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• The modified GWR models had higher
R2 and reflected the actual spatial fea-
tures.

• A manual variable excluding-selecting
method is explored to avoid
multicollinearity.

• Influences of the dominant indicator on
water quality varied with space and
seasons.

• Protection policies need consider site-
specific conditions and seasonal varia-
tions.
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As an important regulator of pollutants in overlandflowand interflow, land use has become an essential research
component for determining the relationships between surfacewater quality and pollution sources. This study in-
vestigated the use of ordinary least squares (OLS) and geographically weighted regression (GWR) models to
identify the impact of land use and population density on surface water quality in the Wen-Rui Tang River wa-
tershed of eastern China. A manual variable excluding-selecting method was explored to resolve
multicollinearity issues. Standard regression coefficient analysis coupled with cluster analysis was introduced
to determine which variable had the greatest influence on water quality. Results showed that: (1) Impact of
land use on water quality varied with spatial and seasonal scales. Both positive and negative effects for certain
land-use indicators were found in different subcatchments. (2) Urban land was the dominant factor influencing
N, P and chemical oxygen demand (COD) in highly urbanized regions, but the relationship was weak as the pol-
lutants weremainly from point sources. Agricultural landwas the primary factor influencing N and P in suburban
and rural areas; the relationship was strong as the pollutants were mainly from agricultural surface runoff.
Subcatchments located in suburban areas were identifiedwith urban land as the primary influencing factor dur-
ing the wet season while agricultural land was identified as a more prevalent influencing factor during the dry
season. (3) Adjusted R2 values in OLS models using the manual variable excluding-selecting method averaged
14.3% higher than using stepwise multiple linear regressions. However, the corresponding GWRmodels had ad-
justed R2 ~59.2% higher than the optimal OLSmodels, confirming that GWRmodels demonstrated better predic-
tion accuracy. Based on our findings, water resource protection policies should consider site-specific land-use
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Fig. 1. Location of monitorin
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conditions within each watershed to optimize mitigation strategies for contrasting land-use characteristics and
seasonal variations.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Degradation of surface water quality is a crucial global environmen-
tal issue (Zielinski et al., 2016; Roebeling et al., 2015). It's particularly
apparent in China due to the rapid processes of urbanization and eco-
nomic development (Chen et al., 2016a, 2016b; Mei et al., 2014). Non-
point source pollution is of great importance due to its prevalence on
surface water impairment and the difficulty of identifying specific
sources for remediation (Dowd et al., 2008; Zhang et al., 2011; Sun et
al., 2013; Huisman et al., 2013). As an important regulator of pollutants
in overland flow and interflow, land use/land cover has become a criti-
cal research topic for elucidating the relationship between surfacewater
quality and non-point source pollutants. Several statistical methods are
widely used in these studies, such as correlation analysis, cluster analy-
sis, principal component analysis, linear regression models, linear
mixed effects models and exponential models (Wang et al., 2014;
Wan et al., 2014; Chen and Lu, 2014; Seeboonruang, 2012; Ahearn et
al., 2005; Madrinan et al., 2012). Previous results often show that
land-use types closely related to human activities, such as agriculture
and urban, were positively correlated with river pollution indicators
(e.g., nitrogen, phosphorus, ammonia),whilewoodlands and grasslands
that were less affected by human activities had negative correlations.
These previous analyses and approaches were all based on the assump-
tion that relationships between water quality indicators and land-use
patterns were constant over the entire study area.

These global statistical methods express the average of existing rela-
tionships, which may neglect some significant spatial characteristics
and hide local variations (Tu and Xia, 2008; Tu, 2013). Geographically
weighted regression (GWR) models (Fotheringham et al., 1996; Boots,
2003) were first applied to assess the relationship between land use
and water quality by Tu and Xia (2008). They demonstrated better re-
sults for GWR models than from traditional linear regression models,
such as ordinary least squares (OLS) regression. Through embedding lo-
cation data into regression parameters to explore local variations
g sites, drainage subcatchments, and
between independent and dependent variables, GWR effectively ad-
dresses the spatial non-stationarity issue (Boots, 2003). In addition,
GWR considers spatial autocorrelation, which is difficult to deal with
in traditional statistical models (Brown et al., 2012). As an emerging
technique, GWR has recently been applied in several disciplines, such
as identification of high crime areas (Cahill and Mulligan, 2007), forest
damage evaluations (Pineda et al., 2010), human health and disease
analysis (Carrel et al., 2011), and atmospheric pollutant assessment
(Song et al., 2014).

