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Abstract
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I argued that the horizon-preserving diffeomorphisms of a generic black hole are

enhanced to a larger BMS3 symmetry, which is powerful enough to determine
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1 Introduction

The discovery by Bekenstein [1] and Hawking [2] that black holes are thermodynamic objects
has led to a host of fascinating puzzles, from the information loss problem to the question of what
microscopic states are responsible for black hole entropy. Here, I focus on one particular puzzle,
the “problem of universality” of black hole entropy. This paper is an expanded version of a short
article published in 2018 [3]; here I discuss details and extend some of the results.

The universality of black hole entropy has two aspects, probably related but logically distinct.
The first comes from the simple form of the Bekenstein-Hawking entropy,

SBH =
Ahor

4G~
, (1.1)

where Ahor is the horizon area. If this were merely a property of, say, uncharged static black
holes, it would tell us something important about the Schwarzschild solution. But it is more. The
same area law, with the same coefficient, holds for black holes with any charges, any spins, in any
dimensions; it holds for black strings, black rings, black branes, and black Saturns (black holes
encircled by black rings); it remains true for “dirty black holes” whose horizons are distorted by
nearby matter. The only known way to change the entropy (1.1) is to change the Einstein-Hilbert
action, and even then the correction will be another universal term [4]. Black hole entropy is not,
it seems, a property of specific solutions, but rather a generic characteristic of horizons.

The second aspect of universality emerges when one attempts to identify the microscopic states
responsible for this entropy. We do not yet have a full description of those states; that would
presumably require a complete quantum theory of gravity. We do, however, have an assortment of
research programs working toward the quantization of gravity, which allow partial computations
of black hole entropy. In string theory, black hole entropy can be calculated from properties of
weakly coupled strings and branes, from the AdS/CFT correspondence, and (probably) from an
enumeration of horizonless “fuzzball” configurations. In loop quantum gravity, entropy can be
calculated from a horizon Chern-Simons theory, from an analysis of spin network reconnections in
the interior, and from conformal field theory at “punctures” of the horizon. In induced gravity—an
approach in which the Einstein-Hilbert action is obtained by integrating out “heavy” fields in the
path integral—entropy can be calculated from the properties of the heavy fields. In semiclassical
gravity, entropy can be calculated from either a single instanton approximation or pair production.
And, of course, entropy can be calculated using Hawking’s original approach, which involved only
quantum field theory in a fixed black hole background.

None of these methods is complete. String theory calculations, for instance, are cleanest for
near-extremal black holes, while loop quantum gravity calculations may depend on a new universal
constant, the Barbero-Immirzi parameter. But although they describe very different microstates,
each of these methods, within its range of validity, reproduces the standard Bekenstein-Hawking
entropy. (For a review and further references, see [5].)

One might worry about a selection effect here: perhaps models that give the “wrong” entropy
are less likely to be published. But even the elegant analysis of BPS black holes in string theory [6],
the first really successful microscopic calculation of black hole entropy, illustrates the problem.
Given a spacetime dimension and a set of charges and spins, one can calculate the entropy of a
gas of strings and branes at weak coupling; separately calculate the horizon area of a black hole
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at strong coupling; and compare the results. But although the final answer always matches the
Bekenstein-Hawking area law (1.1), each new choice of dimension, spins, and charges requires a
new computation. Some underlying structure is clearly missing.

A first guess for this deeper structure is that the relevant degrees of freedom live on the
horizon [1]. But this is not enough: while it could explain an area law for black hole entropy,
there is no obvious reason why the coefficient 1/4 should be universal. An elaboration of this idea,
first suggested (I believe) in [7], is that the entropy is governed by a horizon symmetry. This is,
of course, a very strong requirement: symmetries can place some restrictions on the density of
states, but they are rarely strong enough to actually determine the entropy. But we know one
symmetry that has the same kind of universal properties we see in black hole entropy. As Cardy
first showed in 1986 [8,9], two-dimensional conformal symmetry is so restrictive that it completely
fixes the asymptotic density of states in terms of a few parameters, independent of any of the
fine details of the theory. More recently, it has been shown that a related symmetry, that of the
three-dimensional Bondi-Metzner-Sachs group (BMS3), exhibits the same universality [10]. The
possibility of a connection with black hole entropy has obvious appeal.

This connection was first confirmed for the (2+1)-dimensional BTZ black hole in 1998 [11,12].
Attempts to extend those results to higher dimensions soon followed [13,14]. These efforts, which
typically involve a search for a suitable two-dimensional group of horizon symmetries, have had
significant success; see [15] for a review. But they have been plagued by several problems:

• The symmetries are typically located either at infinity or on a timelike “stretched horizon”
just outside the actual horizon (although with occasional exceptions [16]). The physics at
infinity is extremely powerful, especially for asymptotically anti-de Sitter spaces. Indeed,
the BTZ black hole calculations were among the first examples of the now famous AdS/CFT
correspondence. But the symmetries alone are not enough; by themselves, for instance, they
cannot distinguish a black hole from a star with the same mass.

The stretched horizon more directly captures the local properties of the black hole. But the
definition of the stretched horizon is not unique, and different limits can lead to different
entropies [17,18]. Moreover, while the entropy has a well-defined limit at the horizon, other
parameters in the symmetry algebra typically blow up at the horizon [19–21] (again with
occasional exceptions [22]).

• The approach fails in what should be the simplest case, two-dimensional dilaton gravity,
where the zero-dimensional boundary of a Cauchy surface simple doesn’t have “room” for
the required central term in the conformal algebra. There are ad hoc fixes—lifting the theory
to three dimensions [23] or artificially introducing an integral over time [24]—but none of
them is very convincing.

• In higher dimensions, the relevant symmetries are those of the “r–t plane” picked out by the
horizon. But to obtain a well-behaved symmetry algebra, one must introduce an extra ad hoc
dependence on angles, with no clear physical justification. This is especially problematic for
the Schwarzschild black hole, for which the angular dependence breaks spherical symmetry
in a manner that seems quite arbitrary.
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Here (and in in a shorter form in [3]) I describe an approach that avoids these problems. A
basic limitation of past work, I argue, was the attempt to force the horizon symmetry into the
form of a two-dimensional conformal symmetry. This was an understandable choice: until quite
recently, this was the only symmetry known to be powerful enough to determine the asymptotic
density of states. But with the discovery that BMS3 symmetry also has this universal property,
the possibilities have expanded.

Starting with the intuitive idea that the relevant symmetries should lie in the “r–t plane”
picked out by the null generators of the horizon [13,19,22], I first show how to reduce the problem
to an effective two-dimensional model. For spherically symmetric black holes, such a dimensional
reduction already appeared in some of the earliest work on horizon symmetries [14, 25], but I
demonstrate that the relevant near-horizon properties are far more general. I next establish that the
obvious horizon symmetries, the horizon-preserving diffeomorphisms, are enhanced by a particular
shift invariance, as anticipated in [27,28]. This new symmetry may be viewed as a generalization
of the global conformal symmetry found by Wall for horizon quantum field theory on a fixed
background [29]; it is exact at the horizon and, in a sense I explain, it can be made arbitrarily
close to exact near the horizon. Using covariant phase space methods [19, 30], I show that the
generators of these symmetries can be expressed as integrals along the horizon, with no need to
go to a “stretched horizon.” Finally, I confirm that the resulting generators satisfy a centrally
extended BMS3 algebra that determines the correct Bekenstein-Hawking entropy.

