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The success of the current generation of Noisy Intermediate-Scale Quantum (NISQ) hardware
shows that quantum hardware may be able to tackle complex problems even without error correction.
One outstanding issue is that of coherent errors arising from the increased complexity of these
devices. These errors can accumulate through a circuit, making their impact on algorithms hard to
predict and mitigate. Iterative algorithms like Quantum Imaginary Time Evolution are susceptible
to these errors. This article presents the combination of both noise tailoring using Randomized
Compiling and error mitigation with a purification. We also show that Cycle Benchmarking gives
an estimate of the reliability of the purification. We apply this method to the Quantum Imaginary
Time Evolution of a Transverse Field Ising Model and report an energy estimation and a ground
state infidelity both below 1%. Our methodology is general and can be used for other algorithms
and platforms. We show how combining noise tailoring and error mitigation will push forward the
performance of NISQ devices.

Keywords: Error mitigation, Randomized Compiling, Cycle Benchmarking, NISQ, Quantum Imaginary Time
Evolution

I. INTRODUCTION

To realize impactful application of Noisy
Intermediate-Scale Quantum (NISQ) devices, er-
ror mitigation strategies have emerged as a principle
focus of quantum information science. Unlike quantum
error correction, which corrects errors as they occur,
error mitigation uses post-processing techniques to
reduce the impact of errors on the results of an algo-
rithm. These error mitigation schemes are needed to
tackle the noise and errors present in current quantum
hardware. Many recently implemented algorithms have
required some form of error mitigation with already
state-of-the-art hardware [1–4]. Several types of error
mitigation can be distinguished: error extrapolation
purposely scales the rate of a specific known error in
order to extrapolate the results to zero noise [2, 4–6]
at the expense of additional measurements, and
assumptions on the noise. Inverting error protocols
characterize errors to then correct them with quasi-
probabilities [6, 7], requiring a precise and extensive

∗ These two authors contributed equally.
Correspondence should be adressed to amorvan@lbl.gov and
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characterization of the system using Quantum Process
Tomography [8] or Gate Set Tomography [9]. Post-
selection protocols eliminate wrong output solutions
by checking, for example, an expected symmetry
[10, 11]. Such post-selection techniques usually require
extra quantum resources, such as ancillary qubits.
Each technique requires a careful consideration of the
additional measurement overhead required, especially
as the applications scale in scope.

For quantum algorithms on NISQ hardware, one of
the biggest challenges comes from coherent errors. Con-
trary to decoherence, the accumulation of coherent er-
rors strongly depends on the circuit used. These er-
rors arise due to the increasing complexity of quan-
tum devices and originate from multiple mechanisms
like crosstalk, frequency collision, drift, etc., making it
difficult to track and compensate for their impact. On
the contrary, decoherence processes are easier to predict
and correct as their behavior does not depend on the
circuit. To tackle the problem of coherent errors while
keeping the same number of measurements - or total
number of shots per experiment - it is possible to tailor
them into stochastic noise using Twirling properties and
then statistical averaging. Twirling is a technique now
widely known in the quantum information litterature.
It is for example at the heart of Randomized Bench-
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marking [12–15]. Randomized Compiling (RC) [16] -
that uses Pauli twirling - has been shown to improve
the performance of quantum devices [17, 18].

Common benchmarks of error mitigation techniques
on NISQ devices are usually fixed-depth algorithms
such as VQE [19–21] or QAOA [22–24]. Here we use
the Quantum Imaginary Time Evolution (QITE) [25–
28] algorithm to benchmark the different error mitiga-
tion techniques. It is an iterative algorithm that ap-
proximates imaginary time evolution with a unitary op-
eration. In the limit of long imaginary time, the algo-
rithm reaches the ground state of a given Hamiltonian.
One advantage of QITE is that it generalizes easily to
calculate finite temperature quantities [29, 30]. Addi-
tionally it does not require a priori knowledge of an
ansatz, which can be difficult for variational algorithms
[31–33]. The sensitivity to experimental errors of the
computation of each step makes the algorithm less re-
silient to noise than VQE [34, 35], which makes it a good
candidate to benchmark error mitigation protocols.