In studies applying the GWR technique to evaluation of land use on
surface water quality (e.g., Tu and Xia, 2008; Tu, 2011; Brown et al.,
2012; Tu, 2013; Sun et al., 2014), it is common that only a single land-
use indicator was selected as the independent variable because of the
high potential for multicollinearity among different land-use variables
(Griffith, 2008). This would result in an invalid GWR model when vari-
ables experiencing collinearity are selected. It is common for several
land-use variables to be correlated since different land-use indicators
will be interrelated when calculated as a percentage of total land area.
Using this modeling approach with a single explanatory variable avoids
multicollinearity and logically reflects the simple correlation. However,
the univariate models may miss one or more important explanatory
variables. For example, it would be misleading to explain variations in
riverine nitrogen levels based only on agricultural land percentage as
an explanatory variable when water quality impairments resulted pri-
marily from runoff associated with impervious surfaces in
subcatchments dominated by urban areawith low agricultural land use.

As early as 2005,Wheeler investigatedmulticollinearity problems in
GWR models and pioneered the ridge regression method to introduce
multiple variables and eliminate the collinearity problem in GWR
models (Wheeler and Tiefelsdorf, 2005; Wheeler, 2007). Additionally,
Wheeler (2009) developed the use of LASSO (least absolute shrinkage
and selection operator) algorithms in GWR models to limit the effects
of explanatory variable correlation. Other multiple variable selection
approaches such as Principal Component Analysis (PCA) (Wang et al.,
major land-use units in the Wen-Rui Tang River watershed.
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2013) and Geographically Weighted Principal Component Analysis
(GWPCA) (Kumar et al., 2012) have been explored with GWR models.
Specific to land-use impacts on water quality, the application of multi-
variate GWR models is rarely utilized. Pratt and Chang (2012) used
stepwise multiple linear regression (SMLR) to eliminate collinear
land-use variables, with the remaining significant independent vari-
ables (p b 0.05) used to analyze the effects of land cover and topography
on water quality. An advantage of this approach is that the regression
excludes redundant variables automatically, but sometimes variables
eliminated by SMLR are not without statistical significance (Yang et
al., 2005).

In practice, model variables should be determined based on site-spe-
cific information and professional knowledge of the study site. On this
basis, a manual variable excluding-selecting method was explored in
this study to modify themultivariable modeling process. The objectives
of this paperwere to examine the impact of land use/population density
(LU/PD) on water quality in both dry and wet seasons in the Wen-Rui
Tang River watershed in eastern China. The investigation attempts to
answer the following questions: (1) Does the influence of LU/PD on spe-
cific water quality parameters change spatially and with seasons? (2) Is
there a dominant LU/PD indicator affectingwater quality impairment in
individual subcatchments? and (3) Does the dominant factor have a
spatial distribution within the greater watershed? In order to identify
the LU/PD indicator that has the strongest correlation to water quality
indicators, we introduced the concept of standard regression coeffi-
cients (Mayer and Younger, 1976) into GWRmodels. To avoid the influ-
ence of external factors in selection of independent variables (Yuan and
Chan, 2011; Nimon and Oswald, 2013), cluster analysis was combined
with the calculation of standard regression coefficients to assure that
only those subcatchments with similar land-use structure were com-
pared. Themanual variable excluding-selectingmethod and the re-pro-
cessingmethod for GWR output used in this study are not only suitable
for the Wen-Rui Tang River watershed, but also can be used in other
study areas having watershed-scale, water quality data and a small
number of explanatory variables. In addition, the results of this study
provide important information to inform water resource management
and remediation in watershedswithmixed land use and strong season-
al climate variations.
Fig. 2. Comparison of land use structure in the 52 sub
2. Study area

The Wen-Rui Tang River watershed located in Wenzhou, Zhejiang
Province on the east coast of China has a drainage area of 740 km2

with a population of ~9.2 million (Fig. 1). The watershed originates
from Lishui mountain streams and flows eastward through an urban
district. From the urban area, ~70% of the water flows south to join
the Fei-Yun Riverwhichflows into the East China Sea and the remaining
~30% of thewater flows eastward to the Oujiang estuary. The region has
a subtropical monsoon climate with an average annual rainfall of
1818 mm, approximately 70% falls in April to September. The Wen-
Rui Tang River played an important role in irrigation, aquaculture, in-
dustrial water and transportation in the past.

Based on the distribution of the river network and topographic fea-
tures, the study area was divided into 7 drainage basins (Fig. 1). Basin
I is a low population area surrounded by mountains and has a primary
land cover of trees/shrubs, fruitwood and agriculture, which is consid-
ered as suburban and rural areas (Mei et al., 2014). Basin II, III, IV, and
V are more densely populated and urbanized areas with the northern
area containingWenzhou city center and the southern area comprising
an important aquatic habitat called Sanyang wetland. Sanyang wetland
has been used for agriculture for centuries with 47% of its land area cur-
rently used for citrus groves. Land use in the lower reaches of basin VI
and VII are dominated by agriculture, including rice, soybean, and
waxy corn. Basin VII is considered a rural area.