2 BMS3 symmetry

Let us start with a brief review of BMS3 symmetry, along with a discussion of the perhaps
puzzling question of how a classical symmetry can determine the number of quantum states.

The BMS3 algebra is described by two sets of generators Ln and Mn (n ∈ Z) with Poisson
brackets

i {Lm, Ln} = (m− n)Lm+n ,

i {Mm,Mn} = 0 , (2.1)

i {Lm,Mn} = (m− n)Mm+n + cLMm(m2 − 1)δm+n,0 ,

where cLM is a classical central charge.∗ This algebra can be obtained as a contraction of the
usual two-dimensional conformal (Virasoro) algebra, and is also isomorphic to the two-dimensional
Galilean Conformal Algebra [31]. While the BMS3 algebra is not as thoroughly studied as the
conformal algebra, a fair amount is understood about its properties and representations [32–36].

We shall see below that this algebra describes the classical horizon symmetry of generic black
hole. Let us assume that the same symmetry, perhaps deformed, is realized in the quantum theory.
We make the the usual substitutions

{•, •} → 1

i~
[•, •] ,

1

~
L→ L̂ ,

1

~
M → M̂ ,

1

~
c→ ĉ , (2.2)

∗Other central elements can also be added, but only cLM is relevant in the present context.
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where the factors of ~ in L̂ and M̂ ensure that the operators are dimensionless. (It is not always
discussed explicitly in quantum mechanics textbooks, but the same substitution is used to go from
the Poisson algebra of angular momentum to the Lie algebra of rotations.) We thus obtain a
quantum operator algebra

[L̂m, L̂n] = (m− n)L̂m+n ,

[M̂m, M̂n] = 0 , (2.3)

[L̂m, M̂n] = (m− n)M̂m+n + ĉLMm(m2 − 1)δm+n,0 .

Classical values of the zero modes L0 and M0 now become eigenvalues hL = L0/~, hM =M0/~ of
the corresponding operators. The true quantum symmetry may be a deformation of (2.3)—other
central terms may appear, for example—but differences will be suppressed by factors of ~.

Now, it is well known that for a theory with a two-dimensional conformal symmetry, the central
charge completely fixes the asymptotic behavior of the density of states [8, 9]. For the simplest
case of free bosons and fermions, the Cardy formula for the density of states is just the Hardy-
Ramanujan formula for partitions of an integer [37]. For the general case, I know of no elementary
explanation; for a careful but not terribly intuitive derivation, see [38]. Roughly speaking, exact
conformal symmetry is powerful enough to prevent any exponential growth in the number of states,
which can occur only because of the anomalous symmetry-breaking characterized by the central
charge c.

The BMS3 symmetry (2.3) is not quite a conformal symmetry, but as Bagchi et al. have
shown [10], it has its own version of the Cardy formula for the asymptotic density of states. In
hindsight, this is not so surprising, since BMS3 can be obtained as a contraction of the two-
dimensional conformal algebra. The resulting entropy—the logarithm of the density of states at
fixed eigenvalues hL and hM—has the asymptotic behavior

S ∼ 2πhL

√

ĉLM

2hM

=
2π

~
L0

√

cLM

2M0
, (2.4)

where L0, M0, and cLM in the last equality are the classical values. Note that the factors of
Planck’s constant combine to give an overall 1/~, an expected feature of an entropy described in
terms of a classical phase space.

3 Reduction to two dimensions

The first step in our derivation of black hole entropy will be to reduce the problem to two
dimensions. To understand this process, it is helpful to start with a rather elaborate description of
an ordinary Schwarzschild black hole in D spacetime dimensions. The horizon ∆ of such a black
hole is a Killing horizon, that is, a null (D−1)-manifold whose null normal coincides with a Killing
vector χ. The integral curves of χ on ∆ are null geodesics, the generators of ∆. Since χ is timelike
outside the horizon, it determines a preferred time coordinate, and through that a foliation of ∆
by (D − 2)-spheres ∆̂ of constant time.

This structure allows us to identify two “preferred” directions at any point p on ∆: the direction
of the Killing vector at p and the outward radial direction transverse to ∆ and normal to the slice
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∆̂ containing p. These determine a local “r–v plane,” where r is a radial coordinate and v is a
parameter along the null generators of the horizon. If we further choose coordinates yµ on ∆̂,
then (v, r, yµ) can be extended to form a Gaussian null coordinate system near the horizon (see,
for instance, Appendix A of [39]). For the Schwarzschild case, these coordinates are essentially
Eddington-Finkelstein coordinates, with r shifted so that r = 0 at the horizon. By spherical
symmetry, each slice ∆̂ at constant (v, r) is invariant under rotations, so standard Kaluza-Klein
methods can reduce the Einstein-Hilbert action to that of two-dimensional dilaton gravity [40].

The reason I have given such a complicated description of a relatively simple procedure is that
most of the steps generalize quite broadly. Let ∆ by a nonexpanding horizon [41, 42], that is, a
null (D − 1)-dimensional manifold with null normal ℓ such that

1. ∆ has the topology (0, 1)× ∆̂, where ∆̂ is usually taken to be compact (a sphere for a black
hole, a torus for a black ring, etc.);

2. The expansion θ(ℓ) of the null normal vanishes. If the stress-energy tensor satisfies the null
energy condition for ℓ, that is, TABℓ

AℓB ≥ 0, then this condition further implies [42] that ℓ
has vanishing shear and that

Lℓqab = 0 , (3.1)

where L is the Lie derivative and qab is the (degenerate) induced metric on ∆.
A nonexpanding horizon generalizes the notion of a Killing horizon, dropping the requirement

of a Killing vector but retaining a time translation symmetry on the horizon itself. As in the
Schwarzschild case, the integral curves of ℓa on ∆ are the null geodesic generators of ∆. In the
absence of a Killing vector, there is no preferred time coordinate, but it may be shown that a
generic nonexpanding horizon has a preferred foliation, a set of “good cuts,” that generalize the
constant time slices of the Schwarzschild metric [43]. Hence we can again construct an “r–v plane”
and a Gaussian null coordinate system near ∆.

The main change from the Schwarzschild case is that the cross-section ∆̂ of a nonexpanding
horizon need not have any symmetries, so conventional Kaluza-Klein methods no longer apply.
As Yoon has shown, though, there is a generalized Kaluza-Klein reduction even in the absence of
symmetries [44,45]. Start by writing the metric in the general form

ds2 = gABdz
AdzB = gabdx

adxb + φµν(dy
µ +Aa

µdxa)(dyν +Ab
νdxb) , (3.2)

where lower case Roman indices (a,b,. . . ) run from 0 to 1, lower case Greek indices (µ,ν,. . . )
run from 2 to D − 1, and upper case Roman indices (A,B,. . . ) run from 0 to D − 1. The
“x” coordinates label our preferred two-dimensional manifold, while the “y” coordinates are the
transverse directions. Define the Kaluza-Klein-like derivatives

∂̂a = ∂a −Aa
µ∂µ ,

Daφµν = ∂̂aφµν − (∂µAa
ρ)φρν − (∂νAa

ρ)φρµ , (3.3)
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connections

Γ̂abc =
1

2
gad

(

∂̂bgdc + ∂̂cgdb − ∂̂dgbc

)