In this article, we use 4 qubits in a linear topology
out of an 8 fixed-frequency transmons chip described
in [18, 36]. Our entanglement is based on the cross-
resonance interaction and realizes a CNOT or a CZ gate
[37]. Here we combine noise tailoring with RC and mit-
igation with purification and show that using both im-
proves the quality of the result beyond what one would
expect from using each one separately. We attribute
this performance improvement to the noise tailoring by
RC that effectively maps the coherent errors into Pauli
errors, which are simpler to handle and can be further
approximated as a fully depolarizing error model. In
Section II we discuss the implementation of RC with
purification and give an estimation of how close the
noise is to fully depolarizing using Cycle Benchmark-
ing [38] and compare it to our hardware. In Section III,
we then use this scheme to perform QITE on the Trans-
verse Ising Field Model with 3 qubits to benchmark the
efficacy of this method. We conclude by how to extend
and complement our techniques with further mitigation
schemes.

II. NOISE TAILORING WITH RANDOMIZED
COMPILING

Twirling is a powerful technique that tailors the noise
a circuit experiences when run on hardware. Its most
notable use is the characterization of quantum proces-
sors with Randomized Benchmarking (RB) for qubits
[12–15] and qudits [39, 40]. Defining a twirl requires
a twirling group G that is usually the Pauli group or
the Clifford group. For every cycle of the circuit - de-
termined by the native gate-set - a gate from the twirl
group is inserted. Twirling in the mathematical sense
is achieved by averaging the circuit outcomes for all

combinations of twirling gates. In practice, averaging
over a few randomly sampled twirls is enough. When
the twirling group is a single qubit group like the Pauli
group P, this step is done efficiently by compiling the
twirling gate into the circuit’s single qubit gates, keep-
ing the circuit’s depth unchanged in terms of multi-
qubit gates. For twirling to be useful for a specific cir-
cuit, one has to track all the twirl operations and invert
it at the end of the circuit. Even for a simple twirling
group like the Pauli group, this can be challenging if the
circuit is made of non-Clifford gates. To circumvent this
issue, protocols like Randomized Compiling (RC) have
been proposed [16, 41] and demonstrated [17, 18]. In
this protocol, the steps are separated between ‘easy’ and
‘hard cycles’ depending on their error rate. The hard
cycles usually correspond to the cycles with multi-qubit
gates. The twirling gate is inverted through each hard
cycle instead of only at the final step. This approach
avoids tracking all the twirling gates and the complex
inversion gate at the end of the circuit, making it scal-
able to any number of qubits. However, it requires that
any Pauli can be inverted through the entangling gates
by another Pauli. It is the case for all the two-qubit
gates which are locally-equivalent to Cliffords, like the
CNOT and the CZ, but not for entangling gates like the
fSim [42].
Generic Noise— To understand how twirling works,

the proper framework is the so-called Pauli-Transfer
Matrix (PTM) representation of quantum operators.
The PTM is simply a matrix representation, in the Pauli
basis, of the linear transformation on the density ma-
trix. Hence, a PTM is a square matrix of size 4N × 4N ,
where N is the number of qubits. When considering a
noisy implementation Ã of an ideal operation A, we can
define the noisy part as Λ = ÃA−1. For an ideal imple-
mentation, Ã = A and Λ is the identity. In general, this
error matrix can have terms on almost every position.
Methods like process tomography [8] and Gate State
Tomography [9] allow one to reconstruct this matrix us-
ing experimental measurements. The off-diagonal terms
are specifically harmful for algorithms and prediction of
performance as most of them will lead to accumulation
of coherent errors. It can be visualized in the single-
qubit case with a simple over-rotation: if the error is
small for a single gate, repeating the same gate sev-
eral times makes the error grow quadratically with the
circuit depth. Additionally, the error is dependent on
the circuit layout, making it hard to predict how well a
given circuit will perform. This is one explanation for
the gap between actual circuit performance results and
what RB would predict [43].
Pauli Twirling and Cycle Benchmarking— Pauli

Twirling effectively changes the PTM of the error Λ.
It can be shown that the error matrix ΛP under Pauli
twirling is simply the diagonal of the full PTM Λ (i.e.
the off-diagonal terms of the error are suppressed). This
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emphasizes the advantage of RC over simply running a
circuit: eliminating the off-diagonal terms of Λ makes
any coherent interference of error impossible and thus
increases the algorithms’ predictability. Several proto-
cols are specifically designed to measure these Pauli er-
rors [38, 44–46]. In this article we use Cycle Bench-
marking (CB) [38] as our main method for measuring
the Pauli errors in our system. For each Pauli, CB mea-
sures the Pauli decay λP that corresponds to the diag-
onal of the ΛP PTM. It can be used to exhaustively
measure all Pauli channels - for small sized system - or
to statistically sample from a large set of channels.