The Wen-Rui Tang River is severely polluted and has experienced
reoccurring hypoxia since rapid urbanization and economic develop-
ment began in the 1980s (Li et al., 2013). In 2010, 92% of the river seg-
ments were classified in the inferior Type V national water quality
category, the lowest water quality classification that supports aquatic
ecosystem health. Only ~60% of the sewage is collected for centralized
processing at wastewater treatment facilities. Nitrogen pollution, espe-
cially from ammonium, contributing to low dissolved oxygen is consid-
ered the most serious pollution problem in the watershed (SEPBC,
2002a). Water quality has been significantly improved in the past few
years in some regions due to improved sewage collection, removal of
river sediments, ecological water diversion, relocation of animal hus-
bandry, and riparian green belt construction (providing buffer strips)
-catchments where monitoring sites are located.
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(Mei et al., 2014). However, additional water quality remediation is re-
quired and studies providing insights to the spatial and temporal con-
trols on water pollution are critically needed to develop better water
pollution management strategies.

3. Data collection and analysis methods

3.1. Water quality data

Monthly water samples were collected from 40 sites established by
iWATER (Institute of Wenzhou Applied Technology for Environmental
Research) from May 2008 to December 2010. In this study, five water
quality indicators were selected: total nitrogen (TN), ammonia nitrogen
(NH4

+-N), total phosphorus (TP), dissolved oxygen (DO) and chemical
oxygen demand (COD). Additionally, water quality data for 12monitor-
ing sites from the Wenzhou Environmental Protection Bureau (WEPB)
Fig. 3. Spatial-temporal distribution of water qu
were included for the same water quality parameters and sampling
dates. All water quality samples were measured using standard analyt-
ical methods (SEPBC, 2002b).

To consider the influence of seasonal factors within each land-use
category, mean values for each water quality indicator in the wet
(April–September) and dry (October–next March) seasons were calcu-
lated. Data for the five water quality variables were not normally dis-
tributed (as determined by the Kolmogorov-Smirnov test) and
therefore we used a natural logarithmic transformation to provide a
normal distribution for subsequent statistical analyses.

3.2. Land-use data and GIS analysis

Land-use data were interpreted from aerial imagery by the Land Use
Survey Project of Wenzhou (2005) having a resolution of 0.5 m. The
original 96 land-use categories were aggregated by merging similar
ality in the Wen-Rui Tang River watershed.



Table 1
Mean concentration ofwater quality indicators in different clusters during thewet and dry
season (mg/L).

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Wet Dry Wet Dry Wet Dry Wet Dry

DO 4.21a 3.45b 2.23a 1.84b 4.47a 4.77a 1.67a 1.11b

NH4
+-N 5.43a 6.04b 8.57a 9.95b 4.27a 5.89b 6.65a 8.37b

TP 0.84a 1.09b 0.98a 0.97a 0.51a 0.52a 0.82a 0.91a

TN 7.59a 8.34b 10.44a 11.51b 5.86a 7.06b 9.75a 10.54b

COD 29.1a 34.6b 37.7a 51.0b 25.1a 30.4b 33.6a 37.3b

Values with different lower case letters in a certain cluster are statistically different
(p ≤ 0.05).
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land-use types into 7 broader categories: agriculture, vegetated land
(forest, grassland and urban green belts), commercial (commercial, ad-
ministrative, cultural entertainment, municipal utility lands), transpor-
tation, industrial and mining, residential, and water (Fig. 1). The few
unused land categories (0.03% of total land area), such as bare rock,
gravel and waste lands, were aggregated with the residential land cate-
gory due to their similar characteristics with respect runoff and erosion.

The water flow direction was derived from DEM data with a spatial
resolution of 5 m obtained from the Wenzhou Urban Planning Bureau
(WUPB), and 7 drainage basins (Fig. 1) were created by locating the
pour points at the edges of the study area using a flow direction raster.
We also calculated flow accumulation, a dimensionless number in
ArcGIS defined as the pixel quantity that flows from upstream cells.
The grids with flow accumulation values N10,000 were subsequently
extracted as the river networks and the corresponding subcatchment
polygons were generated using Arc Hydro Tools. Then we overlapped
the subcatchment land-use polygons to the 7 basins and eliminated
the ensuing sliver polygons. Catchments with areas b100,000 m2 were
mergedwith adjacent catchments according to the benchmark drainage
basin boundary. As a result, there were a total of 201 subcatchments in
the study area. Land-use percentages based on the 7 land-use categories
were calculated for each subcatchment using ArcGIS statistical tools.
Table 2
Optimized multivariate OLS models using the manual variable excluding-selecting
method.