,

Γ̂ρµν =
1

2
φρσ (∂µφσν + ∂νφσµ − ∂σφµν) , (3.4)

and curvatures

R̂ab = ∂̂cΓ̂
c
ab − ∂̂aΓ̂

c
bc + Γ̂cabΓ̂

d
cd − Γ̂cadΓ̂

d
bc ,

Rµν = ∂ρΓ̂
ρ
µν − ∂µΓ̂

ρ
νρ + Γ̂ρµνΓ̂

σ
ρσ − Γ̂ρµσΓ̂

σ
νρ ,

Fab
µ = ∂̂aAb

µ − ∂̂bAa
µ ,

R̂ = gabR̂ab , R = φµνRµν . (3.5)

A straightforward calculation of the Einstein-Hilbert action then gives

I =

∫

dD−2y I2 (3.6)

with

I2 =
1

16πG

∫

d2x
√−g

√

φ

{

R̂+
1

4
gabgcdφµνFac

µFbd
ν

+
1

4
gabφµνφρσ (DaφµρDbφνσ −DaφµνDbφρσ)

+
1

4
φµνgabgcd (∂µgac∂νgbd − ∂µgab∂νgcd) +R

}

, (3.7)

where g and φ are the determinants of gab and φµν .
The first two lines in (3.7) look like an ordinary Kaluza-Klein reduction, and can in fact be

viewed as the action of a Kaluza-Klein theory whose gauge group is the group of diffeomorphisms
of the transverse manifold [44]. A two-dimensional interpretation of the third line is less obvious.
We can cure this, though, with a partial gauge fixing. First, we can always choose local coordinates
in which

gab =

(

−2h 1
1 0

)

. (3.8)

Yoon calls this “Polyakov gauge,” after a similar choice in two-dimensional field theories [46],
while from the D-dimensional point of view it is essentially Bondi gauge [47] or Gaussian null
coordinates [39]. It is easy to see that with this choice, even if h depends on the yµ,

φµνgabgcd (∂µgac∂νgbd − ∂µgab∂νgcd) = 0 . (3.9)

For our purposes, (3.8) is too restrictive a gauge choice—it hides a piece of the symmetry we are
trying to understand. But if we now allow an arbitrary two-dimensional coordinate transformation
x→ x̄(x), it may be checked that the term (3.9) still vanishes.
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The remaining term of concern in (3.7) is the transverse curvature R. In D = 4 dimensions,
this term is essentially trivial:

∫

d2y
√

φR = 4πχ , (3.10)

where χ is the Euler characteristic of the transverse manifold. The transverse curvature thus
merely contributes an effective cosmological constant to the two-dimensional action. For D 6= 4,
the situation is more complicated; the transverse curvature couples only to

√−g, but it can give a
sort of position-dependent cosmological “constant.” This should not affect the symmetries derived
in section 6, but a deeper understanding would be helpful. (Note also that R involves only y
derivatives, while we have chosen a gauge in which

√−g depends only on x, so by rescaling φµν
by an appropriate power of

√−g we can actually remove the coupling.)
To make it easier to compare this formalism to other work on dilaton gravity, it is convenient

to separate out the determinant φ from the transverse metric φµν , writing

φµν = φ
1

D−2Φµν , det |Φµν | = 1 . (3.11)

The determinant and Φµν then decouple in the kinetic term in (3.7),

1

4
gabφµνφρσ (DaφµρDbφνσ −DaφµνDbφρσ)

=
1

4
gab(Φ−1)µν(Φ−1)ρσ (DaΦµρDbΦνσ −DaΦµνDbΦρσ)−

D − 3

4(D − 2)
φ−2gabDaφDbφ . (3.12)

One more simplification is standard in dilaton gravity: by rescaling the metric gab, we can eliminate
the kinetic term for φ. Specifically, if we set

φ = ϕ2 (3.13)

and let

gab = ϕ−D−3
D−2 ḡab , (3.14)

the action (3.7) reduces to

I2 =
1

16πG

∫

d2x
√−ḡ

{

ϕR̄+
1

4
ϕ2 ḡabḡcdΦµνFac

µFbd
ν

+
1

4
ϕ ḡab(Φ−1)µν(Φ−1)ρσ (DaΦµρDbΦνσ −DaΦµνDbΦρσ) + ϕ

1
D−2R

}

, (3.15)

which may be recognized as the action for a gauge field and a nonlinear sigma model coupled to
two-dimensional dilaton gravity.

I have, of course, glossed over an essential feature: the “two-dimensional” fields in (3.15) also
depend on the transverse coordinates y, which must still be integrated over. This remnant of the
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higher dimensional structure appears in two places. First, the “two-dimensional” curvature Rab
in (3.5) involves convective derivatives ∂̂a = ∂a −Aa

µ∂µ, distinguishing it from the ordinary Ricci
curvature of the two-dimensional metric ḡab. Near a black hole horizon ∆, though, one can choose
corotating coordinates in which Aa

µ vanishes on the horizon and remains small in a neighborhood
of ∆ [39]. We will be interested in symmetries in a small region around the horizon. In such a
region, to the order of approximation we will need, these coordinates will allow us to replace R̄ in
(3.15) by the ordinary two-dimensional curvature scalar (see Appendix B for details).

Second, the “matter” fields Fab
µ and Φµν in (3.15) also depend on the transverse coordinates.

In a symmetric enough setting, we could expand these fields in modes to create a Kaluza-Klein
tower of states. In general, though—for instance, for a black hole whose horizon is distorted by
surrounding matter—this will not be possible. Fortunately, though, it is also not necessary. As
Wall showed for quantum fields on a black hole horizon [29], the physics at different transverse
positions decouples, and each null generator can be treated separately. While I do not know a
rigorous generalization to the case of dynamical gravity, we shall see that the relevant symmetries
act separately on each generator. Since these symmetries govern the density of states, this density
is also determined independently on each generator, and the total entropy can be obtained by
integrating. This is the underlying reason for an area law for entropy, although as we shall see, it
gives more, fixing the exact coefficient of the area.

Note that we have not yet imposed the existence of a horizon. Even the use of Gaussian null
coordinates requires only the presence of a null surface, which need not have vanishing expansion.
In principle, it is possible to further restrict the metric (3.2), but the resulting expressions are
complicated and unwieldy [48]. We will instead take a shortcut, identifying horizons in the two-
dimensional action I2 to obtain a more tractable formulation.

4 Dilaton gravity with null dyads

We now restrict our attention to the effective two-dimensional action (3.15) at fixed transverse
position (fixed y). While this action will not reveal the full symmetries of the higher-dimensional
theory, any y-independent symmetry of I2 will also be a symmetry of the full theory.

To simplify notation, let us write

I =
1

16πG

∫

M

(ϕR+ V [ϕ,χ]) ǫ , (4.1)

where ǫ is the volume two-form† and χ denotes any further fields in the problem (here Φ, A, and
any additional matter fields). The quantity ϕ is called the dilaton; as we have seen, it is essentially
the volume element of the transverse metric. Note that while the potential V in (4.1) may be quite
complicated, it contains no x derivatives of ϕ.

†I am using the convention that the object one integrates over an n-manifold is an n-form [49]. For our two-
dimensional manifold, the volume form is ǫab. For a null line with null normal ℓa, the volume one-form is na, a null
vector normalized so that ℓ · n = −1.

8



The equations of motion coming from varying g and ϕ in this action are

Eab = ∇a∇bϕ− gab�ϕ+
1

2
gabV = 8πGTab , (4.2a)

R+
dV

dϕ
= 0 , (4.2b)

where I have added a source stress-energy tensor. Equation (4.2b) is not independent, but follows
from the divergence of (4.2a).

