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A Modeling Framework for Near-Road Population 
Exposure to Traffic-Related PM2.5 and Environmental 
Equity Analysis: A Case Study in Atlanta, Georgia 

EXECUTIVE SUMMARY 

Exposure to traffic-related air pollution, especially particulate matter (PM) is widely known to 
yield adverse health impacts. However, estimating daily population exposure to near-road 
pollutant concentrations is often limited by a lack of high spatial and temporal resolution of 
pollutant concentrations, high spatial and temporal variation in human activity, unquantified 
presence of mitigation factors that reduce pollutant exposure (e.g., HVAC system impacts on 
indoor concentrations), and confounding factors (such as other sources of indoor and outdoor 
air pollution). All these elements are of critical importance in quantifying individual and 
population exposure and for conducting environmental equity assessments across demographic 
groups.  Existing models typically used to assess population exposure are mostly based on 
coarse input data (area-wide concentrations, for instance), and are not sensitive to variances in 
travel paths through the transportation system that may increase or decrease pollutant 
exposure. While previous studies have developed comprehensive modeling frameworks that 
integrate activity-based models, traffic emissions, dispersion modeling, and dynamic exposure 
assessment both on the move and stationary (e.g., Hatzopoulou and Miller, 2010; Beckx et al., 
2009; Dias and Tchepel, 2018), our research advances this field by enhancing the spatial and 
temporal resolution of exposure assessments and optimizing the computational processes on a 
supercomputing cluster.  Specifically, our framework leverages high-resolution individual travel 
paths and downwind concentration profiles to provide a more detailed analysis of population 
exposure and environmental equity.  The research presented in this report implements an 
initial modeling framework designed to estimate the near-road population exposure to traffic-
related fine particulate matter of 2.5μm or smaller (PM2.5) at the individual and household 
level, while accounting concentration profiles, individual travel paths, trip-end activity, and 
demographic information. Although the analytical methods do not address mitigating and 
confounding factors affecting overall exposure, the tools provide a first step in conducting 
microscale impact assessment with person and vehicle trajectories through time and space. 

The proposed modeling framework first retrieved the Atlanta Regional Commission’s (ARC) 
Activity-Based Model 2020 (ABM2020-TIP-A1) output dataset, and implemented a path 
retention algorithm (Zhao, et al., 2019) to retain vehicle travel paths so that the team could 
generate second-by-second positions of each vehicle and person modeled by the ABM. High-
resolution near-road pollutant concentration profiles were then predicted using AERMOD with 
variable receptor grids (Kim et al. 2019) and MOVES-Matrix (Liu et al. 2019) for the entire 
modeled subarea of I-575/I-75 Northwest Corridor (NWC) (Guensler et al. 2021). Finally, the 
exposure modeling is conducted by plotting the speed-time traces (second-by-second 
trajectories) of the modeled individuals in their vehicles through the transportation network, 
accounting for their time on the road and time at each destination. Licensed Epsilon 
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demographic data were integrated with ARC’s household profiles to provide detailed 
demographic information including ethnicity, address, job, income, etc., at the household level. 
Individual-level exposure to traffic-related PM2.5 was derived from detailed spatial and 
temporal attributions of travel activity and concentration input and was aggregated to 16 
demographic groups that were defined using variables such as household size, number of 
workers, number of vehicles, household income groups, with and without children, etc. (the 
same demographic groups that were developed for a prior ARPA-E Department of Energy 
project). The hourly averages of population exposure were compared across the defined 
demographic groups by overlaying demographic characteristics over the concentration profiles. 

The results indicated that population exposure of various income groups was correlated with 
distance to the modeled roadway from their households, given that travel activities outside the 
modeled subarea were not accounted for in this subarea analysis (i.e., the results were largely 
from the at-home exposure), and households with no or only one worker were found to be 
exposed to the highest amount of traffic-related PM2.5. High-income groups that lived further 
from the NWC freeways were generally less exposed, while middle-income groups were found 
to have a slightly higher daily exposure. The overall exposure of low-income households and 
those with no vehicles were not among the highest exposure groups for this freeway corridor, 
but this may be more due to the relatively higher income of the households along this corridor 
and lower variability in household clustering by income than is seen along other metro area 
corridors. 

While the patterns presented by the modeling results could change when the whole metro area 
is modeled, the research demonstrates the general applicability of the modeling framework 
and shows how such complex modeling can be conducted on a supercomputing cluster. The 
team is currently refining the synthetic household and synthetic fleet generation process, and 
expanding the analyses to the entire metro area. 
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Chapter 1. Introduction 

Ambient air pollution has been widely associated with adverse impacts on human health. 
Exposure to traffic-related pollution is estimated to cause 15,000 premature deaths in the U.S., 
and between 184,000 and 242,000 premature deaths per year globally (Frey, 2018). Exposure 
to traffic-related particulate matter less than 2.5 micrometers in aerodynamic diameter (PM2.5), 
is associated with aggravation of asthma, pulmonary dysfunction, lung cancer, heart disease, 
stroke, and other illnesses (Volk et al., 2013; Wang et al., 2014; WHO, 2018; Zhang et al., 2013). 

In transportation planning and policy assessment, it is important to assess traffic-related equity 
with respect to benefits (e.g., mobility and accessibility) as well as burdens across demographic 
groups. Given that exposure to traffic-related air pollutants may lead to inequities in the 
distribution of health impacts (Clark et al., 2014; Luo et al., 2017; Wu, 2018), tools are needed 
to assess any disproportionate negative impacts across metro area populations. An equity 
analysis of transportation investments is required by federal and guidance issued under Title VI 
of the 1964 Civil Rights Act, and agencies who receive federal funding must make sure that 
People of Color and low-income populations are not denied the benefits of public investments 
(Marcantonio et al. 2017). 

