
UCLA
UCLA Electronic Theses and Dissertations

Title
Elastic Waves from Localized Sources with Applications to Nondestructive Evaluation (NDE) 
of Composite Aerospace Structures

Permalink
https://escholarship.org/uc/item/7006w1s5

Author
Araque, Leonardo

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7006w1s5
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Elastic Waves from Localized Sources with Applications to Nondestructive Evaluation

(NDE) of Composite Aerospace Structures

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mechanical Engineering

by

Leonardo Araque

2022



© Copyright by

Leonardo Araque

2022



ABSTRACT OF THE DISSERTATION

Elastic Waves from Localized Sources with Applications to Nondestructive Evaluation

(NDE) of Composite Aerospace Structures

by

Leonardo Araque

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2022

Professor Ajit K. Mal, Chair

In the aerospace industry, the non-destructive evaluation (NDE) of reusable composite struc-

tural components in launch vehicles requires the development and implementation of efficient

and reliable techniques. Most conventional damage detection methods do not meet these

requirements. Recently develop methods using guided ultrasonic waves have the potential

to improve the efficiency and reliability of damage detection in aerospace structures. How-

ever, they rely on previously collected baseline data that can be different in similar parts

in composite structures due to their manufacturing tolerances. To overcome this difficulty,

databases from analytical and numerical models may be employed to be correlated with data

collected during the NDE of the structures. Nonetheless, the lack of knowledge of the ex-

act material properties – together with manufacturing tolerances – could lead to erroneous

conclusions. Evaluation of these uncertainties can be difficult and occasionally infeasible.

Rapid and reliable guided ultrasonic wave-based techniques, which include uncertainty in

models and material parameters and can localize and characterize flaws in large composite

structures, could gain acceptance for the NDE of reusable structures.

In this work, the first objective is to study guided waves formed by the initiation of

microcracks in composites, aiming to improve the current passive NDE techniques. Based

on an approach developed by seismologists to study earthquake sources, an efficient model
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has been developed based on a new form of the Green’s function to identify the ultrasonic

waves produced during the crack formation. The second objective in this work is to de-

velop a methodology to implement the ultrasonic guided wave based technique as one of

the qualifications criteria in composite manufacturing. A baseline-free technique to localize

delamination in fiber-reinforced composites is proposed. The technique compares data from

waves propagating in the healthy regions of the structure against data from waves crossing

defective areas. Therefore, the percentage of the damaged region in the inspection area needs

to be small. A damage index approach based on the cross-correlation and energy carried

by the signals is used for path identification, with imaging techniques to visualize the dam-

age. The baseline-free guided ultrasonic wave-based technique has been used to identify an

artificial delamination in a quasi-isotropic fiber-reinforced composite plate. The technique

has shown acceptable results when wave reflectors are not present in the vicinity of the

delamination. A technique based on guided ultrasonic waves, coupled with an uncertainty

analysis, is developed to quantify the deviations from the assumed nominal values of the

material constants of quasi-isotropic fiber-reinforced composites. It is shown using a fuzzy

arithmetical assessment that the measured group velocities vary depending on the location

within the laminate, opening the possibility of questioning if the assumed nominal values of

the material properties could accurately represent the entire material system in any region.

Furthermore, after the identified material parameters are defuzzyfied, a new set of nominal

values for the material properties is determined.
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CHAPTER 1

Introduction

1.1 Motivation

Structures across marine, wind energy, and aerospace industries are commonly manufac-

tured from composite materials due to their associated advantages of reduced weight and

fuel consumption, as well as high strength and corrosion resistance. A composite material

is typically comprised of strong, stiff fibers in a tough resin matrix. These commonly in-

clude carbon fiber reinforced polymers (CFRP), glass fiber reinforced polymers (GRFP),

honeycomb cores, and carbon laminates. Composite defects may form during the manu-

facturing process and include, but are not limited to: bonding defects, delamination, fiber

defects, fiber misalignment, foreign bodies, ply cracking, and porosity or voids in the ma-

terial. In addition to manufacturing defects, in-service composite material defects include:

bond failure, fiber breakage, cracking, delamination, failure between the fiber and matrix

interface, and moisture ingress. Non-destructive testing (NDT) is used for testing both

manufacturing and in-service defects. In the United States, aerospace composites are sub-

jected to ASTM NDT standards E2533, E2662, E2580, E2581 and E2582. These standards

recommend the following tests for qualification of fiber- and fabric-reinforced polymatric

matrix composites: Acoustic Emission (AE), Computed Tomography (CT), Leak Testing

(LT),Radiography Testing (RT), Computed Radiography (CR), Digital Radiography (DR),

Radioscopy (RTR), Sheareography, Strain Measurement, Thermography, Ultrasonic Testing

(UT) and Visual Testing (VT). However, ultrasonic guided waves (UGW) do not form part of

the listed NDE methods. As of today, ASTM only endorses the application of UGW for NDE

of steel pipes with the standards E2275-16 and E2929-18. Although NDE with UGW has the
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potential to benefit the inspection of large composite structures with subsurface damage, us-

ing less and more practical instrumentation compared to the recommended NDE techniques

[78, 12, 70, 75], UGW needs to overcome its drawbacks. One of the main problems with the

acceptance of UGW for the qualification of aerospace composites is that most of the current

approaches used reference data to perform structural assessments [77, 61, 66]. Therefore, the

development of a method, which can discern defective zones from healthy regions, could lead

to the implementation of guided-wave-based techniques as part of the acceptance process for

composite structures in the ongoing reusable launch system development program.

1.2 Outline

The objective of this thesis is to develop a guided wave-based NDE concept to identify

AE features of waves originated by the formation of microcracks in composite structures,

which can be used to localize and identify the source of the damage. To complement the

passive NDE method, a damage detection algorithm based on transmitted waves is used

to differentiate between healthy and defective paths in a sensing network created by the

excitation of ultrasonic waves (active NDE method). In addition, a NDE technique for

material characterization of composites without water immersion is proposed. The technique

is based on the uncertainty of the material properties.

In order to present to the readers the contributions from other research in the subjects

treated in this thesis, an extensive literature review has been conducted, and it can be found

as part of the introductions of Chapters 3 to 5.

This thesis starts with an examination of the basic concepts and equations in elastic

wave propagation oriented to the study of wave scattering in anisotropic plates in Chapter

2. Chapter 3 proposes an analytical form of the Green’s function for multilayered plates

to make a current passive NDE technique more efficient. The new form of the function

requires only the modal functions of the media for its calculation, showing the potential to

solve boundary value problems of guided waves efficiently. First, the new Green’s function
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is derived through a Representation Theorem of elastodynamics. The function is then used

to calculate the plate response to surface load in single-layered and multilayered plates.

The results are compared to those obtained from a standard method. Using an AE model

based on the Green’s function of the media in absence of discontinuities, the waveforms

from microcrack formations are studied. The results of the study identify features in the

waveforms, which are characteristic of each crack-type.

Considering epistemic uncertainty in the material properties, Chapter 4 presents a NDE

technique for material characterization based on advanced fuzzy arithmetic analysis. First,

the Transformation Method (forward analysis) is applied to investigate the influence of the

material properties in the calculation of the group velocities in an anisotropic media. Using

experimental data, an inverse procedure is then carried out to identify the uncertainty in the

material properties. The investigation concludes with the definition of new nominal values

of the material properties in a quasi-isotropic laminate, thus proposing a new method for

material characterization. A new active damage localization NDE technique is proposed to

detect delaminations in large composite structures with prior damage in Chapter 5. Two

damage indices are defined based on the comparison of signal features. Signals from waves

traveling in parallel paths in an anisotropic medium are collected in groups to compare their

features. The standard deviation of the damage indices on each group is then compared

to other groups to set a criteria to decide on the presence of damage in the structure. To

localize the damage, interpolation functions of the damage indices provide an approximate

location of the defect. To study the effect of the configuration of the sensing network in

the approximation, a topological analysis is performed. The results of the applied technique

show a fairly decent prediction of the location of the delamination.

The thesis concludes with a review of the main findings in this research including the

future challenges that the developed techniques may encounter in their application to the

NDE of composite aerospace structures.
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CHAPTER 2

Fundamentals

In this chapter, a brief description of the fundamentals of guided waves (Lamb waves) to

contextualize the study of the waves generated by internal sources in plates is presented. A

more detailed discussion can be found on [40, 1, 52, 84]. In Section. 2.1, the basic equations

of the propagation of mechanical waves in unbounded media are derived with the objective of

providing the basics for the derivation of the dispersion equations and mode shapes of guided

waves for a single-layered medium in Section. 2.2, and multilayered plates in Section. 2.3.

Furthermore, the derivation of the Green’s function for multilayered media using the Residue

Theorem is provided in Section. 2.3 for multilayered plates.

2.1 Basic Equations in Elastic Wave Propagation

Assuming linearity, the equation of motion in elastodynamics is of the form

σij, j + bi = ρ ui,tt (2.1)

where the summation rule in index notation does not apply to the repeated index t. σij is

the Cauchy stress tensor, bi is a body force per unit volume, and ui is the displacement.

In the absence of thermal or other non-mechanical effects, the linear constitutive equa-

tions for an elastic solid may be written as

σij = cijkl εkl = cijkl uk,l (2.2)

where cijkl is the elastic tensor with symmetry properties

cijkl = cjikl = cijlk = cklij (2.3)
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The strain-displacement relations are

εij = 1
2 (ui,j + uj,i) (2.4)

Substitution of Equations (2.2) and (2.4) into Equation (2.1) leads to the Navier’s equation

cijkl uk,lj + ρ bi = ρ ui,tt (2.5)

The domain of the equations can be either the reference configuration or the deformed config-

uration. Therefore, the boundary conditions on the surface S to solve for the displacements

can be applied to any of the configurations. In the general case the boundary conditions can

be a mixed of natural boundary conditions (σij nj = ti) and essential boundary conditions

ui.

The law of conservation of mechanical energy is of the form

d
dt (U + K) =

∫
S
t.u̇ dS +

∫
V
ρ b.u̇ dV (2.6)

The left-hand side of Equation (2.6) represents the rate of the increase of the total (stored

or potential U plus kinetic K) energy of the material within the control volume V, and the

right-hand side represents the rate of work done by the applied body and traction forces.

In elastodynamics the rate of transfer of energy, or the energy flux, across a given surface

S of a material particle with velocity u̇i may be expressed as

dER = −σijnju̇idS (2.7)

where dER is the rate of outflow of energy across the surface element dS with outward unit

normal n

In the special case where the solid is isotropic and homogeneous, Eq. (2.5) in absence

of body forces can be decoupled in two wave equations by applying the Stokes-Helmholtz

decomposition u = u1 + u2 = ∇Φ +∇ x Ψ as(
∇2 − 1

c2
1

∂2

∂t2

)
Φ = 0,

(
∇2 − 1

c2
2

∂2

∂t2

)
Ψ = 0 (2.8)
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where Φ and Ψ are, respectively, scalar and vector potentials, c1 and c2 are wave velocities

in terms of the Lame constants defined by

c1 =
√
λ+ 2µ
ρ

, c2 =
√
µ

ρ
(2.9)

2.2 Waves In-Plane-Strain in an Elastic Layer

2.2.1 Isotropic homogeneous

In Cartesian coordinates, if the geometrical configuration and all the physical quantities

are independent of x3, it can be shown that the in-plane-strain displacement and stress

components for an isotropic homogeneous solid may be expressed in terms of two scalar

potentials Φ and Ψ as

u1 = ∂Φ
∂x1
− ∂Ψ
∂x2

u2 = ∂Φ
∂x2

+ ∂Ψ
∂x1

(2.10)

σ11 =
(
λ∇2 + 2µ ∂2

∂x2
1

)
Φ− 2µ ∂2Ψ

∂x1∂x2
(2.11)

σ12 = µ

(
2 ∂2Φ
∂x1∂x2

+ ∂2Ψ
∂x2

1
− ∂2Ψ
∂x2

2

)
σ22 =

(
λ∇2 + 2µ ∂2

∂x2
2

)
Φ + 2µ ∂2Ψ

∂x1∂x2
(2.12)

where the scalar potential Ψ is a special case of Eq. (2.8) with Ψ = (0, 0,−Ψ)

Assuming that an isotropic homogeneous layer occupies the region −H/2 < y < H/2,

−∞ < x <∞, and its surfaces y = ±H/2 are traction free, in the time harmonic case the

potentials may be expressed in the form

Φ (x, x2) = [A sinh(η1x2) + B cosh(η1x2)] ei(kx1−ωt) (2.13)

Ψ (x1, x2) = [C sinh(η2x2) + D cosh(η2x2)] ei(kx1−ωt) (2.14)

where k is the wavenumber in the propagation direction to be solved from the dispersion

equation, and ηj =
√

k2 − ω/c2
j is the wavenumber in the x2 direction with Re ηj ≥ 0

The dispersion equations are given by

tanh (η2H)
tanh (η1H) = (2k2 − k2

2)2

4k2η1η2
(2.15)
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Figure 2.1: Coordinate axes of a transversely isotropic solid

for the antisymmetric case and

tanh (η1H)
tanh (η2H) = (2k2 − k2

2)2

4k2η1η2
(2.16)

for the symmetric case

2.2.2 Transversely isotropic problem

In a transversely isotropic homogeneous single-layer with thickness H and symmetry about

the off-plane axis x3 (see Fig. 2.1), the dispersion equations are given as follows [6].

{
tanh(kA1H/2)
tanh(kA2H/2)

}m
=
A1

[
A2

2 − C11
C13

( c2

c21L
− 1)][C11

C33
(C13
C44

+ 1) + A2
1 + C11

C44
( c2

c21L
− 1)

]
A2

[
A2

1 − C11
C13

( c2

c21L
− 1)][C11

C33
(C13
C44

+ 1) + A2
2 + C11

C44
( c2

c21L
− 1)

] , (2.17)

where applying m = 1 and m = −1, respectively, gives the symmetric and antisymmetric

equations. The expressions for Aq and Cij are given in the Appendix. A.1.1

2.2.3 Unidirectional fiber-reinforced composite

In a unidirectional fiber-reinforced composite plate with thickness H and symmetry axis

along the fiber direction (x1-axis, see Fig. 2.1), the dispersion equation for symmetric wave

motion can be written in the form[46, 21],

∆1 cos (ζ1H/2) sin (ζ2H/2) sin (ζ3H/2) + ∆2 sin (ζ1H/2) cos (ζ2H/2) sin (ζ3H/2)

+ ∆3 sin (ζ1H/2) sin (ζ2H/2) cos (ζ3H/2) = 0 (2.18)

and for the antisymmetric wave motion as
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Figure 2.2: Geometry of the layered solid

∆1 sin (ζ1H/2) cos (ζ2H/2) cos (ζ3H/2) + ∆2 cos (ζ1H/2) sin (ζ2H/2) cos (ζ3H/2)

+ ∆3 cos (ζ1H/2) cos (ζ2H/2) sin (ζ3H/2) = 0 (2.19)

where the expressions for ∆i and ζj are given in the Appendix. A.1.2.