Variable
selection
method

Regression model Adjusted
R2

Wet Season
DO SMLR −0.322 [PD] + 2.342 0.192

Manual −0.340 [PD] + 0.015 [WA] + 2.288 0.203
NH4

+-N SMLR 0.416 [PD] + 0.005 [Urban] − 0.438 0.294
Manual 0.457 [PD] + 0.140 [Urban]− 0.017 [AG] + 0.016 0.322

TP SMLR 0.014 [Urban] − 1.122 0.226
Manual 0.483 [Urban] − 0.017 [AG] −0.102 0.242

TN SMLR 0.01 [Urban] + 1.569 0.163
Manual 0.409 [Urban] − 0.031 [AG] + 0.598 0.180

COD SMLR 0.204 [PD] + 2.504 0.186
Manual \

Dry season
DO SMLR −0.364 [PD] + 2.384 0.236

Manual −0.530 [PD] + 0.200 [WA] + 2.309 0.290
NH4

+-N SMLR 0.012 [Urban] + 1.318 0.127
Manual 0.329 [Urban] − 0.107 [AG] + 1.451 0.153

TP SMLR 0.012 [Urban] − 1.014 0.170
Manual 0.426 [Urban] − 0.013 [AG] −0.999 0.186

TN SMLR 0.009 [Urban] + 1.656 0.114
Manual 0.315 [Urban] − 0.105 [AG] + 0.761 0.139

COD SMLR 0.008 [Urban] + 3.265 0.261
Manual \ \

Urban = transportation + residential + commercial lands (%); IN= industrial and min-
ing land (%); AG= agricultural land (%); WA = water area (%); GR = grassland & forest
(vegetated land) (%); PD = population density (people·ha−1).
3.3. Population density data

The 2010 population census for administrative subdistricts was ob-
tained from the Wenzhou Statistical Yearbook published by Wenzhou
Municipal Bureau of Statistics (WSB). Population data were input to
ArcGIS to calculate the population density for each monitoring site:
(1) the centroid for each administrative subdistrict was determined
and the corresponding population assigned to these centroids; (2) the
centroid point was interpolated into a population density raster using
the Kernel algorithm (ArcGIS Help Library, 2014); and (3) the cells of
the density raster based on the set of coordinate monitoring points
were extracted as grid values.

3.4. Modeling methods

Multivariate OLS regression and GWR models were developed
using SPSS 21 and ArcGIS 10.2, respectively, to explore the relation-
ship between land use and water quality indicators. To avoid
multicollinearity, a manual variable excluding-selecting method was
utilized: (1) all of the explanatory variables were entered to develop
OLS functions for each water quality indicator, and Spearman coeffi-
cients for both dependent and independent variables were calculated;
(2) pairwise land-use variables in the OLS model with higher correla-
tions were selected and variables with weaker correlations in the pair
were removed; (3) the independent variable with the highest vari-
ance inflation factor (VIF) was removed (if the maximum VIF value
was b2, then jump to the fourth step); and (4) the OLS model was
reformulated with the independent variables having the highest im-
pact on selected water quality indicators according to our previous
findings (Lu et al., 2011; Li et al., 2013; Mei et al., 2014). If there
was a significant correlation among variables, step 2 was repeated
until all argument VIF values were b2. In addition, a stepwise multi-
ple linear regression (SMLR) with the same water quality parameters
was run using the independent variables identified as significant
(p ≤ 0.05). The results of the two methods were contrasted and the
one with higher R2 was chosen as the optimized multivariate OLS
model. These variables were then used to run a corresponding GWR
model. With five water quality parameters (TN, NH4

+-N, TP, DO and
COD), two seasons (wet and dry seasons), and two modeling
methods (SMLR and the manual variable excluding-selecting meth-
od), a total of 20 models were evaluated.

As an extension of global statistical models such as OLS, GWR em-
beds location data into the regression parameters to assess the local re-
lationships between independent and dependent variables (Boots,
2003). The GWR model can be defined as:

yj ¼ β0 uj; vj
� �þXp

i¼1

βi u j;ν j
� �

χij þ ε j ð1Þ

where (uj,νj) represents the coordinates for location j, βi(uj,νj) repre-
sents the local regression coefficient for independent variables χi at lo-
cation j, and β0(uj,νj) and εj represent the intercept and error term,
respectively. βi(uj,νj) was estimated by Eq. (2) to determine a mini-
mum:

β0 uj; vj
� � ¼Xn

k¼1

wjk yk−β0 uj; vj
� �

−
Xp
i¼1

βi u j; vj
� �

χij

 !2

ð2Þ

where wjk represents the distance decay function for location j and k,
with the basic assumption that observations closer to sample point j
have a higher impact on local regression parameters. As the core of
the GWR model, wjk can be calculated using the distance threshold
method, Gauss function method, bi-square function method, etc.
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(Brunsdon et al., 2002). The Gauss functionwas used in this analysis due
to its greater efficiency:

wjk ¼ exp −d2jk=b
2

� �
ð3Þ

where djkdjk represents the distance between location j and k, and b rep-
resents the kernel bandwidth. With ArcGIS 10.2, both fixed and adap-
tive bandwidths were provided. GWR calculates the optimal distance
for fixed kernel or optimal number of neighbors for the adaptive kernel.
Unlike the literature using adaptive bandwidth (Tu and Xia, 2008; Pratt
and Chang, 2012; Tu, 2013), due to the distribution of monitoring sites,
b

a

Fig. 4. Local coefficients in a dry season and
we found that the fixed bandwidth method had a significant advantage
in developing GWR models for the Wen-Rui Tang River watershed.