Even though the number of non-zero entries of ΛP

is reduced compared to that of Λ, there are still 4N

elements, making a complete characterization of all the
terms not scalable as the number of qubits increase.
However, CB demonstrates that sampling from these
coefficients can give a good estimate of the behavior
under randomized compiling. The Pauli decays are also
bounded by (see supplement of [38]):

2λ̄− 1 ≤ λP ≤ 1, ∀P ∈ P. (1)

In this article, we argue that the noise under RC
with Pauli Twirling can be approximated by a fully
depolarizing noise model within a controlled approxi-
mation. The noise matrix can then be described as
λP = 1 − p ∀P ∈ P, P 6= I and λI = 1 where p is
the probability of the input state being replaced by a
totally mixed state.
Experimental investigation of RC on random cir-

cuits— The experiments have been carried on two su-
perconducting transmon processors at the Advanced
Quantum Testbed. The chip architectures are described
in [18, 36]. The single qubit gates are performed us-
ing the ZXZXZ decomposition [47]. The first chip uses
a CNOT gate between two qubits (labelled 0 and 1),
made through the cross-resonance interaction, and the
second chip uses CZ gates between nearest-neighbors
for four qubits in a linear topology [37], labelled 4, 5, 6
and 7.

To demonstrate the properties of Pauli twirling un-
der RC, we sample uniformly random 2-qubit circuits
(random in SU(4)) and compute the expectation val-
ues Em of all the possible Pauli strings composed of Z
and I. By compiling the rotations of the eigenbasis of
an observable O into the last cycle of the circuit and
by removing the identity part of this observable (i.e.
requiring that Tr(O) = 0), we can always map the mea-
surement of O to such a Pauli string. In Figure 1 we plot
the distribution of the norm-1 error on the expectation
value measured Em compared to its ideal value E as
we increase the number of randomizations, thus com-
ing closer to an ideal twirl. To make the comparison
fair, we have kept the total number of shots constant
but we have split the acquisition into different numbers

of randomly compiled circuits. First, the spreading of
the errors |Em − E| is reduced as can be seen on the
histograms in Figure 1.a. as one would expect from re-
ducing the possibility of error accumulation. Second,
in Figure 1.b., the mean error without RC is flat as a
function of the ideal value, whereas as we increase the
number of randomizations, a linear dependency on the
ideal value appears, corresponding to a fully depolariz-
ing noise model.
Estimators for the average depolarization— Under a

fully depolarizing noise model, the expectation value of
a bitstring of Z and I is simply reduced by a factor
λ = 1 − p. This is true for all the expectation values
constructed like this except the identity. This can be
written as Em = λE. The scaling factor λ can also
be understood as the length of the generalized Bloch
vector. An estimator of this value can be constructed
measuring the purity of the state at the end of a cir-
cuit. This, however, requires full tomography of the
final state. Another estimator is the mean of the Pauli
decays λP measured using CB. As it is a scalable pro-
tocol, it is possible to use it to estimate λ.

In Figure 1 b. we have plotted in dashed lines the
average depolarization estimated from the mean of the
Pauli decays measured with CB of the CNOT λ̄CB =
0.959 which shows good agreement. CB furthermore
gives more information: the distance between the two
noise matrices Λd (depolarizing error) and ΛP (twirled
errors or Pauli errors) is exactly the standard deviation
of the measured Pauli decays under CB. This provides
very valuable a priori information on how well error
mitigation protocols will work, based on the assumption
that the error is almost a depolarization model.
Depolarizing errors can be mitigated by a simple pu-

rification— A fully depolarizing noise model is simple
to mitigate. Knowing λ, the ideal expectation value
can be recovered by rescaling all expectations values by
this same coefficient λ. This technique has been used
in Nuclear Magnetic Resonance experiments and more
recently in [48]. In Figure 1 c. we have used a full to-
mography of the 2-qubit state to extract the length of
the generalized Bloch vector and then applied a simple
rescaling of the expectations values. In this case, the
purification is given by:

Ẽp = λEp with
1

λ2
=

1

2N − 1

∑
P∈P⊗n\{I⊗n}

E2
P . (2)

