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Abstract

Dorsal human midbrain contains two nuclei with clear laminar organization, the supe-

rior and inferior colliculi. These nuclei extend in depth between the superficial dorsal

surface of midbrain and a deep midbrain nucleus, the periaqueductal gray matter

(PAG). The PAG, in turn, surrounds the cerebral aqueduct (CA). This study examined

the use of two depth metrics to characterize depth and thickness relationships within

dorsal midbrain using the superficial surface of midbrain and CA as references. The

first utilized nearest-neighbor Euclidean distance from one reference surface, while

the second used a level-set approach that combines signed distances from both ref-

erence surfaces. Both depth methods provided similar functional depth profiles gen-

erated by saccadic eye movements in a functional MRI task, confirming their efficacy

for delineating depth for superficial functional activity. Next, the boundaries of the

PAG were estimated using Euclidean distance together with elliptical fitting, indicat-

ing that the PAG can be readily characterized by a smooth surface surrounding PAG.

Finally, we used the level-set approach to measure tissue depth between the superfi-

cial surface and the PAG, thus characterizing the variable thickness of the colliculi.

Overall, this study demonstrates depth-mapping schemes for human midbrain that

enables accurate segmentation of the PAG and consistent depth and thickness esti-

mates of the superior and inferior colliculi.

K E YWORD S

colliculus, depth, midbrain, MRI, periaqueductal gray

1 | INTRODUCTION

Human midbrain mediates a panoply of critical brain functions that

range from homeostasis (Edlow, McNab, Witzel, & Kinney, 2016;

Hommel et al., 2006; Tsujino & Sakurai, 2009) to perception

(Behbehani, 1995; Sprague, 1991) to cognition (Morgane, Galler, &

Mokler, 2005; Roeper, 2013). However, studying the human dorsal

midbrain, including the superior colliculus (SC) and inferior colliculus

(IC), is challenging due to the small size and deep location of its

component nuclei, as well as limited methods for understanding

their internal structure. As a result, most of our existing knowledge

about the function of the midbrain arises from research conducted in

animal models. As human ultra-high field MRI adoption grows, the

constraints posed by collicular size and location are reduced due

to increased MR signal at 7 T and above. However, the challenge

of understanding the internal structure of the midbrain remains,
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requiring a depth-mapping scheme for probing the anatomy and func-

tion of the human midbrain.

Both SC and IC have an intricate laminar cytoarchitecture and

exist in a complex 3D topology that is folded into four small hillocks

on the dorsal surface of the midbrain. The inner boundaries of the col-

liculi abut another nucleus, the periaqueductal gray (PAG), which sur-

rounds the ventricular cerebral aqueduct (CA).

The laminar functional organization of mammalian colliculi has

been clearly established based on several electrophysiology and lesion

studies in animal models. Experiments in nonhuman primates and cats

have shown that the layers of SC can be divided into three groups with

independent functional purposes. Superficial layers have been shown

to receive direct visual input and have retinotopically organized recep-

tive fields (Cynader & Berman, 1972; Feldon & Kruger, 1970). Interme-

diate layers mediate oculomotor control (Robinson, 1972), while deep

layers are associated with multimodal inputs, primarily multisensory,

and visuomotor neurons (Meredith & Stein, 1986; Sprague &

Meikle, 1965). Likewise, electrophysiological studies in IC of rats and

primates have shown that the central nucleus organizes auditory

inputs of varying frequency in a laminar fashion (Baumann et al., 2010;

Schreiner & Langner, 1997). Invasive studies have exhibited this

tonotopic organization along the dorsal-to-ventral direction, which

roughly corresponds to laminar depth (Baumann et al., 2011; Cheung

et al., 2012; Loftus, Malmierca, Bishop, & Oliver, 2008; Malmierca

et al., 2008; Schreiner & Langner, 1997).

While functional MRI (fMRI) has been used extensively in human

cerebral cortex, the human brainstem has been relatively neglected

despite its critical role in brain function. Functional contrast-to-noise

ratio (CNR) is often low due to its deep location (Singh, Pfeuffer,

Zhao, & Ress, 2017) and functional data is susceptible to partial volume

effects due to the small size of important brainstem structures com-

pared with conventional fMRI voxel sizes of 3–4 mm. However, several

recent high-resolution fMRI studies using millimeter-scale voxels have

demonstrated detailed analysis of the functional laminar topography of

the human colliculi with reasonable CNR. Indeed, these studies have

confirmed the functional properties of the three major layer groups of

SC (Katyal & Ress, 2014; Linzenbold & Himmelbach, 2012; Loureiro

et al., 2017; Savjani, Katyal, Halfen, Kim, & Ress, 2018; Schneider &

Kastner, 2010), as well as the auditory organization of IC (De Martino

et al., 2013; Moerel, De Martino, U�gurbil, Yacoub, & Formisano, 2015;

Ress & Chandrasekaran, 2013), encouraging interest in resolving these

laminar variations of human colliculi in more detailed experiments. A

recent fMRI study showed depth-dependent variations of the BOLD

response with 1-mm sampling in SC (Loureiro et al., 2017). This work

utilized binary mask erosion techniques to generate depth-dependent

regions-of-interest (ROI). The approach resolves depth at the 1-mm

scale but does not permit associations between laminae at different

depths.

In previous work, we utilized a nearest-neighbor Euclidean point-

to-surface definition of depth to define layers in SC by creating

depth kernels that associate a particular locus of superficial tissue

with deeper tissue. These kernels were small computational cylinders

extending from the surface of the brainstem inwards, normal to the

surface of SC. With this method, we successfully demonstrated

depth-dependent BOLD responses from visual stimulation and atten-

tion (Katyal & Ress, 2014; Katyal, Zughni, Greene, & Ress, 2010) as

well as saccadic activity in SC (Savjani et al., 2018) and frequency-

dependent auditory stimulation in IC (Ress & Chandrasekaran, 2013).