3.5. Statistical analysis and model assessment

To elucidate the principal factor(s) affectingwater quality in an indi-
vidual subcatchment, cluster analysis was utilized and standardized re-
gression coefficients (Beta-coefficients) were calculated. We assume
that predictorswith larger standardized coefficients aremore important
than predictors with smaller coefficients, particularly when the vari-
ables are uncorrelated (Yuan and Chan, 2011). We previously mini-
mized the collinearity among variables using the manual variable
b wet season in the GWRmodel for TN.
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excluding-selecting method. Moreover, the contrast process demands
that all other predictors in the regression of X (i.e., (X1, X2, … Xj − 1,
Xj + 1,…Xm)T) are controlled or have littlefluctuationwhen the contribu-
tion of Xj to Y is estimated (Nimon andOswald, 2013).We applied cluster
analysis to assure that only monitoring sites with similar land-use struc-
ture were compared, which largely stabilizes the selected variables. The
standardized regression coefficients b′j can be calculated as follows:

b0j ¼ bj S j=SY
� � ð4Þ

where bj are the raw regression coefficients, Sj and SY are the standard de-
viation of independent variable Xj and dependent variable Y in a particu-
lar cluster, respectively.
a

b

Fig. 5. Local coefficients in a dry season and
The 52 water quality monitoring sites generated 4 clusters based on
land-use characteristics (Fig. 2). Cluster 1 corresponded to the subur-
ban area that was dominated by agriculture (48.1%) but also had
mixed residential areas (Mei et al., 2014). Cluster 2 was composed of
36 sites characterized by a relatively developed region with an average
proportion of 70.0% urban land. Two special subcatchments that in-
cluded monitoring sites H1 and H2, were considered rural area (Mei
et al., 2014) as their surrounding subcatchments had an average pro-
portion of impervious surface area b13.2%. Cluster 3 included 9 moni-
toring sites possessing an average of 59.3% non-agricultural,
vegetated land. Cluster 4 consisted of three sites (C10, H10 and H11)
having an average of 28.1% industry land, 24.7% urban land and 12.4%
agricultural land.
b wet season in the GWR model for TP.



457Q. Chen et al. / Science of the Total Environment 572 (2016) 450–466
4. Results

4.1. Spatial-temporal patterns of water quality

Higher concentrations of NH4
+-N, TP, TN, and CODwere found in the

north of basins II, III and IV, with lower values in basins VI, VII and the
western portion of basin I (Fig. 3). Specific to the different cluster
types (Table 1),meanNH4

+-N, TN and COD concentrationswere highest
in cluster 2. In contrast, the mean concentrations of NH4

+-N, TP, TN and
COD were lowest in cluster 3. In general, the water quality indicators
within the different clusters reflect the pattern of urbanization intensity
within the watershed.
a

b

Fig. 6. Local coefficients in a dry season and
The water quality variables showed significant seasonal variation in
the Wen-Rui Tang River. For example, mean NH4

+-N, TN and COD con-
centrations in clusters 1–4 during the wet season were significantly
lower compared with the dry season (p b 0.05), while DO concentra-
tions showed an inverse trend with higher DO during the wet season.
In contrast, cluster 2 with the highest degree of urbanization did not
show a significant difference for TP concentrations between the wet
and dry seasons. This same pattern for TP was shown in clusters 3 and
4. These seasonal variations are consistent with precipitation in less ur-
banized subcatchments causing dilution of pollutants (Cunningham et
al., 2010) while in subcatchments with greater impervious area, rain-
fall-runoff leads to increasing pollutant transport to rivers. Additionally,
b wet season in the GWR model for DO.
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microorganisms might consume and transform more DO and nutrients
during the dry season due to longer water residence times in the river
network (Tsegaye et al., 2006).

4.2. Relationships between land use and water quality in wet versus dry
season

Significant improvements were found in 8 OLS models using the
manual variable excluding-selecting method compared to the SMLR
method (Table 2). TN, TP and NH4

+-Nwere best modeled by a combina-
tion of AG and Urban during the two seasons. The optimized explanato-
ry variables for COD and NH4

+-N varied with season. For instance, PD
a

b

Fig. 7. Local coefficients in a dry season and b
was not a significant factor for COD in the dry season, but became a pos-
itive explanatory variable in the wet season. Additionally, all optimized
multivariate OLSmodels, with the exception of DO, had higher adjusted
R2 values during the wet season compared to the dry season (Table 2).
However, none of the optimized models explained more than 50% of
the variance for any of the water quality indicators.