PM2.5 is one of the six principal pollutants with National Ambient Air Quality Standard (NAAQS), 
established by the U.S. EPA under the Clean Air Act, along with ozone (O3), carbon monoxide 
(CO), nitrogen dioxide (NO2), and particulate matter less than 10 micrometers (PM10). 
Transportation plans, transportation improvement programs (TIP), and projects must conform 
to the purpose of the State’s air quality implementation plan (SIP) such that these activities will 
not “create or contribute to any new violations of the NAAQS, increase the frequency or 
severity of NAAQS violations or delay timely attainment of the NAAQS,” as required by the 
Clean Air Act Section 176(c). Transportation actions in federal projects are subject to 
transportation conformity in terms of the funding and approval of Federal Highway 
Administration (FHWA) and/or Federal Transit Administration (FTA). 

It is not always feasible to implement large-scale field measurement to collect travel data, 
quantify mobile source emissions, and measure hourly pollution concentration profiles, due to 
the technical and cost limitations. Given the dynamic nature of travel activities, variability of 
fleet composition and traffic flow, and complexity of the roadway networks, mathematical 
models are frequently used to make such assessments. It important to properly integrate these 
models into a comprehensive modeling framework, from travel activity to population exposure. 

Equity analysis often requires that the modeling framework account for large-scale input both 
spatially (e.g., for a metropolitan area such as Atlanta, Georgia) and temporally (e.g., the 
modeling of one whole calendar year). The nature of exposure modeling (e.g., variability of trip 
patterns, and sensitivity of emissions and dispersion modeling) also requires high-resolution 
input data.  The output of each modeling component serves as an input to the next stage of the 
modeling, so it is important to reconcile data resolution with model sensitivity. Input data that 
feed into every modeling component needs to be sufficiently detailed (disaggregated) in 
temporal and spatial attributes, and each model of the framework needs to be thoroughly 
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reviewed and calibrated, to properly accommodate the fine-level input (appropriate 
sensitivity).  Using coarse input data generated by a previous model in the chain can lead to 
larger (and sometimes unexpected) variability in the framework outcome; hence, it is important 
to investigate the uncertainty propagation through the chain of models to account for 
interacting sensitivity across the models (e.g., from vehicle emissions modeling to dispersion 
modeling). 

It is also important that any proposed modeling framework accommodate spatial-temporal 
variability of the population activities, which requires detailed travel routes (e.g., individual or 
household-level) that comes with (or can be coupled with) traveler demographic profiles. Such 
modeling also needs to be compatible with any required regulatory analysis (and accepted by 
regulatory agencies). Hence, approved travel demand models (used by the local MPO), are 
generally coupled with the EPA’s MOVES model for vehicle emissions modeling, and EPA’s 
AERMOD model for dispersion modeling. 

Development of these kinds of modeling frameworks typically comes with a large computation 
burden, and model calibration and model verification activities may be time-consuming due to 
sensitivity across the models that interact with each other. It is important to optimize the 
modeling process by filtering unnecessary workload for cost-effectiveness purposes, and to 
make sure the proposed optimization does not cause a significant impact on the overall 
predictions. 

This research aims to develop a modeling framework for near-road population exposure to 
traffic-related PM2.5 emissions. The research objectives can be described as follows: 

1) Develop a refined spatial pollutant concentration exposure equity assessment 
framework with detailed demographic profiles - The household-level demographic 
profiles from the Epsilon dataset provide various attributes and may cover different 
households from the ABM household information. This work proposes to link the 
massive travel activity output from ABM2020 (more than 20 million vehicle trips per 
day) with the household information by integrating the ABM and Epsilon demographic 
profiles at the household level. Hourly pollutant exposure equity assessment will be 
conducted with the high-resolution spatial output from the exposure modeling 
framework.  Marginalized or disadvantaged demographic groups who often bear a 
disproportionate burden of pollutant impacts will be identified and assessed. 

2) Program a population exposure modeling framework with enhanced performance - The 
proposed population exposure modeling framework includes massive input data and 
significant amount of computation. This research proposes to accelerate modeling 
speed by reducing the calculation amount by reducing duplicate model runs (e.g., 
overlapped vehicle trajectories were removed in the path tracing component) or 
removing workload that does not significantly contribute to the model outcomes (link 
screening of source-receptor pairs). 

The research presented in this report stems from ongoing dissertation research being 
conducted by Hongyu Lu in Georgia Tech’s School of Civil and Environmental Engineering. This 
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report presents the modeling framework methodology and data in Chapter 2, case study results 
and a discussion of the results for I-575/I-75 Northwest Corridor (NWC) in Chapter 3, and 
conclusions and recommendations in Chapter 4. The final dissertation work currently being 
conducted by Hongyu Lu will include the whole metro area with a refined synthetic fleet and 
household generation and the uncertainty assessment through the modeling chain.   
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Chapter 2. Data and Methodology 

This chapter describes the proposed modeling framework components of path retention and 
traffic operation profiles, emissions modeling using MOVES-Matrix, dispersion modeling using 
AERMOD, and exposure modeling based on household pairing and demographic characteristics. 

