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Abstract

Cognitive scientists have often pondered the question of
perceptual spaces, that is, the question of how a certain
gamut of familiar stimuli might be organized in the mind.
We present Trajectory Mapping as an alternative clustering
method to the traditional algorithm of Multi-Dimensional
Scaling. We suggest that given data about the
relationships among stimuli, Multi-Dimensional Scaling
provides the one type of information (geometric), while
Trajectory Mapping offers a second type (relational). As an
illustration we present the initial results of applying both
clustering techniques to subjects' perceptions of musical
intervals. While an interpretation of the Multi-
Dimensional Scaling requires a priori knowledge of music
theory, Trajectory Mapping directly reveals the music
theory that has been internalized by subjects.

Introduction

Cognitive scientists have often interested themselves in the
question of perceptual spaces, that is, the question of how a
certain gamut of familiar stimuli might be organized in the
mind. Colors or textures, for example, can be organized with
a variety of schema, and one might well wonder which of
these the human being employs. Researchers in this field
have often relied on standard clustering algorithms such as
Multi-Dimensional Scaling to reveal the cognitive
structures. This paper will point out a salient deficiency in
such algorithms and offer an alternative approach called
Trajectory Mapping (Richards & Koenderink, 1993). We
will then illustrate the differences between the approaches by
applying each to musical intervals.

To provide a conceptual comparison of a traditional
clustering approach and Trajectory Mapping (TM), we offer
an example involving 10 subway stations in the Boston
subway system. If one rides a subway regularly, two types
of information about the stations are acquired: the
approximate distances between them (independent of their
connections), and their placement along each of the various
routes. The first type of information can be called
geometric, while the second can be called relational.
Figure 1, a map of the stations' locations and their
connections, contains both types of information.

The MDS Technique
Multi-Dimensional Scaling (MDS), first discussed by
Torgerson (1959), Shepard (1962), and Kruskal (1964), is a

classic example of a clustering algorithm. When applied to
our subway example, MDS derives the geometric
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information mentioned above, namely the actual locations of
the stations (up to a scaling factor). The input to MDS is a
matrix of the distances between all the stimuli, and the
output is the spatial arrangement of the stimuli that best fits
the demands of the matrix. Note that MDS does not concern
itself with the actual links between the stations.

Several noteworthy assumptions must hold in MDS. The
distance matrix must be symmetric, that is, the distance
from A to B is the same as from B to A. Also, it must be
reasonable to assume that the stimuli could lie in a space in
which a uniform distance metric holds (typically Euclidean).
Furthermore, the researcher chooses the dimensionality of
the fitting space. Although the “stress" parameter provides a
quantitative assist in choosing the dimensionality. there is
no qualitative indicator that derives it from the inherent
structure in the stimuli.

The TM Technique

Trajectory Mapping focuses on relational information, such
as the organization of our subway stations along various
routes. While MDS is an analysis algorithm that can be
applied to a distance or similarity matrix collected under a
variety of experimental paradigms, TM describes not only
the heuristic for data analysis, but also the experimental

paradigm.
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D

Figure 1: This crude map of a part of the Boston subway
system contains two kinds of information. The geometric
information comes from the physical distances between the
subway stations. The relational information comes from the
routes which link the stops together.
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Figure 2: These TM data for the subway station example illustrate the
Extrapolant—A—Interpolant—B—Extrapolant form of TM quintuplets.
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In the TM methodology a subject initially surveys the
entire range of stimuli. If the experiment is visual, the
subject might see a computer screen of images or a table full
of picture cards. In each trial two stimuli are designated A
and B. The subject is asked to note a feature that differs
across the two and to choose a sample from the remaining
stimuli which shows the result of extrapolating that feature
further. In the case of colors, a subject given red and then
pink might extrapolate to white. The subject also chooses
an extrapolant going from B to A and an interpolant that
would fit well between them. We ask the subject to use the
same changing feature in each choice.

In the subway example, one might give a subject two
station names and ask which station comes next in her
mental subway map. Figure 2 contains possible subway
data. Note that although the subway system is an object
which one can describe objectively, we are not looking for a
factual description with TM; we hope instead to derive each
subject’s perceptual map of the system.