In contrast to the optimized OLSmodels, relationships amongwater
quality parameters and independent variables in the GWR models had
complex local characteristics at both seasonal and spatial scales (Figs.
4–8). In the case of TN (Fig. 4), the sign of the coefficients for AG
switched from positive in thewestern and northeastern subcatchments
to negative in the north-central and southern subcatchments. Urban
wet season in the GWRmodel for COD.
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showed positive coefficients in the majority of regions except for sites
A6 and B1 during the dry season and C10 during the wet season, how-
ever, all of these negative coefficients were close to zero. In contrast,
the local coefficient for AG during the dry season in subcatchments in
western basin I and southern basins VI and VII had higher absolute
values. Wet season results (Fig. 4b) share similar features with the dry
season except that more sites in northern basin III demonstrated a pos-
itive correlation between AG and TN.

The GWR model for TP during dry and wet seasons had positive
coefficients for Urban throughout the entire study area (Fig. 5),
a

b

Fig. 8. Local coefficients in a dry season and b w
similar to the OLS model (Table 2). Positive AG coefficients were
found to be higher during both seasons at sites H1 and H2, which
were close to the river source and had GR = 50.0% and AG =
9.6%. During the dry season, a stronger negative relationship ap-
peared at different AG levels from 0 to 29.5% in the southern water-
shed. More monitoring sites in the urban area showed a stronger
positive influence from AG during the dry season than during the
wet season.

More than 95% of the local coefficients for bothWA and PD in the DO
model for the wet versus dry seasons showed positive and negative
et season in the GWR model for NH4
+-N.
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correlations with DO, respectively (Fig. 6). Higher positive WA coeffi-
cients were found in western suburban and rural areas. Specific to the
dry season, these higher coefficient values extended to the urban area
and maintained a stable level (Fig. 6a).

The dominant factor for COD in the wet season was Urban, while in
the dry season COD was best determined by PD (Fig. 7). In contrast, the
subcatchments located in western basin I and southern basin VII have
higher PD/Urban coefficient values. A consistent positive correlation be-
tween Urban and COD with lower valued regression parameters was
found in the urban area. During the wet season, PD had aweak negative
effect on COD in basins IV and V, which were the watersheds closest to
Sanyang wetland.
a

b

Fig. 9. Primary influencing factor results for
4.3. Analysis of the primary factors influencing water quality

The primary factor having the largest contribution to water quality
parameters varied with the spatial and seasonal analysis scale. PD
played a dominant role in DO variations with higher local R2 values in
western basin I, whichwas identified as rural area with a lower popula-
tion density, while in the wetland area DOwas best explained by water
area during both seasons (Fig. 9). In contrast, during the dry season both
WA and PD had a better predictability in the urban area with higher
local R2 values. Specific to the suburban area in cluster 1, WA played a
more important role compared to PD in the dry season, while in the
wet season the negative effects from PD on DO were more obvious.
DO in a dry season and b wet season.
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The primary factors influencing TN exhibited similar spatial varia-
tions as TP (Figs. 10–11). AG had a stronger impact on both TN and TP
than Urban at sites H1 and H2 during both seasons. The subcatchments
located near the central city with higher impervious surface areas and
higher PD suffer a greater effect from Urban than AG, however, the cor-
responding local R2 was at a low level (b0.2). In contrast, in the north-
eastern portion of basin V, especially at site H6, AG showed a negative
influence on TP and a positive influence on TN during both seasons. Spe-
cific to the subcatchments in cluster 1 where AG dominated, Urban
played a more important role than AG, but the percentage of urban
land explained only ~25% of the variance in TP and TN. In Sanyang wet-
land, there was a negative correlation between AG and TP (Fig. 5) and a
a

b

Fig. 10. Primary influencing factor results fo
positive influence from Urban (Fig. 10). Differences among the primary
factors influencing TNbetween thewet and dry season (Fig. 11) indicate
that more subcatchments are affected by Urban during the wet season,
while more subcatchments are influenced by AG in the dry season.
These seasonally sensitive subcatchments are mostly located along the
perimeter of the city (northeastern basin I and upstream of Sanyang
wetland).

The spatial distribution of the primary factors influencing NH4
+-N

during the dry season (Fig. 12a) suggested that AG was a major pollut-
ant sourcewith high predictability at sites H1 and H2 (local R2= 0.66 &
0.53) and with similar results for TP (Fig.10a) and TN (Fig. 11a). During
the wet season (Fig. 12b), PD appears to be most important in
r TP in a dry season and b wet season.



a

b

Fig. 11. Primary influencing factor results for TN in a dry season and b wet season.
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determining NH4
+-N for subcatchments in the central city, similar to the

subcatchments in cluster 1 and cluster 3. The local R2 was relatively sta-
ble ~0.26 across clusters 1 and 3.

5. Discussion

5.1. Interpretation of water quality and predicting variables

Positive correlations between urban land use with TN, TP, NH4
+-N

and COD in the majority of subcatchments with few exceptions were
expected (Figs. 4–8), as urban lands are associatedwith various anthro-
pogenic and economic activities generating pollutants, such as
discharge of residential and industrial sewage. In addition, a higher per-
centage of impervious surfaces in urban areas prevents rainfall from in-
filtrating into soil resulting in transport of soluble and particulate forms
of pollutants to nearby streams through surface runoff. These results are
consistent with several previous studies examining pollutant inputs
from urban areas (Walsh and Wepener, 2009; Peters, 2009; Tu, 2011;
Liu et al., 2013; Mei et al., 2014; Wang et al., 2014).

