ECM, invasion, and angiogenesis. For example, KLF15 has
been suggested to be a novel tumor suppressor in breast cancer [50]. KLF10 and KLF11
are involved in TGFβ signaling and the regulation of Smad2/3 [51]. More importantly,
KLF10 has been shown to have anti-proliferative effects and to induce apoptosis in various
carcinoma cells [52]. Because we have already shown that the coculture of MDA-MB-231
with CD36+ FBs reverses the aberrant expression of pSmad2/3 in MDA-MB-231 [19], we
opted to investigate KLF10, KLF11, and KLF15. At the protein expression level, only KLF10
was overexpressed in MDA-MB-231 when exposed to the CM of CD36+ FBs. It is feasible
that low differential expression of KLF11 and KLF15 can be due to low transcription,
instability of transcript, low translation, or protein instability and degradation. Additional
control for this experiment was the KLF10 inhibitor, which interfered with the growth
suppression when added to the CM of CD36+ FBs (Figure 9).
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Figure 9. Overexpression of the KLF10 transcription factor is one of the mechanisms for growth suppression in MDA-MB-
231 as a result of exposure to the CM of CD36+ FBs. (A) DAPI and KLF10 staining for control and treatment were monitored
with fluorescent microscopy. (B) Quantitative analysis indicated overexpression of KLF10 with the treatment. (C) A control
experiment to validate reduced growth suppression by adding the KLF10-inhibitor to the CM of CD36+ FBs. * p < 0.05,
** p < 0.001.

4. Discussion

Recombinant protein activin A downregulated the CD36 expression in normal FBs;
however, once activin A was removed, the CD36 expression level increased. This was an
extension of earlier results that increased production of activin A by tumor cells down-
regulating the CD36 expression in FBs, which induces the FBs to secrete more activin A
and to initiate a positive feedback loop [19]. Since downregulation of CD36 is one of the
CAF markers [9], it is plausible that the tumor microenvironment can be reprogrammed
by factors secreted by the CD36+ FBs to induce tumor suppression and, in turn, decrease
the production of activin A per our earlier findings [19]. These secreted factors were
winnowed down to be protein ligands and proteins being transported by extracellular
vesicles. The protein fractionation experiment revealed that proteins with different molec-
ular weights were responsible for growth suppression in MDA-MB-231. In contrast, the
exosome biogenesis experiments suggested that ligands played a more critical role in
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growth suppression than the proteins being carried by vesicles. Proteomic profiling of the
CM of CD36+ and CD36− FBs and further bioinformatics analysis predicted four ligands
(TIMP2, SLIT3, FBLN1, and PENK) and, except for TIMP2, all induced growth suppression.
Furthermore, the mixture of SLIT3, FBLN1, and PENK induced a similar level of growth
suppression as the CM of CD36+ FBs. Finally, the KLF family of TFs was highly enriched as
a result of MARGE analysis with KLF10, implicated in TGFβ signaling and the regulation
of Smad2/3 [51], and validated to be overexpressed. However, multiple TFs must be
involved in growth suppression because the inhibitor of KLF10 neither reverses growth
suppression back to the level of control nor increases growth suppression to the level of
the CM of CD36+ FBs (Figure 9). In addition, KLF10 must be overexpressed as a result
of combined secreted ligands and vesicles since SLIT3 and FBLN1 marginally contribute
to its overexpression (Figure S8). Furthermore, TFs must be cancer subtype-specific. For
example, MARGE also predicted YY1, which is downregulated in MCF7 [19] and SKBR3
when exposed to the CM of CD36+ FBs. Downregulation of YY1 in MCF7 is associated
with the reversal of aberrant basal and lateral polarity [19], but in SKBR3 proved to be
ineffective, which is potentially due to its intrinsic mutations.

Secreted SLIT3, FBLN1, and PENK, by CD36+ FBs, appear to have a complementary
role in growth suppression via the apoptotic pathway. SLIT3 is important in regulating the
FBs activity and collagen synthesis in an autocrine manner, is involved in cell migration and
tumor suppression [53], is shown to be low in lung tumor tissue [54]; however, treatment
by SLIT3 inhibits the proliferation of malignant melanoma cells [38]. These observations
suggest that the overall treatment by SLIT3 not only contributes to growth suppression
and reduces secreted signaling factors (e.g., activin A) by cancer cells but also manipulates
the FBs toward a more stable biological activity, thus potentially reprogramming the tumor
microenvironment. FBLN1 is one of the regulators of TGFβ signaling [55], is downregulated
in lung cancer [56], has been suggested to be a tumor suppressor by inducing apoptosis [40]
and at the same time is antiapoptotic through Notch signaling [57], and its mechanism of
action remains still unknown. In addition, FBLN1 was shown to be elevated in normal
FB when compared to CAF [58]. High expression of PENK is associated with improved
outcomes in GIST patients and is postulated to act as a tumor suppressor [42], inhibit
breast tumor growth [41], and is required, in part, for induction of apoptosis through the
NF-κB/p53 pathway [59]. Thus, it is plausible that SLIT3, FBLN1, and PENK cooperate
and induce apoptosis through different pathways.

5. Conclusions

In this study, we extended our previous studies to show that the CM of CD36+ FBs
induced growth suppression, via apoptosis, in a subset of breast cancer cell lines. We
then profiled the CM of CD36+ versus CD36− FBs to predict the active protein ligands of
SLIT3, FBLN1, and PENK. Subsequently, for each active ligand, the range of concentrations
responsible for growth suppression was identified. We then showed that a cocktail of
SLIT3, FBLN1, and PENK, at their highest concentrations, can induce a similar amount of
growth suppression as the CM of CD36+ FBs in MDA-MB-231.

Future studies will investigate both FBs and tumor cells. We will measure the exact
concentration of each ligand and potential exosome in the secretome of FBs and examine
how the secretome of FB is regulated through lipid uptake. We will also investigate the
interactions of ligands and exosomes in growth suppression, restoration of the normal
functioning of CAFs through an autocrine loop, and recruitment of other stromal cells. The
latter is evident by the loss of CD36 in macrophages and endothelial cells, leading to inflam-
mation [60] and neoangiogenesis [61], respectively. These observations are complemented
by the role of (a) SLIT3 in promoting monocyte migration [44], and (b) FBLN1 in tumor
immunosurveillance, and improved survival in the presence of lymphoid infiltrates [61]. In
summary, there is overwhelming evidence that these ligands can also contribute to novel
therapies in cancer.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13184521/s1, Figure S1: CD36 is overexpressed in fibroblasts (FBs) of the normal
mammary gland. The image was collected from the Human Protein Atlas, Figure S2: CD36 expression
in fibroblasts (FBs) reverses once activin A is removed, Figure S3: The CM of CD36+ FBs has no
impact on the size of colonies for SKBR3 cell line event though the frequency of high-expressing
YY1 colonies is decreased, Figure S4: Both acute (2 days) and continuous (7 days) exposures induce
growth inhibition, with continuous exposure having a higher growth suppression, Figure S5: There is
no growth arrest in G1/S boundary, in MDA-MB-231, as a result of exposure to the CM of CD36+ FBs,
Figure S6: Serial dilutions of each of the four recombinant proteins indicate that only SLIT3, FBLN1,
and PENK induce growth suppression, Figure S7: At the highest concentration of recombinant
proteins, only FBLN1 and mixed ligands inhibited colony formation for MCF10A, Figure S8: SLIT3
and FBLN1 contribute marginally to the overexpression of KLF10 in the 3D culture of MDA-MB-231.
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