2.3 Green’s Function for a Layered Solid

In this section, a brief description of the procedure to obtain the time-harmonic Green’s

function for a two-dimensional transversely isotropic layered through the Residual Theorem

is presented. This method is based on the work done by [43, 48]. However, a similar approach

can be found on [37, 91].

Consider a uniformly multilayered structure with geometry as it is shown in Fig. 2.2. The

solid occupies the region 0 < z < H, −∞ < x <∞, and its surfaces z = 0,H are traction free.

The equation of motion of the solid with plane strain reduction is given by,

σij, j + bi = ρ ui,tt i, j = 1, 3 (2.20)

When the material is transversely isotropic with stress-strain law invariant under an
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arbitrary rotation about the x3-axis, the stress-strain law takes the form
σ11

σ33

σ13


=


C11 C13 0

C13 C33 0

0 0 C44




u1,1

u3,3

u1,3 + u3,1


(2.21)

For the purpose of this section, let the field variables be assumed to be time harmonic,

and be expressed in the forms

ui(x, t) = Ui(z)ei(kx−ωt) (2.22)

σij(x, t) = Sij(z)ei(kx−ωt) (2.23)

bi(x, t) = Bi(z)ei(kx−ωt) (2.24)

Let a time harmonic line force of unit magnitude act at (ξ, ζ) in the multilayered media. Let

Gik (x, z, ξ, ζ) denote the xi component of the displacement produced at (x, z) due to a unit

line force at (ξ, ζ) acting in the xk direction. For fixed (ξ, ζ), Gij (x, z, ξ, ζ) represents waves

which propagate in the +x direction if x > ξ and in the −x direction for x < ξ.

Following the Global Matrix approach, for the layers where the unit force is not acting,

the wave displacement and stress components at the interface are given by [41]

{u1, u3, σ13, σ33}T =
∫ +∞

−∞
{U(z− zr), V(z− zr), T(z− zr), Σ(z− zr)}Teik(x−xr) dk

(2.25)

where the time factor e−iωt has been omitted for simplicity, and (xr, zr) is a reference point.

Representing the displacement-stress vector {U, V, T, Σ}T by {S(z)}, it has been demon-

strated that {S(z)} in the mth layer may be given by the matrix product,

{S(z)} = [Q(m)] [E(z,m)] {C(m)}, zm−1 < z < zm (2.26)

where E(z,m) is the diagonal matrix

{E(z,m)} = Diag
[
e+

1 (z− zm−1), e+
2 (z− zm−1), e−1 (zm − z), e−2 (zm − z)

]
(2.27)

where it has been used the notation e±α (z) = e±ηαz, α = 1, 2, and ”+” for zr > z and ”-” for

zr < z. ηα are the roots of the Navier’s equation, which results from substituting Eq. (2.21)

9



into Eq. (2.20). Note that ηα should be real or complex with Im(ηα) ≥ 0 to ensure the

outgoing wave condition, and the exponential decay of the nonpropagating waves.

The additional matrices in the displacement-stress vector {S(z)} are the unknown con-

stant vector

{C(m)} = {C+
1 , C+

2 , C−3 , C−4 } (2.28)

and the matrix

[Q(m)] =

[Q11(m)] [Q12(m)]

[Q21(m)] [Q22(m)]

 (2.29)

where

[Q11(m)] =

 1 1

β1 β2

 [Q12(m)] =

 1 1

−β1 −β2

 (2.30)

[Q21(m)] =

 C44 (−η1 + ikβ1) C44 (−η2 + ikβ2)

(ikC13 − C33β1η1) (ikC13 − C33β2η2)

 (2.31)

[Q22(m)] =

−C44 (−η1 + ikβ1) −C44 (−η2 + ikβ2)

(ikC13 − C33β1η1) (ikC13 − C33β2η2)

 (2.32)

βα = −k2C11 + ρω2 + η2
αC44

ikηα (C13 + C44) α = 1, 2 (2.33)

In order to account for the stress discontinuity in the source layer, across the plane z = ζ,

the following term is added to Eq. (2.26) [41, 43]

{S(y)+
−} =

[
Q+
−

]
[Es(z− ζ)] {D+

−} m = p

= 0 m 6= p
(2.34)

{Es(y)} = Diag
[
e+

1 (|z|), e−2 (|z|)
]

(2.35)

{D+
−} =

[
D±1 D±2

]T
(2.36)

with ”+” for z > ζ and ”-” for z < ζ, and where D±1 and D±2 are, respectively, the strength

parameters related to stresses T(zp) and Σ(zp) in the layer m = p.

Thus,

{S(z)} = [Q(m)] [E(z,m)] {C(m)}+ {S(y)+
−} (2.37)
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Then, the Global Matrix method is used to assemble a system of equations 4Nx4N to

solve for the unknown constants. In Section. 3.1 a different approach is used to calculate the

Green’s function.
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CHAPTER 3

Elastodynamic Green’s function for layered plates

As indicated in Section 1.1, composite defects found in aerospace structures during manu-

facturing and in-service include cracking and delamination. Analytical methods to study the

structural response to the presence of discontinuities in the media, such as inclusions, cracks,

and steps, result in a propagated and scattered field, which is represented in the linearized

theory of wave propagation by models in integral form [55, 47]. Since the models require

the Green’s function of the media in absence of discontinuities to solve for the displacement

response, deriving a form that simplifies the function’s calculation could reduce significantly

the computational time of the theoretical model. Some of the most representative analytical

works to obtain the time-harmonic Green’s function in layered media for two-dimensional

problems include, but are not limited to [80, 48, 37, 42]. In these works, the procedure to

determine the Green’s function includes integration in the complex-plane, which is computa-

tional expensive and susceptible of errors due to the calculations with large numbers. Most

recent works on layered media have been focused on becoming more efficient, and accurate

[81, 57, 35]; however, their approach still requires integration in the complex-plane.

Based on the integral representation theorems of elastodynamics, [36, 15, 31] [28] pro-

posed an alternative method to obtain the surface or guided wave terms of the Green’s

function for a two-dimensional multilayered half-space . Later, [44] used the surface terms

of the Green’s function to compute the approximate transmission and reflection coefficients

of Rayleigh waves in a homogeneous half-space. These works provide the basis to the devel-

opment of the new elastodynamic Green’s function for layered plates.

As of today, Acoustic Emission (AE) techniques for structural assessment have not been
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focused on the development of methods for the characterization of the source of AE events.

Instead, the techniques are based on essential AE signal features, such as arrival time,

maximum peak amplitude, signal duration, and energy. The small number of works on source

characterization have their roots in seismological models to study dislocations in the elastic

media by applying the Representation Theorem. The models substitute the discontinuity

in the displacement produced by a seismic dislocation with body force equivalents [9, 45].

Using a different approach, [83] investigated the applicability of the force equivalent model

to study infinitesimal dislocations in thick homogeneous plates by assuming a displacement

discontinuity function. Later, [21, 7] used the equivalent force model to study microcrack

initiation in composite laminates.

In this chapter a new form of the Green’s function for multilayered plates is obtained

as an extension of Herrera’s work [28] to be applied in the source characterization of AE

events. The derivation of the function is presented in Section 3.1. To validate the function,

the plate response for a homogeneous plate is compared to the results from the Residue

Theorem in Section 3.3. Finally, in Section 3.4, the waveform of the displacements produced

by the formation of normal and shear microcracks in an aluminum plate are obtained by

implementing the new Green’s function. In addition, the transmitted field in a guided-wave

with thickness change is calculated with a first order approximation.

3.1 Green’s Function Derivation Through the Representation The-

orem

Consider a uniformly multilayered structure in which the elastic constants are piecewise

constant functions of x2. Assume that the displacements and the stresses are independent

of x3. The displacement vector u(x)e−iωt in each mode satisfies the equation of motion,

σij,j (u) + ρω2ui = 0 i, j = 1, 2 (3.1)

at all points within the medium, except at the interfaces. Furthermore, ui (x) and σi2 (u)

are continuous across each interface, and σi2 (u) = 0 on the top and bottom surfaces of the
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Figure 3.1: Control Region in a Layered Plate with Thickness H

multilayered media. The wave displacements and stresses components can be expressed in

the forms,

um
i (x) = Um

i (x2) eikmx1 σm
ij (x) = Sm

ij (x2) eikmx1 (3.2)

where km, the wavenumber in the mth mode, is a root of the dispersion equation,

F (k, ω) = 0 (3.3)

We shall refer to km as an eigenvalue, Eq. (3.3) as the eigenvalue equation, and um
i (x)

as an eigenfunction for the multilayered media.

Let D denote the area enclosed by the straight lines C0, C1, C− ,C+ (Figure 3.1). Since

there are no body forces within D, the following identity can be easily proved.∫
C0+C∓+C1

(
um

i

(
σn

ij

)∗
− (un

i )∗ σm
ij

)
njds = 0 (3.4)

in which nj is an outward unit normal and (*) indicates a complex conjugate.

Because of the free traction boundary conditions on C0 as well as C1, the integrand in

Eq. (3.4) vanishes. Noting that nj = −δ1j on C− and nj = δ1j on C+, the above identity

becomes∫ H

0
(Um

i (Sn
i1)∗ − (Un

i )∗ Sm
i1) dx2 · e−i(km−kn)a =

∫ H

0
(Um

i (Sn
i1)∗ − (Un

i )∗ Sm
i1) dx2 · ei(km−kn)b

(3.5)

Since a and b are arbitrary, equation (5) implies that,∫ H

0
(Um

i (Sn
i1)∗ − (Un

i )∗ Sm
i1) dx2 = 0, m 6= n (3.6)
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Thus we may write, ∫ H

0
(Um

i (Sn
i1)∗ − (Un

i )∗ Sm
i1) dx2 = Rmδmn (3.7)

where

Rm = 2i
∫ H

0
Im (Um

i (Sm
i1)∗) dx2 (3.8)

Eq. (3.7) describes the orthogonality of the waves in a multilayered media.

Let a time harmonic line force of unit magnitude act at x = ξ in a multilayered media.

Let Gij (x, ξ) denote the xi component of the displacement produced at x due to a unit line

force at ξ acting in the xj direction. For fixed ξ, Gij (x, ξ) represents waves which propagate

in the +x1 direction if x1 > ξ1 and in the −x1 direction for x1 < ξ1. Consequently, Gij (x, ξ)

may be expressed as,

Gij (x, ξ) =
∑
m

Aj (ξ2) Um
i (x2)eikm(x1−ξ1), x1 > ξ1

Gij (x, ξ) =
∑
m

Bj (ξ2) (Um
i )∗(x2)e−ikm(x1−ξ1), x1 < ξ1

(3.9)

where Um
i (x2) eikmx1 is an eigenfunction of the multilayered media and Am

j , Bm
j are, as

yet, unknown functions of the source depth.

Recall the region D, which is bounded by the surfaces C0, C1, C−, C+. Let Ui(x) denote

a possible displacement field within D and on the bounding surfaces. According to the

Representation Theorem of elastodynamics, the solutions inside D can be obtained in terms

of the Green’s function and the boundary data.

uk (x) =
∫

C0+C∓+C1
{ Gik (ξ,x)σij (u)− ui (ξ) τij (Gk)} njds (ξ) (3.10)

where

σij (u) = Cijpqup,q τij (Gk) = CijpqGkp,q (3.11)

and commas indicate differentiation with respect to ξ. Note that in the Representation

Theorem Eq. (3.10) the location of the virtual force for the Green’s function is at the field

point x. Since C0 and C1 are traction free,

σij (u) nj = τij (Gk) nj = 0 on C0 (3.12)

15



Thus,

uk (x) = −
∫ H

0
{ Gik (ξ,x)σi1 (u)− ui (ξ) τi1 (Gk)}ξ1=−a ds (ξ2)

+
∫ H

0
{ Gik (ξ,x)σi1 (u)− ui (ξ) τi1 (Gk)}ξ1=b ds (ξ2) (3.13)

Let uk (x) = Un
k (x2) eiknx1 be a wave eigenfunction for the multilayered media propagating

in the positive x1-direction. Note that on x1 = −a, x1 < ξ1, so that

Gik (ξ,x) =
∑
m

Am
k (x2) Um

i (ξ2)eikm(ξ1−x1) (3.14)

and on x1 = b, x1 > ξ1, so that

Gik (ξ,x) =
∑
m

Bm
k (x2) (Um

i )∗(ξ2)e−ikm(ξ1−x1) (3.15)

Substituting from Eqs. (3.14) and (3.1) into Eq. (3.13) we have,

Uk (x2) eiknx1 = −
∑
m

Am
k (x2) e−ikmx1−i(km+kn)a

∫ H

0
(Um

i Sn
i1 − Un

i Sm
i1) dξ2

+
∑
m

Bm
k (x2) eikmx1+i(kn−km)b

∫ H

0

(
(Um

i )∗Sn
i1 − Un

i (Sm
i1)∗

)
dξ2 (3.16)

By applying the orthogonality condition (Eq. (3.7)) to Eq. (3.16), the function Bm
k can

be written as

Bn
k (x2) = Un

k (x2)
Rn (3.17)

By assuming that uk (x) = (Un
k (x2))∗ e−iknx1 , which is a wave eigenfunction propagating

in the negative x1-direction in Eq. (3.13), it can be proved that

An
k (x2) = (Un

k (x2))∗

Rn (3.18)

Using Eqs. (3.17) and (3.18) in Eq. (3.9), the Green’s function may be written in the

form,

Gki (x, ξ) =
∑
m

Um
k (x2) (Um

i (ξ2))∗ eikm(x1−ξ1)

Rm ; x1 > ξ1

Gki(x,ξ) =
∑
m

(Um
k (x2))∗Um

i (ξ2)e−ikm(x1−ξ1)

Rm ; x1 < ξ1

(3.19)
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and its associated stress as,

Tki (x, ξ) =
∑
m

Um
k (x2) (Sm

i (ξ2))∗ eikm(x1−ξ1)

Rm ; x1 > ξ1

Tki(x,ξ) =
∑
m

(Um
k (x2))∗ Sm

i (ξ2)e−ikm(x1−ξ1)

Rm ; x1 < ξ1

(3.20)

With this form of the Green’s function, the inverse Fourier transform with respect to the

wavenumber k is not required to obtain the Green’s function in the frequency domain. Only

the modal functions of the layered media obtained in the wavenumber domain are needed,

which can be calculated with a fair approximation through the Singular Value Decomposition

(SVD) of the Global Matrix.

3.2 Singular Value Decomposition of the Global Matrix

An approximation of the modal component of the displacements and stresses for guided waves

may be obtained from the singular value decomposition (SVD) of the dispersion equation

[87]. The inherent error in the numerical solution of the transcendental equation leads to a

none singular matrix G in the Global Matrix, and therefore it may not be possible to get the

null space vector of G. The null space vector contains the mode shapes of the displacements

and the stresses. In order to circumvent this difficulty, the SVD of the matrix G has been

proposed to obtain an approximation of the wave mode shapes. In order to get a fair

approximation of the shapes, the acceptance of the minimum singular value σmin of the SVD

of G depends on the uniqueness of G’s null space γ and a condition number κ. By following

these controls, the stability of the modal functions at each frequency can be guaranteed.