There are three special cases that arise in this paradigm, as
shown in the data. The first occurs when A and B are so
dissimilar that the subject feels uncomfortable choosing a
feature that smoothly varies between the two. We call this
the "infeasible" case, and an example might be two subway
stations that are at the far ends of two different subway lines
(connected too indirectly). In the "feasible, no sample” case
the subject can easily imagine an appropriate extrapolant or
interpolant, but finds that the experimenter has not included
it in the sample set. The "dead end" case occurs when either
A or B represents an extreme in the variability range of the
chosen feature. In the subway example, A or B would lie at
the end of a line.
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The analysis part of TM consists of outlining the
dominant patterns in the data. One may divide the
Extrapolant-A-Interpolant-B-Extrapolant quintuples into
three overlapping triples, for example, and then identify the
most prevalent triples across the entire data. Dominant
triples that overlap could then be joined to illustrate the
salient cognitive pathways through the space. In general,
one seeks to highlight the common paths in the data. The
exact approach taken can depend on the data set itself.

Hev °  Cemt Kend Park ss
\ I
\ Local s
- Express I
Copt
Figure 3: This Trajectory Map shows the relational

nature of TM output. The "Local” and "Express” pathways
represent different features, e.g. “all the stops on the red
line" or "my favorite restaurant stops on the red line."”
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Figure 4: The upper interface collects MDS data using the Method of Triads. The X, A, and B buttons each play an interval
upon the subject's command. The subject must choose whether A or B is more "harmonically similar” to X by clicking the
appropriate arrow. The lower interface collects TM data. The 12 buttons each play an interval. The subject thinks of a feature
that varies across the two primary intervals, A and B, and extrapolates by picking a third interval that would best continue
that change (f). The subject also chooses an extrapolant in the other direction (none possible here) and an interpolant (£).

365



In the case of subway stations, doing TM with an
experienced commuter would likely yield a trajectory map
very similar to the schematic subway maps seen inside the
stations themselves, diagrams that show the routes among
the stations with minimal indication of their true geography.
Figure 3 shows a trajectory map of the example data. Note
that the trajectory map has two pathways that travel between
Harv and § S. Since each trajectory represents a subject's
moving among stimuli using a certain feature, different
trajectories that thread similar stimuli can indicate different
contexts in which the subject might move among stimuli,
i.e. different features of the stimuli. In the subway example,
the "Local” could represent a subject's pedantic recalling of
the subway map, while the "Express" might represent the
subject’s individual traveling map; he rarely stops at Char or
Dtwn stations.

Organizing Musical Intervals

Now that we have briefly introduced the clustering
algorithms, we offer their different approaches to discovering
subjects’ cognitive organization of musical intervals.
Various studies have examined the relationship between the
perception of notes and their tonal context or how a
perceiver organizes notes within a single tonal context (e.g.
Krumhansl & Shepard, 1979; Dowling 1986: and
Krumhansl 1979, 1990). Like some of these studies, we ask
what features or organizing principles a subject uses to
group musical intervals, and specifically, we ask what TM
and MDS can tell us about these features.

We define a musical interval as a pair of different notes
from the traditional Western 12-tone octave in which the
note of lower pitch occurs first. This definition gives us a
total of 12 stimuli, and we denote them as m2, M2, m3,
M3, P4, T, P53, m6, M6, m7, M7, and O. The "m" means
"minor,” the "M" means “major,” the "P" means "perfect.”
"M2," for example, represents a rising interval of a major
second. The "T" is the tritone (the physical middle of the
octave), and the "O" is the octave. Within a given trial, we
begin all stimulus intervals on the same note to maintain a
consistent tonal context within each trial. Across trials, we
vary the beginning note within an octave range.

The MDS Experiment

We exposed a musical and non-musical subject to 660 trials
using a Yamaha DX-7 synthesizer and a Macintosh running
Hypercard and MIDI. The upper half of Figure 4 presents the
interface. We presented the subjects with three buttons A,
B, and X. each of which played an interval when clicked
with the mouse. We asked subjects to indicate whether X
was more "harmonically similar” to A or B by clicking the
appropriate arrow. Subjects could listen to the intervals as
many times as they wanted by clicking the buttons. We
presented each of the 12 stimuli behind the X matched with
all the possible pairs of remaining stimuli (660 trials).

To calculate the similarity matrix from the triad data, we
followed Torgerson's instructions for "The Complete
Method of Triads" (1952); the number of times that each
pair was chosen became its similarity measure. We then
computed the MDS space with KYST2 (Bell Labs) using
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stress formula two and the default options. Figure 5 holds
the average of the two dimensional results from a musical
and non-musical subject (stress = 0.4).

