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Abstract

As biomedical imaging datasets expand, deep learning will be vital for image processing. Yet, the 

need for complex computational environments and high performance compute resources still 

limits community access to these techniques. We address these bottlenecks with CDeep3M, a 

ready-to-use image segmentation solution that employs a cloud-based deep convolutional neural 

network. We benchmark CDeep3M on large and complex 2D and 3D imaging datasets from light, 

X-ray and electron microscopy.

Biomedical imaging prospers as technical advances provide enhanced temporal1 and spatial 

resolution with larger field of views2 with steadily decreasing acquisition times. Three-

dimensional electron microscopy (EM) volumes, due to their extreme information content, 

anisotropy and increasing volume size2,3, are among the most challenging of segmentation 

problems. Substantial progress has been made with numerous deep neural networks4–7 to 

improve performance of computational image segmentation. However, generalized 

applicability of deep neural networks for biomedical image segmentation tasks is still 

limited and technical hurdles prevent the advances in speed and accuracy from reaching the 

mainstream of research applications. These limitations typically originate from the laborious 

steps required to recreate an environment that includes the numerous dependencies for each 

deep neural network. Further limitations arise from the scarcity of high-performance 

compute clusters and GPU nodes in individual laboratories, which are needed to train the 

network and process larger datasets within an acceptable timeframe.
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With the goals of improving reproducibility and making deep learning algorithms available 

to the community, we built CDeep3M as a cloud based tool for image segmentation tasks. 

CDeep3M uses the underlying architecture of a state-of-the-art deep learning convolutional 

neural network (CNN), DeepEM3D7, which was integrated in the Caffe deep learning 

framework8. While there are a growing number of deep-learning algorithms, we were 

attracted to the features offered by the CNN built in DeepEM3D7, since it was designed for 

anisotropic data - which is the product of many microscopy techniques - by using a 2D-3D 

hybrid network. The deep neural network of DeepEM3D uses inception and residual 

modules as well as multiple dilated convolutions and an ensemble of three models 

integrating one, three and five consecutive image frames7.

For CDeep3M, we modified all required components to make the CNN applicable for a wide 

range of segmentation tasks, permit processing of very large image volumes, and automated 

data processing. In brief, large image volumes are automatically split into sub-volumes with 

overlap, augmented, processed on GPU(s), de-augmented and both training and processing 

are parallelized on multi-GPU nodes. We also implemented a modular structure and created 

batch processing pipelines, for ease of use and to minimize idle time on the cloud instance. 

To reflect the broad applicability of our implementation to data of multiple microscopy 

modalities (e.g., X-ray microscopy (XRM), light microscopy (LM) and EM), we named this 

toolkit Deep3M. To give users easy access and to eliminate configuration issues and 

hardware requisites, we implemented steps to facilitate launching the cloud-based version 

CDeep3M on Amazon Web Services (AWS), which can be readily used for training the deep 

neural network on 2D or 3D image segmentation tasks. We minimized the number of 

required steps (Fig. 1), while still allowing for a flexible use of the code and enabling 

advanced settings (e.g. hyper-parameter tuning). Complete processing instructions are 

provided (see Supplementary Note), from generating training images to performing 

segmentation with CDeep3M and applying transfer learning.

We applied and benchmarked CDeep3M on numerous image segmentation tasks in 2D and 

3D, such as cellular organelle segmentation (nuclei, mitochondria, synaptic vesicles) and 

cell counting and classification. We established a cell density profile by training CDeep3M 

for the segmentation of nuclei in XRM data acquired from a hippocampal brain section 

prepared for EM. The density profile of segmented nuclei was extracted by applying a 20μm 

sliding volume across one axis at a time in x, y and z directions (Fig. 2a). We found an 

average cell density of 5.8×105 cells/mm3 in a volume (Volume size: 291μmx50μmx33μm) 

restricted to the suprapyramidal blade of the dentate gyrus (DG), which is consistent with 

stereology results reported previously 9,10. We find a gradual decrease towards the molecular 

layer (Supplementary Fig. 1), where the average cell density was at 3×104 cells/mm3. 