The steps to obtain the approximate modal functions are described below:

1. Calculation of the matrix G’s SVD, and extraction of the minimum singular value σmin

2. Evaluation of the condition number κ

κ = σmax

σmin
(3.21)

where σmax is the largest value calculated in each iteration. The value of κ tends to

infinity as G gets close to a singular matrix.
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3. Evaluation of the uniqueness of the null space γ

γ = σ2

σmin
(3.22)

This value should be infinity for all cases since the Null(G) should always be one

dimension other than the crossing point, which means ideally there is always only one

zero singular value for the matrix G.

It should be noticed that as a result of the approximation, its is expected that the

boundary conditions are not exactly satisfied. However, it has been demonstrated that this

method provides a less expensive computational method to find the mode shapes of the

guided waves for layered media with acceptable results.

3.3 Numerical Validation

3.3.1 Single-layered plates

In this section, the new form of the Green’s function is evaluated and its results are compared

to the results from the Residue Theorem approach. In the first validation case, an aluminum

plate with thickness 4 mm is excited by a point force on the top surface, and the plate’s

response is evaluated in the near field on the loaded surface. Since the model is an isotropic

single-layer, the analytical modal functions used in the calculation of the components of

the Green’s tensor G21 and G22 can be easily found in the literature [1]. The first three

modes of the dispersion curves of the layer are shown in Fig. 3.2a. In order to validate

the plate response, the spectra of the displacements U1, U2 are compared to G21 and G22,

respectively. Figs. 3.2b and 3.2c show a perfect match among the spectra. In order to verify

the wave’s distribution through the thickness, the normalized modal functions have been

compared. As an example of the results, the mode shapes of G22 and G21 and compared

to the corresponding displacements U2 and U1 for the frequencies 20 kHz, 100 kHz, and

1000 kHz. As depicted in Fig. 3.3, the Green’s function components do not differ from the

displacements U1 and U2.
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Figure 3.2: Dispersion curves and response to a surface normal line load for an aluminum

plate with properties: c1 = 6.2 mm/µs, c2 = 3.1 mm/µs, and ρ = 2.7 g/cm3
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Figure 3.3: Normalized distribution of the displacements in an aluminum plate due to surface

normal load for selected frequencies. Plate’s properties listed in Fig. 3.2

For the next case study, an isotropic plate (Glass) is subjected to a unit normal load at the

top surface with step time dependence H(t), and the vertical displacement G22 is evaluated

at a point 96 mm from the source. The calculated displacements show an earlier arrival of

the Reighley wave (1.78µs) compared to time reported in [90]. This discrepancy could be

attributed to the step-time-dependency of the solution. The time increment used for the

calculations in this study guarantee convergence in the solution. The first two symmetric

and antisymmetric modes for the component G22 are shown in Fig. 3.4. Although the

contribution to the vertical displacement from the A0 mode cannot be recovered by the FFT

due the unbalanced loading [83], the result is useful to validate the new form of the Green’s

function obtained in section 3.1.

19



0 20 40 60

Time [ s]

-5

0

5

A
m

p
lit

u
d

e
 [
m

]
10

-14

(a) Mode S0 G22. Maximum peak 1.17x10−12 m

0 20 40 60

Time [ s]

-1

-0.5

0

0.5

1

N
o

rm
a

liz
e

d

(b) Mode S1 G22

0 20 40 60

Time [ s]

-1

-0.5

0

0.5

1

N
o

rm
a

liz
e

d

(c) Mode A0 G22

0 20 40 60

Time [ s]

-1

-0.5

0

0.5

1

N
o

rm
a

liz
e

d

(d) Mode A1 G22

Figure 3.4: Response to a surface normal load, step function H(t) with unit amplitude, in a

glass plate with properties: c1 = 5.76 mm/µs, c2 = 3.49 mm/µs, and ρ = 2.3 g/cm3

3.3.2 Multilayered plates

For the last case study, the modal functions for the Green’s function are obtained through the

SVD applied to the Global Matrix. To this end, the aluminum plate is modeled as a layered

plate with three isotropic layers, whose thicknesses are listed from top to bottom as follows:

1 mm, 2 mm, and 1 mm. As a result of the comparison between the displacements U1 and

U2, which are calculated by using the Residue Theorem approach, and their equivalent pairs

G21 and G22, the spectra do not show any difference. However, the distribution through
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Figure 3.5: Normalized distribution of the shear stress T212(S12) in a 3 layers aluminum plate

due to a surface normal load for selected frequencies. Plate’s properties listed in Fig. 3.2

the thickness of the shear stress T212 (S12) ( of the S0 mode is significantly discontinuous

between layers in the frequency range between 10 kHz and 100 kHz, as seen in Fig. 3.5. It

might be the result of the approximation of the modal functions by SVD of the Global

Matrix. However, no discontinuity is found in the other stresses, T211 (S11) and T222 (S22),

in the frequency range of this study, 10 kHz and 1000 kHz.

3.4 Transmitted Field Calculation in Plates with Geometric Fea-

tures Like Steps

In this section the new Green’s function is applied to approximately solve the transmis-

sion amplitudes of waves traveling toward a reduced section of an isotropic two-dimensional

guided wave (see Fig 3.6a). By enclosing the domain of interest with a contour S, as shown

in Fig 3.6a, the transmitted field can be calculated by integration over the four sections, in

which contour S has been divided, with the integral Eq. 3.23 [18].

uk (x) =
∑
m

∫ {
Gm

ki (ξ,x) τm
ij (u)− um

i (ξ) τm
ij (Gk)

}
njdS (3.23)

where m represents all the possible modes of waves propagating in the transmitted region.
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Figure 3.6: Aluminum guided wave with thickness reduction

Application of the traction free boundary conditions to the integrals over the sections S2

and S4, and the fact that the integrand is identically zero at section S5, the transmitted field

can be obtained by the integration over the surface S3. In this way, the Eq. (3.23) is reduced

to Eq. (3.24)

uk (x) =
∑
m

∫
S3
{Gm

ki (ξ2,x) τm
i1 (u)− um

i (ξ2) τm
i1 (Gk)}ξ1=0 (−1)dξ2 (3.24)

The integral equation can be solved approximately by means of the successive or it-

erative approximations known as the Born series. The zero-order solution is given by

(um
i )0 = (un

i )inc, where the subscript 0 referrers to the zero-order solution. The first-order

solution (um
i )1 is obtained by inserting (um

i )0 = (un
i )inc into the integral. The second-order

solution is obtained by inserting (um
i )1 into the integral equation. Continuing this way, (um

i )

can be obtained to any desired order. In the case that the step is small enough, compared

to the wavelength of the incident waves, so the Green’s function will distort only slightly the

incident field, the first Born approximation can be applied. The first Born approximation

consists then of approximating the transmitted wave functions by the incident waves. Thus,

using (un
i )inc in Eq. (3.24), the transmitted displacement in the first-order approximation can
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be written as follows:

uk (x) ≈
∑

n

∑
m

∫
S3

{
(un

i (ξ′2))inc
τm

i1 (Gk) − Gm
ki (ξ2,x) (τn

i1 (u))inc}
ξ1=0

dξ2 (3.25)

where ξ′2 corresponds to the translated coordinate for the incident field and n represents all

the possible modes of waves propagating in the incident region.

Substituting the Green’s function from Eq. (3.19) for advancing waves x1 > ξ1 into

Eq. (3.25), we have the equation to calculate the transmitted displacement

uk (x2) ≈
∑

n

∑
m

Um
k (x2)
Rm

∫
S3

{
(un

i (ξ′2))inc(Tm
i1 (u) (ξ2))∗ − (Um

i (ξ2))∗ (τn
i1 (u))inc}

ξ1=0
dξ2

(3.26)

where the approximate amplitude Am for the transmitted wave um due to the incident wave

un can be easily found. Note that to simplify the Eq. (3.26), the wave propagation term has

been omitted.

To study the effects of the first-order approximation on the calculation of the transmit-

ted displacements, two cases are modeled for an aluminum guided wave with properties:

c1 = 6.2 mm/µs, c2 = 3.1 mm/µs, and ρ = 2.7e− 6 kg/mm3. In the first case, waves are

transmitted to a guided wave with thickness 3.175 mm from a 10 % elevated guided wave.

In the second case, the elevation is increased to 50 %. The maximum frequency in the study

has been limited to 300 kHz to guarantee only propagating waves in the fundamental modes

for all cases. Fig. 3.7 shows the spectra of the transmitted displacement, which has been

normalized with respect to the incident displacement evaluated at the origin. The results

in Fig. 3.7a show that there is essentially no mode conversion from S0 mode incident waves

to the A0 mode transmitted waves. For all the other cases, which include the displacement

presented in Figs. 3.7b to 3.7d, the mode conversion is more notorious as the frequency in-

creases. However, the results do not satisfy energy balance, and they are not consistent with

the ones presented in [74]. Therefore, one could conclude that the first order approximation

cannot be applied to the calculation of the transmitted field when only propagating Lamb

waves are considered.
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Figure 3.7: Normalized transmitted displacements on surface x2 = 0

3.5 Acoustic Emission Waveform from the Initiation of Microc-

racks

3.5.1 Model

Consider an elastic multilayered structure with known Green’s function where the wave

propagation is not affected by scattering sources other than the formation of an isolated

crack. The displacement vector u(x)e−iωt in each mode satisfies the equation of motion,

σij,j (u) + ρω2ui = 0 i, j = 1, 2, 3 (3.27)
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at all points within the medium except at the interfaces. Furthermore, ui (x) and σi2 (u)

are continuous across each interface, and σi2 (u) = 0 on the top and bottom surfaces of the

multilayered media.

According to [45, 7], the displacement field from crack initiation and propagation can be

calculated by the expression,

Uk (x, ω) =
∫

S
[Ui(ξ, ω)]+−Tk

ij(ξ,x, ω)n+
j ds (3.28)

where [Ui(ξ, ω)]+− represents the displacement discontinuity at the location of the crack ξ,

T kij are the components of the stress vector on the crack surface S at ξ due to a point force

at x (Eq. 3.20), and n+
j is the normal on the positive face of the crack S+.

The elastodynamic field produced by a small surface element ds of the microcrack is

given by [45, 7],

Uk (x, ω) = [Ui(ξ, ω)]+−Tk
ij(ξ,x, ω)n+

j ds (3.29)

If the displacement discontinuity [Ui(ξ, ω)]+− can be represented by a normalized function

f(t) with magnitude D, which is the maximum static of the dislocation on ds, then the above

Eq. (3.29) becomes

Uk (x, ω) = D ds F (ω) γ+
i Tk

ij(ξ,x, ω)n+
j (3.30)

where γ+ denotes the direction of the dislocation on the positive face of ds, and F (ω) is the

Fourier Transform of f(t). It should be noted that the field produced by a finite crack with

known properties can be calculated by evaluating the integral in Eq. (3.28)

In the case where the field equations are independent of one of the coordinates (x3, ξ3)

and x1 > ξ1, Tk
ij may take the form of Eq. (3.20) for advancing waves. Therefore, Eq. (3.30)

can be written as,

Uk (x2, ω) = D ds F (ω)
∑
m

Um
k (x2)
Rm γ+

i

(
Sm

ij (ξ2)
)∗

n
+

j
eikm(x1−ξ1); x1 > ξ1 (3.31)

where ds represents a line element instead of a surface element.

As a special case where the element δs of arbitrary orientation is at the origin of the

coordinate system, the expression to calculate the displacement can be defined in terms of
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Figure 3.8: Geometry of the crack with its origin at origin of the coordinate system

the angles δ and λ. The angle δ is made between the unit normal n+ and e2, and λ is the

angle between e1 and γ+ as shown in Figure 3.8.

The unit vectors are then defined with the angles δ and λ as,

n+ = −e1sinδ + e2cosδ γ+ = e1cosλ+ e2sinλ

Thus Eq. (3.31) may be expressed as,

Uk (x2, ω) = D ds F (ω)
∑
m

Um
k (x2)
Rm {Λ} eikm(x1−ξ1); x1 > ξ1 (3.32)

where,

Λ = −cosλsinδ (Sm
11 (ξ2))∗ + sinλcosδ (Sm

22 (ξ2))∗ + cos (λ+ δ) (Sm
12 (ξ2))∗

In this model, the form of the displacement in the vicinity of the crack is determined

by the orientation and direction of the crack, the mode shapes of the propagating waves,

and the function describing the sudden jump in the displacement at the origin of the crack.

Notice that the crack’s size does not affect the waveform.

3.5.1.1 Mode-I microcrack

By setting the δ = 90◦ and λ = 180◦, the sudden separation of the two sides of the microcrack

takes place on the vertical plane of the plate, x1 = 0 as shown in Fig. 3.9a. As a result of

the discontinuity in the material, only the normal components S11 of the stress tensor T
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(a) Mode I (b) Mode II

Figure 3.9: Crack orientations in a plate

of the symmetric modes contribute to the displacement. Substituting the angle values into

Eq. (3.32) we have,

Uk (x2, ω) = D ds F (ω)
∑
m

Um
k (x2)
Rm {(Sm

11 (ξ2))∗} eikm(x1−ξ1); x1 > ξ1 (3.33)

where m represents only the symmetric and propagating modes.

3.5.1.2 Mode-II microcrack

In this model, the discontinuity of the displacement is developed on the middle plane of the

plate, x2 = 0 as depicted in Fig. 3.9b. As a result of the slip in the material, only the shear

components of the stress tensor T of the antisymmetric modes add to the displacement.

Thus by setting the δ = 0◦ and λ = 0◦, Eq. (3.32) becomes

Uk (x2, ω) = D ds F (ω)
∑
m

Um
k (x2)
Rm {(Sm

12 (ξ2))∗} eikm(x1−ξ1); x1 > ξ1 (3.34)

where m represents only the antisymmetric family of propagating modes.

3.5.1.3 The displacement discontinuity function

The Heaviside step function H(t) may be initially chosen to represent the discontinuity of

the displacement f(t). However, this function might not be physically consistent with the

fact that the displacement, prior to becoming constant, should start the sudden onset at
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Figure 3.10: Displacement discontinuity function for τ = 1µs

t = 0 and end it with velocity v = 0. Therefore, the consideration of the modulated ramp

function perhaps represent better the physics of the event. The proposed modulated ramp

function and its Fourier time transform are,

f(t) =
(

t/τ −
( 1

2π

)
sin

(2πt
τ

))
H(t− τ) (3.35)

F (ω) = − τ

ω2τ 2

(
1− e−iωτ

)( 1
1− 4π2

ω2τ2

− 1
)

+ πδ (ω) e−iωτ (3.36)

where τ is the rise time of the displacement’s jump. Fig. 3.10 shows the functions for

τ = 1µs. It should be noted that Eq. (3.36) has a singularity of 0(1/ω), which has been

handled by the time domain inversion algorithm IFFT [83]. Following a different approach,

[21, 7] did not use the Eq. (3.36) to compute the displacement, but instead used the FFT

of Eq. (3.35) followed by the application of a band-pass filter. Both approaches have been

applied in Section. 3.5.1.2, and the results are up to some extent different.