2.1 Overview of Modeling Framework 

The proposed modeling framework consists of several modeling components (stages) as shown 
in Figure 1, started by retrieving the Atlanta Regional Commission’s (ARC) Activity-Based Travel 
Demand Model 2020 (ABM2020-TIP-A1) output data set (more than 20 million trips), which are 
the same model outputs used to develop Atlanta’s Transportation Improvement Program (TIP). 
A path-retention algorithm (Zhao, et al., 2019) was implemented for this model run to retain 
each new model-predicted vehicle travel path (and number of vehicles assigned to each new 
path), between each origin-destination pair, as derived in each step of the trip distribution 
process (Frank-Wolfe algorithms). The ABM-predicted trips between O-D pairs were then 
allocated to these routes in proportion to model predictions for randomized departure times 
within the modeled half-hour departure window. The second-by-second positions for each 
vehicle are estimated using the retained path (set of links traversed) and the speed for that 
time period on each traversed link. The model output also retains all basic information about 
the synthetic households used in trip generation and about the individuals assigned to each 
trip, facilitating further demographic analyses of the travel. 

Near-road pollutant concentrations are predicted for the entire region by integrating vehicle 
activity with MOVES-Matrix (Guensler et al., 2017; Liu et al., 2019) and AERMOD (Kim et al., 
2019) with a very large variably spaced receptor array in Georgia Tech’s PACE distributed 
computing cluster. The PACE cluster allows the process of more than 500 dispersion modeling 
jobs simultaneously. The streamlined modeling system also incorporates a number of 
innovative features that provide huge reduction in computational resources and processing 
time for fine-resolution air quality impact analyses (Guensler, et al., 2021). To further accelerate 
modeling speed, a supervised link screening algorithm identifies and removes all irrelevant 
roadway sources-receptor pairs with high precision that barely affect the pollutant 
concentrations of each receptor (Kim, et al., 2022a). 

Exposure modeling is conducted by tracing the traveled paths of modeled individuals through 
the transportation network to account for their time on the road and time at each destination.  
Over-the-road exposure and in-vehicle exposure were not directly assessed in this study.  
Receptors placed directly over the roadway were removed from the analysis, based on EPA 
guidance, and exposures were assessed using data from roadway-adjacent receptors.  Modeling 
the differences between road-adjacent exposure and in-vehicle exposure (typically a lower 
concentration in the cabin) requires integration of additional processes that consider factors 
such as HVAC system performance, air exchange rates, and vehicle-specific dynamics.  By 
aggregating the outputs into household/demographic group levels, the modeling framework 
supports equity analysis with respect to traffic-related pollutant emission/inhalation across the 
demographic groups. 
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Figure 1. Flow Chart of the Proposed Modeling Framework of Population Exposure 
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2.2 Modeling Subarea: Northwest Corridor Description 

The research team performed AERMOD microscale dispersion modeling for the entire Atlanta I-
75/I-575 Northwest Corridor (NWC) subarea, including freeway corridors, managed lanes, 
connecting arterials, and intersections serving the NWC system (as shown in Figure 2). This 
corridor and subarea have been the subject of extensive emissions and dispersion modeling 
efforts by the Georgia Tech research team (Guensler, et al., 2021; Kim et al., 2020a) and 
encompasses a variety of projects of potential policy concern, including major intersections, 
managed lanes, and direct access ramps. The NWC also contains roadway sections with noise 
barriers, which can be modeled with the AERMOD RLINEXT source type. 

 

Figure 2. I-75/I-575 Managed Lanes Corridor and the Modeled Sub Area 

2.3 Traffic Operation Profiles: Activity-Based Model 

The roadway network adopted in this study is the Activity-Based Travel Demand Model (ABM) 
by Atlanta Regional Commission (ARC). The specific version employed is ABM2020-TIPA1-2020, 
which is same version run by ARC staff for the Transportation Improvement Program (TIP), for 
calendar year 2020, with the path retention method applied and modeled with the ARC 
planning assumptions for the transportation network, land use, and household demographics 
for calendar year 2020 (Zhao, et al., 2020; Zhao 2020). The path retention method allows 
modelers to retain the paths between origin and destination predicted by the ABM’s internal 
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Franke-Wolfe algorithms. With path retention, model-predicted link-by-link vehicle traverses 
through the road network are available for analysis. The ABM models trips in half-hour bins, so 
a randomization algorithm was designed and implemented to generate the trip departure 
timestamps (described in Section 2.6.1 in this report). Therefore, both a full trip record with the 
departure time and arrival time and origin and destination information and its corresponding 
specific traces at each time and location are available for energy and emissions modeling. The 
ABM2020-TIPA1-2020 model data is available in geodatabase format and includes a links layer 
and a nodes layer available.  In total, the model network includes 149,967 links and 66,418 
unique nodes. The NWC freeway network (and connecting arterial segments) includes 1,570 of 
the regional roadway links. 

For vehicle activity, the team used the Atlanta Regional Commission’s ABM2020 model outputs 
with path retention, which provides modeled travel demand traffic volumes, link speeds, and 
individual predicted paths through the network (second-by-second positions are derived from 
departure time and average speed on each link traversed by each vehicle, as described in 
Section 2.6.2). A total of 11,399 model-predicted trips that pass through a screen line at 
Roswell Road and I-75 for one hour of the morning peak period. Because the ABM retains 
household demographic data and person assignment for each trip, analysts can apportion 
modeling results across any demographic cluster derived from ABM model cut points. The team 
can also generate fleet composition (make, model, and age distributions) for those trips 
touching freeway links using 2019 freeway license plate observations. In regional conformity 
modeling efforts, the research team typically generates fleet composition for arterial trips using 
random pulls from trip origin traffic analysis zone (TAZ) vehicle registration mix employed. 
However, for this project, it was important that the analyses across time and space employ the 
same fleet composition and model year distributions in all analyses for control purposes. To 
that end, the team used the fleet composition data employed by the MPO in preparing their 
regional conformity analyses (discussed later in the report). Python scripts have been used to 
generate AERMOD input files for subsets of sources (link representations) and receptors, to run 
AERMOD on the PACE cluster, and to retain and compile results for each receptor in space and 
time. 