Training on fluorescence microscopy images of DAPI stained brain sections enabled us to 

distinguish neurons, solely based on their chromatin pattern and segment one individual cell-

type (Fig. 2b). The object classification accuracy was compared to Ilastik11, which is often 

used for easier cell counting tasks on LM datasets (F1 values CDeep3M: 0.9114 and Ilastik: 

0.425). To further test the performance of CDeep3M on diverse imaging data volumes, we 

analysed data acquired through multi-tilt electron tomography (ET), a form of transmission 

EM used to achieve high-resolution 3D volumes of biological specimens. More specifically, 

we applied CDeep3M to serial section ET of high-pressure frozen brain tissue and were able 
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to automatically annotate synaptic vesicles (CDeep3M: Precision: 0.9789; Recall: 0.9769; 

F1 value: 0.9779) and membranes with high accuracy (Fig. 2c), which facilitates the 3D 

segmentation of synapses and neuronal processes and which was not possible using 

conventional machine learning tools (F1 value for vesicles using CHM12: 0.9071; see 

Supplementary Fig. 2 for membrane segmentations).

We further used CDeep3M for the segmentation of intracellular constituents (nuclei, 

membranes and mitochondria) of cells in a serial block-face scanning electron microscopy 

(SBEM) dataset (Fig. 2d). To improve our understanding of the role of intracellular 

organelles and alterations in diseases, parameters - such as the precise volume, the 

distribution, and fine details like contact points between organelles - is of utmost 

importance. Therefore, we evaluated the performance of CDeep3M based on predictions per 

pixel, which is more representative (compared to object detection) to determine accurate 

segmentations and distribution of intracellular organelles. To compensate for inaccuracies of 

human annotations along the borders of objects an exclusion zone around the ground truth 

objects was used, as described previously 13. We compared CDeep3M to the three-class 

Conditional Random Field (3C-CFR) mitochondria specific machine learning (ML) 

segmentation method13, using the same published training and validation datasets. We found 

CDeep3M outperformed 3C-CFR with (e.g. 2 voxel exclusion zone CDeep3M: 0,9266 3C-

CFR: 0.85 Jaccard index) as well as without (0.8361 versus 0.741 Jaccard index) exclusion 

zone (Supplementary Fig. 3a, b). We further found the segmentation accuracy of CDeep3M 

equals the one of human expert annotators compared to the consensus ground truth 

(CDeep3M: Precision: 0,9871 Recall: 0,9656 F1: 0,9762 Jaccard:0,9536 Humans: Precision: 

0,9727, Recall: 0,9843, F1: 0,9782, Jaccard: 0,9574, one voxel exclusion zone; 

Supplementary Fig. 3c, d; for training and validation loss and accuracy see Supplementary 

Fig. 4).

Since training is time consuming, both to generate manual ground truth labeling (particularly 

for membrane annotation) and to train a completely naïve CNN, the re-use and refinement of 

previously trained neural networks (transfer learning) is of eminent interest. To test our 

ability to re-use a pre-trained model for a new dataset, we performed a type of transfer 

learning, domain adaption14. We therefore trained a model on the recognition of membranes 

using a published training dataset of a serial section SEM volume15 (similar to 7) with a 

voxel size of 6×6×30 nm. As expected, applying the network without further refinement on a 

SBEM dataset with similar voxel size (5.9×5.9×40 nm) but with staining differences and 

new staining features (cellular nuclei) led to unsatisfactory results (Fig. 2d, upper middle). 