It is convenient to describe the geometry in terms of a null dyad (ℓa, na), with ℓ
2 = n2 = 0 and

ℓ · n = −1. In terms of such a dyad, the metric and volume form are

gab = − (ℓanb + naℓb) , ǫab = (ℓanb − naℓb) . (4.3)

When we later specialize to the case of a black hole spacetime with horizon ∆, we will choose a
dyad for which ℓ is the null normal to ∆ and n is the induced volume element.

To simplify later equations, we define derivatives

D = ℓa∇a , D̄ = na∇a . (4.4)

D is essentially the same D as in the Newman-Penrose formalism. D̄ would ordinarily be denoted
∆ in the Newman-Penrose formalism, but we are already using ∆ to signify the horizon.

The dyad (ℓ, n) is determined only up to local Lorentz transformations,

ℓa → eλℓa, na → e−λna . (4.5)

We can partially fix this freedom by choosing na to have vanishing acceleration, nb∇bn
a = 0. This

condition implies that the integral curves of n are affinely parametrized null geodesics, which can
be taken to start at the horizon ∆. The symmetry (4.5) is still not completely fixed, but the
remaining transformations are restricted to those for which D̄λ = 0.

With this condition on na, it is easy to check that

∇aℓb = −κnaℓb , ∇aℓ
a = κ ,

∇anb = κnanb , ∇an
a = 0 , (4.6)

where κ will later be interpreted as the surface gravity at a horizon. By (4.3), ℓa is a conformal
Killing vector. Under variation of the dyad, (4.6) will be preserved as long as

D̄(ℓcδnc) = (D + κ)(ncδnc) ,

δκ = −D(ncδℓc) + κℓcδnc + D̄(ℓcδℓc) . (4.7)

We will later need to integrate by parts along the horizon. For this, it will be useful to take
advantage of the identity

(df)a = −Df na − D̄f ℓa for any function f , (4.8)
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Figure 1: Typical Penrose diagram for the exterior of a black hole

where I am treating na and ℓa as one-forms. Another identity will also be helpful:

[D, D̄] = −κD̄ ⇔ D̄D = (D + κ)D̄ . (4.9)

By considering the commutator [∇a,∇b]ℓ
b and recalling that in two dimensions Rab =

1
2gabR,

it is straightforward to show from (4.6) that

R = 2D̄κ . (4.10)

The action (4.1) can thus be written as

I =
1

8πG

∫

M

(

−κD̄ϕ+
1

2
V [ϕ,χ]

)

ǫ . (4.11)

5 Horizons

Our next task will be to characterize a generic black hole horizon in this two-dimensional
setting, as a first step toward analyzing its near-horizon symmetries. Spacetimes containing black
holes in two-dimensional dilaton gravity have essentially the same Penrose diagrams as those in
higher dimensions [40], as illustrated in figure 1. As in higher dimensions, the horizons are Killing
horizons [50], and form boundaries of trapped regions [51]. For simplicity, figure 1 shows an
asymptotically flat black hole. This asymptotic behavior will be irrelevant for the main argument
of this paper, though; the analysis below will hold equally well for asymptotically de Sitter or
anti-de Sitter black holes.

Let us choose our null dyad so that at the horizon, ℓ coincides with the null normal to the
horizon. This means ℓ is also tangent to the horizon—its inner product with the normal (itself) is
zero. Indeed, in any dimension the null normals to the horizon are the tangent vectors of the null
generators of the horizon. (See the beginning of [52] for a nice review.)

In two dimensions, this choice of dyad is straightforward. The lift to D dimensions, though,
is ambiguous; depending on coordinate choices, ℓA and ℓA may have additional transverse com-
ponents. Our philosophy here will be that our preferred two-dimensional subspace traces the
generators of the horizon, that is, that each generator of the horizon ∆ has constant transverse
coordinates y. This means that ℓ as a tangent vector lies in our two-dimensional subspace; that is,
ℓµ = 0 but ℓµ need not vanish. We will choose n so that nµ = 0. This ensures that even from the
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higher dimensional point of view, na is the volume one-form along a horizon generator. As long as
we stick to the coordinates described at the end of section 3, in which gµa = 0 at the horizon, these
choices will be largely irrelevant, but they may be important in more general coordinate systems.

We now need a way to determine that ∆ is indeed a horizon. This will require an appropriate
generalization of the “non-expanding horizon” criteria of section 3. From the D-dimensional point
of view, the expansion of ∆ is

θ =
(

δAB + ℓAnB
)

∇Aℓ
B = (δab + ℓanb)∇aℓ

b +∇µℓ
µ = ℓaΓµaµ . (5.1)

In general, this will be a complicated expression, involving both the transverse metric φµν and the
mixed components Aa

µ. But recall that we have chosen coordinates in which Aa
µ , 0, where from

now on I will use the symbol , to mean “equal on the horizon.” Hence

θ = ℓaΓµaµ ,
1

2
φµνℓa∂aφµν =

1

ϕ
Dϕ . (5.2)

The condition for vanishing expansion is thus Dϕ = 0, and we will use this as the means to locate
the horizon. Near the horizon, Dϕ can then serve as a small expansion parameter, indicating how
far we have moved from ∆. The interpretation of this parametrization in terms of Gaussian null
coordinates is described in Appendix B.

In higher dimensions, vanishing expansion is enough to ensure that the whole horizon geometry
is stationary as well. In two dimensions, where the dilaton ϕ is now separate from the transverse
metric, this is no longer the case, and we must separately require that DR , 0. I will also impose
one more boundary condition at the horizon, that the integration measure na remain fixed at ∆.
This restriction appears to be needed for the covariant canonical symplectic form of section 7 to
be well-behaved, though further exploration would be interesting. In [3], the condition ℓaδℓa = 0
was also imposed, but while this simplifies the symplectic structure, it is not really needed.

Our boundary conditions at ∆ thus become

Dϕ , 0 , (5.3a)

DR , 0 , (5.3b)

ℓaδna , naδna , 0 (5.3c)

(where, again, , means“equal on ∆”). Our task is to find the symmetries of the dilaton gravity
action that are compatible with these conditions.

Before proceeding further, one slightly subtle issue of interpretation should be addressed. The
approach here is not to first choose a fixed submanifold ∆ and then impose (5.3a)–(5.3c). This is
too strong a demand: it would forbid variations that changed Dϕ on this fixed surface, and would
prohibit transverse diffeomorphisms at ∆. The philosophy is, rather, to use the condition Dϕ = 0
to determine the location of the horizon, and to impose the remaining conditions at that location.
A variation that changes Dϕ is then understood as changing the location of the horizon, and a
suitable transverse diffeomorphism can be used to “move it back.”

11



6 Horizon symmetries

The action (4.1) is, of course, invariant under two-dimensional diffeomorphisms, including
horizon “supertranslations” [26] generated by vector fields ξa = ξℓa. Such diffeomorphisms fail to
respect condition (5.3c), however, since ℓaδξna 6= 0. This is easily cured, by supplementing each
diffeomorphism with a local Lorentz transformation δℓa = (δλ)ℓa, δna = −(δλ)na with δλ = Dξ.
From the discussion after (4.5), this requires that D̄ξ , 0. We thus have an invariance

δξℓ
a = 0 , δξn

a = −(D + κ)ξ na ,

δξgab = (D + κ)ξ gab ,

δξϕ = ξDϕ , with D̄ξ , 0 . (6.1)

Note that from (4.6),

δξκ = D(D + κ)ξ . (6.2)

As pointed out some time ago [27, 28], for configurations containing black holes the action
also has an approximate invariance under certain shifts of the dilaton near the horizon, with an
approximation that can be made arbitrarily good by restricting the transformation to a small
enough neighborhood of ∆. This is not quite an ordinary invariance, since it holds only for a
restricted class of configurations, those with horizons. For such configurations, though, it can be
made arbitrarily close to an exact symmetry (see Appendix C for more details).