2.3.1 Link-by-Link Volumes and Speeds by Hour 

The ABM2020-TIPA1-2020 model generates hourly traffic volume and speed, the values remain 
static within each of the five time periods: EA (early AM), AM (AM peak), MD (midday), PM (PM 
peak), EV (late evening/night). The EA period ranges from 3:00 AM to 6:00 AM, the AM period 
ranges from 6:00 AM to 10:00 AM, the MD period ranges from 10:00 AM to 3:00 PM, the PM 
period ranges from 3:00 PM to 7:00 PM and the EV period ranges from 7:00 PM to 3:00 AM.  
Specifically, within each of the five time-periods, the ABM processes trips in half-hour 
increments. More details regarding the ABM2020 model can be found in the online model 
documentation (ARC 2019). 
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2.3.2 Fleet Composition 

The input fleet composition to emissions modeling were extracted from the previous research 
by the team (Xu, et al., 2018) to provide source type distributions and age distributions to 
MOVES-Matrix. In support of the regional conformity plan, the 20-county nonattainment area 
was divided into 13-county vs. 7-county areas, where separate fleet compositions were applied 
for each area in MOVES modeling (ARC, 2015). The distribution of counties is shown in Table 1.  
Cobb County and Cherokee County belong to the 13-county area, and Bartow County belongs 
to the 7-county area.  Four sets of fleet composition were used in support of the regional 
conformity plan for the year of 2017, 2024, 2030, and 2040, respectively. The fleet composition 
for calendar year 2017 was used in this research. The source type distribution is shown in Table 
2, and the corresponding fleet composition for each modeled ABM link was allocated based 
upon county group membership. 

Table 1. County Division of Regional Conformity Plan (ARC, 2015) 

County Name Area 

Fulton 13-county 

DeKalb 13-county 

Cobb 13-county 

Gwinnett 13-county 

Rockdale 13-county 

Henry 13-county 

Clayton 13-county 

Fayette 13-county 

Douglas 13-county 

Cherokee 13-county 

Coweta 13-county 

Forsyth 13-county 

Paulding 13-county 

Bartow 7-county 

Carroll 7-county 

Spalding 7-county 

Newton 7-county 

Walton 7-county 

Barrow 7-county 

Hall 7-county 
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Table 2. Input Source Type Distributions 

Source Type # Distribution in 13-County Area Distribution in 7-County Area 

11 2.11% 2.84% 
21 53.91% 47.22% 

31 31.00% 35.32% 

32 10.12% 11.55% 
41 0.03% 0.01% 

42 0.02% 0.01% 
43 0.33% 0.32% 

51 0.04% 0.03% 

52 1.25% 1.23% 
53 0.09% 0.09% 

54 0.13% 0.15% 

61 0.62% 0.53% 

62 0.35% 0.70% 

2.4 Emissions Modeling: MOVES-Matrix 

MOVES-Matrix for MOVES 2014b is a lookup-based energy-use emission rate modeling system 
developed by the team by pre-running MOVES 2014b in an iterative fashion on the PACE 
supercomputing cluster across combinations of all model inputs that affect emission rate 
outputs (Liu, et al., 2019). To develop the set of emission rates for the Atlanta metro area, the 
team ran MOVES 146,853 times, iterating across 21 calendar years (2010-2025, 2030, 2035, 
2040, 2045, and 2050) × 3 fuel specifications (summer, winter and transition) x 111 
temperature bins × 21 humidity bins. Each iteration produces emission rates for energy use and 
all pollutants (including pollutant composition types), for every vehicle source type, model year, 
and on-road operating conditions (by MOVES VSP bin and by average speed and facility type) 
for each calendar year, fuel specification month, temperature bin, and relative humidity bin. 
Because MOVES model outputs are also dependent on the specifications of the regional 
inspection and maintenance (I/M) program strategy (by calendar year), the model runs 
described above apply to Atlanta and any other region that employs the same fuel specification 
and I/M programs. Hence, the team is in the process of preparing emissions rate matrices for 
each of the 117 unique combinations of MOVES 2014b fuel and I/M programs across the United 
States. As of July 2021, the research team had generated full MOVES-Matrix outputs for 30 of 
these 117 modeling regions, covering 2,902 out of 3,228 counties as shown in Figure 3 
(California does not use the MOVES model). 
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Figure 3. MOVES-Matrix Coverage Area 

By pre-processing all possible combination of input variables, users can query the emission 
rates directly from MOVES-Matrix, rather than performing new MOVES modeling runs. Users 
need only identify the subset of the MOVES-Matrix needed for an analysis (calendar year, fuel 
month, and meteorology data) and run a set of queries to pull required emission rates (by 
vehicle type and model year and on-road activity) and the queries reassemble the fleet 
emission rate using the exact same weighting process that is used in MOVES. The queries run 
200x faster than running MOVES and users never have to generate MOVES scenario input files, 
which improves analytical run time efficiency (Liu et al. 2019). The conceptual flow of MOVES-
Matrix processing is illustrated in Figure 4. 
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Figure 4. MOVES-Matrix Conceptual Flow (Liu et al., 2019) 

MOVES-Matrix also enables rapid analyses of engine starts, truck hoteling, evaporative sources, 
brake/tire wear (Xu, et al., 2017), and can be used to model the emissions from individual 
vehicles (Guensler, et al., 2017). MOVES-Matrix can be easily coupled with vehicle activity 
analysis (Li, et al., 2017, 2016; Xu, et al., 2017) by importing second-by-second vehicle 
operations.  MOVES-Matrix can also be applied to different transportation models, such as 
travel demand models (Xu, et al., 2018), and microscopic traffic simulation models (Xu, et al., 
2016). 