Further analysis of the errors, increasing the depth—
In Figure 2, we have increased the depth of two-qubit
circuits. For two qubits there is only one hard cycle,
so the depth is the number of times this hard cycle
is applied. The sampling is done by picking random
unitaries from SU(4) and using a KAK decomposition.
For a depth-6 circuit for example, we have randomly
chosen two unitaries, decomposed them into our native
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Figure 1. Effect of randomized compiling on measured expectation values for random circuits using 6 CNOTs. Panel a. shows
the distribution of errors on the measured expectation values |Em −E| for the different numbers of randomizations. Panel
b. shows the same data, but sorted by measured expectation values, to show the increasing agreement with a depolarization
model Em = λ̄E, with λ̄ the mean of the Pauli decays measured by CB — performed prior to the experiment. The standard
deviation of the errors is similar for all points of same number of randomizations and is plotted in the inset. The data in
c. shows the reduction of errors for all expectation values when using the purification formula 2. The standard deviation
of the Pauli decays is std(λP ) = 0.017.

gate set and then measured the concatenated circuits.
We use this method to preserve the uniform sampling
for all the different depths. The fidelity of a measured
state ρ to a pure state σ can be expressed in terms of
their Pauli expectation values:

F (ρ, σ) = tr(ρσ) (3)

=
1

2N

(
1 +

∑
P 6=I⊗N

ρPσP

)
(4)

=
1

2N
+

(
1− 1

2N

)
λ cos ε (5)

where λ is the length of the Bloch vector given by
Equation (2) and ε is the angle between the two gen-
eralized Bloch vectors. Equation (5) indicates that two
mechanisms can decrease the fidelity: a reduction of
the Bloch vector length λ and a mis-alignement of the
vectors axes giving a contribution cos ε. Purification or
re-scaling is intended to correct the first type of error,
but leaves untouched the second kind of error, or an-
gle error. Assuming that the first kind of error is the
limiting one, the fidelity can be approximated as

F (ρ, σ) ' 1

2N
+

(
1− 1

2N

)
λ. (6)

For a circuit with the same hard cycle repeated ncycles
time and with an average Pauli decays λ̄ we can simply
write that:

F (ρ, σ, ncycles) '
1

2N
+

(
1− 1

2N

)
λ̄ncycles . (7)

The measured fidelities obtained from full tomogra-
phy for 9 different depths and 10 random circuits at
each depth, randomly compiled 20 times are shown in
Figure 2. The estimation of equation (7) using λ̄ from
CB in dashed blue shows a very good agreement in-
dicating that the length errors are indeed dominating.
We also extract the length λ for each random circuit,
and compare it to λ̄ncycles . We also extract the residual
error using the following equation:

cos ε =
1

2N − 1

∑
P 6=I⊗N

ρP
λ
σP . (8)

This part of the error cannot be corrected with a sim-
ple purification. We note that the degradation of the
fidelity due to the angle error is much slower than the
part due to reduction of the Bloch vector length and
that with purification, circuit with larger depth can
be explored. This result emphasises that randomized
compilation makes circuit performance much more pre-
dictable, and that CB is a good tool for predicting cir-
cuit performance under RC.
Increasing number of qubits— When increasing the

number of qubits, several hard cycles need to be con-
sidered. In our case, for a linear topology of 4-qubits,
we need to consider the 4-qubit Pauli decays obtained
by CB for the entangling gates between each qubit. Un-
der randomized compiling the effective rescaling factor
λ will be given by the product of the λi obtained for
each hard cycle: λeff = λn1

1 λn2
2 λn3

3 with ni the number
of occurrence of the hard cycle. We note that universal
circuits can be constructed using few different hard cy-
cles and single qubit gates, reducing the number of hard
cycles it is necessary to characterize. In Figure 3, the
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Figure 2. Fidelity F of random states versus the number
of CNOT gates presented in blue points, together with the
independent estimation from CB, using equation (7) as the
dashed blue line. The length of the generalized Bloch vec-
tor λ, is shown in green, together with its CB estimation in
dashed green. The remaining error separating the two con-
tributions corresponds to an angle error as shown by equa-
tion (5).

spread of the Pauli decays λP are shown for the CNOT
gate used in Figures 1 and 2, and for the CZ gates of the
4-qubits chip. We also emphasize that the number of
Pauli decays needed to benchmark isolated two-qubit
gates (15 for CZ(5, 4)) is much less than the number
required to benchmark larger cycles containing idling
spectator qubits (255 for CZ(5, 4) in parallel with I(6)
and I(7)), which increases the spread and reduces the
mean. We emphasize that exhaustive sampling of the
Pauli decays is not needed as the mean and standard
deviation can be estimated efficiently by randomly sam-
pling the Pauli decays [38]. We notice that the bound
from equation (1) is indeed valid for these data.