3.5.2 Plate response to mode I and mode II microcracks

In this section, the models presented in Section. 3.5.1.1 and 3.5.1.2 are applied to the calcula-

tion of the vertical displacement on the top surface of a plate at X = 50 mm using a rise time

τ = 1µs to study the effects of different functions f(t), crack orientations and crack directions
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on the waveform. The first 25 propagating modes have been considered in the calculation,

and a Bessel band-pass filter of the first order 0.05 MHz− 2 MHz has been applied for both

cases. The results are presented in Figs. 3.11-3.14 for an aluminum plate with thickness

10 mm and properties: c1 = 6.2 mm/µs, c2 = 3.1 mm/µs, and ρ = 2.7e− 6 kg/mm3.

In Section. 3.5.1.3, alternatives to handle the numerical error produced by the source-

function’s singularity 0(1/ω) on the calculation of the displacement have been introduced.

In order to treat the singularity, one option is to use Eq. (3.36) to obtain the displacement

in the frequency domain followed by the implementation of the IFFT to get the displace-

ment’s time series [83]. The result of using this procedure are depicted in Figs. 3.11a and

3.11b. An alternative approach to calculate the displacement is to use the FFT of Eq. (3.35)

instead of the its analytical FT expression [21, 7]. The results are shown in Figs. 3.11c and

3.11e. It can be seen from the comparison between the spectra that the singularity 0(1/ω)

dominates the spectrum of the first approach at low frequencies, while the displacement ob-

tained through the FFT of f(t) in the second option exhibits better control of the singularity.

However, the static displacement for large times described in [83] cannot be captured by the

second approach. On the other hand, the waveform with positive peak at 17.65µs in the

displacement obtained through the first approach is significantly different compared to the

one from experimental measurements [21]. The waveform with the maximum peak in the

result through the second option arrives a little earlier at 16.88µs. There is a third option

which has been explored with excellent results. Since the study of the effect of the ramp on

the calculations is our main objective, removing the part related with the DC component

from Eq. (3.36) may help to overcome the numerical issue at ω = 0. The modified expression

is given by,

F (ω) = 4π2 (1− e−iωτ )
ω2τ (4π2 − ω2τ 2) −

i
ω

(3.37)

Fig. 3.11e shows that there is no distinction between the results obtained through the

Eq. (3.37), and the FFT. However, by looking at the spectra of the second and third options

in Fig. 3.11f, it should be noted that the two solutions become slightly different at frequencies

higher than 10 MHz.
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In addition to the f(t)’s singularity, the other issue discussed in Section. 3.5.1.3 is the

effect of using the modulated ramp mr(t) over the Heaviside function H(t) as the source f(t).

By using H(t) as a source, the time series of the displacement becomes noisy, as shown in

Fig. 3.12, when it is compared to Fig. 3.11d. The manifestation of the noise in the waveform

might be the result of the lack of a smooth transition in the source function between t = 0

and the time when the maximum static displacement is achieved. Applications of different

filters have not improved the waveform.

As a result of the observation of the results presented in Fig. 3.11, one can infer that

using the modulated ramp function with its FFT as the source to compute the displacement

provides an acceptable representation of its waveform in the frequency range of this study.

Shown in Fig. 3.13 is the displacement of the microcrack mode-I. In contrast to the re-

sultant displacement from a microcrack mode-II’s, the contribution of the symmetric modes

arise in a completely different waveform with lower amplitude vibrations for t < 8µs. Fur-

thermore, after the first arrival, there is a sudden peak with higher amplitude, followed by

some vibrations for t > 22µs. The vibrations’ amplitude is up to 2 times higher than the

oscillations present in the waveform depicted in Fig. 3.11d for t > 18µs.

In order to fully define the source function, the rise time τ can be obtained from ex-

perimental measurements [21]. In the study, the value of τ was associated with different

mechanisms of failure in CFRP plates. However, in this study , it has been noticed that the

waveform from the calculations of the displacement using different values of τ are fairly the

same. As an example, Fig. 3.14 shows the waveform of the displacement for different values

of τ (0.5µs, 1µs and 2µs) for microcracks of type Mode-I and Mode-II. In all cases, only a

very small difference in the time of arrivals is observed which leads to the conclusion that

the rise time of the modulated ramp does not have a significant effect in the time series of

the displacement other than its amplitude.

As the last case of study in this section, the vertical displacement on the top surface of a

thin aluminum plate with thickness 1 mm at X = 5 mm using a rise time τ = 1µs is calcu-

lated. The properties of the plate are: c1 = 6.2 mm/µs, c2 = 3.1 mm/µs, and ρ = 2.7e− 6 kg/mm3.
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Applying a Bessel band-pass filter of the first order 0.05 MHz− 2 MHz, the results are pre-

sented in Figs. 3.15 - 3.17. Compared to the results of the thick plate, the waveform presents

less oscillations for the mode-I case, as it can be seen in Fig. 3.15b, and the waveform of

the mode-II case presents a more notorious settle down to the static value, as shown in

Fig. 3.15d.

To analyze the influence of the location of the sensing point X in the results, the vertical

displacement is calculated for two additional distances, X = 10 mm and X = 50 mm. At

50 mm for the Mode-I case, the high frequency oscillations after the first arrival develop into

two well defined packets between 24µs and 31µs, as illustrated in Fig. 3.16f. Similar packets

are not clearly identified at the other two distances, as shown in Figs. 3.16d and 3.16e.

For the mode-II case, it is noticed for the three distances in Fig. 3.17 that the first arrival

corresponds to the contribution of the mode A0 to the displacement, and that the higher

modes are visible as tiny oscillations after the first arrival. Another observations are the 180◦

wave shifting at X = 10 mm, and the low frequency oscillation at X = 50 mm in Figs. 3.17e

and 3.17f, respectively.
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(b) Time series using analytical FT of mr(t)
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(e) Time series using modified analytical FT of mr(t)
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Figure 3.11: Vertical surface displacement due to a mode-II microcrack at X = 50 mm in an

aluminum plate with thickness 10 mm
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Figure 3.12: Vertical surface displacement due to a mode-II microcrack at X = 50 mm in an

aluminum plate with thickness 10 mm with Heaviside step H(t) as the source.
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(b) Time series using FFT of the source

Figure 3.13: Vertical surface displacement due to a mode-I microcrack at X = 50 mm in an

aluminum plate with thickness 10 mm
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(b) Spectrum of Fig. 3.14c
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(c) Time series (Mode-I)
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(d) Spectrum of Fig. 3.14e
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Figure 3.14: Vertical surface displacement at X = 50 mm due to a microcrack in an aluminum

plate with thickness 10 mm and various rise times τ
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(a) Spectrum of Fig. 3.15b
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(c) Spectrum of Fig. 3.15d
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(d) Time series (Mode-II)

Figure 3.15: Vertical surface displacement at X = 5 mm due to a microcrack in an aluminum

plate with thickness 1 mm
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(a) Spectrum of Fig. 3.16d
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(b) Spectrum of Fig. 3.16e
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(c) Spectrum of Fig. 3.16f
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(d) Time series at X = 5 mm
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(e) Time series at X = 10 mm
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(f) Time series at X = 50 mm

Figure 3.16: Vertical surface displacement due to a mode-I microcrack in an aluminum plate

with thickness 1 mm at various sensing points
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(a) Spectrum of Fig. 3.17d
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(b) Spectrum of Fig. 3.17e
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(c) Spectrum of Fig. 3.17f
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(d) Time series at X = 5 mm
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(e) Time series at X = 10 mm
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(f) Time series at X = 50 mm

Figure 3.17: Vertical surface displacement due to a mode-II microcrack in an aluminum plate

with thickness 1 mm at various sensing points
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CHAPTER 4

Uncertainty Analysis Applied to Material

Characterization

Manufacturing of composite materials typically results in a higher variability as compared

to manufacturing with conventional materials. As an example, laminates made out of fiber-

reinforced polymer matrix composites that are used in many modern critical structures, re-

quire sophisticated process control to avoid compromising the structural integrity throughout

the entire life cycle of the components and systems. Thus, efficiently determining the mate-

rial properties and their degradation may be the key to allow for an even more widespread

adoption of composites.

In addition to the stacking sequence of the laminates, the strength and stiffness of fiber-

reinforced polymers (FRPs) are largely dominated by the fiber characteristics in each ply

as well as the quality of the bonding at the fiber-matrix interfaces [82]. Standards, such

as ASTM D3039M or D7264M, to determine the effective material properties of composites

have been defined. However, the destructive nature of the tests requires resource-intensive

preparation and evaluation of samples, these methods are not suitable for in-situ applications.

Moreover, with continuous improvements in manufacturing techniques and the development

of new material architectures, there is a growing need for material characterization and

testing. In particular, natural fiber composites, including hemp [56] and flax fibers [63], have

received increasing attention in recent years [39]. Due to the natural nature of the fibers,

inherent variability in the overall properties of these composites as compared to synthetic

fibers is higher. Additionally, fiber-matrix bonding is found to be challenging and requires

chemical treatment and continuous testing during development and production [32].
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Nondestructive testing (NDT) methods are appealing to address these testing needs.

Previous studies for material characterization of anisotropic media used ultrasound velocity

measurements from a through-transmission technique to calculate the elastic constants in a

unidirectional glass fiber-reinforced polymer [94] and cubic crystals through an optimization

procedure [17]. In other studies, phase velocity measurements from leaky Lamb waves are

used together with inversion schemes [68, 69, 34, 10] or ray theory [8] to obtain the material

constants in unidirectional carbon fiber-reinforced polymers (CFRPs). However, these tech-

niques rely on the water immersion of the specimen. In an attempt to simplify the leaky

Lamb waves techniques, an approach of using a pair of variable-angle contact transducers in

a pitch-catch mode with an inversion procedure was proposed for isotropic plates [67]. More

recently, machine learning and other optimization procedures have recently been applied to

both numerical models and experimental data [49, 14, 13].

Most of the aforementioned NDT methods, however, do not consider uncertainty [29]

in models and material parameters. In addition to interval computation and statistical

methods, such as Monte-Carlo Simulations [54], fuzzy arithmetical approaches have been

developed to identify epistemic uncertainty in model parameters more efficiently without

yielding overestimation [25, 53, 22]. A small number of studies investigated the effect of

the variation in the material properties on vibration [26] and mechanical testing [64] of

CFRP plates (forward fuzzy analysis). Others researchers have developed fuzzy logic-based

structural health monitoring techniques [19, 11] for composite substructures (inverse fuzzy

analysis). Early attempts of adopting this methodology for guided wave-based techniques

focused on uncertainty propagation in dispersion models [73], model development [71] and

their influence on crack detection [72].

To account for the inherent epistemic uncertainty in the material characterization of com-

posites, the development of new NDT techniques is needed. Furthermore, the implementa-

tion of the advanced fuzzy arithmetic theory to study the influence of material constants in

the group velocity of CFRP may contribute to the implementation of Guided Waves based

NDT methods. It has been demonstrated that the influence of the uncertainty in the ma-
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terial constants on the wave velocity varies with frequency and wave propagation angle [5].

Following these ideas, the uncertainty in the material constants of a quasi-isotropic CFRP

could be identified by applying an inverse procedure based on fuzzy arithmetical theory cou-

pled with experimentally measured group velocities. New nominal values may be result from

the defuzzyfication of the identified fuzzy-values of the material properties [4].

In this chapter, the effects of the uncertainty of the material properties on the group ve-

locities of two composite plates is studied in Section 4.3. The first plate is a quasi-isotropic

carbon fiber reinforced polymer (CFRP) laminate, which is considered as a homogenized

single-layered model. The second plate is a unidirectional CFRP. In section 4.4 a fuzzy

model, in conjunction with group velocities obtained from experimental data, is used to gen-

erate a new set of material properties by solving an inverse problem through an optimization

procedure. To this end, a fuzzy arithmetical approach based on the Transformation Method

is used to create the model that represents a monotonic relationship between material prop-

erties and Lamb wave velocities, as shown in Section 4.4.3 . The nominal group velocities

for a CFRP laminate are calculated through an efficient root finding algorithm. This root-

finding algorithm has been developed based on a numerical algorithm to solve transcendental

dispersion equations [93]. Additionally, in section 4.4.1, group velocities are extracted from

laboratory experiments on a quasi-isotropic CFRP plate at three different locations in order

to account for variations in the properties of the laminate. Lastly, it is shown that the un-

certainty due to the material properties can be substantially reduced by re-evaluating their

nominal values through the inverse fuzzy arithmetic, as shown in section 4.4.5. Furthermore,

findings of using a single guided wave mode for this nondestructive material characterization

technique are compared with those obtained from a multi-mode analysis.

4.1 Forward Fuzzy Arithmetic

Following the classification by Hoffman and Hammonds [29], one type of uncertainty is due to

stochastic variability of the quantities in the model under study. The uncertainty of this type

is usually referred to as aleatory uncertainty and represented by a probability. The second
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(a) Fuzzy model parameter p̄i (b) Fuzzy model output q̃m
k

. Experimental data is marked by ×

Figure 4.1: Membership functions of triangular fuzzy numbers

type is called the epistemic uncertainty and is derived from the lack of knowledge about

the quantities in the analysis. Interval analysis and different theories, including possibility,

evidence, and probability are commonly used to represent epistemic uncertainty [27].

Different from parameters defined by real numbers, fuzzy numbers allow the inclusion of

the parameter uncertainty and its possibility of occurrence. The possibility of occurrence

can be quantified by a triangular function for a linear fuzzy number p̃i [25]. This function

is known as the membership function µp̃i(xi) ∈ [0,1], whose highest and lowest values are at

the nominal value p̃i and worst-case interval [a(0)
i , b

(0)
i ], respectively (see Fig. 4.1a). In this

study, the Transformation Method is used to propagate the uncertainty of independent fuzzy

input values p̃i, i=1,. . . ,n, to fuzzy output values q̃k in a dynamic model with frequency s as

an independent input variable [25, 20].

q̃k(s) = fk(p̃1, p̃2, . . . , p̃n, s), k = 1, . . . , K (4.1)

Based on the type of objective function f , the Transformation Method has two forms, the

general and the reduced. The general form takes sampling points between the α-cuts at each

membership level for the calculations, while the reduced form only uses the α-cut values.