MOVES-Matrix is highly-desirable for regional-scale dispersion analysis (Kim et al., 2020b), with 
high-performance to deal with links from large-scale networks, variations in meteorology, and 
traffic operation input, and with its user-friendly nature to minimize potential human error in 
running MOVES (especially when it comes increased number of input links). 

2.4.1 MOVES-Matrix Emission Rates 

As discussed in the previous section, MOVES-Matrix provides a 90-billion cell look-up matrix for 
each modeling region.  For the Atlanta metro area, MOVES-Matrix contains sub-matrices based 
on combinations of calendar year, season (Spring/Fall, Summer, Winter fuel season), 
temperature (0º-110º F with 1º F-bin interval, 111 bins in total for Atlanta), and relative 
humidity (0%-100% with 5%-bin interval, 21 bins in total for Atlanta). Meteorological data from 
AERMET are rounded to the appropriate temperature and humidity to link with appropriate 
sub-matrices for each MOVES-Matrix run. 
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For each hour in the year of 2019, corresponding sub-matrices within MOVES-Matrix were 
extracted using Python-based scripts for use in project-level emission rate calculations. Even 
though the hourly traffic volumes and average link speeds from ABM2020 are consistent across 
analysis days, and the distributions of vehicle source types and model year are uniform through 
the year and across analyses, the resulting emissions rates for each hour are different as a 
function of hourly environmental conditions. 

2.4.2 Model Inputs and Outputs 

Various sources of input data were used to pull hourly emission rate data from MOVES-Matrix 
for each analysis, as described in a previous section: 

• Speed and volumes are derived from the ARC’s ABM2020 

• Driving cycles are embedded in MOVES for average speed and facility type 

• Source type and vehicle age distributions by source type from regional conformity 
analyses provided by Georgia EPD 

• AERMET meteorology data (hourly for the modeling year) from the regional air quality 
conformity analyses 

Because the sub-matrices needed for the analyses are large (and require a lot of time to upload 
to PACE), and because MOVES-Matrix is so efficient, the emission rate modeling process was 
performed on local computers and results were used in PACE. It took less than 12 hours to 
model all ABM links (1,191 links) in MOVES-Matrix for NWC, for the 8,760 hours (24 hours × 365 
days).  The emission rate outputs were compiled and uploaded to PACE to provide the input 
emissions to dispersion modeling. 

2.4.3 Meteorological Configuration: AERMET 

A total of 8,760 hours of AERMET profiles (24 hours × 365 days) were obtained from Georgia 
EPD station #KATL/KFFC, which covers Cobb County, Cherokee County, and Bartow County (the 
counties in which the study area roads are located), for each hour of 2019, to provide the 
meteorology input (temperature, relative humidity, wind direction, wind speed, etc.) for 
emissions and for NWC dispersion modeling. The AERMET files (PFL file and SFC file) serve as an 
input to AERMOD and the hour-by-hour temperature and relative humidity profiles were used 
to extract and assign corresponding emission rates from the MOVES-Matrix (for MOVES 2014b) 
database to each individual hourly model run. The wind rose for the used AERMET profiles is 
shown in Figure 5 (prepared using OriginProTM software).  The temperature and humidity 
distributions are shown in Figure 6 and Figure 7, respectively. 
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Figure 5. Wind Direction and Wind Speed Distributions 

 

Figure 6. Temperature Distribution from AERMET Profiles 
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Figure 7. Relative Humidity Distribution from AERMET Profiles 

2.5 Dispersion Modeling: AERMOD 

EPA’s regulatory microscale dispersion model of AERMOD (version v21112) was employed in 
this project to predict the hour-by-hour traffic-related PM2.5 concentration profiles for the 
calendar year of 2019, based on the roadway network of the NWC subarea from ARC’s 
ABM2020, traffic volumes and speeds predicted by the ABM in half-hour increments, the 
emission rates by link from MOVES-Matrix, and receptors of both standard grid of 20 meters 
(link-screened) and variable grid. More details on the manual and automatic creation of 
polygons, source validation, receptor placement and allocation of emission rates can be found 
in the FHWA report (Guensler et al., 2021). 

2.5.1 Assignment of AERMOD Emissions Rates 

The MOVES-Matrix output provided hour-by-hour (24 hours × 365 days) emissions rates in 
(grams/link/hour) for each ABM link and the same emissions rates by ABM link were used as 
the calculation starting point for emissions rate inputs to AERMOD across all AERMOD source 
types. These emissions rates were assigned to the corresponding AERMOD source types and 
were converted to the correct units for each AERMOD source type, as shown in Table 3. For 
LINE, AREAPOLY, and RLINE sources, if a link was divided into multiple sources, emissions per 
link were proportionally assigned to each source based on segment length (Guensler, et al., 
2021). For this analysis the AERAPOLY source type was used. 
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Table 3. AERMOD Unit Conversion from MOVES-Matrix Output 

Source Type Required Unit Calculation from grams/link/hour 

LINE grams/meter2/second Divided by source area and 3,600 
AREAPOLY  grams/meter2/second Divided by source area and 3,600 

VOLUME grams/second Divided by number of spheres and 3,600 

RLINE grams/meter2/second Divided by source area and 3,600 
RLINEXT grams/meter/second Divided by source length and 3,600 

2.5.2 Receptor Placement 

AERMOD allows users to specify receptor locations. The receptors define the physical locations 
in x, y, z space for which pollutant concentrations will be predicted for every hour in the 
simulated year. Receptors allow users to assess pollutant concentration levels relative to 
nearby locations of concern (e.g., near schools or residential areas where individuals are likely 
to be exposed to pollutant concentrations for more than one hour) and to identify localized 
areas of high concentration (hot spots).  Assessment of receptor concentrations allows 
modelers to identify regions that may exceed the NAAQS. The computing resources available 
for this project allowed the research team to assess as many receptors as desired, so a variety 
of receptor patterns were used in this study, including standard receptor grids and variable 
receptor grids. 