Histogram matching was insufficient to remove the ambiguity caused by new features 

(nucleus) and staining differences. However, we found that using only 1/5th of the training 

data (20 instead of 100 training images) and 1/10th of the original training time (2000 and 

fewer iterations; from 22000 to 24000 iterations for 5fm; Fig. 2d; 14454 to 15757 for 3fm; 

and 16000 to 18000 for 1fm, Supplementary Fig. 5) was sufficient to fully adapt the 

network. This shows that adaption of pre-trained models can reduce the effort and time 

required for training by up to 90%. We additionally enabled a feature on CDeep3M to 

reduce the number of variations used for predictions and hence increase processing speed. 

We noticed in several cases that the accuracy remained sufficiently high when performing 

predictions on eight, four or even no additional variation of the same dataset, which can be 
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tested on each dataset specifically. Lastly, to distinguish the nuclear membranes from the 

other membranes a separate training and prediction was performed for cellular nuclei (Fig. 

2d).

Encouraged by the performance of CDeep3M on complex SBEM datasets, we wondered 

about the feasibility of one of the most challenging tasks on those data, to identify and 

accurately count synaptic vesicles within presynaptic terminals. These are hundreds to 

thousands of small objects in each presynaptic terminal (sometimes referred to as ‘vesicles 

clouds’), some with sharply delineated membranes and others with much blurrier edges, 

spanning between one to a few sections. This combination makes it a particular difficult task 

for human and computer segmentation to identify individual objects, which would 

tremendously benefit from automation. We performed training on a small area 

(512×512×100 voxel) of one terminal and applied to a dataset of 16000×12000×400 voxel. 

To verify the segmentation accuracy of CDeep3M and how well the model generalizes, two 

terminals at random locations within the volume were manually annotated by human experts 

for comparison (Fig. 3). CDeep3M with a 3D analysis of circular objects was used to 

separate densely packed vesicles (and place 3D centroids, see Fig. 3) and compare vesicle 

counts and calculate error rates (Terminal 1: Vesicle counts CDeep3M: 3487; Humans: 

3258, 3435, 3146, 2895; mean F1 value: 0.934; Terminal 2: Vesicle counts CDeep3M: 1105; 

Humans: 1121, 938, 942; mean F1 value: 0.937).

Altogether, CDeep3M takes advantage of cloud resources, which is scalable in times of high 

demand within the same laboratory and free of cost and maintenance when unused. Our 

cloud-based solution to provide an open AWS image is efficient for end-users, minimizing 

time spent for software / hardware configuration and updating numerous software packages, 

while alleviating the burden on algorithm developers to support a community with a 

multitude of underlying systems and platforms. Altogether this should facilitate the analysis 

of large and complex imaging data and render CDeep3M a widely applicable tool for the 

biomedical community.

Online Methods

Animals were used in accordance with a protocol approved by the Institutional Animal Care 

and Use Committee at the University of California, San Diego.

Tissue preparation and imaging for serial block-face scanning electron microscopy 
(SBEM) and X-ray microscopy (XRM)

C57BL/6NHsd mice (Envigo) at age 4-6 weeks were anesthetized using ketamine / xylazine 

and transcardially perfused with Ringers solution followed by a fixative mix composed of 

2.5% glutaraldehyde, 2% formaldehyde, 2 mM CaCl2, in 150mM cacodylate buffer. 

Fixation was started at 37ºC and cooled to 4ºC during the 15 minute perfusion. The brain 

was removed, post-fixed in the same fixative mix for 2 hours at 4ºC. Free floating brain 

sections of 100 μm thickness were prepared in 150mM cacodylate buffer with 2 mM CaCl2 

using a vibratome (Leica), sagittal from the cerebellum and coronal from the lateral 

habenula for SBEM and coronal from the hippocampus for XRM. The tissue was processed 

as described in Deerinck et al. 201016. Briefly, sequential staining consisted of 2% OsO4 / 
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1.5% potassium ferrocyanide, 0.5% thiocarbohydrazide and OsO4, followed by en-bloc 

uranyl acetate (2%). Sections were dehydrated by a sequence of increasing concentrations of 

ethanol, followed by dry acetone and then placed into 50:50 Durcupan ACM:acetone 

overnight. Slices were immersed in 100% Durcupan resin overnight in vacuum, then flat 

embedded between glass slides and left to harden at 60 °C for 48 hours. SBEM was 

performed using a Merlin SEM (Zeiss, Oberkochen, Germany) with a Gatan 3View system 

at high vacuum. The XRM tilt series was collected using a Zeiss Xradia 510 Versa (Zeiss X-