However, defining a laminar neighborhood of tissue using

nearest-neighbor associations is a drastic oversimplification. In the

small convoluted colliculi, the cylinders are susceptible to oversampling

or undersampling deep tissue, depending on the gradient of the curva-

ture. In order to capture the physical structure of collicular layers as

observed in histology and MR microscopy, a more topologically consis-

tent method of defining depth within the colliculi is desirable. Several

methods have been developed to compute depth in cortex, including

solutions of Laplace's equation (Jones, Buchbinder, & Aharon, 2000)

and equi-volume methods (Waehnert et al., 2014). However, they are

computationally expensive to solve in a stable and accurate fashion,

and have never been applied to midbrain.

Here, we compare two methods for depth-analysis in human mid-

brain: our previous Euclidean approach, and an algebraic level-set

algorithm that utilizes two surfaces. We adapted the level-set method

originally implemented in cortex (Kim, Taylor, & Ress, 2017) to human

midbrain using the superficial brainstem tissue-CSF boundary as the

outer surface and the CA as the inner surface to create a depth coor-

dinate normalized to the thickness of the tissue under investigation.

First, we compared the ability of both methods to delineate visual-

and saccade-evoked function in superficial SC, concluding that both

methods perform similarly. We also delineated the inner boundaries

of the colliculi in order to set a precedent for future functional studies

in the deepest layers of SC. This was accomplished by localizing

the outer boundary of the PAG using a combination of Euclidean

and level-set methods applied to gray-matter tissue-probability maps

obtained at 9.4T. Lastly, we evaluated anatomical thickness of the col-

liculi, using both methods to measure the distance from the collicular

surface to the outer boundary of the PAG. In this case, the level-set

approach provided more precise measures of tissue depth in the supe-

rior and inferior colliculus. Altogether, we show that our level-set

method for depth analysis meets or exceeds the performance of more

typical Euclidean approaches and suggests new applications of our

method for mapping the human brainstem.

2 | METHODS

2.1 | Subjects

We applied our level-set scheme to 20 subjects. Eight of these partici-

pated in subcortical fMRI experiments at 3T (Savjani et al., 2018), giv-

ing informed consent under procedures reviewed and authorized by

the Baylor College of Medicine Institutional Review Board. The other

12 subjects participated in quantitative MRI experiments at 9.4T

(Hagberg et al., 2017) and underwent a physical and psychological

check-up by a local physician and provided written informed

consent following local research ethics policies and procedures.
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These investigations were conducted in agreement with the World

Medical Association Declaration of Helsinki in its most recent ver-

sion (2013).

2.2 | Acquisition and segmentation of anatomical
images

For each of the eight subjects scanned at 3T, we acquired high-

resolution (0.7-mm voxels) T1-weighted anatomical volumes using

an MP-RAGE sequence (TI = 900 ms, TR = 2,600 ms, 9� flip angle,

TA = 22 min) on a 3T Siemens (Siemens Medical Solutions, Erlangen,

Germany) Trio scanner with a product 32-channel head coil. The

remaining 12 subjects were scanned at 9.4T using a Siemens Mag-

netom scanner equipped with a 16-channel, dual-row transmit array

operating in the circularly polarized mode, and a 31-channel receive

array (Shajan et al., 2014). We acquired B1 field maps by the actual flip

angle imaging method (Yarnykh, 2010; Yarnykh & Yuan, 2004) with

nominal flip angle FA = 60�; repetition time TR1/TR2 = 20/100 ms;

echo time TE = 7 ms, voxel size = 3 × 3 × 5 mm3; and acquisition

time TA = 225 s. We further acquired high-resolution (0.8-mm isotro-

pic voxels) quantitative whole brain T1-maps using an MP2-RAGE

sequence (TI1/TI2 = 900/3500 ms, TR = 6 ms, volume TR = 9 s,

TE = 2.3 ms, GRAPPA = 3, partial-Fourier factor 6/8, 256 RF pulses,

and TA = 9 min 40 s). At 9.4T, this approach permitted high-quality

anatomical imaging with the much shorter acquisition time than at 3T.

The MP2RAGE images were reconstructed off-line while correcting

for deviations from the nominal excitation flip angle and for T2-

dependent deviations in inversion efficiency of the adiabatic inversion

pulse (Hagberg et al., 2017). From the quantitative T1 maps, two

sets of synthetic, B1-artifact-free, T1-weighted, MP2RAGE contrast

images were generated pixel-wise from the analytical model equations

described in the Appendix of Marques et al. (2010). The first image

set was used for brain tissue segmentation in volume space using

SPM12. The white-matter gray matter tissue contrast could be

increased with respect to the image acquisition by setting the TI2 to

2,650 ms, and the inversion efficiency to 0.9 while the remaining

parameters were the same as in the MR-acquisition. The second

image set was generated to improve the quality of the FreeSurfer seg-

mentation (performed using 100 iterations and the following recon_all

options: “–highres -3T –schwartzya3t-atlas”) and was based on the

following parameters: TI1/TI2 = 950/2100 ms; flip angle = 5/3�; vol-

ume TR = 6 s; and an inversion efficiency of 0.8451 (corresponding to

the experimentally determined median value found in brain tissue).

For all subjects, to generate the outer segmentation, the

brainstem tissue (BS) of each subject was initially identified using

a probabilistic Bayesian approach in the FreeSurfer 6.0 software

package (Iglesias et al., 2015). These segmentations were then edited

manually to obtain precise delineation of the four colliculi and their

vicinity. To create the inner segmentation, the CA was identified using

a mixture of manual and automatic region-growing tools implemented

in ITK-SNAP (Yushkevich et al., 2006).

2.3 | Surface modeling

A surface model S1 was estimated at the interface between the

brainstem tissue and adjacent CSF or thalamic tissues (Figure 1a). An

initial isosurface was created directly from the segmentation using

MATLAB R2016a (Mathworks Corp., Natick, MA). Then, to reduce

voxelation artifacts, we applied five iterations of refinement using a

variational, volume-preserving deformable surface algorithm (Bajaj,

Xu, & Zhang, 2008; Khan et al., 2011; Xu, Pan, & Bajaj, 2006). The

same procedure was applied to the CA segmentation to construct a

second surface, S2 (Figure 1e).