Standard Grids 
Standard grids with 200-meter spacing between receptors (Figure 8), 20-meter spacing 
between receptors, and 5-meter spacing between receptors were used in this study. Receptor 
grids provide a simple approach that requires minimal forethought, but they are 
computationally inefficient because many of the receptors are placed so far from the roadway 
that pollutant concentrations are not significant and contribute little information. Likewise, 
increased receptor density is desired near the roadway, where variation in pollutant 
concentration is likely to be the largest. It is difficult to strike a balance between sufficient 
receptor density near roadways and computational efficiency while using a standard grid. 
Hence, a variable grid approach is also useful as will be discussed in the next section. 

Given the large size of the study area, receptors far from roadway emission sources yield very 
low receptor concentrations (e.g., less than 0.1 μg/m3 across all input emissions rates and 
meteorology by hour).  Removing such receptors from the analyses does not affect research 
outcomes. A link-screening tool is implemented to examine all link-receptor pairs and filter 
“low-impact” receptors to reduce required computational resources. 
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Figure 8. Placement of Receptors of 200-Meter Standard Grid 

Variable Grids 
A more advanced approach for placing the receptors is the dynamic grid method (Kim, 2020). A 
link screening process is applied before setting the variable grid (Kim 2020a), based upon 
source-receptor centration statistical significance assessed via machine learning. Specifically, a 
stepwise process is conducted to identify optimal receptor locations, with a forward search 
used to find the receptor that best fits the PM2.5 concentration profile, and a backward search 
used to remove the receptor that is the worst fit for the PM2.5 concentration profile. The 
iteration process continues, until the marginal change in mean squared error (MSE) is less than 
some pre-set critical threshold. The dynamic grid-receptor model identifies optimal receptor 
locations, removing receptors from the grid that contribute no significant additional 
information to the spatial concentration distributions. The variable grids that evolve from the 
process tend to have higher receptor density near roadway sources (where small differences in 
distance between receptors yield high differences in concentrations) and low receptor density 
further from roadway sources (where additional receptors yield very similar low 
concentrations). The more refined receptor grid minimizes the number of receptors used in 
modeling and speeds up the distributed modeling process. 

Link Screening 
The link screening tool previously developed by the team (Kim et al., 2020a) was implemented 
to eliminate roadway source-receptor pairs that do not contribute significantly to predicted 
downwind concentrations at a receptor. When no link-receptor pairs were significant for a 
receptor, the receptor was eliminated from all scenario analyses (reducing the number of 
receptors required to represent downwind concentrations). The machine learning-based 
screening tool was developed with the support of PACE (Kim et al., 2020b) to examine all 
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source-receptor pairs across all input combinations (emissions rates, wind direction, wind 
speed, temperature, relative humidity, etc.) to filter receptors with summed predicted 
concentration (summed from all sources) of less than 0.1 µg/m3 under all circumstances. These 
receptors can then be safely excluded from the analyses without any significant impact on the 
results. 

An iterative filtering process is implemented to reduce the number of source-receptor pairs 
that need to be screened, further improving the efficiency of the link-screening tool. In the first 
iteration, receptors on a 200-meter grid (coarse grid to reduce computation burden) enter the 
screen, and “sensitive” receptors (with results larger than 0.1 µg/m3 under any circumstance) 
are selected (i.e., these receptors are used in the dispersion modeling). The significant 
receptors naturally form a buffer area in which all receptors on a finer grid (20-meter and 5-
meter grids) are selected. In the second iteration, the 20-meter grid receptors immediately 
outside the border of this area (that is, between a selected receptor and the adjacent screened 
receptor 200 meters further out) are examined. The 20-meter grid receptors are integrated in 
the next iteration, to expand the selected area (as a result, 5-meter receptors within the 
expansion are also selected).  In the third iteration, the 20-meter grid receptors immediately 
outside the expanded border are screened, and the final selection is provided as a union of the 
selected receptors from all three iterations (Figure 9). 

 

Figure 9. Iterative Implementation of Link-Screening Tool for I-575 NWC 

The iterative implementation of the link-screening tool filtered approximately 75% of the 
receptors as being low-impact receptors and having little influence on the model output, and 
the total run time for screening was less than two hours (supercomputer not required), as 
shown in Table 4. The team recommends the use of the link-screening tool in future research 
projects that involve large-scale networks and fine-grid receptors for dispersion modeling. 

Iteration 1

Screening 200m Grid Receptors

Iteration 2

Screening 20m Grid Receptors

Iteration 3

Screening 5m Grid Receptors
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Table 4. Performance of Link-Screening Tool 

Network 
Grid 

Resolution 
(Meter) 

Input Number of 
Receptors 

Selected 
Number of 
Receptors 

Percentage of 
Receptors Excluded 

(Workload Reduction) 

Screening 
Running Time 

(Minute) 

I-575 NWC 5 27,715,651 6,779,168 75.5% 80 

I-575 NWC 20 1,731,288 423,861 75.5% 5 

2.6 Travel Paths: Path Retention of ABM 

It is important to feed high-resolution travel information (second-by-second trajectory data in 
this assessment) into population exposure assessment. The trip output from ARC’s ABM was 
allocated to departure periods of half-an-hour intervals (48 intervals for a day). The research 
team designed and implemented a randomization algorithm to generate the departure time 
(minute level) by trip from the cubic-splined departure time distributions by trip purpose, with 
the trip chains accounted for by making sure early trips finish before following trips. The travel 
paths were converted to second-by-second trajectories by traversing roadway links for the 
model-predicted link-by-link average speed. Travel trajectories by individual vehicle were then 
overlaid with the predicted concentration profiles for each hour to assess the population 
exposure during the year of 2019. 