Specifically, consider a variation

δ̂ηϕ = ∇a(ηℓ
a) = (D + κ)η with D̄η , 0 . (6.3)

(The hat on δ̂ distinguishes this variation from a diffeomorphism.) The action transforms as

δ̂ηI =
1

16πG

∫

M

(

R+
dV

dϕ

)

δ̂ηϕ ǫ = − 1

16πG

∫

M

η

[

DR+
d2V

dϕ2
Dϕ

]

ǫ . (6.4)

But Dϕ and DR both vanish at the horizon, so the variation (6.4) can be made as small as one
wishes by choosing η to fall off fast enough away from ∆.

There is one subtlety, however. While the transformation (6.3) does not directly act on the
curvature, the change of ϕ “moves the horizon”—that is, the locus Dϕ = 0 may change under a
shift of ϕ. In itself, this is not a problem, but DR may no longer vanish at the new location. The
diffeomorphism needed to “move the horizon back” is determined by the condition

(δ̂η + δζ)(Dϕ) = δ̂η(Dϕ) + ζa∇a(Dϕ) , 0 ⇒ ζa = ζ̄na = −D(δ̂ηϕ)

D̄Dϕ
na . (6.5)

This change can be compensated with a “small” (order Dϕ) Weyl transformation of the metric to
restore the condition DR , 0. Consider a transformation of the form

δ̂ηgab = δ̂ωη gab ⇔ δ̂ηℓa = δ̂ωη ℓa , (6.6)
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where the second equality comes from the boundary condition that δna , 0. Define

δ̂ωη = Xη
Dϕ

D̄Dϕ
. (6.7)

Using identities from section 4, it is not hard to see that R transforms as

δ̂ηR , 2(D + κ)Xη . (6.8)

The condition that DR remain zero on ∆ is thus

ζ̄D̄DR+ 2D(D + κ)Xη , 0 . (6.9)

On shell—or, less restrictively, whenever the constraint (4.2b) holds—a short calculation gives an
explicit expression for Xη:

ζ̄D̄DR+ 2D(D + κ)Xη ,
d2V

dϕ2
D(D + κ)η + 2D(D + κ)Xη , 0 ⇒ Xη , −1

2

d2V

dϕ2
η . (6.10)

With this added transformation, the boundary condition DR , 0 is preserved. Like (6.3), the
Weyl transformation (6.7) changes the action only by terms proportional to ηDϕ, which can be
made arbitrarily small by choosing η to fall off fast enough away from the horizon.

We thus have two sets of transformations at the horizon, diffeomorphisms δξ and shifts δ̂η ,
which preserve the action (to an arbitrarily good approximation) as long as a horizon actually
exists. It is not too hard to check that these satisfy an algebra

[δξ1 , δξ2 ]f , δξ12f with ξ12 = (ξ1Dξ2 − ξ2Dξ1) ,

[δ̂η1 , δ̂η2 ]f , 0 , (6.11)

[δξ1 , δ̂η2 ]f , δ̂η12f with η12 = −(ξ1Dη2 − η2Dξ1) .

This may be recognized as a BMS3 algebra, or equivalently a Galilean conformal algebra [31].
Given the rather atypical nature of this shift symmetry, we should also check the variation

of the equations of motion (4.2a)–(4.2b). These are, of course, preserved by diffeomorphisms, so
we need only consider the transformations (6.3) and (6.7). Since we are assuming that η falls off
rapidly away from the horizon, it is enough to check the variations at ∆. By a straightforward
computation, most of the equations of motion are preserved: up to terms that are themselves
proportional to the equations of motion,

gabδ̂ηEab , 2(D + κ)D̄δ̂ηϕ+
dV

dϕ
δ̂ηϕ ,

(

R+
dV

dϕ

)

(D + κ)η , (6.12a)

nanbδ̂ηEab , D̄2δ̂ηϕ− D̄ϕD̄δ̂ηω ,
1

2
D̄

(

R+
dV

dϕ

)

η , (6.12b)

δ̂η

(

R+
dV

dϕ

)

, δ̂ηR+
d2V

dϕ2
δ̂ηϕ , (6.12c)

where I have used (4.9), (4.10), and the condition D̄η , 0.
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The remaining variation, ℓaℓbδ̂ηEab, is not zero. But this is actually a familiar occurrence in
conformal field theory. If we set Eab = 8πGTab, we find that

ℓaℓbδ̂ηTab ,
1

8πG
(D − κ)D(D + κ)η , (6.13)

which is essentially the usual anomaly for a conformal field theory with a central charge propor-
tional to 1/G [53]. This is our first hint that the symmetry is anomalous.

One might worry that this anomaly could spoil the covariant phase space construction of
Appendix A, since the closure of the symplectic current (A.2) relies on the classical field equations.
Fortunately, this is not a problem: the only dangerous term in the exterior derivative (A.4) is
proportional to nanbδg

ab, which vanishes on ∆ by virtue of the boundary conditions (5.3c).

7 Symplectic structure and generators

To complete the analysis of the symmetries of section 6, we should ask whether the algebra
(6.11) can be realized—perhaps with a central extension—as a Poisson algebra of canonical gen-
erators of the symmetries, since this is the formulation that translates most directly into quantum
mechanics. We have so far avoided introducing explicit coordinates. We will continue to do so, by
employing the covariant canonical formalism reviewed in Appendix A.

The symplectic form (A.3) is defined as an integral over a Cauchy surface Σ. To study horizon
symmetries in the covariant phase space formalism, we should incorporate ∆ as part of our Cauchy
surface. Let us focus on the exterior region of an asymptotically flat black hole, with a Penrose
diagram given by figure 1, and take Σ to be the union of the future horizon ∆ and future null
infinity I +, with ends at the bifurcation point B and spacelike infinity. As noted earlier, the details
of I + will be unimportant, since we will be considering transformations that are nonvanishing
only in a small neighborhood of the horizon.

Applying the general relations (A.2)–(A.3) to the action (4.11) for dilaton gravity and using
the boundary condition δna , 0, it is straightforward to show that‡

Ω∆[(ϕ, g); δ1(ϕ, g), δ2(ϕ, g)] =
1

8πG

∫

∆

[

δ1ϕδ2κ− δ1(D̄ϕ)ℓ
bδ2ℓb

]

na − (1 ↔ 2) . (7.1)

The full symplectic form will include an additional integral along I +, but this will be irrelevant
to our consideration of near-horizon symmetries.

Two slightly tricky points remain, though, both related to the fact that a variation of ϕ can
“move the horizon,” changing the locus of points Dϕ = 0. First, as discussed in Appendix A, the
symplectic form itself is independent of the integration contour as long as the endpoints remain
fixed. But Ω∆ can change under variations that move the ends of the Cauchy surface. To avoid
this behavior, we will require that δ(Dϕ) = 0 at the bifurcation point B of figure 1, a condition
that will be used in section 8.