2.4 | 3D level-set depth-mapping

We calculated a normalized signed distance function w using two

separate physical distances relative to the corresponding surfaces

(Figure 2a,b). First, Euclidean distances were calculated for voxels in

the volume to the nearest triangle of the designated surface S1 and S2,

giving a 3D mapping of each voxel to its distance value (Eberly, 1999).

Second, the sign for each voxel was determined based on its location;

voxels enclosed within the surface were assigned positive distance

values, while voxels outside the surface were given negative dis-

tances. Thus, distances from S1 (d1) became increasingly positive from

the surface to BS into deeper tissue, while distances from S2 (d2) were

only positive within CA and negative in BS and surrounding CSF.

F IGURE 1 Isosurfaces of tissue proximal to the cerebral aqueduct constructed at five values of w for one subject scanned at 3T, with w = 0
representing the interface between brainstem tissue and CSF (S1) and w = 1 representing the cerebral aqueduct (S2)
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Finally, we calculated a weighted sum of the signed distance func-

tions, with distance parameter w, using a level-set scheme that

solves an Eikonal equation (Bajaj et al., 2008; Khan et al., 2011; Kim

et al., 2017):

1−wð Þd1 +wd2 = 0, ð1Þ

where the level-set parameter w provides a normalized depth coordi-

nate between the two surfaces. The depth metric w (Figure 2c) is zero

on the brainstem surface (d1 = 0) and unity at the surface of CA

(d2 = 0); w < 0 is outside BS and w > 1 within CA. Because the normal-

ized depth coordinate is independent of the variable tissue thickness,

the above equation also enables generation of isosurfaces that evolve

F IGURE 3 Left to right: axial,
coronal, and sagittal cross sections of
normalized depth maps in four
subjects scanned at 3T, and location of
cross sections (pink: axial, green:
coronal, and blue: sagittal) on
brainstem surface models (S1) of each
subject. Axial cross-sections show
both superior colliculus (Subjects 1
and 2) and inferior colliculus (Subjects 3
and 4). Sagittal cross sections ran
through the cerebral aqueduct
(Subject 1), through the crown of the
colliculi (Subjects 2 and 3), and through
tissue adjacent to the cerebral
aqueduct (Subject 4)

F IGURE 2 Distance maps generated for one subject overlaid on an axial T1 MRI image of superior colliculus (far left) acquired at 3T. Shown in
panels to the right are Euclidean signed-distance functions (a) d1, (b) d2, (c) normalized depth, w and (d) level-set depth derived from w by ray

tracing. Black dashed lines show the surface representations of the superior colliculus (S1) in (a) and the cerebral aqueduct (S2) in (b), at signed-
distance function values of zero
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smoothly from S1 to S2 (Figure 1a–e) as well as outside of the domain

bounded by the surfaces. Taking advantage of this computational fea-

ture, the changes in curvature that distinguish the colliculi became less

obvious with increasing w (moving from brainstem surface to CA), and

the level-set surfaces of w ultimately morph into the cerebral aque-

duct, S2. Normalized depth maps were consistent between subjects

(Figure 3), showing a smooth progression between the brainstem sur-

face at w = 0 to the CA at w = 1. As evident in the surfaces shown in

Figure 1, the characteristic curvature of the colliculi diminished with

increasing w depth.

2.5 | Generation of streamlines and depth-
averaging kernels

To obtain unique correspondences between S1 and S2, we treated

w as a pseudopotential. We calculated r*w by convolution with five-

point stencil kernels along each dimension. Then, we used ray tracing

of r*w to generate streamlines originating at each vertex of S1

(Figure 4a) and propagating throughout midbrain and vicinity. The

streamlines were initialized along the corresponding surface normal of

S1 and propagated in small piecewise increments (0.25 voxels), follow-

ing r*w from w =0 to w =1.5. The same process was repeated follow-

ing the negative gradient from w =0 to w =−1. The positive and

negative streamline segments were then concatenated into a continu-

ous streamline from w =−1 to w = 1.5. To avoid numerical patholo-

gies, we utilized several heuristics. Topological inconsistencies were

avoided by terminating streamlines that encountered large changes

(>80�) in the direction of r*w in a single step. Additionally, stagnating

streamlines that failed to make sufficient spatial progress after each

iteration beyond a minimum threshold (typically 0.05 voxels) before

reaching CA were removed. Any streamlines that remained incom-

plete (w < 1) were also discarded after a maximum number of itera-

tions (typically 64 in the direction of positive w and 32 in the negative

direction).

To create depth-averaging kernels that associated voxels on the

surface of BS with deeper tissue, we gathered all streamlines within a

chosen radius, typically 0.7 mm, of manifold distance around each ver-

tex on S1 (Figure 4a). The coordinates of each streamline were then

rounded to the nearest voxel and associated with their corresponding

vertex of origin on the brainstem tissue surface.

For comparison, we utilized our earlier approach that used only

the Euclidean distance metric d1 to define depth. In this method,

depth kernels were computed by extending a 0.7-mm manifold radius

disk of BS surface voxels along their mean normal in both directions,

yielding a cylinder of voxels (Figure 4b).