III. APPLICATION TO THE QITE
ALGORITHM

Imaginary time evolution is a classical iterative al-
gorithm to find the ground state of an Hamiltonian.
The key ingredient of this algorithm is that the imag-
inary time propagator U(β) = exp(−βH) — which is
non-unitary — will converge to the ground state for
large imaginary time, given that the initial state over-
laps with the ground state [49, 50]. In [25], the authors
describe how to use a quantum computer to perform
the imaginary time evolution on NISQ hardware with-
out ancilla qubits. The main idea is to normalize the
evolution operator at every time step to make it a uni-
tary evolution that can then be decomposed into gates.
This can be done efficiently by simply solving a linear
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Figure 3. Histograms of the Pauli decays λP for the differ-
ent cycles. The first histogram shows the 15 different λP

for the less well calibrated CNOT gate of Figures 1 and 2.
The dashed line indicates the mean and the dotted line the
lower bound of equation (1). The second histogram shows
for comparison the corresponding parameters when charac-
terizing one of the CZ gate on only two qubits on the better
tuned 4-qubits processor. Including the two remaining idling
qubits in the hard cycles as described in the legend of the
histograms, the spreading of the 255 corresponding λP is
shown for the 3 different hard cycles used in the following
QITE experiments.

system, which is an easy task for classical computers,
and thus QITE is free of the complex optimizations that
arise in the VQE scheme [51]. The price to pay is that
this algorithm is not a fixed depth circuit, but rather
will increase in depth for every iteration. Recent exper-
imental and theoretical work try to minimize this issue
by aggressively reducing the number of steps needed to
reach the ground state [26] or by compressing all the
steps into a shorter circuit [52, 53].

A. TFIM model

In this work, we concentrate on the Transverse Field
Ising Model (TFIM). This is a very well known model
which has been investigated several times with the
QITE and other algorithms [25, 27, 29, 54], thus prov-
ing a proper benchmark for our error mitigation scheme.
The TFIM Hamiltonian for a chain of N qubits is:

H = J
∑
〈ij〉

XiXj + h
∑
i

Zi (9)
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where J is the interaction exchange between the nearest
neighbors, h is the transverse field applied to the chain
and 〈ij〉 indicates that the sum is over nearest neigh-
bors. The state and the evolution operator at a given
step can be written on the Pauli Basis:

ρ =
∑

P∈P⊗N

ρPP and U = exp

(
−i

∑
P∈P⊗N

aPP

)
,

(10)
where ρP are the expectation values of the Paulis of
the state ρ and aP are the generators of the unitary
U . We call support of the state the Paulis that have
non-zero expectation values. The TFIM Hamiltonian
presents several symmetries that allow us to reduce the
problem from two perspectives: the construction of the
unitary and the support of the ground state. In Motta
et al [25], a domain size D is introduced, which can be
smaller than the full domain considered by the Hamilto-
nian, and the Trotterization happens over the different
small domains D. This will be mandatory for bigger
systems, but for the small systems considered here we
will use D of the same size as the number of sites of the
Hamiltonian.

Z2 symmetry— Let’s first consider the so-called Z2

symmetry: The Hamiltonian from equation (9) com-
mutes with the operator Z⊗n. This symmetry divides
the full Hilbert space into two eigenspaces with, for any
state |S〉, Z⊗n |S〉 = + |S〉 or Z⊗n |S〉 = − |S〉. All
the eigenstates of H have to be in either of these sub-
spaces. This property will both restrain the support
of the possible ground states and force the QITE evolu-
tion operators to preserve the parity with respect to this
symmetry. To reduce the support of the ground state,
we recall that two Pauli operators can either commute
or anti-commute. For the Pauli operators that anti-
commute with the symmetry S, the expectation value
of this Pauli on an eigenstate of the Hamiltonian is nec-
essarily zero: 〈GS|P |GS〉 = Tr(ρP ) = ρP = 0. If we
require all the steps to fall within the symmetric sub-
space, this will also enforce that U commutes with the
symmetry S. Developing the evolution to the first or-
der, we find that U commutes with S if and only if
aP = 0 ∀P ∈ P such that {P, S} = 0. This simplifies
the synthesis as the number of generators to consider is
reduced by a factor two. For the support of the ground
state, if we know the sign of the parity s, usually found
using a classical algorithm, we can further constraint
the support by noting that 〈SP 〉 = s 〈P 〉. The number
of free parameters for the ground state is thus reduced
by a factor four compared to the full Hilbert space size.
Time reversal symmetry— As the TFIM Hamilto-