Therefore, the latter form is restricted to linear systems. Considering that f is monotonic

with respect to the input variables (as in this case), the five major steps of the Reduced

Transformation Method are briefly described as follows:
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1. Decomposition of the fuzzy input parameters p̃i, into m intervals (α-cuts) X(j)
i

Pi = {X(0)
i , X

(1)
i , . . . , X

(m)
i }, (4.2)

where,

X
(j)
i =

[
a

(j)
i , b

(j)
i

]
, i = 1, . . . , n, j = 1, . . . ,m . (4.3)

2. Transformation of the input intervals X(j)
i into arrays arrays X̂(j)

i

X̂
(j)
i =

2i−1pairs︷ ︸︸ ︷((
α

(j)
i , β

(j)
i

)
,
(
α

(j)
i , β

(j)
i

)
, . . . ,

(
α

(j)
i , β

(j)
i

))
, (4.4)

where,

α
(j)
i =

(
a

(j)
i , . . . , a

(j)
i

)
︸ ︷︷ ︸

2n−ielements

and β
(j)
i =

(
b

(j)
i , . . . , b

(j)
i

)
︸ ︷︷ ︸

2n−ielements

. (4.5)

3. Evaluation of the model is performed by calculating the function fk for each column

of the array X̂(j)
i and the independent variable s, using the classical arithmetic of crisp

numbers:
rẑ

(j)
k = fk

(
rx̂

(j)
1 , rx̂

(j)
2 , . . . , rx̂(j)

n , s
)
, j = 1, . . . ,m. (4.6)

where rx̂
(j)
i is the rth element of the arrays X̂(j)

i . The outputs are then organized in

the arrays Ẑ(j)
k :

Ẑ
(j)
k =

(
1ẑ

(j)
k , 2ẑ

(j)
k , . . . , 2nẑ

(j)2n
k

)
. (4.7)

4. Retransformation of the output arrays Ẑ(j)
k into intervals Z(j)

k = [c(j)
k , d

(j)
k ] for each

membership level gives the decomposed form of the fuzzy output values q̃k(s)

Qk =
(
Z

(0)
k , Z

(1)
k , . . . , Z

(m)
k

)
(4.8)

The interval bounds, c(j)
k and d

(j)
k , are obtained from the recursive formulas

c
(j)
k = min

r

(
c

(j+1)
k , kẑ

(j)
k

)
, j = 1, . . . ,m (4.9)

d
(j)
k = max

r

(
d

(j+1)
k , kẑ

(j)
k

)
, j = 1, . . . ,m (4.10)

and

c
(m)
k = min

r

(
kẑ

(m)
k

)
= max

r

(
kẑ

(m)
k

)
= d

(m)
k = z̄k . (4.11)
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5. Recomposition of the outputs intervals Z(j)
k leads to the fuzzy output values q̃k with

membership functions µq̃k(zk).

To analyze the results of the parameterized dynamic model, the influence of each model

parameter p̃i can be quantified by the absolute and relative measurement of influence, ϕik
and ωik, respectively. The former shows the absolute uncertainty of each of the model

parameters, while the latter normalizes the contribution of the uncertainty of each model

parameter in the overall uncertainty [25, 20].

4.2 Inverse Fuzzy Arithmetic

The goal of the Reduced Transformation Method is to propagate the uncertainty of the fuzzy-

valued input parameters to the outputs of the model. As a consequence, the accuracy of the

results strongly relies on the original guess of the worst-case interval of the input parameters.

The inverse fuzzy arithmetical approach allows the identification of the uncertainty of input

parameters, worst-case interval, in the dynamic model, based on experimental data of the real

system [23]. The steps to implement the inverse fuzzy arithmetical approach are described

below:

1. Calculation of the gain factors η(j)
ki− and η

(j)
ki+, based on the arrays X̂(j)

i and Ẑ
(j)
k from

the forward simulation with the Reduced Transformation Method, and an interpolation

procedure. The gain factors are then assembled in the system H(j)(s). To performed

the forward simulation, an assumption of the fuzzy-valued input parameters is needed.

2. Representation of the measured data by linear fuzzy numbers, q̃mk , whose worst-case

intervals [c(0)
i , d

(0)
i ] contain all collected data, and their nominal values q̄k are obtained

from the forward simulation (see Fig. 4.1b).

3. Considering that the relation between the input and output uncertainties is linear, the

unknown lower and upper bounds, aji (s) and bji (s), of the input parameters are solved
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for each µj from U (j)(s), through the quadratic objective function

J (j)(s) = 1
2U(j)T (s)W(s)U(j)(s) (4.12)

with linear inequality constraint

H(j)(s)U(j)(s) ≤M(j)(s) (4.13)

where,

U(j)(s) =



a
(j)
1 (s)− p̄1(s)

b
(j)
1 (s)− p̄1(s)

...

a(j)
n (s)− p̄n(s)

b(j)
n (s)− p̄n(s)


(4.14)

M(j)(s) =



c
(j)
1 (s)− q̄1(s)

−(d(j)
1 (s)− q̄1(s))

...

c
(j)
k (s)− q̄k(s)

−(c(j)
k (s)− q̄k(s))


(4.15)

and

W(s) = W = diag
(

1
p̄2

1
, . . . ,

1
p̄2
n

)
∀p̄i 6= 0 (4.16)

4. Recalculation of the resultant input parameters p̃i(s) to reduce the undesirable s-

dependence is carried out by the introduction of the conservative-parameter γ ∈ [0, 1]

together to the union and mean operators. This approach provide input parameters

p̃i, which are representative for all s, with bounds at each µj given by

a
(j)
i = a

(j)
i,mean + γ

(
a

(j)
i,union − a

(j)
i,mean

)
, i = 1, 2, · · · , n, j = 0, 1, · · · ,m− 1 (4.17)

b
(j)
i = b

(j)
i,mean + γ

(
b

(j)
i,union − b

(j)
i,mean

)
(4.18)
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4.3 Analysis of Fuzzy-Parameterized Dynamic Systems

Two models are used to analyze the uncertainty in the calculation of the dispersion curves

introduced by the uncertainty in the material properties. The first is a transversely isotropic

single-layer. The second model is a unidirectional CFRP plate, which is assumed to be trans-

versely isotropic with the symmetry axis along the fiber direction.The material properties

of the models are linear fuzzy parameters, whose nominal values and worst case-interval are

given in (Table 4.1). The fuzzy-valued material properties are Young’s moduli Ẽ11, Ẽ11 and

Ẽ33, shear modulus G̃13, Poisson’s ratio ν̃12, ν̃13 and ν̃23. The density ρ and plate thickness H

are considered as accurate in order to limit the complexity of problem. Their corresponding

values are ρ = 1600 kg/m3 and H = 2.25 mm. Assuming a monotonous relation between the

fuzzy-valued parameters and the fuzzy-valued outputs, i.e. the group velocities, the Reduced

Transformation Method is used to propagate the uncertainty in the fuzzy-parameterized dy-

namic system. Thus, each fuzzy input parameter is divided in 3 equally spaced intervals

(m = 3), which results in 4 membership levels µj. As a result of the decomposition, at each

membership level, 32 parameter combinations are evaluated for every frequency. Since the

material properties are not functions of frequency, they are considered independent variables

in the fuzzy-parameterized models. To this end, the software FAMOUS (Fuzzy Arithmetical

Modeling of Uncertain Systems) is used, which implements the Transformation Method as

a
(0)
i p̄i b

(0)
i

Ẽ11 [GPa] 48.8 51.4 54

Ẽ33 [GPa] 12 12.6 13.3

G̃13 [GPa] 4.6 4.8 5.1

ν̃12 0.31 0.33 0.35

ν̃13 0.27 0.28 0.29
(a) Transversely isotropic layer

a
(0)
i p̄i b

(0)
i

Ẽ11 [GPa] 127.1 133.8 140.5

Ẽ22 [GPa] 9.9 10.4 10.9

G̃13 [GPa] 4.56 4.8 5.04

ν̃12 0.31 0.33 0.35

ν̃23 0.44 0.46 0.48
(b) Unidirectional CFRP plate with x2x3 plane of isotropy

Table 4.1: Nominal values and worst-case intervals of linear fuzzy parameters
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a pre- and post- processing tool.

In order to solve the dispersion equations, a root-finding algorithm based on a search in

polar coordinates is used [93]. The main steps of the algorithm can be described as follows:

1. Find the initial root (wavenumber) of each propagating mode for a predetermined

frequency by applying an interval search method to a range of wavenumbers, where the

initial interval is the result of searching for sign changes in the complex characteristic

equations.

2. Define a search area (radius and angle) for the next root in local, polar coordinates in

the frequency-wavenumber plane, where the origin is the previous root.

3. Find the next root by applying an iterative interval search until a convergence criterion

is met.

4. Repeat steps 2 and 3 for the entire frequency range.

4.3.1 Fuzzy simulations for a transversely isotropic single-layer

The results of the evaluation of the dispersion equation Eq. (2.17) with fuzzy-valued material

properties are shown in Fig. 4.2b, where only the fundamental modes, S0 and A0, as well

as the first higher-order mode A1 are presented. The conventional representation of the dis-

persion curves are lines, as shown in Fig. 4.2a. This is the result of evaluating the dispersion

curve by using the nominal values of the material properties, which could be considered as

a single combination of material parameters. In the case of the fuzzy-valued group velocity

dispersion curves, the dispersion equation is evaluated by using special combinations of the

material parameters, instead of a single combination. As a result, the group velocity for each

mode at a specific frequency is not an unique value, but a set of possible velocities. This

result explains why the dispersion curve for each mode appears as a bundle of curves instead

of a single line. Furthermore, the color gradient in Fig. 4.2b represents different levels of the

membership function µ, where the lowest level corresponds to µ(0) at the worst-case intervals

and the highest level indicates µ(3) at the nominal values.
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Figure 4.2: Group velocity dispersion curves in a quasi-isotropic CFRP plate

The fuzzy-valued group velocities at frequencies, 200kHz, 550kHz and 2MHz are ex-

tracted and shown in Fig. 4.3. It can be seen that the outputs are triangles without vertical

flanks, which is an indicator of monotonic mapping between parameters and outputs. Sim-

ilar inspections at different frequencies also did not present an indication of non-monotonic

behavior. Furthermore, it is observed that the uncertainty in the velocities for each mode

vary throughout frequency, where the fundamental mode, A0, exhibits the smaller uncer-

tainty variation among the three modes. In contrast, the velocity of the mode S0 shows a

large variation, especially in the highly dispersive zone between 450 kHz and 650 kHz. As an

example of the large variation in this zone, the velocity’s uncertainty of mode S0 is compared

to the uncertainty for mode A0 in Fig. 4.3b, where the highest uncertainty of the mode S0

at 550kHz is around 20 times lager than mode A0’s uncertainty. As the mode S0 approaches

to Rayleigh wave velocity, its velocity’s uncertainty decreases to the mode A0’s uncertainty

level as Fig. 4.3c shows. From this figure, it can also be seen that the velocity’s uncertainty at

high frequencies is less than 90 m/s. Similar to mode S0, the uncertainty in group velocities

of mode A1 is higher in highly dispersive regions and is lower at high frequencies.

The relative measure of influence ωik of the material parameters on the fuzzy-valued

group velocities is shown in Fig. 4.4 for the modes S0, A0 and A1. This measurement
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Figure 4.3: Fuzzy-valued group velocities for the modes A0, S0 and A1 at selected frequencies

for a quasi-isotropic CFRP plate

indicates that the influence of the fuzzy-valued material properties is not equally weighted

for the three modes, and strongly dependent on frequency. Fig. 4.4a shows that the group

velocity of mode A0 is to a major part only affected by the shear modulus G̃13 in frequencies

above 160kHz, where the mode becomes less dispersive. It is observed in this figure that the

Young’s modulus Ẽ1 vanishes completely at 160kHz and 400kHz. Different from the mode

A0, the material parameters’ influence on the velocity for modes S0 and A1 continuously

changes throughout frequency as shown in Fig. 4.4b and Fig. 4.4c, respectively. As an

example of these variations, for the velocities of mode S0, the Young’s modulus Ẽ1 goes from

having 80% influence at low frequencies to having no influence at 1500kHz. Similar to Ẽ1,

the influence of Ẽ3 drops to around 10% at 2MHz from 90% at 600kHz, which is considered a

highly dispersive region. In the highly dispersive region it is also observed that the influence

of the Poisson’s ratio ν̃12 vanishes above 500kHz, while G̃13 does not have any substantial

effect on the velocity below 600kHz.

4.3.2 Fuzzy simulations for a unidirectional CFRP plate

The fuzzy-valued group velocity dispersion curves obtained from Eqs. (2.18) and (2.18) for

the fundamental modes A0 and S0 for selected wave propagation angles θ are depicted in

Fig. 4.5 for a unidirectional CFRP plate (0◦ fiber orientation). Note that some results are
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Figure 4.4: Relative Measure of influence ωik of fuzzy-valued parameters on the group ve-

locities for the modes A0, S0 and A1 for a quasi-isotropic CFRP plate
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Figure 4.5: Fuzzy-valued group velocity dispersion curves for the fundamental modes A0

and S0 in an unidirectional CFRP plate for m = 3 and selected wave propagation angles θ

omitted for the sake of clarity. It is well known that in unidirectional CFRP plates, waves

travel at higher velocities in the direction of the fibers and the waves’ velocities decrease

as the angle θ increases, as can be seen in the figure. In Fig. 4.5b, it can also be observed

that in addition to a reduction of the wave propagation velocity, an increase in the wave

propagation angle also reduces the group velocity’s uncertainty for mode S0 at frequencies

below 600kHz.

The relative measure of influence ωik of fuzzy-valued parameters on the group velocities
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Figure 4.6: Relative measure of influence ωik of fuzzy-valued parameters on the group veloc-

ities for the mode A0 for an unidirectional CFRP plate

for the mode A0 is shown in Fig. 4.6. A comparison of the parameters’ influence at different

angles θ shows that uncertainty of the shear modulus G̃13 loses influence in the calculation of

the velocities as θ increases, while the parameters Young’s modulus Ẽ22 and Poisson’s ratio

ν̃13 gain importance in the calculation. Moreover, only the uncertainties of the parameters

Ẽ22 and Poisson’s ratio ν̃23 are involved in ωik at 90◦ as shown in Fig. 4.6c. In addition, the

cases in Fig. 4.6 reveal that the influence of the parameter of Poisson’s ratio ν̃12 is negligible

to the velocities for all frequencies and angles, except for around 160 kHz at θ = 60◦.

Fig. 4.7 shows the relative measure of influence ωik of fuzzy-valued parameters on the

group velocities for the mode S0 at different angles θ. In this figure, an increasing influence of

the Poisson’s ratio ν̃23 in ωik is observed. Poisson’s ratio ν̃23 ends affecting the group velocities

at low frequencies as shown in Fig. 4.7c. However, the highest influence is still from Young’s

modulus Ẽ22 with more than 80% for most of the frequencies. Another observation in Fig. 4.7

is the variation of the influence of G̃13. At θ = 0◦ (see Fig. 4.7a), its influence is limited

to frequencies above 600kHz. In figure Fig. 4.7b, G̃13 starts affecting the velocities at low

frequencies. However, at 90◦, the influence of G̃13 vanishes completely (see Fig. 4.7c).
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Figure 4.7: Relative measure of influence ωik of fuzzy-valued parameters on the group veloc-

ities for the mode S0 for an unidirectional CFRP plate

4.4 Material Characterization of Composites

In this section, the material characterization of a quasi-isotropic CFRP plate is carried

out using the the inverse fuzzy arithmetic approach presented in Section 4.2. In the first

result, two sets of identified parameters are obtained from individual analyses of the S0

and A0 modes. In the second result, both modes are used during the inversion procedure to

identify the parameters. For the first approach, the measured and calculated group velocities

of the S0 mode in the frequency range between 120 kHz and 300 kHz are used to identify

the first set of parameters. To obtain the second set, the velocities of the mode A0 in

the frequency range between 40 kHz and 180 kHz are utilized. In the second approach, the

parameter identification is based on the measured and calculated group velocities only in the

frequency range between 120 kHz and 180 kHz to include both modes during the identification

procedure (couple analysis).