2.6.1 Trip Departure Timestamp Generation 

Each trip predicted by ABM within a half-hour bin was assigned a departure time on a one-
minute basis. The ABM-predicted trip information includes the trip departure time by period (at 
half-an-hour interval), as well as travel time (in minute), travel distance (in miles), origin 
terminal time (the time it takes until the individual enters the network, in minute, e.g., from the 
apartment to the roadway), destination terminal time (the time it takes for the individual to 
leave the roadway network until the individual arrives at the destination, in minute, e.g., from 
the roadway to a restaurant), and trip purpose (e.g., commute trips, recreational trips, etc.).  
The trip purposes are listed in Table 5 below. 
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Table 5. Trip Purposes from ARC’s ABM 

Abbreviation Code in ABM Trip Purpose 

atwork_business Business trips at work 
atwork_eat Trips for eating at work 

atwork_maint Maintenance trips at work 

eatout Trips to eat out 
escort_kids Escort trips with kid(s) 

escort_no kids Escort trips with no kids 
othdiscr Other discretionary trips 

othmaint Other maintenance trips 

school_drive School drive 
school_predrive Pre-school drive 

shopping Shopping trips 

social Trips for social 

university University trips 

work_bluecollar Commute trips (blue collar jobs) 
work_health Commute trips (health-related jobs) 

work_retailandfood Commute trips (retail and food) 

work_services Commute trips (services) 

work_whitecollar Commute trips (white collar) 

For a fine-level modeling framework that involves various models, it is important that each 
modeling process utilizes high-resolution input and output. Hence, the minute-by-minute trip 
departure timestamp is needed before the travel paths can be converted to second-by-second 
trajectories (trip travel time is already at minute-interval). Intuitively, the departure times 
follow a distribution across time of day due to patterned travel demand (e.g., morning peak 
hour for commute trips), and the departure time distribution needs to be modeled separately 
by trip purpose (e.g., commuting to work is most likely to be distributed in the morning peak 
hour, while commuting from work to home occurs mostly in the evening peak). The team 
analyzed the probability density functions of trip departure times by trip purpose by adopting 
natural cubic spline interpolations, and the team designed and implemented a randomization 
algorithm to generate trip departure timestamp at minute level. 

Trips are generated and allocated to trip chains (tours) in the ABM output, where the departure 
of next trip cannot precede the original trip, and the trip chain constraints were accounted by 
making sure that trips within the same chains occur in correct sequences. Every trip in a trip 
chain is essentially constrained in two ways (forward and backward): 1) a new trip cannot start 
until the last trip is finished (a trip is finished at the timestamp that equals to the departure 
timestamp plus its travel time), which sets the early bound of the departure timestamp 
(forward checking), and 2) a trip must finish before a particular timestamp so that the next trip 
can start at its allocated period (half-an-hour slot), which sets the late bound of the departure 
timestamp (backward checking). All trip chains were examined to generate the early bounds 
and late bounds for each trip, and every trip was confined to departure only in the legitimate 
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period between the early and late bounds. More detailed descriptions of the iterative process 
are in Appendix A, with the sample of legitimate periods of a dummy chain of seven trips. 

The legitimate departure periods by trip were aggregated by trip purpose to generate the raw 
probability distributions, and a natural cubic spline interpolation was performed to generate 
the probability density functions by trip purpose, as shown in Figure 10. 

 

Figure 10. Splined Probability Density Function Generation 

The legitimate departure period only ensures that the next trip can start and finish within the 
assigned half-an-hour slot (enough time left) if a reasonable departure time was assigned to the 
next trip. This does not guarantee that the next trip starts after the original trip finishes 
(legitimate periods could overlap with each other); hence, a sequence check is still needed to 
make sure all trips follow the correct order of the chain. For every trip chain, the randomized 
departure timestamps for all trips were generated at one time following the splined probability 
density functions, and if the generated trips do not follow the abovementioned sequence rules, 
another draw was performed with all timestamps re-generated until the constraints were met. 
The generated distributions of departure timestamps were compared with the splined 
probability density functions as a verification of the randomization, as shown in Figure 11 
through Figure 14, and the generated distributions fit well with the splined distributions. 
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Figure 11. Validated Departure Timestamp Distributions for Work (White Collar) 

 

Figure 12. Validated Departure Timestamp Distributions for Social 
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Figure 13. Validated Departure Timestamp Distributions for Shopping 

 

Figure 14. Validated Departure Timestamp Distributions for Eating Out 
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2.6.2 Second-by-Second Travel Trajectories 

Travel trajectories (travel traces on the roadway network) were then generated using 
Geographic Information System techniques based on the travel paths (path retention) and trip 
departure time (generated in Section 2.5.2). The at-home locations were generated using a 
synthetic household generation algorithm by pairing the ABM household locations (TAZ-level) 
vs. the licensed demographic dataset of Epsilon (longitude and latitude information). The on-
road travel trajectories were generated by traversing of the roadway links and assuming no 
speed variability within each link (same average speed used across all seconds of activity on 
that link). In this study, only the households that live in the studied subarea of NWC were 
accounted for (filtered based on their household geographic information). The team is 
expanding the study to the metro Atlanta area as the final deliverable of the dissertation work. 