Ray Microscopy, Pleasanton, CA, USA) operated at 40 kV (76 μA current) with a 40× 

magnification and 0.416μm pixel size. XRM volumes were generated from a tilt series of 

3201 projections using XMReconstructor (Xradia), resulting in a final reconstructed volume 

of 391μm × 405μm × 395μm in x/y/z.

Electron tomograms

High Pressure Freezing and Freeze Substitution—For high-pressure freezing the 

brain was removed and post-fixed in the fixative mix for 1 hour at 4ºC. Vibratome sections 

of 100 μm thickness were transferred into 0.15M cacodylate buffer with 2 mM CaCl2 before 

high-pressure freezing. A small portion of the tissue was punched out and placed into a 100 

μm deep membrane carrier and surrounded with 20% BSA in 0.15 M cacodylate buffer. The 

specimens were high pressure frozen with a Leica EM PACT2. Freeze substitution was 

carried out in extra dry acetone (Acros) as follows: 0.1% tannic acid at −90ºC for 24 hours, 

wash 3× 20 min in acetone at −90ºC, transferred to 2% osmium tetroxide / 0.1% uranyl 

acetate and kept at −90ºC for 48 hours, warmed to −60ºC over 15 hours, kept at −60ºC for 

10 hours, warmed to 0ºC for 16 hours. The specimens were then washed with ice-cold 

acetone and allowed to come to room temperature and washed twice more with acetone. The 

specimens were infiltrated with 1:3 Durcupan ACM resin:acetone for several hours, 

1:1Durcupan:acetone for 24 hours, 3:1 Durcupan:acetone for several hours, 100% 

Durcupan:acetone overnight, and then fresh Durcupan for several hours. The 100% 

Durcupan steps were done under vacuum. The specimens were then placed in Durcupan in 

60ºC oven for 48 hours. The epoxy blocks were cut with a Leica UCT ultramicrotome into 

300 nm thick sections. No on-grid staining was performed. Ribbons were collected on slot 

grids with a 50 nm thick support film (Luxel Corp, Friday Harbor, WA). The grids were 

glow discharged for 10 seconds on both sides and then coated with 10 nm colloidal gold 

diluted 1:2 with 0.05M bovine serum albumin solution (Ted Pella, Redding, CA).

Electron tomogram acquisition—Electron tomography was used to digitally 

reconstruct a small portion (about 1.5μm×1.5μm×1.5μm) of a plastic embedded high-

pressure frozen mouse cerebellum specimen at a voxelsize of 1.6nm. The final volume was 

assembled from 7 consecutive tomograms (serial sections), each generated after a 4-tilt 

series scheme in which the sample is tilted every 0.5° from −60° to 60° at four distinct 

azimuthal angles (0°, 90°, 45° and 135°) in an electron beam. The micrographs were 

acquired on a FEI Titan operating at 300kV with a Gatan Ultrascan 4k×4k CCD camera. An 

iterative scheme was used during the tomographic processing to reduce the influence of 

reconstruction artifacts17.
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Fluorescence microscopy—Tissue was collected at 6 weeks from the cerebellum of 

C57BL/6NHsd mice (Envigo). Mice were anesthetized using ketamine / xylazine and 

transcardially perfused with Ringers solution followed by a fixative mix composed of 4% 

formaldehyde in 1× Phosphate buffered saline (PBS). Fixation was started at 37ºC and 

cooled to 4ºC during the 30-minute perfusion. The brain was removed, post-fixed in the 

same fixative mix for 2 hours at 4ºC. Free floating brain sections of 50 μm thickness were 

prepared using a vibratome (Leica) and stained for 1 hour in 2.5 μg/mL 4’,6-diamidino-2-

phenylindole (DAPI) in 1× PBS. Sections were mounted using ProLong Gold Antifade 

Reagent (Molecular Probes) and imaged with the Olympus Fluoview FV1000 confocal laser 

scanning microscope using 60× magnification lens at a pixel size of 0.21μm in x/y and a step 

size of 0.3μm in z.