Second, while typical changes in the horizon locus will not affect Ω∆, they will change objects
such as Hamiltonians defined as integrals over ∆. We will account for this effect by adding a

‡The calculation simplifies if one notes that in differential form notation, κD̄ϕ ǫ = D̄ϕ dℓ = −κ dϕ ∧ n.
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transverse diffeomorphism to “move the horizon back.” As in section 6, such a diffeomorphism is
determined by the condition that

(δ + δζ)(Dϕ) = δ(Dϕ) + ζa∇a(Dϕ) , 0 ⇒ ζa = ζ̄na = −
(

Dδϕ

D̄Dϕ
+

D̄ϕ

D̄Dϕ
ℓbδℓb

)

na . (7.2)

Hence for an object of the form H =
∫

∆ H na, the full variation will be

δ

∫

∆
H na =

∫

∆
(δH + ζa∇aH )na . (7.3)

We can now ask whether the transformations δξ and δ̂η of the preceding section can be realized
canonically as in (A.8), that is, whether there exist generators that satisfy

δL[ξ] =
1

8πG

∫

∆

[

δϕ δξκ− δξϕδκ − δ(D̄ϕ)ℓbδξℓb + δξ(D̄ϕ)ℓ
bδℓb

]

na

=
1

8πG

∫

∆

[

δϕD(D + κ)ξ − ξDϕδκ +
{

ξD̄Dϕ− (D + κ)ξD̄ϕ
}

ℓbδℓb

]

na , (7.4a)

δM [η] =
1

8πG

∫

∆

[

δϕ δ̂ηκ− δ̂ηϕδκ − δ(D̄ϕ)ℓbδ̂ηℓb + δ̂η(D̄ϕ) ℓ
bδℓb

]

na

=
1

8πG

∫

∆

[

−δωηDδϕ − δκ(D + κ)η +
{

D̄(D + κ)η − δωη D̄ϕ
}

ℓbδℓb

]

na , (7.4b)

where in the last line I have used the fact that δ̂ηκ = Dδ̂ωη .
It is not at all clear that such generators exist: there is no obvious reason that the near-horizon

symmetry (6.3) should have a canonical realization. In fact, though, the quantities

L[ξ] =
1

8πG

∫

∆

[

ξD2ϕ− κξDϕ
]

na , (7.5a)

M [η] =
1

8πG

∫

∆
η

(

Dκ− 1

2
κ2

)

na (7.5b)

do the job. (To obtain the δωη terms in (7.4b), one must use the full variation (7.3), along with
equation (6.10) for Xη and the fact that D̄η , 0; again, the covariant phase space formalism allows
us to impose equations of motion after variation.)

Using (A.10), we can now find the Poisson brackets of these generators:

{L[ξ1], L[ξ2]} = L[ξ12] , (7.6a)

{M [η1],M [η2]} , 0 , (7.6b)

{L[ξ1],M [η2]} , −M [η12]−
1

16πG

∫

∆

(

Dξ1D
2η2 −Dη2D

2ξ1
)

na , (7.6c)

where ξ12 and η12 were defined in (6.11). The {L,L} bracket are unchanged even if ∆ is not
a horizon. The {L,M} and {M,M} brackets do change—the shift transformations are exact
symmetries only on a horizon—but modulo equations of motion, the deviations are of order (Dϕ)2.
The canonical generators thus give a representation of the symmetry algebra (6.11), now with an
added central term. Such central terms are well-understood in classical mechanics [54]; their
appearance in quantum gravity was first emphasized by Brown and Henneaux [55], and as we saw
in section 2, they play a crucial role in determining entropy.
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8 Modes and zero-modes

As described in section 2, we can now use the symmetry (7.6a)– (7.6c) to determine the density
of states. To do so, we will need the central charge and the zero modes. These, in turn, require a
mode expansion for the parameters ξ and η.

For a black hole with constant surface gravity, the appropriate modes are well known. They
take the form einκv, where v is the advanced time along the horizon, normalized so that ℓa∇av = 1.
Such modes are periodic in imaginary time with period 2π/κ, as required for nonsingular Greens
functions. Here, though, κ is one of our canonical variables, and we cannot simply take it to be
constant. In the language of [41], we are considering “nonexpanding horizons” but not “isolated
horizons.” While we can always perform a local Lorentz transformation to make κ constant, that
would require much more restrictive boundary conditions, which would hide part of the symmetry.

Fortunately, though, the appropriate generalization is straightforward. Define a phase ψ such
that

Dψ , κ, D̄ψ , 0 ⇔ dψ , −κna ⇔ ψ , −
∫

∆
κna , −

∫

κdv . (8.1)

The modes are then

ζn ,
1

κ
einψ (where ζ is either ξ or η) . (8.2)

The prefactor of 1/κ has been chosen so the modes obey the ordinary algebra of diffeomorphisms
of the circle,

{ζm, ζn} = ζmDζn − ζnDζm = −i(m− n)ζm+n . (8.3)

Setting Ln = L[ξn] and Mn = M [ηn], it is easy to check that our BMS3 algebra reduces to (2.1),
with a central term

− 1

16πG

∫

∆

(

DξmD
2ηn −DηnD

2ξm
)

na = − i

16πG

∫

∆
(mn2 − nm2)ei(m+n)ψdψ . (8.4)

If we take the integral to be over a single period—essentially mapping the problem to a circle, as
is standard in conformal field theory—we obtain a central charge

cLM =
1

4G
. (8.5)

We also need the zero-modes of L and M . For M , this is straightforward: from (7.5b),

M0 =M [η0] = − 1

16πG

∫

∆
κ2η0na =

1

16πG

∫

dψ =
1

8G
. (8.6)

For L, the “bulk” contribution to L0 vanishes. But L, unlike M , has a boundary contribution.
Indeed, the variation leading to (7.4a) involves integration by parts, with a boundary term

δL[ξ] = · · ·+ 1

8πG
[ξDδϕ− (D + κ)ξ δϕ]

∣

∣

∣

∂∆
. (8.7)

16



As noted in section 7, the covariant phase space approach requires that we set Dδϕ to zero at
the bifurcation point B. We should certainly not hold ϕ itself fixed, though, since that would fix
ϕ along the entire horizon, eliminating the shift symmetry. Instead, we should fix the conjugate
variable κ at B. This requires an added boundary contribution to cancel the variation (8.7),

Lbdry

0 =
1

8πG
ϕ(D + κ)ξ0

∣

∣

∣

B
=

ϕ+

8πG
, (8.8)

where ϕ+ is the value of ϕ at B.

9 Entropy

We are finally in a position to compute the entropy of our black hole. Inserting (8.5), (8.6),
and (8.8) into (2.4), we obtain

S =
ϕ+

4G
. (9.1)

For a purely two-dimensional theory, this is the correct Bekenstein-Hawking entropy for a black
hole [40,50]. From the D-dimensional perspective, it is the contribution of a single null generator
of the horizon. But the symmetries that determine (9.1) act independently on each generator, and
entropy is an extensive quantity, so we can add the individual entropies:

S =
1

4G

∫

dD−2y ϕ+ =
1

4G

∫

dD−2y
√

φ+ =
A+

4G
. (9.2)

where A+ is the area of the bifurcation sphere. We have thus obtained the correct Bekenstein-
Hawking entropy.for the full D-dimensional theory.

10 Conclusions and directions

As anticipated, black hole entropy is indeed determined by the symmetries of the horizon.
In contrast to previous efforts to demonstrate this behavior, the derivation presented here has
required no stretched horizon, no extra angular dependence, and no other ad hoc ingredients. The
main assumption has merely been that the dimensionally reduced horizon obeys the “boundary
conditions” of section 5.