2.6 | Depth profiles of visual stimulation-saccade-
evoked activity in SC

To test the new level-set streamline approach, we re-analyzed existing

data on the polar-angle representation of saccadic eye movements in

SC (Savjani et al., 2018). For both stimulation and saccades, we mea-

sured the peak BOLD response at depths between 0.5 mm outside BS

and 3.5 mm inside BS at increments of 0.1 mm, averaging the values

within each 1.2-mm-wide bin. Given that the nature of our stimulus

was expected to elicit narrow bands of saccade-evoked activity in

F IGURE 4 (a) Quasi-axial view of a surface representation of superior colliculus (S1) and cerebral aqueduct (S2) in one subject scanned at 3T
with three level-set depth-averaging kernels (radius = 0.7 mm, manifold distance). Their component streamlines (dark green) are regridded (light
green) to the spatial resolution of the anatomical volume (0.7 mm isotropic voxels). (b) In comparison, cylindrical depth-averaging kernels
demonstrate undesirable overlap (“contention”, red arrow) and inappropriately directed sampling in deeper collicular tissue. (c) Quantification of
the deviation metric, Δd, between level-set and Euclidean sampling methods. (d) Relationship between Euclidean nearest-neighbor depth and
level-set depth in collicular tissue. (e) Surface representations of brainstem (S1) of one subject, with deviation Δd values at three level-set depths
mapped back to the surface vertices from which each streamline originates
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intermediate SC, as detailed in (Savjani et al., 2018), we automatically

generated elliptical ROIs at the surface of SC to capture the most

robust activity. We expected the profiles for saccades to be shifted

deeper into SC compared with those from visual stimulation. The reli-

ability of our data was established using a bootstrapping method. We

resampled across runs with replacement over 2000 iterations, calcu-

lating a new laminar profile for each resampled average. This data

were used to obtain the mean depth profiles across subjects with their

corresponding 68% confidence intervals, and depth values of peak

activity with their 68% confidence intervals and p-values (Figure 5).

Depth profiles generated using streamlines and level-set physical tis-

sue depth were compared to profiles using our previous cylinders and

Euclidean depth.

2.7 | PAG analysis in midbrain

We estimated the outer boundary of the PAG using quantitative

structural data obtained at 9.4T. For this purpose, the unified segmen-

tation approach (Ashburner & Friston, 2005) and a gray-matter

tissue-probability atlas (Lorio et al., 2016) in SPM12 were applied to

the MP2RAGE-based image sets with optimized white-gray matter

contrast (as described above). This map was qualitatively discriminative

of the PAG boundary at very high probability thresholds (Figure 6a). To

quantify an optimal probability threshold (Pthr), we minimized spatial

uncertainty (Ress, Harlow, Marshall, & McMahan, 2004) of the PAG

boundary across subjects. Since the outer boundary of the deep PAG

roughly forms an annulus surrounding CA, we chose to define it in units

of our Euclidean distance metric from CA, d2. We used our new level-

set depth kernels to quantify P as a function of depth, binning increasing

values of d2 from S1 to S2, at increments of 0.05 mm (Figure 6b).

We initially calculated depth profiles for comparison using normalized

w distance, level-set path distance, and Euclidean distance from S1, as

well as using the cylinder depth kernels. However, they provided almost

no contrast between the PAG and the surrounding tissue, and using d2

as a reference depth metric clearly proved to be the most useful

method. From the streamline depth profiles, we then computed the spa-

tial uncertainty U:

U=
σP
1
P
dP
dd2

���
���

where σP is the SD of P across subjects at each value of d2. Examin-

ing the mean values of U with respect to gray matter probability,

we determined that the optimal Pthr = 0.96. We then constructed

and characterized a 3D estimate of the PAG boundary (Figure 6c,d).

The segmentation for CA was upsampled by a factor of two and

skeletonized to create an axis. Using this axis as a normal vector,

2D slices were taken through the brainstem probability map at

each point along the axis. These contours were then fit in a least-

squared error sense with ellipses centered around the cerebral

aqueduct. These ellipses were characterized by three parameters:

left–right axis length a, dorsal-ventral axis length b, and aspect ratio

ε = b/a. (Figure 6e). These 2D ellipses were then flood filled and

transformed back to the locations of the slices they were calculated

from, to create a 3D segmentation of the elliptical fit of the PAG.

We termed the resulting surface generated from this segmentation

Sellipse.

A second 3D representation of the PAG was also obtained as a

smooth iso-probability surface, SPAG, of the gray-matter probability

map at Pthr using the methods described above (Figure 6d). Upon

grossly comparing SPAG and Sellipse, the former was, as expected, very

similar to the elliptical fit described above.

2.8 | Measurements of collicular thickness

We used path distances along the streamlines to create a new distance

map estimating physical tissue depth, obtained by contour integration

along each streamline. The path integrals, which oversample the vol-

ume, are then re-gridded using a Delaunay triangulation approach

(Amidror, 2002) onto the anatomical reference volume (Figure 2d). This

level-set depth stopped increasing at CA, whereas Euclidean depth

(Figure 2a) continued to increase into the center of BS.

For the 12 subjects from which we collected gray-matter proba-

bility maps to delineate the PAG, we measured collicular tissue thick-

ness using three different depth metrics: Euclidean distance, level-set

path distance, and normalized w distance. Then, collicular thickness

was calculated by integrating path distance along each streamline

from the surface of the colliculi to SPAG (7A). Table 1 displays mean

collicular thickness values at six particular locations: the four peaks of

left and right SC and IC, and the two sulci between the left and right

colliculi of each SC/IC pair. Our method for automatically selecting

these points is as follows (Figure 7b).

First, for each subject, we isolated the vertices of S1 of

corresponding to the colliculi. We manually created a third segmenta-

tion label for the voxels of SC and IC in ITK-SNAP that grossly segre-

gated the surfaces of all four colliculi. We then mapped these voxels

by nearest-neighbor association to the BS surface. For completeness,

we then expanded this surface by an additional 2-mm manifold dis-

tance, thus creating S1A.

Second, S1A was used to locate the peaks of each colliculus

by dividing its vertices into four quadrants, each containing one

colliculus, based on a set of planes. A quasi-sagittal plane separating

left and right colliculi was specified as the plane of best fit through

the vertices of the CA surface model, S2. To calculate an axial plane

separating SC and IC, the collicular surface vertices were divided into

bins of 0.5-mm width according to their axial position. The midpoint

of the bin with the most negative mean curvature defined the axial

plane of separation. We used these planes to divide S1A into four sub-

sets, each containing a single collicular surface. Next, we defined a

base-plane for each colliculus by taking all vertices with positive cur-

vature values and fit these with a plane using a least-squares method.