4.4.1 Dispersion data from laboratory experiments

The specimen used in this study is an aerospace-grade quasi-isotropic CFRP laminate

of thickness 2.089 mm and dimension 860 x 860 mm2. The plate is comprised of eight

woven plies (plain weave, density ρ = 1463 kg/m3) made from Hexcel AS4 carbon fiber

pre–impregnated with the Newport 301 epoxy resin system, and cured in an autoclave with
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Figure 4.8: Positions of actuator (red) and receiver (black) transducers in a composite plate.

a stacking sequence of [0, 45,−45, 90]s. Three regions on the smooth face of the CFRP are

selected to measure the group velocities along the x1-direction (0◦), as shown in the Fig. 4.8.

The three regions are 127 mm (5 in) away from each other in the x2-direction. A pair of

broadband transducers (Digital-Wave B225) with a relatively flat frequency response from

50 − 400 kHz are used for the experiments in a pitch-catch mode [86, 65, 79], where one

acts as an actuator (red) and the other as the roving sensor (black). Precise and repeatable

measurements are accomplished through using a CNC machined Plexiglass grid (330 mm ×

250 mm, machining tolerance of ±0.02 mm) to accurately position the transducers on the

plate. An ultrasound couplant (Sonotech) is used to improve the transmission of energy

between the transducers and the specimen. A function generator (NI PXI-5402) is used to

generate the ultrasonic signals, which are then amplified by a Ritec A3000 voltage amplifier.

The measurement signals are boosted by a Digital Wave FM-1 signal conditioner before

being digitized by an oscilloscope (Agilent 54624A). To further improve the signal-to-noise

ratio (SNR), the average of 32 repeated measurements is recorded.

In order to determine the group velocities, the signals are recorded at 304.8 mm (12 in)

and 330.2 mm (13 in) away from the source within each region. The narrow-banded waves

are excited in the frequency range between 30 kHz and 300 kHz. The short-time Fourier
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transform (STFT) is used to evaluate the time-of-flight (TOF) of the dispersive signals

[24, 38]. To minimize any random experimental errors, four independent readings are taken

and averaged for each measurement location, and velocities are calculated based on the

differences in arrival times of waves at the sensing locations by using the same transducer

rather than taking the TOF between the excited and the arrived waves. Thus, the uncertainty

introduced by the response of each transducer is (nearly) eliminated from the calculation of

the velocities. Therefore, the majority of the random experimental errors can be attributed

to varying amounts of couplant and applied pressure. Since the signal strength of the A0

and S0 waves cannot be considered equal throughout the entire studied frequency range

[76], the A0 mode is only studied in the frequency range 40 − 180 kHz and the S0 mode at

120− 300 kHz. Thus, signals with poor SNR have been omitted from the analysis. Fig. 4.9

shows the determined group velocities with error bars for both the S0 and A0 modes. It

should be noted that the former has a high signal-to-noise ratio (SNR) between 110 kHz and

210 kHz, and the latter for 30 kHz and 90 kHz for region 3. As can be seen from Figs. 4.9a to

4.9c, measured group velocities include aleatory uncertainty within each region and epistemic

uncertainty across the three regions for the S0 mode. The mode A0 velocities’ variation is

smaller but not negligible, as can be seen from Figs. 4.9d to 4.9f.

The data from each region and mode is averaged to reduce the random error in the

experimental data. The corresponding mean values for each region are shown in Fig. 4.10.

As can be seen from the figures, despite this averaging over the four trials in each region,

a substantial uncertainty remains. The largest uncertainty in the velocities for both modes

occurs in the frequency range between 110 kHz and 210 kHz. For the symmetric mode, the

difference in velocity can be as much as 400 m/s at 200 kHz, as shown in Fig. 4.10a. It should

be noted that this discrepancy exists despite the small spatial distance between regions 1

and 3 of only 254 mm (10 in), and careful monitoring of the manufacturing process. This

difference is about 10 times larger than the maximum variation in the group velocity of the

mode A0 that occurs at 150 kHz, as shown in Fig. 4.10b. Since for any given frequency, the

group velocities vary between the regions, the experimental data are best represented by
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Figure 4.9: Experimentally determined group velocities for the S0 and A0 modes in three

different regions of a quasi-isotropic CFRP plate

(a) S0 mode (b) A0 mode

Figure 4.10: Uncertainty in experimentally determined group velocities based on measure-

ments in different regions of a quasi-isotropic CFRP plate

fuzzy numbers due to the assumed epistemic nature of the uncertainty. Thus, the dispersion

models should be based on fuzzy-valued parameters whose uncertainty would ideally be

54



identified based on the measured data, as discussed in Section 4.4.4.

4.4.2 Material model

For a quasi-isotropic CFRP plate, classical lamination theory is used to represent the lam-

inate as a transversely isotropic, homogenized, single-layer model with the symmetry axis

about the off-plane axis (here: x3-axis). Assuming a quasi-isotropic composite plate model,

the transversely isotropic stiffness constants Cij [33] are fuzzyfied by defining the following

material properties as linear fuzzy parameters: Young’s moduli Ẽ11 and Ẽ33, shear modulus

G̃13, and Poisson’s ratios ν̃12 and ν̃13. The density ρ and plate thickness H are considered

as accurate in order to limit the complexity of the problem. A decomposition number of

m = 3 is chosen, thus creating four membership levels µj for each fuzzy input parameter. As

a result of the decomposition, 128 parameter combinations need to be evaluated for every

frequency at the first three membership levels in addition to the nominal value case. Since

the material properties are not functions of frequency, they can be considered independent

variables of the fuzzy model.

In order to determine the nominal parameter values, this study utilizes Maxwell’s method-

ology [51, 50] in conjunction with CLT [33]. Maxwell’s methodology applied to composites

allows for estimating the effective material properties of transversely isotropic, unidirectional

laminae from the properties of the fibers and the matrix system. CLT is then used to ob-

tain the material properties for the woven laminae. Finally, the nominal values for the

transversely isotropic single-layer homogenized model (see Section 4.4.2) are the effective

material properties of the full laminate, which are also obtained by means of CLT.

The worst-case intervals may be initially chosen in an attempt to allow the fuzzy output

from the simulation to cover the experimental data. Another consideration in the selection of

the worst-case intervals is that the input sets in the forward fuzzy simulation are physically

consistent within the framework of the mathematical elasticity model[33]. For this study,

the second avenue is chosen and the nominal values and initially guessed worst-case intervals

of the material properties are given in (Table 4.2a). In the case that a particular set of
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material properties is not physically possible, it is reported and excluded from the fuzzy

analysis. Thus, these reported sets are not used in the calculation of the gain factors during

the forward simulation, and subsequent parameters identification procedure.

To prevent that the difference in magnitude between the input parameters affects the

inversion procedure, their values are input in the units of GPa [5].

4.4.3 Forward fuzzy arithmetic

In order to create the linear mapping between the input material parameters and the output

group velocities, the worst-case deviations in the parameters are implemented based on the

values from Table 4.2a. The results of the evaluation of the dispersion equation Eq. (2.17)

with the fuzzy-valued material properties are shown in Fig. 4.11a and Fig. 4.11b for the S0

and A0 modes, respectively. As can be seen from Fig. 4.11a, the S0 mode is nearly non-

dispersive in this frequency range with a practically constant uncertainty in the velocity of

approximately 400 m/s. In contrast, the uncertainty of the A0 mode considerably varies due

to the highly dispersive behavior of the mode’s velocity for frequencies below 100 kHz, where

the the uncertainty at 100 kHz is 25 % higher than the one at 40 kHz. In the the frequency

range between 100 kHz and 180 kHz, the A0 mode’s velocity remains nearly constant, re-

a
(0)
i p̄i b

(0)
i

Ẽ11 [GPa] 45.16 47.54 49.92

Ẽ33 [GPa] 7.95 8.37 8.79

G̃13 [GPa] 2.71 2.85 2.99

ν̃12 0.306 0.322 0.339

ν̃13 0.273 0.288 0.302
(a) Nominal values p̄i and assumed worst-case intervals [a(0)

i
, b

(0)
i

] of lin-

ear fuzzy parameters

Lower bound Upper bound

Ẽ11 [GPa] 0 free

Ẽ33 [GPa] 0 free

G̃13 [GPa] 0 free

ν̃12 -1 1

ν̃13 free free
(b) Constraints for inverse fuzzy arithmetic

Table 4.2: Fuzzified material properties for forward simulation and constraints for model

inversion
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Figure 4.11: Forward fuzzy analysis outputs for m = 3, including relative measure of influence

ωik of fuzzy-valued parameters on the group velocities. Experimental lower and upper bounds

are marked by ×

sulting in a nearly constant uncertainty of approximately 70 m/s, as shown in Fig. 4.11b. It

should also be noted that the predicted uncertain group velocities do not enclose the mea-

sured values, shown as ×, for neither of the two modes. In addition, all the measured values

are below the nominal value of the velocity for both modes. However, despite the difference

between the measured velocities and the model’s output in Fig. 4.11a and Fig. 4.11b, some

characteristics prevail in both cases. As can be seen from the forward simulation, the influ-

ence of the material parameter uncertainty on the uncertainty of the group velocity of the
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S0 wave is significantly higher as compared to the A0 wave in the frequency range between

120 kHz and 180 kHz. However, the uncertainty does not exceed ∼7 % of the nominal value

in neither case. In addition, the uncertainty in the velocity appears to be increasing with

frequency for the A0 mode. Therefore, by taking in consideration the matching trends be-

tween simulation and experimentation, one can infer that the substantial variation in the

uncertainty of the measured velocities is mostly the result of the variation of the material

properties instead of random experimental errors.

Although it is not shown in Fig. 4.11b, the measured velocities at 30 kHz and 35 kHz

are the only values which are above the nominal value of the velocities. To prevent that

these outliers affect the parameter identification, they have been excluded from the inverse

procedure.

To analyze the influence of the material parameters on the fuzzy-valued group velocities,

the relative measurement of influence, ωik is calculated [25, 20]. This measurement of influ-

ence normalizes the contribution of the uncertainty of each material parameter in the overall

uncertainty of the group velocities at each frequency. The relative measures of influence

ωik are shown in Fig. 4.11c and Fig. 4.11d for the S0 and A0 modes, respectively. As can

be seen from the figures, the influence of the fuzzy-valued material properties is not equally

weighted for both modes, and mostly constant on this frequency range. Fig. 4.11d shows that

the group velocity of the A0 mode is to a large extent only affected by the shear modulus G̃13

by 98 % for frequencies between 100 kHz and 180 kHz. In the range of frequencies between

40 kHz and 100 kHz the influence of the the Young’s modulus Ẽ1 starts at 21 % and decreases

as the frequency approaches to 100 kHz. Similar to Ẽ1, the influence of the Poisson’s ratio

ν̃12 in the velocities decreases in this frequency range. Starting with 6 % at 40 kHz, ν̃12’s

influence reduces to practically none influence in the velocity in the frequency range between

100 kHz and 180 kHz. Different from A0 mode, G̃13 does not have any substantial effect

on the S0 mode’s velocity, as shown in Fig. 4.11c. Instead, the main contributors are the

Young’s modulus Ẽ1 and Poisson’s ratio ν̃12, making up approximately 80 % and 19 % of

the overall uncertainty, respectively, and mostly constant on the frequency range between
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Figure 4.12: Fuzzyfied group velocities based on measured data and nominal values of forward

simulation. Experimental lower and upper bounds are marked by ×

120 kHz and 180 kHz. As the frequency increases, the influence of the Poisson’s ratio ν̃13

becomes more notorious with nearly 5 % influence in the velocity at 300 kHz.

4.4.4 Inverse fuzzy arithmetic

By taking the nominal values of the output from the forward simulation and the uncertainties

in the measured group velocities, fuzzyfied group velocities are now built at each frequency

as the input for the optimization process. The “new” fuzzyfied group velocities are shown in

Fig. 4.12. From these plots, it can again be seen that the nominal values are outside the area

of uncertainty created by the measured velocities for all frequencies and modes. Furthermore,

the velocity of the S0 mode has larger deviations (approx. 1000 m/s) as compared to the

A0 mode (less than 100 m/s). Thus, it can be noted that either the material parameters

and/or underlaying dispersion model do not match with the experimental data. Hence, a

re-identification of the nominal values is attempted through inverse fuzzy arithmetic.

In the inverse method, the optimization problem is constraint such that certain mate-

rial property combinations are excluded from the fuzzy inverse analysis as they would be

infeasible. A summary of the constraints is given in Table 4.2b. These constraints follow
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Figure 4.13: Initially guessed (blue dashed) and identified (red solid) fuzzy–valued material

parameters for m = 3 based on S0 mode analysis.
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Figure 4.14: Initially guessed (blue dashed) and identified (red solid) fuzzy–valued material

parameters for m = 3 based on A0 mode analysis.

the energy strain considerations as defined by Jones [33]. That is, the lower bounds of the

Young’s moduli and shear modulus are set such that only combinations with positive values

are permitted. The lower and upper bounds for the Poisson’s ratio ν̃12 are set to −1 and

+1 due to fact that the transverse isotropy assumption enforces E11 = E22. While there are

physical constraints on ν̃13, they cannot be incorporated into the optimization problem as

they depend on the (to be determined) values of Ẽ11 and Ẽ33. Instead, unphysical cases of

ν̃13 are excluded in post-processing step.

Considering the aforementioned constraints, the inverse fuzzy procedure is applied for the

individual mode approach, and the results are presented in Fig. 4.13 and Fig. 4.14, where

the initially guessed and identified parameters with their respective uncertainty are shown

as blue dashed and red lines, respectively.

The figures show that the uncertainty for most of the found material parameters is rep-

resented by triangles to the left, it is because the measured group velocities are below the

nominal values of the calculated velocities. Moreover, Ẽ11 (S0 mode analysis) and G̃13 (A0
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(a) Approach 1: S0 mode.
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Figure 4.15: Fuzzy–value group velocities using identified material parameters for m = 3.

Experimental data is marked by ×

mode analysis) exhibit higher uncertainty than the initially guessed ones, as depicted in

Figs. 4.13a and 4.14e, respectively. However, none uncertainty is identified for the param-

eters G̃13 (Fig. 4.13c) in the S0 mode analysis, and Ẽ33 (Fig. 4.14b) and ν̃13 (Fig. 4.14e) in

the A0 mode analysis. These results appear consistent with the results from the sensitivity

analysis, where the most influential parameters in the calculation of the group velocities

are Ẽ11 and ν̃12 for the velocity of S0 mode, and G̃13 and Ẽ11 for A0 mode’s velocity. The

resimulation with the identified parameters from the individual mode analysis are presented

in Figs. 4.15a and 4.15b
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Figure 4.16: Initially guessed (blue dashed) and identified (red solid) fuzzy–valued material

parameters for m = 3. Couple mode analysis

For both modes, a relatively close match with the measured data is achieved in a con-

servative manner as desired with γ = 1 for the inverse procedure. As depicted in Fig. 4.15a,

the lower bound of the uncertainty interval extends approximately 88 m/s below the lowest

measured velocity at 200 kHz for the S0 mode. Similarly, for the A0 mode, it is observed that

the extension of the lower bound of the uncertainty is roughly 8 m/s at 60 kHz, as shown in

Fig. 4.15b.