nian H is real, it is invariant by Time Reversal Sym-
metry. This adds another symmetry to consider. The
corresponding symmetry operator is T = K, with K
the complex conjugation. The unitary evolution at

each step has to commute with K, which implies that
the generator has to anti-commute. This means that
the support of the generators is included in the Pauli
matrices that anti-commute with K: aP = 0 ∀P ∈
P such that [P,K] = 0. This implies that the set of al-
lowed generators are the Pauli strings with an odd num-
ber of Y . It also means that the ground state should
be an eigenvector of K meaning that the support of the
eigenstate has to commute with K. In other words, the
eigenstate support set is intersected by the Pauli strings
that have a even number of Y . We note that for this
specific symmetry, the set of generators and the set of
support for the ground state are disjoint.
First excited state and higher energies levels— QITE

offers an efficient way to calculate the higher energy
states. When the ground state |GS〉 is determined with-
out considering the symmetries, one idea is to add to
the Hamiltonian H a term proportional to the ground
state in order to make the first excited into a ground
state: H → H + α |GS〉〈GS| with a coefficient α large
enough. It is also possible, for the first excited state,
to make use of the symmetry: the ground and first ex-
cited states should have opposite parities. Then using
the same QITE algorithm, but changing the initial state
parity allows to find the 1st excited state.

B. Unitary construction

In this section we discuss how we have synthesized
each imaginary time step step. The generators aP
are calculated via linear regression as discussed in [25].
When performing this linear regression, the result is
very dependent on the measurement noise. To mitigate
this effect, we used a Ridge regression that constrained
the overall norm of the generators. The number of Pauli
expectations values to measure as well as the number of
generators depend on the size D of the domain consid-
ered in the QITE experiment. As our current processor
has a limited number of qubits, we have chosen to con-
sider only domain sizes equal to the total size of the
system. This choice allows us to compress the circuit
at every step and avoid stacking the gates. It enforces,
however, a measurement of the state on its full support
and makes the synthesis harder as its uses multi-qubit
gates with more than 2 qubits. Using a state-of-the-art
circuit synthesis algorithm, QSEARCH [55], we were
able to run all of the 3-qubit TFIM QITE steps with
circuits containing less than 12 CNOTs. We note that
enforcing the symmetries on the unitary allowed us to
drastically reduce the number of entangling gates. We
report in table I the number of entangling gates for
different synthesizers. QSEARCH allows to set the nu-
merical accuracy of the synthesis of the unitary, and
we show in the supplements how we have chosen the
precision so that it is not limiting the ground state fi-
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N QISKIT QFAST QSEARCH
2 3 3 3
3 30-35 10-12 7-12
4 160-200 70-80 30-50

Table I. Comparison of the maximum number of entangling
gates obtained with different synthesizer. QSEARCH [55]
and QFAST [57] and the generic tool Isometry on Qiskit
[58] for a QITE simulation of a TFIM of N sites with the
parameters J = h = 1.

delity measured on the hardware. We note that for
larger qubit numbers the current approach will have to
be improved, but we also expect that in the future, the
synthesizers will continue to become more efficient. We
also expect that the synthesis could be further tailored
for the QITE algorithm. We note that this type of syn-
thesis has recently allowed to find fixed depth ansätze
for some iterative algorithms and specific hamiltonians
[56].