The positive and negative relationships between AG and TN, TP and
NH4

+-N in GWR analysis (Figs.4, 5 and 8) showed divergence from our
OLS results (Table 2) and other studies using traditional global statistical
methods (e.g., Seeboonruang, 2012;Wang et al., 2014;Wan et al., 2014;
Chen and Lu, 2014). In these studies, AG had a strong positive effect on



a

b

Fig. 12. Primary influencing factor results for NH4
+-N in a dry season and b wet season.
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water pollution indicators because agricultural activities, such as fertil-
izer and pesticide application and livestock farming, are often the
main non-point pollution source. However, the strong relationship
with AG was also present in less urbanized areas, especially in agricul-
ture-dominated subcatchments. This is demonstrated by the
subcatchments in cluster 1 and sites H1 and H2 that have an average
AG of ~40%. Aweak negative influence fromAG in our studywasmainly
apparent in the central city, where the percentage of agricultural land
was low relative to urban land. These GWR results are consistent with
findings from northern Georgia (Tu, 2013) and eastern Massachusetts
(Tu, 2011) indicating that agricultural lands are an important pollution
source in less-urbanized areas, but in highly urbanized areas its contri-
bution to pollution is negligible and usually dominated by urban
sources.

Population density in most subcatchments except Sanyang wetland
was found to be positively correlated with COD during the wet season
(Fig. 7b) along with a corresponding negative effect on DO (Fig. 6) dur-
ing both seasons. The higher population density results in higher organ-
ic contaminant discharge, such as food waste, human sewage and
industrial wastes, which contribute to increased COD concentrations
(Xu et al., 2005; Campos et al., 2012; Mohseni-Bandpei and Yousefi,
2013; Sivri et al., 2014).
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5.2. Spatial distribution of primary influencing factors

In the Wen-Rui Tang River watershed, the impact from AG was
found to be the primary factor influencing TP and TN concentrations
at sites H1 and H2 (Figs. 10–11). However, the dominant land use in
these subcatchments was natural vegetation (GR) rather than AG
(Figs. 1–2). In contrast, urban land use appeared to be a dominant factor
determining TP in subcatchments comprising cluster 1 that had an aver-
age AG of 45% and average impervious surface area (including urban
and industry land) of 40% (Fig. 10). This suggests that urban land
might play a more important role in the suburban area where AG and
Urban share a similar proportion. This might be due to urban lands
transportingmore pollutants by overland flow,while in less impervious
areas the infiltration process mitigates pollutants by soil retention pro-
cesseswhile other pollutants are transferred to groundwater by infiltra-
tion and interflow (Cunningham et al., 2010; Seo and Schmidt, 2012).

Our analysis also showed thatmore subcatchments had urban as the
primary influencing factor during the wet season while more
subcatchments had AG as the primary influencing factor in the dry sea-
son (Figs. 10–11). The subcatchments experiencing seasonal changes in
the primary influencing factor were mostly located in the suburban
areas. The Wen-Rui Tang River watershed experiences a subtropical
monsoon climate with high intensity rainfall (including typhoons) in
the wet season and half of the rainfall events lasting for more than
1 h. Such prolonged precipitation events can result in stable or even de-
creased pollutant runoff from impervious surfaces due to a dilution ef-
fect (pollutant supply limited; Seo and Schmidt, 2012). In addition to
the seasonal climate effect, landscape characteristics also played a role
in pollutant runoff. The intensity, volume and duration of rainfall during
the dry season are much smaller and the interval between rainfall
events is much larger. Thus, the influence from runoff mobilization of
pollutants is much stronger than rainfall dilution during the dry period.
As for subcatchments located in the northeastern portion of basin I and
the Sanyang wetland, they tend to be more strongly affected by upland
drainage from the eastern portions of basins I and VI, which delivers
higher quality waters to the lowlands.

Both positive and negative correlationswithwater quality indicators
were observed in the GWRmodels (Figs. 4–8), but only one variable can
be considered the primary factor affecting a given water quality param-
eter. Other variables may be important as well; however, they will be
masked by the effects of the stronger predictive variable. Thus, if the
predicting factor-pollutant indicator relationship does not match our
understanding of water quality dynamics for a particular water quality
indicator, it is important to reevaluate the modeling process to verify
if a significant variable was lost during the variable selection process.
Based on the optimized model results, environmental protection agen-
cies may devise water quality remediation plans specific to local areas
and seasonal considerations advised by the model.
5.3. Variable selection

Of all the explanatory variables considered, Urban was the most
common variable selected for OLS models irrespective of SMLR or man-
ual variable excluding-selecting methods (Table 2). The IN and GR var-
iables fell out of the OLS models while PD maintained a significant
positive correlation with COD and NH4