Considering each mode separately during the inverse procedure has resulted in two sets

of identified parameters, which need to be consolidated in a single set capable to represent

the material and its modal velocities. One option could be selecting the most dominant

identified parameters from the two sets, e.g. Ẽ11 from the S0 mode analysis, to represent

the material property. An alternative approach to obtain a single set of material parameters

is simultaneously including both modes during the inversion procedure. Although in this

particular case, based on the sensitivity analysis, the most influential parameters obtained

from the S0 mode analysis have practically not influence in the velocity of A0 mode and vice

versa, it cannot be generalized to other cases. In addition, since for the overall frequency

rage between 40 m/s and 300 m/s two modes of wave propagation are present, it is expected

that both modes are considered during the inversion procedure. Thus, the second strategy is

chosen to identify a single set of material parameters. The single set of identified parameters

from the couple mode analysis are presented in Fig. 4.16 and the corresponding re-simulations

in Figs. 4.15c and 4.15d

The newly identified parameters show that the dominant parameters in Figs. 4.13 and 4.14

62



prevails, with a slightly reduction of G̃13 ’ uncertainty with respect to the one in Fig. 4.14c.

Similar to the previous approach, one more time, the re-simulations of both modes result in

a good agreement with the measured data. The re-simulation of the S0 mode in Fig. 4.15c

presents an expansion of the lower bound of the uncertainty from the measured velocity of

nearly 73 m/s at 150 kHz, which is practically the same deviation presented in the individual

mode analysis (see Fig. 4.15a). However, for the A0 mode, it is observed that the upper bound

of the uncertainty additionally extends above the nominal curve, as shown in Fig. 4.15d.

Thus, this could be a manifestation of the large uncertainty introduced by Ẽ11 in the

re-simulation of the A0 mode.

4.4.5 Defuzzyfication of Identified Material Parameters

In an effort to identify new nominal material properties, the identified parameters are de-

fuzzyfied. Since all of the identified parameters are represented by single-sided triangles,

the mean value of each parameter’s worst-case interval is calculated for the individual and

couple analyzes (see Table 4.3).

Based on these values, the group velocities are calculated and the results are shown as

red dashed dotted and magenta dotted lines in Fig. 4.17 for the individual and couple mode

analyses, respectively. It should be noticed that the original frequency range, 120 kHz to

180 kHz, of the calculated velocity from the couple mode analysis has been extended to a

larger frequency range for both modes. For the sake of comparison, the results from originally

Ẽ11 [GPa] Ẽ33 [GPa] G̃13 [GPa] ν̃12 ν̃13

p̄i (Couple Analysis) 37.92 8.37 2.61 0.307 0.289

p̄i (S0 mode Analysis) 37.15 8.34 2.85 0.306 0.291

p̄i (A0 mode Analysis) 46.58 8.37 2.54 0.3204 0.289

Table 4.3: Defuzzyfied values of linear fuzzy parameters identified through individual and

couple mode analyses of the applied inverse fuzzy arithmetic
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Figure 4.17: Group velocities using new nominal values obtained from defuzzyfied identified

parameters based on couple (magenta dotted) and individual (red dashed dotted) analyses.

Group velocities using nominal values obtained through CLT (blue dashed). Uncertainty in

experimental data is marked with error bars

determined nominal values through CLT of the chosen material model from Section 4.4.2,

are shown as blue dashed lines.

It can be seen that the fuzzy arithmetical evaluation leads to material properties consis-

tent with the measured data in both analyzes. In the frequency range between 120 kHz and

180 kHz, Fig. 4.17b shows that the velocity from the couple mode analysis has the best fit

to the uncertain region created by the measured velocities. This result has a direct relation

with the identified parameter Ẽ11, whose identified uncertainty is dominated by its effect

in the velocity of the S0 mode. Although Ẽ11’s influence in the velocity of the A0 mode is

less than 2 % in this frequency range, the identified parameter has a significant impact in

the velocity of the mode. The difference in the velocity between the two analyses is about

20 m/s. Another observation is that the extension of the calculated velocity from the couple

analysis is a descent curve fitting of the measured data for both modes. In the case of the S0

mode, Fig. 4.17a shows an almost constant difference in the velocity between the couple and

individual analyses of about 57 m/s, while this difference, smaller than 20 m/s, varies for the

A0 mode as depicted in Fig. 4.17b. These results demonstrate the capabilities of the inver-
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sion method, since the method with data from only seven frequencies in the frequency range

between 120 kHz and 180 kHz has identified material parameters to represent the velocities

in a larger frequency band.

In an attempt to measure the differences between the velocities from the nominal values

(new and original) and the measured data, the root mean square deviation (RMSD) in units

of m/s is proposed. The RMSD values in Table 4.4 confirm that the new set of nominal

values adequately represent the material properties of the laminate, considering inherent

epistemic uncertainty. A normalized RMSD has also been calculated and included in the

table. To normalized the RMSD values, the mean value of the measured velocities from each

mode is used and the normalized value is shown in percentage.

RMSD NRMSD

Couple Analysis 115 2.2 %

Individual Analysis 63 1.2 %

CLT 786 15.1 %
(a) S0 mode

RMSD NRMSD

Couple Analysis 18 1.4 %

Individual Analysis 21 1.6 %

CLT 67 5 %
(b) A0 mode

Table 4.4: Root mean square deviation of defuzzyfied identified parameters and nominal

values with respect to experimentally measured velocities
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CHAPTER 5

Delamination Localization in Structures with Prior

Damage

To date, most of the developed guided ultrasonic wave-based techniques endure fitness of

service. However, they depend on reference data, which could make the techniques less

attractive for inspection of practical composite structures.

Initial studies in baseline free damage detection with guided waves were conducted in

isotropic media. The first study applied the time reversal theory to trace back the signals

from the sensing points to the location of the damage in metal plates [85]. Later, the time

reversal technique was applied to long-range ultrasound in pipe lines [16]. Following a dif-

ferent approach, Anton proposed a baseline–free method based on the information collected

from the undamaged regions, which is used as a baseline to localize the damage in aluminum

plates [3]. Other authors refined the time reversal method to improve damage localization

in metallic plates [60, 2]. Among these studies, a few of them applied the time reversal

technique to composite materials [58, 62, 89, 59]. However, the time reversal technique is

infeasible for large composite structures because of the weak reflections. Most recently, a

transmission-based method based on the reciprocity principle was used to detect added mass

without utilizing baseline data in composites [30]. The type of damage investigated is not

representative of delamination.

In this chapter, a guided ultrasonic wave-based method for damage detection – in absence

of baseline data – is proposed. The NDE technique is used to localized delamination in a

quasi-isotropic carbon fiber reinforced polymer (CFRP) laminate. A network of signal-paths

is created by two contact transducers to localize the damage by comparing signals from
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waves traveling equal distances and in the same direction, as shown in Section 5.1.2. The

signals from waves crossing defective regions are compared with those from waves traveling

in healthy zones of the plate. In Section 5.2, damage indices based on the cross–correlation

and energy of the signals (see Section 5.1.3), in conjunction with an imaging method based

on wave–transmission (see Section 5.1.5), is utilized to locate the damage in the composite

plate.

5.1 Methods

5.1.1 Experimental setup

The two specimens used in this study are quasi-isotropic CFRP plates with thickness 2.25 mm

(0.09 in) and dimensions 910 x 910 mm2 (36 x 36 in2). The plates are manufactured with

eight woven plies made from Hexcel AS4 carbon fiber pre–impregnated with Newport 301

epoxy resin system, with a stacking sequence of [0, 45,−45, 90]s. The material properties for

the lamina are shown in Table 5.1. An artificial delamination is introduced in one of the

plates, while the other is a pristine plate, which is used as a control sample in the study

to validate the damage detection technique. In order to create an artificial delamination,

a circular patch of release film with diameter 25.4 mm (1 in) is placed in the middle of the

plate between the 4th and 5th plies. To verify the presence of the artificial delamination in

the plate, ultrasonic c-scan inspection was conducted. As it can be seen in Fig. 5.1a, the

image does not present significant loss in any area of the pristine plate, while the defective

plate shows the delamination as an area with attenuation < 20 dB at the center of the panel

as shown in Fig. 5.1b.

Table 5.1: Material properties for the lamina. Prepreg Hexcel AS4 Newport 301

E11

[GPa]

E22

[GPa]

E33

[GPa]

G12

[GPa]

G13

[GPa]

G23

[GPa]

ν12 ν13 ν23 ρ

[kg/m]

67.9 67.9 8.37 3.13 2.85 2.85 0.03 0.41 0.41 1463
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(a) Pristine plate

(b) Defective Plate
(c) Defective Plate - Flaw

Figure 5.1: Trough Transmission Ultrasonic (TTU) C-Scan of CFRP plates

Since only two Digital–Wave B225 transducers are used during the data acquisition,

a plexiglass grid with dimensions 410 x 250 mm2 (16 x 10 in2) is utilized to position the

transducers on the plate to simulate a sensing network (see Fig. 5.2a). Spacers between the

grid and the plate prevent waves from traveling along the grid. An ultrasonic couplant from

Sonotech is used to improve the transmission of energy between the transducers and the test

plate. A function generator, NI PXI-5402, is used to generate the ultrasonic signals. The

signals are recorded by an oscilloscope, Agilent 54624A. The generated and sensing signals
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are amplified by an A3000-Ritec voltage amplifier and Digital Wave FM-1, respectively.

5.1.2 Excitation of guided waves

Due to the dispersive behavior of Lamb waves, the material dispersion curves are essential

to avoid the excitation of waves in highly dispersive or multi-modal frequencies for simpler

signal interpretation. To calculate the dispersion curves, the quasi-isotropic CFRP plate is

modeled as a transversely isotropic homogenized single-layer. Classical lamination theory is

used to obtain the homogenized model [6]. The homogenized material properties are shown

in Table 5.2. Fig. 5.2b shows the group velocity dispersion curves of the homogenized model

for a frequency range below 600 kHz, where only the modes A0, S0 and A1 are present. The

plate is actuated with a chirp signal of frequencies between 20 kHz to 420 kHz and signals

are recorded with a recording time of 1 ms with a sampling frequency of 2.8 MHz. Fig. 5.3

shows the network of signal-paths over the scan area. In this figure, the transducer acting as

an actuator is positioned on the left of the damage, and the transducer acting as a receiver is

placed on the right. The positions of the actuator are denoted by Si, i = 1,. . . ,11, and those

of the receiver as Rj, j = 1,. . . ,11. The positions Si and Si+1 are spaced by 25.4 mm (1 in).

The same spacing is applied to the receiver’s position. The distance between transducers is

0.41 m (16”) for positions where the indices are the same, i = j. A total of 91 signal-paths

are recorded which are separated in eleven groups according to the direction that the direct

waves travel.

Table 5.2: Material properties for Quasi-isotropic CFRP plate with x1x2 plane of isotropy

E11[GPa] E33[GPa] G13[GPa] ν12 ν13 ρ[kg/m3]

47.54 8.37 2.85 0.32 0.29 1463
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(a) Grid positioning in a composite plate
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(b) Group velocity dispersion curves in a Quasi-isotropic CFRP plate

Figure 5.2: Experimental setup
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Figure 5.3: Path-network created by two contact transducers.

5.1.3 Damage index

A narrow-band signal extraction from chirp signals is used to find the most sensitive signal

to the delamination. Among the extracted signals, as illustrated in Fig. 5.4, the signal

response to a 5-cycle Hann windowed sine signal at 70 kHz is more sensitive to delamination.

Compared to the normalized signal of the healthy path from S11 to R11, the signal of the

waves travelling along the damage path, from S6 to R6, has a time delay in the time window

from 0.30 ms to 0.38 ms as depicted in Fig. 5.4b. Due to the fact that the time delay between

signals can be used to identify the signal-paths crossing the defective region in the plate, a
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Figure 5.4: Signal sensitivity to delamination of a group of waves with propagation angle 0◦

damage index (DI) based on the cross-correlation between two signals is one of the damage

indices chosen for this study. The lag associated to the maximum of the cross-correlation X

between signals with parallel paths τk is given by,

τk = max (X (xj(w), yj(w))) (5.1)

where the signals xj and yj are the narrow-band extractions from the chirp signals at the

sensing point j. The signal yj is any signal used as a reference in the group to calculate

the cross-correlation. This selection implies that one of the values of τk is the result of the

auto-correlation of the signal yj. A time–window w with the same period as the excitation

signal si is applied to the signals xj and yj. To apply the time–window, starting from the

time of arrival (ToA) of the peak of the envelope of the signal rj, half of the period of signal

si is subtracted from the ToA to bound signal rj on the left. Half of the period of signal si
is added to ToA to bound signal rj on the right. Considering that cross-correlation lags for

paths crossing the defective region should have a considerable difference with respect to lags

for other paths in the group of parallel paths, the following form of DI is proposed,

DII
k =

(
τk − T̃

)2
(5.2)

where T̃ is the median of the collection of the lag–values of all signal–paths of waves prop-

agating in the same direction. This form of damage index considers the deviation of the
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Figure 5.5: Damage indices DII of a group of waves with propagation angle 0◦

cross-correlation lag of each path with respect to the median of the lag values of the same

group, T̃ . Fig. 5.5 shows the distribution of the damage indices of the signal–paths presented

in Fig. 5.4a. In the distribution of the damage indices, the furthest DII
k from the median

value is S6R6, which is a signal–path affected by the delamination in the group. Another

result of the interaction between the propagating waves and the defect is the change in the

waves amplitude. Fig. 5.6b shows a significant drop in the amplitude of the signals of the

waves travelling from S6 to R8. Compared to the maximum amplitude of the signal–path

S9R11, the maximum amplitude of the signal at path S6R8 is less than 50%. Signal–path

S5R7 is the second lowest amplitude in the group. Similar drops in amplitude are observed

when interactions between the signal–paths and the boundaries of the flaw occur. However,

in the case of signal–paths crossing the defect as Fig. 5.6d shows, there is not much varia-

tion in amplitude compared to other signals in the group. Small variations in the signals’

amplitudes, such as S6R9, cannot be attributed to physical interaction but rather random

experimental errors. Hence, to account for the signals’ variations in amplitude due to the

presence of damage, a second DI is proposed by the following formula,

DIII
k = |ek − Ẽ| (5.3)

where E groups the square magnitude of the signals ek of parallel paths, and Ẽ is the median

value of E . Fig. 5.7 shows the magnitude of the damage indices DIII
k of each path with respect

72



S1R3

S2R4

S3R5

S4R6

S5R7

S6R8

S7R9

S8R10

S9R11

(a) Paths of waves in group 2

0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37

Time [ms]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

A
m

p
lit

u
d

e
 [

V
]

S1R3

S2R4

S3R5

S4R6

S5R7

S6R8

S7R9

S8R10

S9R11

(b) Time-windowed signals of paths S5R7, S6R8 and S9R11

S1R4

S2R5

S3R6

S4R7

S5R8

S6R9

S7R10

S8R11

(c) Paths of waves in group 3

0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38

Time [ms]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

A
m

p
lit

u
d

e
 [

V
]

S1R4

S2R5

S3R6

S4R7

S5R8

S6R9

S7R10

S8R11
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Figure 5.6: Signal sensitivity to delamination of group of waves 2 and 3

to the median value of the group of parallel paths presented in Fig. 5.6a, where the DI of

the path S6R8 is the highest in the group.