We then defined the peak location as the point with maximum Euclid-

ean distance from this base-plane. We also experimented with defin-

ing the collicular peaks as the vertices with greatest positive curvature
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but found that these points of maximum curvature varied significantly

across individual colliculi as well as across subjects. In contrast, the

peak distance definition was far more stable, and was therefore used

as our standard approach.

Third, for the intercollicular sulcus (ICS) of SC, we calculated

the line between the peaks of left and right SC calculated as

described above. The intersection point between this line with the

plane-of-best-fit through the CA was located, and the vertex of S1

closest to this point, within 0.25 mm of the plane of best fit,

was defined to be the center of the intercollicular sulcus. For the

inferior sulcus, we repeated the same process with left and right

peaks of IC.

Once we obtained the six points of interest, we measured each of

their thickness values using three different metrics. For Euclidean dis-

tance, we used the distance along the surface normal from S1 to SPAG.

For level-set physical distance, we used integrated path distance along

the streamline originating from each point to the point where it inter-

sected the PAG. For normalized distance, we linearly interpolated the

w-distance map at the point where the streamlines of interest inter-

sected the PAG. Lastly, we applied a Gaussian-weighted smoothing

kernel (2-mm diameter, 1-mm full-width-at-half-maximum [FWHM]) to

each of these points to obtain estimates of the six thickness values. For

each of n vertices within 1 mm of the peak or sulcus in question, its

thickness value twas given a weight A according to its manifold distance

dm to the center point of the kernel: An = exp −dm
2=2σ2

� �
=σ

ffiffiffiffiffiffi
2π

p
,

where σ is the standard deviation of the Gaussian function, and

FWHM =2σ
ffiffiffiffiffiffiffiffiffiffi
2ln2

p
. The final thickness value was then calculated as

the weighted sum, T =
Pn

1Antn=
Pn

1An.

3 | RESULTS

3.1 | Euclidean versus level-set methods

Unlike the kernels generated using the cylinder method, the level-set

streamlines avoided overlap through their nonlinearity and compression

with increased depth (Figure 4a,b). The streamlines in the colliculi

exhibited various degrees of non-linear deformation depending on

starting location and their depth into BS. With respect to superficial

location, the greatest nonlinearities were expected to occur in stream-

lines that originate from regions where the curvature varies rapidly

(Figure 4a,b). Low amounts of nonlinearity at the lateral edges of

F IGURE 5 Bootstrapped (n = 2000) mean laminar profiles of normalized BOLD response in superior colliculus (SC) across 4 subjects scanned
at 3T, depth-averaged using: (a) Euclidean depth and cylinder depth kernels, (b) level-set depth and streamline depth kernels, and (c) normalized w
depth and streamline depth kernels. Shaded regions around curves and peak locations indicate 68% confidence intervals
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collicular tissue were observed, gradually increasing inwards towards

the concave tissue between the colliculi.

With respect to metrics of physical tissue depth, the relationship

between Euclidean and level-set depth was sub-linear (Figure 4d),

reflecting increasing curvature in deeper collicular tissue. Additionally,

level-set depth, or path distance along the streamlines, stopped

increasing at CA, whereas Euclidean depth continued to increase into

the center of BS (Figure 2a,d).

We established a metric Δd to quantify the deviation between

level-set and cylinder depths (Figure 4c). In addition to measuring

deviation between the two methods, this comparison also quantified

the non-linearity of the level-set depth trajectories. At each point

along each streamline, Δd was the orthogonal distance to the S1 nor-

mal vector of the vertex from which the streamline originated. Greater

values of Δd at increasing level-set depth were consistent with the

warping observed above. Δd was mapped back to S1 at various depths

(Figure 4e). Non-linearity was very small (<<1 mm) for depths <3 mm

and became substantial (>1 mm), at ≥5 mm depth. Largest error (and

non-linearity) was in intercollicular regions, demonstrating where the

Euclidean cylinder method is least appropriate.

3.2 | Depth profiles of visual stimulation- and
saccade-evoked activity in SC

In superficial SC, our level-set depth was very similar to the original

Euclidean depth. Our measurements of the BOLD response as a func-

tion of depth confirmed similar depth profiles, including the previous

finding that the mean depth profiles across subjects for saccadic activ-

ity was shifted deeper into SC compared with those obtained from

visual stimulation. This is consistent with the functional organization

of SC delineated in animal models (Fuchs, Kaneko, & Scudder, 1985;

Sparks & Hartwich-Young, 1989; Wurtz & Albano, 1980). The profiles

generated using our new method did not show significant differences

from those utilizing the cylinder method (Figure 5). The laminar

depth profiles generated using our streamline kernels and normalized

F IGURE 6 Gray-matter probability map of one subject scanned at 9.4T with contour lines drawn at p = .96 (red). (b) Left: Individual depth
profiles (gray) sampling gray-matter probability maps using streamlines, with respect to distance from cerebral aqueduct (CA). Mean depth profiles
across subjects is shown in black. Right: Individual values of spatial uncertainty U with respect to gray-matter probability. Mean across subjects is
shown in black. (c) Slices of the gray-matter probability map of one subject taken normal to CA. Three sections are shown running through

superior colliculus (SC; 1), intercollicular sulcus between SC and inferior colliculus (IC; 2), and IC (3). Contour lines drawn at p = .96 are shown in
light red, and the resulting elliptical fits to these 2D slices are in dark red. (d) Surface representations of the PAG (dark gray) enclosing S2 (CA; light
gray), shown with S1 (brainstem surface; light gray. Three orthogonal slices of one subject's T1 anatomy volumes are shown. Light red depicts the
actual PAG contour at p = .96 (SPAG). Dark red depicts the boundary of the estimated PAG segmentation (Sellipse) reconstructed from transforming
the 2D elliptical fits back to their 3D locations. (e) Left: Mean ± SD of elliptical parameters (a = left–right semi-axis; b = dorsal-ventral semi-axis;
ε = aspect ratio) across subjects. Right: Mean ± SD elliptical parameters a (orange) and b (green) along the length of the cerebral aqueduct,
normalized to the mean length of CA
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w depth also demonstrate the depth differences between stimulation-

and saccade-evoked activity to a similar level of significance as the

other methods.