C. Convergence to the ground state

Ground state calculation— In order to showcase the
error mitigation developed in the first section of this
letter, we have run the QITE algorithm on the 3-qubit
TFIM for several sets of parameters. In Figure 4, we
plot the QITE trajectory for the parameters J = h = 1
and calculate both the relative energy error and the in-
fidelity of the measured ground state. For each experi-
ment we indicate the average of the last points as well
as the standard deviations of the measurement after the
ground state is reached. This is done in order to capture
the stability of the algorithm when the ground state is
found. On this plot we see that without randomized
compiling - or error tailoring - nor error mitigation, the
results are far away from the ground state. Using a pu-
rification technique improves the result significantly as
it diminishes the impact of incoherent errors introduced
by noise tailoring via RC. We note here that iterative
algorithms like QITE are particularly sensitive to errors
on the expectation value as these values are necessary
to determine the next circuit. On the second set of ex-
periments we have used both randomized compiling and
the purification technique described in the previous sec-
tion. As we can see the combination of both the noise
tailoring and the error mitigation greatly improves the
results. We further use the McWeeny purification [59],
also used for example in [3], corresponding to an iter-
ative procedure projecting the measured state to the
closest state of purity one. As we increase the number
of randomization and the number of shots per random-
ization, we are able to push the precision to 0.2% for
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Figure 4. QITE trajectories for the 3-qubit Ising model,
J = h = 1. The number of shots and of randomized com-
pilations is varied. The mean and standard deviation of the
last points are shown by a dashed line and the colored zone.
The different colors correspond to: U.S.: Unitary Simula-
tion; Exp 1: No Purification, no RC, 5000 shots; Exp 2:
Purification, no RC, 5000 shots; Exp 3: Purification, 10
RC, 500 shots; Exp 4: Purification, 100 RC, 1024 shots, and
McWeeny purification;

both the energy and the ground state infidelity.
Phase diagram— We then proceed to measure the

phase diagram of the TFIM on 3 qubits as the external
magnetic field h is swept. In Figure 5 we plot the en-
ergies and the local magnetization as a function of the
transverse field h for both the ground state and the first
excited state. For both these quantity, we have used the
average over the last states as depicted in Figure 4. We
consistently get errors below 1% for both the energy
and magnetization.

IV. CONCLUSIONS

In this letter, we have demonstrated that tailoring the
errors with Randomized Compiling simplifies the noise
process present on our quantum processor to a Pauli
model. We also have shown that this error process
is approximately a fully depolarizing noise. We have
quantified the distance of our noise process from a fully
depolarizing noise channel using the standard deviation
of the Pauli decays obtained through Cycle Benchmark-
ing. With this measure, we are able to predict whether
simple purification techniques that compensate for this
full depolarization can give an advantage. Since the
spread of these Pauli decays is bounded, we believe that
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Figure 5. Phase diagram for the 3-qubit Ising model vary-
ing the h parameter. a. Energy in units of E/J , for the
ground state and first excited state. The experiments use
10 randomized circuits and 1024 shots for each value of h.
The reported energy corresponds to the mean of the 5 last
points of the QITE evolution. Error bars corresponding to
the standard deviation on these points are smaller than the
markers. The error shown below each plot corresponds to
the relative error. b. measured magnetization of the same
data, with the corresponding absolute error.

as the number of qubit increase, there will always be a
regime where the noise under Pauli twirling can be ap-
proximated by a depolarizating model. In this work, we
have concentrated on randomized compiling with Pauli
twirling. The spread of Pauli decays depends on the
choice of twirling group. The Pauli twirling gives the
maximum spread of Pauli decays with a different value
for each, but is straightforward to implement. The Clif-
ford group would lead to no spread at all but is imprac-
ticable for more than 2 qubits. The Diehedral twirl [60]

can be used with our native CZ gate and will reduce
the spread as Pauli decays as the ones in X and Y will
share the same values. This would reduce the distance
to the depolarization channel and therefore potentially
enhance the performance of purification techniques. We
also foresee that using smart synthesizers that can ex-
clude subspaces with large Pauli decays would help im-
prove the performance of purification techniques.

We have demonstrated how an iterative algorithm
— Quantum Imaginary Time Evolution — can bene-
fit from the application of both a noise tailoring tech-
nique like randomized compiling and an error mitigation
technique like purification. The application of RC and
purification results in an improvement over each tech-
nique used separately. The approximation made can
be tested by measuring the spread of the Pauli decays
using CB. In this article, we have concentrated on a sim-
ple purification scheme. However, it can be combined
with sophisticated techniques, such as error extrapola-
tion methods [2] or symmetric post-selection [10, 11] to
even further enhance the accuracy of the results.
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