5.1.4 Defining damage parameter

The overall likelihood of damage in the specimen can be determined by inspecting the stan-

dard deviations of the DIs in each group of parallel paths. Compared to a pristine sample,

where the damage indices would be clustered around the mean value, the presence of a defect

would result in a higher standard deviation.
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Figure 5.7: Damage indices DIII of waves in group 2

5.1.5 Imaging method

In the next section, an imaging method is used to predict the location of delamination in

the inspected region. This imaging approach is based on the RAPID method [92], where the

spatial distribution function has been modified. The proposed spatial distribution function

expands the area of influence of each path k in a rectangular region, keeping the area of

the rectangle constant along the path. This modification has shown to improve the imaging

method in this work. The spatial function is given by,

Ak(x, y) = bk(x, y) + bk(x, y)− β1

β2 − β1
∀bk ≤ β1, Ak(x, y) = bk(x, y)− β1

β2 − β1
∀β1 ≤ bk ≤ β2

(5.4)

where β1 and β2 are parameters to control the size of the area of influence. The variable bk
is obtained from the cross-product of the vectors from each imaging point in the inspection

area to the transducers of the path k. The cross-product is then normalized with respect to

the path’s length. Fig. 5.8a presents the modified area of influence for path S1R6, where the

influence goes from high values in the center of the path to no influence in remote points.

Considering that the transducer locations are points of convergence for different sig-

nal–paths, areas around these locations affect the damage prediction by including fictitious

defective spots. In order to remove the effect of the transducer location from the area of

influence of the path, another spatial distribution function is required [88]. The function is
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(a) Function Ak for path S1R6. β1 = 0.1 and β2 = 1
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(b) Function Tk for transducers S1 and R6. γ = 3

Figure 5.8: Areas of influence of the path S1R6

defined as,

Tk(x, y) =
(

1− (r − ri)γ

rγ

)(
1− (r − rj)γ

rγ

)
∀ri, rj < r, Tk(x, y) = 1 ri, rj ≥ r

(5.5)

where γ is a parameter to control the size of the area of influence. The variables ri and rj

are the vectors from each imaging point to the actuator and receiver transducers of the path

k, respectively. r is one quarter of the path length. In Fig. 5.8b the areas of influence for

the transducers of the path S1R6 are shown. Note that for points close to the transducer

locations the influence nearly vanishes. Therefore, the product of the spatial functions results

in the subtraction of the transducers’ influence from the path’s. In order to interpolate each

damage index DIk along the corresponding path k, the spatial distribution functions are

multiplied by the DIk. The following interpolation function gives the area of influence of

each DIk in the inspection region:

Pk(x, y) = DIkAk(x, y)Tk(x, y) (5.6)

To account for the contribution of all the signal-paths in the localization of the defect, the

area of influence of the paths Pk are combined by the interpolation function [88],

P(x, y) = |Pm(x, y) ∪ Pn(x, y)| = |Pm(x, y) + Pn(x, y)− Pm(x, y)Pn(x, y)| (5.7)
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(a) Prediction based on DII (b) Prediction based on DIII

Figure 5.9: Predicted delamination’s location in a quasi-isotropic CFRP plate. Delamination

size is 1 in diameter and inspection area 16 in x 10 in

5.2 Results

Using the proposed baseline–free damage detection technique, damage indices based on the

cross–correlation of the signals DII and their variation in amplitude DIII are calculated for

91 signal–paths. Separately, the damage indices DII and DIII are then combined by the

interpolation function P(x, y) to predict the location of a delamination in a CFRP plate. As

seen in Fig. 5.9, the possibility of damage is higher inside the delamination region when DII

is used in the interpolation, while the use of DIII results in two indications of high damage

possibility in areas near the defect. The results from DIII are consistent with the observation

made earlier that the signal amplitudes of paths crossing the delamination are not sensitive,

while only the signals interacting with the boundaries of the defect contribute to localize

the damage. On the other hand, the results in Fig. 5.9a suggest that the density of the

crossing paths in the signal network could influence the prediction. To address this concern,

considering that the signal–paths with the highest damage index DII in each group are

the most influential localizing the defect, they are selected for the interpolation to predict

the damage location. For instance, the signal–path S6R6 in Fig. 5.5 is selected among

the others in the group for having the highest damage index to calculate its DI’s area of
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(a) Prediction using the signal–paths with the highest DII
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Figure 5.10: Predicted delamination’s location in a quasi-isotropic CFRP plate using only

the signal–paths with the highest DII in each group of parallel paths . Delamination size is

1 in diameter and inspection area 16 in x 10 in

influence PS6R6(x, y) in Eqn. (5.6). PS6R6(x, y) together with the selected Pk(x, y) from

other groups are then interpolated in Eqn. (5.7) to make the prediction. Fig. 5.10a shows

that the prediction of the defect’s location moves 5 mm (0.2 in) to the left of the actual

defect when only the twelve paths shown in Fig. 5.10b are selected for the analysis. The

predicted location still remains in the vicinity of the actual delamination region, despite the

total number of signals used in the analysis represents only a 13% of the original signals

acquired.

To study the sensitivity of the damage detection technique using a sensor network with

reduced number of paths where the position of the defect breaks the symmetry of the grid,

the delamination is moved to a new location in the inspection area, as Fig. 5.11a shows. In

the new position a fewer number of signal–paths interact with the defect. In addition, the

new position of the defect does not lie on any of the axes of symmetry of the sensor–network.

The results using all the signal–paths in the sensing network and only the paths with the

highest DII in each group are presented in Fig. 5.11b and Fig. 5.11d, respectively. In this

particular case, the selection of the signal–paths with higher DII improves the prediction of

the damage’s location.
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(b) Prediction based on DII
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(c) Signal–paths affected by the delamination
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(d) Prediction using the signal–paths with the highest DII

Figure 5.11: Predicted delamination’s location in a quasi-isotropic CFRP plate reducing the

number of sensing paths. Delamination size is 1 in diameter and inspection area 16 in x 10 in

By looking at the damage possibility scale in the results, the values vary by more than

one order of magnitude between cases, as the number of signal–paths increases. These vari-

ations make it difficult to set a level of confidence for non–destructive evaluation. However,

defining a damage parameter based on the standard deviation of the DIs can provide a better

decision–making path to set a threshold during the assessment. Fig. 5.12a shows the damage

detection technique applied to a pristine plate by following the same experimental setup as

Fig. 5.3 shows. As it is expected, some localized indications are seen in the figure at an ar-

bitrary color scale which, in the case of no prior knowledge of the state of the structure, can

lead to erroneous conclusions, despite the fact that the maximum value in the scale is very

small compared to any of previous results. However, by inspecting the standard deviations
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(a) Prediction based on DII on a pristine quasi-isotropic CFRP plate.
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(b) Damage parameter based on DII. Plate with defect (blue). Pristine

plate (orange)

Figure 5.12: Level of confidence based on the standard deviation of the DIs for quasi-isotropic

CFRP plates.

of the pristine and damaged plates, it is possible to set a threshold, which is independent

of the number of sensing paths in the inspection area. Fig. 5.12b presents the standard

deviations of the eleven groups of paths based on DI1
k for the pristine sample and the sample

with the delamination in two different scales. In the figure, the blue scale illustrates that the

minimum overall standard deviation value of the plate with a flaw is four times higher than

the maximum overall value of the pristine plate, which is represented by the orange scale.

In addition, the standard deviation of the parallel paths in group 5 for the pristine plate is

zero because the DIs for all the paths is zero. According to these results, the red spot in

Fig. 5.12a can be classified as trivial with a high level of confidence by setting a threshold

based on the standard deviation of the plate with damage.
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CHAPTER 6

Concluding Remarks

In this dissertation, an efficient guided ultrasonic wave-based technique to detect delami-

nation in CFRP plates without baseline data has been developed. An existing theoretical

model for the identification of the source type of AE events has been refined to make it

more efficient. Moreover, a new nondestructive material characterization method has been

developed by employing fuzzy arithmetic in conjunction with measured group velocity data.

The inversion and defuzzyfication procedures to determine new nominal values for material

properties have been shown to provide more accurate results.

In Chapter. 3, for two-dimensional problems, the new form of the Green’s function for

multilayered media has demonstrated to be more efficient than other analytical methods

without sacrificing the integrity of the results. The new Green’s function is calculated with

the modal functions of the displacements and stresses obtained in the wavenumber domain.

The fact that the inverse Fourier transform is not needed to obtain the function in the fre-

quency domain reduces the computational time compared to other methods, and it decreases

the possibility of introducing numerical errors in the calculations. Application of Born’s first

approximation theory in the calculation of the scatter field in a guided-wave with thickness

change disagreed with the results found in the literature. The lack of consideration of the

nonpropagating modes affects the energy balanced in the region of the plate near the step.

Thereby, the calculated displacements do not show the expected variation in the frequency

range due to the mode conversion. Unfortunately, the model developed with the new Green’s

function does not support the inclusion of the nonpropagating modes in the solution; only

propagating modes can be considered. In an opposite result, the displacement calculated

from different crack-types with the AE model has shown good agreement with results found
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in the literature. The model has been capable of characterizing the nature of the AE event

in isotropic plates through the waveform of the propagating waves calculated on the plates’

surfaces. Only the antisymmetric and symmetric propagating modes contribute to the mode-

II and mode-I microcracks, respectively. The results from the test cases indicate that the

combination of the AE model with the new form of the Green’s function has the potential

to efficiently evaluate the response to AE events in composite plates. Future work on this

subject includes the application of the model to thin and thick CFRP laminates.

Material characterization in composites without considering uncertainty could lead to

a significant error when inversion procedures based on time-domain data are employed. In

Chapter. 4, for the studied CFRP specimen, it has been shown that experimentally measured

group velocities vary as much as 7 % of the nominal value at 200 kHz for the S0 mode across

different regions of the laminate. Furthermore, the group velocities calculated with initially

estimated nominal material values based on manufacturing data and standard material mod-

els have been shown to substantially differ from the experimentally measured velocities. In

addition, it has been found that the level of influence of the material properties on the

calculation of the group velocities strongly varies among the parameters. Specifically, the

Young’s modulus E11 and the Poisson’s ratio ν12 are the most influential material properties

for the S0 mode, while the shear modulus G13 is the most influential for the A0 mode. As

a result, only these parameters see a substantial change through the fuzzy-based inversion

technique. Moreover, inclusion of all propagating modes in a small frequency range has been

found to be well-suited to consolidate the identified uncertainties of the material properties

as compared to single-mode analysis in a broader frequency range. Furthermore, based on

the normalized RMSD values, the inclusion of the highly dispersive zone of the A0 mode

does not have a strong effect on the definition of the new nominal values. Although the

normalized RMSD values are slightly different in the S0 mode, both analyses (multi-mode

and single-mode) provide an adequate representation of the group velocities in the laminate.

It is acknowledged that the experimentally measured group velocities for the A0 mode do

not show the expected frequency dependence between 50− 100 kHz. Thus, more research is
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needed to investigate the efficacy of the employed experimental methods in conjunction with

advanced fuzzy theory in material characterization of CFRP panels with different stacking

sequences and material combinations. Future work comprises also the validation of the newly

determined material properties with data from destructive material testing, and further

refinement of the method by including higher order guided wave modes in the inversion

technique.

In Chapter. 5, the baseline-free NDE technique employs the lag associated to the cross-

correlation between signals DII and the signal energy DIII to calculate a damage index

distribution, where signals from waves crossing defective regions are identified. DIII has

demonstrated to be more sensitive to waves’ trajectories affected by the diffraction of waves

around the flaw, while DII identify waves’ paths crossing the defect. To propagate the

influence of the damage index of each signal path to the inspection region, spatial distribution

functions are used. The combination of the damage indices in conjunction with interpolation

functions enables the prediction of delamination. In an inspected area of 410 x 250 mm2 (16 x

10 in2), this method successfully localized delamination of 25.4 mm (1 in) diameter in a quasi-

isotropic CFRP laminate. The reliability of the technique can be affected by the extension

of the defective area and the proximity of the defect to wave reflectors. More research is

necessary to set the limitations of the technique.
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APPENDIX A

APPENDIX

A.1 Chapter 2

A.1.1 Transversely isotropic layer

The expressions Aq and Cij for a transversely isotropic layer are given by

A1 =
√
−A+

√
A2 − 4B
2 A2 =

√
−A−

√
A2 − 4B
2 (A.1)

where

A = c2

c2
3L

+ c2

c2
3T
− C11C33 − C2

13 − 2C13C44

C33C44
, B =

(
c2

c2
3T
− 1

)(
c2

c2
3T
− C11

C33

)
. (A.2)

and the definitions of the bulk wave velocities are

c1L =
√
C11

ρ
, c3L =

√
C33

ρ
and c3T =

√
C44

ρ
, (A.3)

Cij are respective elements of the elasticity tensor.

A.1.2 Unidirectional CFRP plate

The functions ∆i of the dispersion equations for a unidirectional fiber-reinforced composite

plate are given by.

∆1 = ζ2
[
(ξ2

2 + ζ2
3 )q22 − (ξ2

2 − ζ2
3 )q12

] [
(a5 − a3)ξ2

1q11 − (a1 − 2a4)ξ2
2q21 − a1ζ

2
1q21

]
(A.4)

∆2 = ζ1
[
(ξ2

2 + ζ2
3 )q21 − (ξ2

2 − ζ2
3 )q11

] [
(a5 − a3)ξ2

1q12 − (a1 − 2a4)ξ2
2q22 − a1ζ

2
2q22

]
(A.5)

∆3 = 4a4ξ
2
2ζ1ζ2ζ3(q11q22 − q12q21) (A.6)
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where,

a1 = C22/ρ, a2 = C11/ρ, a3 = (C12 +C55)/ρ, a4 = (C22−C23)/2ρ, a5 = C55/ρ (A.7)

q11 = a3b1, q12 = a3b2, q21 = ω2 − a2ξ
2
1 − a5b1, q22 = ω2 − a2ξ

2
1 − a5b2 (A.8)

and

ζ2
1 = −ξ2

2 + b1, ζ2
2 = −ξ2

2 + b2, ζ2
3 = ω2 − a5ξ

2
1 − a4ξ

2
2

a4
(A.9)

in which

ξ = ω/c, ξ1 = ξ cos (θ), ξ2 = ξ sin (θ) (A.10)

b1 = − B

2A −
√(

B

2A

)2
− C

A
, b2 = − B

2A +
√(

B

2A

)2
− C

A
(A.11)

A = a1a5, B = (a1a2 + a2
5 − a2

3)ξ2
1 − ω2(a1 + a5), C = (a2ξ

2
1 − ω2)(a5ξ

2
1 − ω2) (A.12)
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