+-N, similar to the findings of
Ahearn et al. (2005). These results can be considered as a reflection of
the fact that urban land percentage and PD are different metrics of
human habitation (Baker, 2003). In addition, several other explanatory
variables, such as topographic and landscape indexes, are commonly
applied as potential explanatory variables (Chen et al., 2002; Pratt and
Chang, 2012; Sun et al., 2014). However, our previous research did not
find strong relationships between these subcatchment characteristics
and water quality in the Wen-Rui Tang River watershed (Mei et al.,
2014; Lu et al., 2011).
5.4. Performance and uncertainty of the modeling system

The distribution of local R2 results (Figs. 9–12) confirmed our asser-
tion that the influence of LU/PD on specific water quality parameters
change spatially and with seasons. The higher local R2 values appearing
in rural areas suggest that the GWRmodel is more applicable in less-ur-
banized areas. This relationship reflects that non-point pollution makes
a greater contribution to water quality in rural areas.

The majority of studies have found that the influence of land use on
water quality varies with different scales of analysis. The watershed
scale has been verified to bemore effective for spatial analysis thanbuff-
er-strip analysis (Lee et al., 2010; Pratt and Chang, 2012; Nielsen et al.,
2012; Sun et al., 2014). Moreover, the method of delineating
subcatchments may strongly affect results as different methods can
lead to different land-use classifications for the same monitoring site.
Similar to Kang et al. (2010) and Tu (2013), we designed the
subcatchments with the sampling sites located on the subcatchment
boundary rather than in the interior. In other words, the sampling
sites were considered the outlet of the subcatchments. In highly
fragmented subcatchments, it is very difficult to delineate
subcatchments that accurately reflect the characteristics of the basin.

Additionally, subcatchment division using direct DEM processing
methods is inaccurate in plain river networks, such as the Wen\\Rui
Tang River watershed. The relatively flat landscapes are usually beyond
the required vertical resolution required to accurately identify realistic
drainageflowpaths (Callow et al., 2007; Getirana et al., 2009). Thus, fur-
ther research is needed to explore more precise methods for
subcatchment delineation to assist in the identification of the primary
factors influencing water pollution at the different monitoring sites.

6. Conclusion

This study examined the influence of six water quality predictors in-
cluding land-use types and population density on five water quality pa-
rameters in theWen-Rui Tang Riverwatershed during bothwet and dry
seasons. Amanual variable excluding-selectingmethodwas explored to
resolve multicollinearity among independent variables in the GWR
models. To determine which subcatchment characteristics had the
greatest control on water quality indicators, we introduced the concept
of standard regression coefficient analysis along with cluster analysis.
The main results are as follows:

(1) Impact of land use on water quality changes along with the spa-
tial and seasonal scales. For instance, the relationships between TN and
LU/LC percent in GWR results showed a positive correlation in rural
areas and negative correlation in urban areas. The absolute values of
local regression coefficients were lower in urban areas and higher in
suburban and rural areas (p b 0.05). More subcatchments in suburban
areas showed a negative correlation between agricultural land and TN
during the dry season, while more subcatchments showed a positive
correlation during the wet season. This may reflect surface runoff
being a more important pathway of pollutant transport to rivers in sub-
urban areas having greater impervious area.

(2) The factor having the largest contribution to water quality pa-
rameters varied with space and time. Urban land was found to be the
dominant influencing factor on N, P and COD in the highly urbanized re-
gions, but the relationship was weak as the pollutants mainly derive
from point sources. Agricultural land was found to be the primary
influencing factor on N and P in suburban and rural areas; the relation-
ship here was strong as the pollutants are mainly deriving from agricul-
tural surface runoff. Urban land played a more important role in the
suburban area where AG and Urban share a similar proportion of land
area. This may result from urban land having pollutants transported
through overland flow, while in less impervious areas infiltration miti-
gates pollutants by soil retention and some pollutants percolate to the
groundwater system. Subcatchments located in suburban areas were
identified with urban land as the primary influencing factor during the
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wet season while agricultural land was identified as a more prevalent
influencing factor during the dry season.

(3) The manual variable excluding-selecting method was found to
be effective in solving the multicollinearity issue. Adjusted R2 values in
OLS models using the manual variable excluding-selecting method
were 14.3% higher than using stepwise multiple linear regression, indi-
cating that the optimizedmultivariatemodelwas efficacious and highly
interpretability. However, the correspondingGWRmodels had adjusted
R2 values an average of 59.2% higher than the optimal OLSmodels, indi-
cating that GWR models had better prediction accuracy than OLS
models and better reflect the actual watershed spatial characteristics.

The manual variable excluding-selecting method and the re-pro-
cessing method for GWR output used in this study have wide spread
suitable in other study areas having watershed-scale, water quality
data and a small number of explanatory variables. This watershed anal-
ysis provides an important tool for local water resource agencies to es-
tablish more scientific-based water quality management and
remediation plans.
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