What is the meaning of the crucial BMS3 symmetry? It is not a gauge symmetry: physical
states are singlets under gauge symmetries, while our state-counting only works because the rele-
vant states transform under high-dimensional representations. This kind of behavior is typical of
an asymptotic symmetry. But our BMS3 is also not quite a standard asymptotic symmetry: while
we can view the horizon as a sort of boundary, it is a boundary that exists only for a restricted
class of field configurations. Physically, we are asking a question of conditional probability—if a
black hole is present, what are its properties?—and the symmetries reflect this condition. This
is at least vaguely analogous to entanglement entropy, which requires a similar specification of a
boundary. Indeed, it is possible that our horizon degrees of freedom might be viewed as a remnant
left behind after tracing out the state behind the horizon. For three-dimensional topological field
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theory, this argument can be made fairly rigorous [56]; it would be interesting to investigate it
further in the present context.

There are several obvious directions for generalization. A BMS symmetry at the horizon has
appeared in other settings (for instance, [26, 57–61]); the relationship to the BMS3 symmetry
described here should be clarified. Perhaps most fundamentally, if this symmetry really does
explain the universality of black hole entropy, it should be present—although possibly hidden—in
other derivations of entropy. Hints of such a hidden symmetry have been found for loop quantum
gravity [62], induced gravity [63], and near-extremal black holes in string theory [64], but none of
these investigations has yet exploited the full BMS3 symmetry.

Ideally, we might hope to do even more. Many of the fundamental questions in black hole
thermodynamics involve the dynamics of Hawking radiation and its coupling to gravitational
degrees of freedom. In 2+1 dimensions, Emparan and Sachs have succeeded in using the asymptotic
conformal symmetry to couple the BTZ black hole to matter and obtain Hawking radiation [65].
Perhaps our BMS3 symmetry will ultimately allow us to do the same in arbitrary dimensions.
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Appendix A The covariant canonical formalism

The idea underlying the covariant canonical formalism is that for a theory with a well-posed
initial value problem—that is, well-defined and unique time evolution—the phase space, viewed as
the space of initial data, is isomorphic to the space of classical solutions [66–69]. The isomorphism
is not canonical, but requires a choice of a Cauchy surface Σ. Once Σ has been chosen, though,
the identification is simple: initial data on Σ determines a unique classical solution, and a classical
solution restricted to Σ defines a unique set of initial data. This equivalence, which can be traced
back to Lagrange (see [67]), means that we can formulate all the usual ingredients of Hamiltonian
mechanics without ever having to break general covariance by choosing a particular time slicing.

Consider a theory in a D-dimensional spacetime with fields ΦA (for us, ϕ, g, and ψ) and a
Lagrangian density L[Φ], which we view as a D-form. Under a general variation of the fields, L[Φ]
changes as

δL = EAδΦ
A + dΘ[Φ, δΦ] , (A.1)

where the equations of motion are EA = 0 and the last “boundary” term comes from integration
by parts. We normally ignore this boundary term, but in the covariant canonical formalism it is
crucial. The symplectic current ω is defined by a second variation,

ω[Φ; δ1Φ, δ2Φ] = δ1Θ[Φ, δ2Φ]− δ2Θ[Φ, δ1Φ] , (A.2)

and the symplectic form is

Ω[Φ; δ1Φ, δ2Φ] =

∫

Σ
ω[Φ; δ1Φ, δ2Φ] =

∫

Σ
ωABδ1Φ

A ∧ δ2ΦB , (A.3)
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where Σ is a Cauchy surface. (More precisely, Ω is often a presymplectic form, with degenerate
directions that must be factored out to obtain a true symplectic form [68].)

In keeping with the covariant phase space philosophy, Ω[Φ; δ1Φ, δ2Φ] depends on a classical
solution Φ, which fixes a point in the phase space. Ω itself is a two-form on the phase space, and
the variations δΦ are tangent vectors to the space of classical solutions, that is, solutions of the
linearized equations of motion. For a field theory in flat spacetime, it is not hard to check that
when Σ is a surface of constant time, (A.3) is equivalent to the ordinary symplectic form.

The symplectic current (A.2) is closed:

dω[Φ; δ1Φ, δ2Φ] = δ1dΘ[Φ, δ2Φ]− δ2dΘ[Φ, δ1Φ] = −δ1EA ∧ δ2ΦA + δ2EA ∧ δ1ΦA = 0 , (A.4)

since the variations satisfy the linearized equations of motion δEA = 0. Hence the symplectic
form (A.3) will depend only weakly on the choice of Cauchy surface: integrals over two surfaces
Σ1 and Σ2 can differ only by boundary terms that might arise if ∂Σ1 6= ∂Σ2. In particular, for a
diffeomorphism-invariant theory, a diffeomorphism generated by a vector field ζa transverse to Σ
may be viewed as a deformation of the Cauchy surface, and we have

Ω[Φ; δ1Φ, δζΦ] = 0 (A.5)

as long as ζa vanishes at ∂Σ. This may be checked explicitly for the symplectic form (7.1): under
a diffeomorphism generated by a vector field ζa = ζ̄na, one finds

Ω∆[(ϕ, g); δ(ϕ, g), δζ (ϕ, g)] =
1

8πG
ζ̄δ(D̄ϕ)

∣

∣

∣

∂∆
+ . . . , (A.6)

where the omitted terms are proportional to either the equations of motion or their first variations,
which are both set to zero in the covariant canonical formalism.

As in ordinary mechanics, the symplectic form determines Poisson brackets and Hamiltonians.
Schematically, the Poisson bracket of two functions X and Y is

{X,Y } =

∫

Σ

δX

δΦA
(ω−1)AB

δY

δΦB
. (A.7)

Given a family of transformations δτΦ
A labeled by a parameter τ , the Hamiltonian H[τ ] that

generates the transformations is determined by the condition

δH[τ ] = Ω[δΦ, δτΦ] (A.8)

for an arbitrary variation δΦ. Using (A.3), we can see that this is just a disguised form of Hamilton’s
equations of motion,

δτΦ
A = (ω−1)AB

δH[τ ]

δΦB
. (A.9)

The Poisson bracket of two such generators is

{H[τ1],H[τ2]} = δτ2H[τ1] = −Ω[δτ1Φ, δτ2Φ] . (A.10)
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Appendix B Gaussian null coordinates and dimensional reduction

In section 3, Gaussian null coordinates were used to help reduce the D-dimensional Einstein-
Hilbert action to an effective two-dimensional form. Here I describe these coordinates in a bit
more detail.

We start with the Gaussian null coordinate system§ described in Appendix A of [39] and in [48].
In such coordinates, a general metric takes the form

ds2 = −r · fdv2 + 2drdv + 2r · hµ dvdyµ + φµνdy
µdyν . (B.1)

The surface r = 0 is null; here we will take it to be the horizon ∆
The coordinates (B.1) have clear geometrical meanings. The horizon r = 0 is a null surface

with null normal ℓAdz
A = dr. (The surface gravity is κ = 1

2f |r=0). Since ∆ is null, its normals

are also tangent vectors; indeed, the integral curves of the tangent vectors ℓA∂A = ∂
∂v

are the null

geodesic generators of ∆. The “orthogonal” vectors nA∂A = ∂
∂r

are null even off the horizon, and
their integral curves are null geodesics transverse to the horizon. As in section 3, the coordinates
yµ parametrize a spacelike cross section ∆̂ of the horizon, and may be extended to a neighborhood
of ∆ by requiring that they be constant on both sets of null geodesics.

The coordinate r is an affine parameter along the transverse geodesics, and thus provides a
natural geometric notion of “distance from the horizon.” For the Schwarzschild metric, in par-
ticular, Gaussian null coordinates are Eddington-Finkelstein coordinates with r shifted to vanish
at the horizon. Near the horizon, r ≈ ρ2/8m, where ρ is the proper distance to the horizon at
constant time. Appendix A of [48] gives an explicit expression for the Kerr-Newman metric in
Gaussian null coordinates.