The output of the MDS illustrates the pros and cons of
the approach. It appears that the axes of the plot may
represent musically significant variables, such as interval
size (growing with the y-axis) and traditional tonal
dissonance (decreasing with the x-axis), but there is nothing
explicit in the space or in the MDS algorithm that points to
such axes. Further work, such as experimental validation of
hypothesized axis extrema, must be done to support any
particular selection of axes. Thus, the interpretation of an
MDS plot requires external a priori knowledge about the
stimuli,

We included the corresponding MDS results from
Krumhansl's (1979) pitch judgments given a tonal context
set by a scale or chord (stress = 0.2). It is perhaps
worthwhile to note how similar the results are, and that the
differences might be explained by the different paradigms.
One might imagine that while an M7 would seem consonant
after hearing a scale (Krumhansl's data), hearing it as an
interval among other intervals with the same tonic might
make it seem dissonant (our data). The reverse applies to the
m7 and m3 since their upper notes are not in the working
key, while they do play a role as intervals in familiar chords
of the working key.
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Figure 5: The above graph shows the average of the MDS
outputs from the data of a musical and a non-musical subject
(in black). Note that although the axes may appear to
represent musically significant features, such as interval size
(growing with the y-axis) and traditional tonal consonance
(growing with the x-axis), one must experiment further to
verify this interpretation. The corresponding MDS results
from Krumhansl (1979) are shown in gray to point out the
gross similarity of results despite different methods of
setting tonal context.
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Figure 6: These TM data are the common quintuplets from a musical and a non-musical subject. The resulting map
illustrates TM's ability to reveal features based on data alone; the data reveal three main pathways in the subjects’
perceptual spaces. In some sense the pathways confirm traditional music theory, e.g. the "Superexpress” represents
the subdominant major chord of the working key. Note also that subjects do not weight the 12 equal divisions of the
octave linearly.
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The TM Experiment

We exposed the same musical and non-musical subjects to
66 trials using similar hardware and software as in the MDS
experiment. The Hypercard interface (shown below in Figure
4) offered the subject two primary buttons, A and B, that
played the two intervals of interest. A subject was asked to
think of a feature that changed between them and then to
extrapolate by picking a third interval from the remaining 10
that would best continue that change. We also asked for an
extrapolant in the other direction and an interpolant, with the
requirement that all five intervals in the resulting quintuple
formed a coherent sequence in both directions, meaning that
the same feature varied throughout.

To show the capability of TM, we chose to analyze those
quintuples of data which were identical across subjects.
These data appear in Figure 6. Quintuples were linked by
joining at least two or more overlapping members of each
quintuple. These linked quintuples determine the paths along
the octave. The trajectory map in Figure 6 was then derived
using only the paths that included the most frequent links,
also taking into account the special case markers (see
Richards & Koenderink for detailed procedure).

Just as in the subway example, the data reveals several
features that one can vary across the stimuli. The
"Superexpress”, for example (named thus because it contains
the fewest stimuli), turns out to be the subdominant major
chord of the working key. The "Express” is a larger subset
of notes which primarily suggests the major scale of the
working key or of the subdominant major key. As a whole
the map points out that although subjects can differentiate
each of the divisions of the octave (the "Local"), the
intervals are not equally weighted. (If one knew no music
theory whatsoever, one might assume that an octave, a
physically defined phenomenon, has equal and independent
divisions.) The P4 and M6 are pivot points on all three
paths, as opposed to the centered Tritone or the 1/3 octave
markers, the M3 and the m6. TM thus reveals that some of
the subjects’ own internal music theory corresponds in part
with general music theory.

Conclusion

Having seen the different types of information offered by
MDS and TM, it is natural to point out that both methods
can be combined if one's goal is finding a representation that
offers both geometric relationships and the contextual
connections (as does the original subway map in Figure 1).
What we would like to emphasize, however, is that TM can
offer an alternate method to those researchers who have
traditionally used MDS to establish a geometric space and
then applied various other techniques of estimating what the
primary relational axes of the space are (the main features or
contexts). If one's main interest is these features, TM offers
the efficient solution of eliciting them directly from the data.
Richards & Koenderink have used TM in studies with color
and visual textures (1993), and we'd like to conclude that it
could assist music studies as well; TM not only reveals the
cognitive relationships among stimuli without requiring the
symmetry and uniform distance metric assumed for
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traditional MDS, but also can help discern which aspects of
traditional music theory have been absorbed by the minds of
musicians and non-musicians.
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