3.3 | Characterization of the PAG

Upon examination the gray matter probability maps of the PAG,

we found that a large proportion of the dorsal midbrain is attributed

a high probability value, even including superficial tissue that would

be considered to be colliculus (Figure 6a). However, after using a

combination of the streamline depth kernels and Euclidean distance

from CA, we were able to localize the PAG within this ambiguous

region with a relatively small degree of uncertainty (Figure 6b). The

PAG for all subjects was generally able to be fitted with ellipses

resulting in a root-mean-squared error of 0.65 mm (Figure 6c), which

did not show any significant variations within the slices of individual

subjects. Ellipse parameters a, b, and ε (Figure 6e) had coefficients-

of-variation 0.37 ± 0.08, 0.15 ± 0.06, and 0.49 ± 0.34, respectively,

demonstrating that the elliptical fits were significantly more stable

across subjects in the dorsal-ventral direction compared with the

left–right direction. Rotation parameters were negligible. Visualiza-

tion of the PAG contour and its associated surface, SPAG, reveals that

this nucleus is not necessarily a uniform tube surrounding CA. Rather,

its thickness, particularly along the left–right axis, varies along the

length of CA (Figure 6d,e).

The vertices of the PAG contour (SPAG) and our estimation of the

contour boundary using ellipses (Sellipse) were very similar. Mean vertex

separation, averaged across subjects, was 0.46 ± 0.18 mm. A few verti-

ces were widely separated; maximum separations were 7.2 ± 5.0 mm.

However, the fraction of these outlier vertices, with separations

>2 mm was very small, mean across subjects was 4.3 ± 2.7%. Thus, the

PAG is well characterized as a series of smooth ellipses that vary along

the length of the CA. Our elliptical fitting procedure smoothed out

many of the irregularities present in the actual PAG contours derived

from the gray-matter probability maps (Figure 6d), though some inho-

mogeneities are still observable in orthogonal cross-sections of Sellipse.

However, particularly visible in a sagittal view, these “dimples” occur in

the plane of the 2D ellipses, or in a direction that is normal to CA,

reflecting some natural variance in the elliptical parameters along the

length of CA. Overall, our results confirmed the utility of Euclidean dis-

tance from CA as a reference depth metric for this region of the

midbrain.

3.4 | Measurements of collicular tissue thickness

Thickness maps calculated using level-set physical distance from S1 to

SPAG showed that the tissue of the colliculi tends to be thickest at its

crown, as expected, but also extending laterally, particularly the supe-

rior lateral edges for SC. The tissue inbetween left and right colliculi,

the intercollicular sulcus, was thinnest (Figure 7a). Mean data across

subjects for tissue thickness at the four peaks of SC and IC as well as

the two sulci between left and right SC and IC are shown in Table 1.

Interestingly, the variability of SC thickness was 2.77 mm of level-set

depth, while IC thickness was significantly more stable at 0.97 mm. A

similar pattern was observed for superior and inferior intercollicular

sulci, which had variabilities of 0.88 and 0.46 mm, respectively. For

absolute thickness measures, there were no significant left–right

thickness asymmetries. Thickness values at the intercollicular sulci

were very similar for inferior and superior colliculi. The normalized

thickness metrics showed lower coefficients of variation in general

(Table 2). Left–right symmetry was also more clearly suggested by

normalized thickness.

TABLE 2 Coefficient of variation
(COV) of tissue thickness values using
three different depth metrics across all
12 subjects

SC IC

Units L R ICS L R ICS

Physical (Euclidean) 0.602 0.593 0.671 0.144 0.377 0.397

Physical (streamline) 0.676 0.582 0.539 0.101 0.381 0.465

Normalized (w) 0.364 0.298 0.513 0.094 0.369 0.342

TABLE 1 Mean ± SD for tissue thickness values in left (L) and right (R) colliculi and intercollicular sulci (ICS) for SC and IC in all 12 subjects
using three different depth metrics

SC IC

Units L R ICS L R ICS

Physical (Euclidean) 2.64 ± 1.59 3.09 ± 1.83 1.04 ± 0.70 3.35 ± 0.48 3.11 ± 1.17 0.88 ± 0.35

Physical (streamline) 4.19 ± 2.84 4.80 ± 2.79 1.23 ± 0.66 3.18 ± 0.32 2.75 ± 1.04 0.93 ± 0.43

Normalized (w) 0.43 ± 0.16 0.42 ± 0.13 0.26 ± 0.13 0.39 ± 0.04 0.32 ± 0.12 0.20 ± 0.07
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4 | DISCUSSION

We compared an algebraic level-set scheme utilizing a normalized

depth coordinate, w, to a Euclidean depth-mapping scheme for mid-

brain tissue between the surfaces of the brainstem and the cerebral

aqueduct in humans. Previously, we used computational cylinders and

Euclidean nearest-neighbor definitions of depth to estimate depth

profiles of functional activity evoked by visual stimulation and atten-

tion (Katyal et al., 2010; Katyal & Ress, 2014; Savjani et al., 2018).

However, the cylinder method was limited by contention of depth

kernels, rendering it susceptible to oversampling deep tissue within

individual colliculi and undersampling tissue in the inter-collicular sul-

cus. In contrast, the resulting nonlinear coordinate system in native

brain space using our level-set method is specifically adapted to the

3D shape of the tectum. Our novel streamline depth kernels never

crossed paths by nature of the pseudopotential and compress or

expand along their depth, which avoided mis-association between

deep and superficial voxels using the cylinder method. The stream-

lines give a one-to-one association between the brainstem surface

and the cerebral aqueduct (CA) at all spatial locations.