Evaluation of CDeep3M performance

To define the performance of CDeep3M compared to ground truth segmentations, 

established by human expert annotators, following formulas where used. Pixels or objects 

are classified in one of four categories, TP: True positive TN: True negative FP: False 

positive FN: False negative. Precision = TP / (TP+FP); Recall = TP / (TP+FN); F1 value = 

2*TP /(2*TP+FP+FN); Jaccard index = TP / (FP + TP + FN)

Areas used to evaluate performance did not include areas used for training.

Size of training data volumes were as follows in x/y/z: LM: 512×1024×92 voxel; XRM 

nuclei: 382×974×101 voxel; ET vesicles: 514×514×100 voxel; ET membranes: 

1024×1024×20 voxel; ssTEM mitochondria: 1024×768×165 voxel; SBEM nuclei: 

1024×1024×15 voxel; SBEM mitochondria: 1024×1024×80 voxel; ssSEM membranes: 

1024×1024×100 voxel; SBEM membranes for transfer learning: 1024×1024×20 voxel; 

SBEM vesicles: 512×512×100 voxel

Reporting Summary

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

Data and software availability

CDeep3M source code and documentation are available for download on GitHub (https://

github.com/CRBS/cdeep3m) and is free for non-profit use. Amazon AWS CloudFormation 

templates are available with each release enabling easy customization and deployment of 

CDeep3M for AWS cloud compute infrastructure. For the end user ~10 minutes after 

creating the CloudFormation stack, a p2x or p3x instance with a fully installed version of 

CDeep3M will be available to process data. Example data are included in the release. 

Further data will be made available from the corresponding authors upon reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Image segmentation workflow with CDeep3M.
In Steps 1-2 a new trained model is generated, based on training images and labels. For 3D 

segmentation tasks CDeep3M trains three different models seeing 1 frame (1fm), seeing 3 

frames (3fm) and seeing 5 frames (5fm) that are applied in Step 3 to provide three 

predictions. Those are merged into a single ensemble model at the post-processing step (Step 

3).
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Figure 2: Multimodal image segmentation using CDeep3M.
(a) Segmentation of nuclei in XRM volume of a 50μm mouse brain slice containing the 

hippocampal DG area used for cell counting and establishing a cell density profile across x-

y-z. (b) Segmentation of cell type specific DNA profile allows identification of Purkinje 

cells. Overlay of 3D surface mesh of nuclei on light microscopic image of DAPI-stained 

mouse cerebellar brain section. Scale bar: 20μm. (c) Segmentation of vesicles and 

membranes on multi-tilt electron tomography of high-pressure frozen mouse brain section. 

Scale bar: 200nm. (d) Upper row: SBEM micrograph (left) Scale bar: 1μm, segmentation 

using pre-trained model before (middle) and after domain adaption (right). Lower row: 

segmentation of membranes, mitochondria and nuclei overlaid on SBEM data
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Figure 3: Synaptic vesicle counts on SBEM data using CDeep3M.
(a) SBEM volume acquired at 2.4nm × 24nm voxelsize (16000×10000×400 voxel). 

Performance tests were done on two terminals (Terminal 1: 3183 vesicles and Terminal 2: 

1000 vesicles) comparing to several independent human counts. Scale: 5μm (b) Three 

consecutive sections of Terminal 1 in overview (left panels, Scale: 200nm) alongside the 

CDeep3M predictions and zoomed in (right panels, Scale: 40nm) show comparisons to 

human counts. Centroids of 3D objects occurring across sections are marked on most 

prevalent plane.
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