As claimed in section 3, the components Aa
µ of Yoon’s metric (3.2)—here of the form r · hµ—

vanish on the horizon, and are O(r) near ∆. In fact, a direct calculation in these coordinates
shows that the ordinary two-dimensional scalar curvature R differs from the quantity R̂ of eqn.
(3.5) by terms of order r2, justifying the near-horizon form (4.1) of the action.

The metric (B.1) is of the general Kaluza-Klein-like form (3.2). But Gaussian null coordinates
are too restrictive to exhibit the full set of available symmetries. As in section 3, though, we
can move out of the Polyakov-like gauge by allowing an arbitrary two-dimensional coordinate
transformation x → x̄(x). This will restore the general structure of the metric (3.2), while still
restricting the y dependence of the metric; for instance, although it will no longer be the case that√−g = 1, it will remain true that ∂µ

√−g = 0. It may be checked that after such a transformation,
R continues to differ from R̂ only by terms of order r2.

We may next ask how theD-dimensional vectors ℓA and nA are related to their two-dimensional
counterparts ℓa and na of section 4. For ℓA, this is simple: we have only defined ℓA on the horizon,
where it is the tangent field to the null generators of ∆, and thus coincides with ℓa. For nA, the
essential feature is that its D-dimensional integral curves are affinely parametrized null geodesics:

nB∇BnA = 0 = nB(∇BnA −∇AnB) = nB(∂BnA − ∂AnB) , (B.2)

§My notation differs a bit from that of [39]: we use different index conventions, my v is their u, my ℓa is their ka,
and my na is their ℓa.
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where I have used the fact that nAn
A = 0. Now, the only nonvanishing components of n in

Gaussian null coordinates are nr and nv, and under two-dimensional coordinate transformations
x → x̄(x) it remains true that only two-dimensional components na and nb are present. Thus
(B.2) becomes

nb(∂bna − ∂anb) = 0 = nb (2)∇bna , (B.3)

which was the defining property of na in section 4. The D-dimensional transverse vectors nA thus
coincide with the two-dimensional vectors na. In particular, the affine parameter r gives a good
measure of distance from the horizon in both D and two dimensions.

Note that if F is any function that vanishes at the horizon and is smooth near ∆,

F = r∂rF +O(r2) = rD̄F +O(r2) . (B.4)

In particular,

Dϕ = rD̄Dϕ+O(r2) , (B.5)

quantifying the notion that Dϕ is a measure of distance from the horizon.

Appendix C Some details of near-horizon symmetries

Section 6 discussed a “near-horizon symmetry” that played a crucial role in counting states.
Specifically, I argued that for any η satisfying D̄η , 0, the transformation

δ̂ηϕ = ∇a(ηℓ
a) + Lζϕ , (C.1a)

δ̂ηgab = Xη
Dϕ

D̄Dϕ
gab + Lζgab , (C.1b)

δ̂ηχ = Lζχ , (C.1c)

with ζa = −D(D + κ)η

D̄Dϕ
na and 2D(D + κ)Xη + ζ̄D̄DR = 0 (C.1d)

is an “approximate symmetry” of the action (4.1) with horizon boundary conditions (5.3a)–(5.3c),
in the sense that the variation of the action could be made “arbitrarily small.”

As stated, this claim is a bit ambiguous. First of all, the variation δ̂ηI will be inherently small
as the support of η shrinks to a small neighborhood of the horizon, simply because the integration
region becomes small. Second, for this particular variation it may be seen from (7.6a)–(7.6c) that
the symmetry algebra is unchanged under a constant rescaling η → kη, while the variation δ̂ηI of
the action scales by k. It is thus not entirely clear what “small” means.

To remove these ambiguities, let us define an approximate near-horizon symmetry as one for
which the quantity

δ̄ηI = δ̂ηI
/∫

|η|ǫ (C.2)

becomes arbitrarily small as the support of η shrinks to a small enough neighborhood of the horizon.
(The absolute value in the denominator eliminates problems that could occur if

∫

∆ η na = 0.) This
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expression is invariant under rescalings of η, and the integral in the denominator compensates
for the effects of a shrinking region of integration. If, as in eqn. (C.5) below, η has support only
in a band r < ε, this condition is roughly equivalent to normalizing η at the horizon and then
demanding that δ̂ηI go to zero faster than ε.

To apply this criterion to the transformations (C.1a)–(C.1c), we should first check that they
preserve our boundary conditions (5.3a)–(5.3c). Condition (5.3c) simply tells us that the Weyl
transformation δ̂ηgab acts only on ℓa and not on na (and therefore on na and not ℓa). Condition
(5.3a) then determines the form of the transverse diffeomorphism ζ̄, and as show in section 6,
condition (5.3b) gives the equation in (C.1d) that fixes Xη.

We next examine the effect of this transformation on the action (4.1). The action is diffeo-
morphism invariant, so we can ignore ζa and consider only the shift of the dilaton and the Weyl
transformation of the metric. The variation of the action is then

δηI =

∫
[

δI

δϕ
δ̂ηϕ+

δI

δgab
δ̂ηgab

]

ǫ

=
1

16πG

∫
[

∇a(ηℓ
a)

(

R+
dV

dϕ

)

+Xη
Dϕ

D̄Dϕ
(−�ϕ+ V )

]

ǫ =
1

16πG

∫

[ηA+XηB] ǫ (C.3)

with

A = −D
(

R+
dV

dϕ

)

= −DR−Dϕ
d2V

dϕ2
= −r

(

D̄DR+ D̄Dϕ
d2V

dϕ2

)

+O(r2) (C.4a)

B =
Dϕ

D̄Dϕ
(−�ϕ+ V ) =

Dϕ

D̄Dϕ

(

2D̄Dϕ+ V
)

= r
(

2D̄Dϕ+ V
)

+O(r2) , (C.4b)

where in the last equalities I have used (B.4) to write the result in Gaussian null coordinates.
We have assumed that the parameter η falls off rapidly away from the horizon—this is, after

all, a “near-horizon” symmetry. Let us make this explicit by writing

η = η∆ ·Ψε(r) , (C.5)

where η∆ is the restriction of η to the horizon and Ψ is a smooth bump function

Ψε(r) =







1 r = 0
smooth interpolation 0 < r < ε
0 r > ε

with ∂rΨε

∣

∣

r=0
= 0 , (C.6)

where the last condition ensures that D̄η , 0. The variation (C.3) is then

δηI =
ε2

32πG

∫

∆

[

−η∆
(

D̄DR+ D̄Dϕ
d2V

dϕ2

)

+Xη∆

(

2D̄Dϕ+ V
)

]

na +O(ε3) . (C.7)

The denominator in (C.2), on the other hand, is
∫

|η|ǫ = ε

∫

∆
|η∆|na +O(ε2) . (C.8)
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Thus as long as the integrand in (C.7) remains well-behaved near the horizon, the variation δ̄ηI is
of order ε, and can be made arbitrarily small by shrinking the support of η.

Note that while η must have large (O(1/ε)) radial derivatives, these never appear in the
variation of the action. For the first term in (C.7) this is obvious; for the second, it follows from
the fact that the defining equation (C.1d) for Xη involves no radial derivatives. Recall also from
section 3 that the corrections to the near-horizon form (4.1) of the action are at most of order r,
so any additional variation of the action coming from these terms will also fall off as ε2.
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