We also defined a new metric for physical tissue depth using

streamline path distance. Both this level-set physical depth and the nor-

malized w depth provide an analytic depth coordinate for each voxel.

Additionally, the streamline depth kernels enable surface-based smooth-

ing of the functional activity, provide mappings between the superficial

surface (S1) and deeper tissue, and allow quantitative data, such as gray

matter probability, at different depths to be projected onto the surface

(Dale, Fischl, & Sereno, 1999; Glasser et al., 2016). The parcellation of

tissue into kernels provided depth relationships between deep and

superficial tissue at a single spatial location, or over any functionally

defined superficial surface. For example, the retinotopic organization of

superficial superior colliculus (SC) (Cynader & Berman, 1972) could be

related to the putative somatotopic organization in the deep layers of

human SC suggested by experiments on animal models (Clemo &

Stein, 1991; Jay & Sparks, 1987; Nagy, Kruse, Rottmann, Dannenberg, &

Hoffmann, 2006; Wallace, Wilkinson, & Stein, 1996).

Overall, the streamline kernels are superior to the cylindrical ker-

nels in their ability to create logical associations between tissue. How-

ever, we show that both the Euclidean and level-set depth metrics

have their merits in appropriate regions of the midbrain. Usage of

streamline depth kernels and level-set physical depth produced depth

profiles of visual stimulation- and saccade-evoked activity in superfi-

cial SC similar to those previous obtained using cylindrical kernels

and Euclidean distance from the surface of the brainstem, d1, as the

reference depth metric (Figure 5). This similarity was maintained

throughout the depth range over which we calculated the depth pro-

files, 0–3 mm, and negligible differences between the methods in

superficial tissue suggest that either method works well at these

superficial depths. Meaningful functional activity did not extend deep

enough into SC for us to determine any significant differences

between Euclidean and level-set depth metrics beyond these depths.

This is consistent with our findings in Figure 4d, which demonstrate

that substantial differences (e.g., >0.5 mm) between Euclidean and

level-set path distance metrics only emerge at depths >3 mm. Depth

profiles generated using normalized w distance and streamline kernels

also produced results with similar degrees of significance and variabil-

ity compared to those generated with physical measures of depth.

According to Figure 4d, the medial regions of the colliculi are most

susceptible to significant deviations between cylindrical and stream-

line sampling methods. Notably, upon visual inspection, the elliptical

ROIs obtained in our fMRI experiments typically did not cover medial

SC, which may explain the lack of significant differences in the depth

profiles obtained using the two methods. On the other hand, the ana-

tomical structure of the PAG is best defined using depth values

according to Euclidean distance from CA, or d2 (Figure 6). As d2 is

straightforwardly defined using the boundary of CA as a reference

surface, this is in agreement with the qualitative description of the

PAG as roughly a cylindrical tube surrounding CA. Thus, Euclidean dis-

tances from an appropriate reference surface are sufficient to delin-

eate both superficial colliculus and the deep PAG.

Because of the differences between the methods that emerge at

greater depths within the midbrain, characterized by our metric Δd, we

predict that our streamlines and level-set depth metrics will provide

the greatest utility in regions of intermediate depth, namely deep

SC and IC. This hypothesis is made on the basis that our level-set

streamline kernels more accurately follow the natural curvature of

F IGURE 7 (a) Surface representations of brainstem (S1) of four
subjects scanned at 9.4T, overlaid with collicular tissue thickness maps.
(b) Determination of collicular peaks and intercollicular sulci. The
collicular surface S1A was divided into four quadrants using a quasi-
sagittal (blue) and axial (fuchsia) plane. A base plane (yellow) through
the vertices with zero curvature was defined for each colliculus, and
collicular peaks (red) were defined to be the vertices with greatest
distance to each base plane Intercollicular sulci (cyan) were vertices on
the mid-sagittal plane closest to the line between left and right peaks
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midbrain tissue. Particularly, Figure 4d demonstrates that the greatest

deviations between Euclidean and level-set methods are located in

the medial regions of the colliculi, where the surface normal of the

brainstem tissue point away from CA, indicating where use of cylindri-

cal depth kernels may be least appropriate. In regard to the laminar

structure of the colliculi, isosurfaces of our normalized w distance may

provide a more accurate representation of the anatomical morphology

of midbrain tissue compared with Euclidean definitions of tissue depth.

This should be validated through comparison studies between high-

resolution in vivo brain imaging and histology on post-mortem brains,

similar to (Loureiro et al., 2018). Further confirmation of the utility of

our level-set method in deeper midbrain structures, particularly for

fMRI experiments, should be achieved through studies such as those

involving reach-related activation in SC (Linzenbold & Himmelbach,

2012; Liu, Duggan, Salt, & Cordeiro, 2011; Sparks & Hartwich-Young,

1989). Given the ability of our w-depth profiles to differentiate laminar

functional activity in superficial SC, we believe that the applications of

our method in deeper tissue are promising.

We measured collicular thickness using our level-set definition

of depth. While thickness measured in physical units (mm) varied

between individuals, measurements in units of normalized depth dem-

onstrated the least variability, testifying to the normalization that this

metric provides between brains of different sizes. SC tended to have

similar thickness, but greater variability compared to IC. While the

mean thicknesses of left and right colliculi were not significantly dif-

ferent, left–right symmetry varied among individual subjects. Some

subjects had differences in thickness greater than 2 mm, while others

had differences <0.25 mm. The left–right differences in thickness

were somewhat smaller for SC than IC.

However, from visual inspection of the PAG contour maps within

the context of each subject's anatomical volume, left–right asymmetry

was not apparent. This disparity between expectation and qualitative

observation, and our data are subject to two interpretations. First,

what appears to be qualitatively symmetrical might not be in terms of

path distance along nonlinear streamlines, which is not immediately

evident purely from visual inspection. Second, and more importantly,

the asymmetry tended to be an effect of which point on the BS sur-

face was chosen to be the “peak” of each colliculus. Our method of

choosing the point with the furthest straight-line distance to the base

plane of each colliculus has an inherently Euclidean basis. Alterna-

tively, taking the point with the greatest streamline distance to the

base plane would have introduced a bias towards the very method we

are attempting to test. It would also favor choosing points near the

lateral edges where the streamlines are least perpendicular to the

base plane. The desired output of the peak-finding algorithm is

unclear at this point, especially when we have yet to fully characterize

the location and lateral boundaries of the colliculi.

To the best of our knowledge, this work is the first to assess

human collicular thicknesses in vivo, and these measurements,

expanded to a larger pool of healthy brains, may be useful for gross

delineation of neurodegenerative pathology that affect the colliculi

such as glaucoma or aging (Crish, Sappington, Inman, Horner, &

Calkins, 2010; Liu et al., 2011; Ouda & Syka, 2012). Though our data

may appear to imply that some of our subjects suffered from unilat-

eral degeneration, our method is one of many possibilities. Developing

a way to accurately measure collicular tissue thickness depends on

our ability to localize the entire boundary around these nuclei. Again,

comparison studies between brain imaging and histology on post-

mortem brains (Loureiro et al., 2018) will be necessary to provide a

complete analysis of collicular topology.

We strove for a method to relate observed function back to the

anatomical structures from which they originate. Studying brain func-

tion within a structural context, as in a standardized atlas space (Evans

et al., 1994; Mazziotta et al., 2001; Talairach & Tournoux, 1988),

allows for localization of relevant structures and, consequently, gener-

alizability across populations and studies. For example, the MNI atlas

allows non-linear warping of 3D MRI brain scans from individuals onto

a common template and has become a standard tool for reporting

fMRI results in volume space. The PAG particularly lends itself for

atlas comparisons, since this brain structure is relatively stable across

subjects and with age (Keuken et al., 2017). Our experiments assumed

that the tissue probability maps we used were well-suited to study

the PAG. Usage of these maps has been validated using other deep

brain nuclei including the thalamus, caudate, putamen, substantia

nigra, subthalamic nucleus, red nucleus, and cerebellar dentate (Lorio

et al., 2016). To our knowledge, this work is the first application of

these methods to the PAG. Though these maps were not explicitly

designed for localization of the PAG, small spatial uncertainty values

(Figure 6b) suggest that this application is appropriate. Our more rig-

orous quantitative method confirms the use of high gray-matter prob-

ability values for tissue classification. Furthermore, under the

assumption that the PAG boundary can be fit by a continuous surface,

our estimation scheme using ellipses worked well. We observed low

root-mean-squared errors for individual elliptical fits, and low

coefficients-of-variation for the ellipse parameters across subjects.

Further extension of our techniques to provide a fully 3D coordi-

nate system may utilize normalized depth and angle from a point

of origin on the mid-sagittal plane through CA. This could potentially

allow localization of midbrain nuclei such as the PAG using polar

coordinate shapes such as dimpled or convex limaçons, which may

provide a greater degree of accuracy than the simple ellipses we uti-

lized in our work. Our efforts towards characterizing and subse-

quently reconstructing the PAG provide a first step in the direction

towards creating a generalized atlas of midbrain nuclei (Figure 6).

Using CA as a central axis, as we have done, could form the basis of a

quantitative atlas of the midbrain in a normalized coordinate space

such as the MNI-305 (Mandal, Mahajan, & Dinov, 2012), but at

higher spatial resolution. While we concentrated our evaluation of this

depth-mapping scheme to the dorsal portion of midbrain, our method

can be also effective for ventral midbrain, for example, the red

nucleus. It may be possible to interpolate the neuraxis between the

exit of CA into the fourth ventricle and the geometric axis of the spi-

nal cord at the base of the brainstem to facilitate similar methods in

pons and medulla.

Our depth analysis assumed that the laminar structure of

SC is well-delineated by a depth metric derived from a combination

TRUONG ET AL. 5093



of SC's superficial surface and the CA. In order to minimize

oversampling and overlapping depth projections, selecting an appro-

priate reference structure was key for defining depth in the midbrain.

The CA runs rostro-caudally through the midbrain ventral to the col-

liculi. It emerges developmentally from the neural canal, the cavity in

the center of the neural tube. The midbrain develops around the

CA, thus positioning it as an important anatomical feature in the mid-

brain. Ideally, the resulting isosurfaces of w should be parallel to the

laminae of the colliculi. However, our choice of surfaces to calculate

depth coordinates was also a matter of convenience. Although our

present results are consistent across individuals and demonstrate

the utility of our depth mapping approach in vivo, it remains to be

seen how well the depth-mapping scheme aligns with laminarly orga-

nized collicular cytoarchitecture. In future work we, will apply our

depth mapping approach to publicly available datasets, such as

BigBrain and CIT168 MNI, and high-resolution post mortem MRI

and histology (Loureiro et al., 2018; Sitek et al., 2019), where

individual collicular laminae are distinguishable. This will allow us to

validate our method's sensitivity to ground truth depth-dependent

cytoarchitecture.

5 | CONCLUSIONS

We established a series of morphologically reasonable methods for

determining tissue depth in human SC and IC based solely on struc-

tural MRI. The level-set scheme provides coordinates for both normal-

ized and physical depth that accommodate the complex anatomical

structure of midbrain tissue, and the associated streamline method

was able to distinguish function in the superficial layers of SC at the

same precision as our previous Euclidean method. Euclidean distance

from CA provides an accurate way to localize the PAG. We also

believe that our work is the first analytic method for in vivo determi-

nation of anatomical tissue thickness in human midbrain. Because the

streamline depth kernels logically follow the curvature of the tissue

to establish unique relationships between all layers, our method

should be useful to describe associations between tissue at different

depths, such as between the deep multi-sensory layers of superior

colliculus and the superficial retinotopically organized layers. Further-

more, depth-analysis studies using our normalized depth coordinate

applied to a large population of subjects may enable a fully 3D atlas of

human brainstem.
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