ARC’s ABM provides the TAZ ID for all households, and the longitude and latitude information 
were generated by randomly pairing the ABM households with the households in the Epsilon 
household-level demographic dataset. The 2019 Epsilon dataset includes 94 attributes 
(columns) of demographic information of the metro Atlanta area, including household size 
(number of adults and number of children), household income (relative index compared to 
national average), ethnicity of every household member, and the longitude and latitude of the 
household. The Epsilon households were grouped into TAZs by allocating their geographic 
information into the roadway network, and for every ABM household used in the assessment, a 
random Epsilon household location was drawn from the corresponding TAZ (with duplicate). 

The team is working on expanding the random allocation into a more comprehensive synthetic 
fleet and household generation algorithm that accounts for more spatially-resolved 
demographic information (e.g., income, household size, ethnicity, etc.) in the pairing process. 
ABM2020 provides 29 variables with respect to household demographics, which can be 
(partially) paired with a subset of the 94 variables in the Epsilon 2019 dataset, e.g., household 
size (ABM2020) vs. the number of children plus the number of adults (Epsilon 2019). A list of 
final variable pairing is shown in Table 6, and the team is expanding the list by examining the 
rest of the variables. 

Table 6. Variables Pairing of ABM2020 vs. Epsilon 2019 for Household Demographics 

No Attributes ABM2020 Variable Epsilon 2019 Variable(s) 

1 Household size np 
Number of Children, 

Advantage Number of Adults 

2 Number of workers nwrkrs_esr Occupation 

3 Household income group hh_inc_bin 
Advantage Target Narrow Band 

Income 2.0 

4 
Vehicles (1 ton or less) 

available 
veh N/A 

5 Household/family type hht Family composition (Enhanced) 

6 Units in structure bld Advantage Dwelling Type 
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For each traversed link, the geometry of the roadway was decomposed into points based on 
the number of seconds that the traveler spends on the link (an even split based on the average 
speed), and the second-by-second trajectories were assigned accordingly. Given that the link-
by-link speed profiles do not change within each ABM period, the travel paths that traverse the 
same link were only generated once (overlapped trajectories) to minimize computation 
workload. 

The trajectories at 7:00 AM that traverse the managed lane ramps at Roswell Road at I-575 are 
presented in Figure 15 as an example. The travel trajectories of trips passing through the ramp 
are displayed as dots (each dot represents one vehicle).  The left panel displays all trips, the 
middle panel color-codes them by vehicle occupancy (SOV, HOV2, HOV3), and the right panel 
categorizes them by annual income (<$50K, $50K-$100K, >$100K).  Note that travel paths often 
traverse a much larger area than the NWC, but only the NWC sections are retained for this 
analysis. For the modeled I-575 and I-75 links, and the overpass arterials, the on-the-move 
trajectories largely fall outside the study area because these trips are long. Hence, population 
exposure was predominantly from at-home concentrations. 

 

Figure 15. Path Retention Animation Screenshot 

2.7 Exposure Modeling by Demographic Group 

The exposure modeling of individuals was performed by overlaying the concentration profiles 
predicted by AERMOD over the hourly position information for each person (all second-by-
second exposure profiles (g/m3) were aggregated to one-hour intervals). The individual-level 
modeling results were then aggregated into 16 mutually-exclusive groups defined by 
combinations of demographic variables (vehicle ownership, annual income, household size, 
number of workers, w/o kid, etc.). The comparison across the demographic groups were 
performed based on the average hourly person exposure to traffic related PM2.5 for the 
modeled traffic day and meteorology year (i.e., hourly concentration results for the entire 
year). 
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The second-by-second travel trajectories (at-home and in-route) were mapped to the roadway 
network (using Dijkstra’s algorithm) and each linked to the closest receptor.  For each second, 
the predicted PM2.5 concentration was retrieved from the hourly concentration profiles, and 
these second-by-second concentration values were accumulated over 3,600 seconds (one hour) 
to derive the exposure for that hour (differences in breathing rates under different conditions 
were not modeled in this study).  The receptors placed over the roadway were removed from 
the analyses via receptor filtering before pairing with the vehicle trajectory data, because EPA 
does not recommend using AERMOD to assess concentrations over the top of roadway surface 
(i.e., immediately above the transportation network source links); instead, on-road trajectories 
were paired to nearest-adjacent receptor.” 

The ABM2020 demographic information includes household size, number of workers, annual 
income, number of households, with or without children, etc.  The 16 demographic groups used 
in this study was consistent with the previous study as definitions that are mutually exclusive or 
collectively exhaustive (Zhao, et al., 2019), and the breakdown of the groups are presented in 
Table 7. These groupings were established in a collaboration between DOE staff and Georgia 
Tech researchers for the 2018 ARPA-E TRANSNET-Atlanta project for equity impact assessment 
(Zhao 2020). The mutually-exclusive groups include lifecycle stages, but were also specifically 
designed to reveal transportation mobility and accessibility impacts on households that own no 
vehicles, households with very low-income households, and single parent households with 
children (i.e., severe constraints to mobility and accessibility). All plus markers (“+”) in the table 
indicate inclusive ranges (e.g., “2+” means “two or more”). 

The households were first classified by ownership of vehicles, and those with no vehicles were 
placed into Group #1 (households with no vehicles). The households with at least one vehicle 
were then examined and divided based on annual income; those below the threshold of 
$25,000 were classified as Group #2 (low-income households). The remaining households were 
then categorized based on household size (number of adults and children), and further 
classified based on number of workers, presence of children, and whether or not the household 
includes a single parent with children (for households with three or more persons only). The 
one-person households were placed into Group #3 (non-working households with annual 
income lower than $60,000), Group #4 (working households with annual income lower than 
$60,000), and Group #5 (annual income more than $60,000). Households with two or more 
persons were examined by annual income and categorized into intervals of $25,000 to $60,000 
(Groups #6, #7, #8, and #9), $60,000 to $120,000 (Groups #10, #11, #12, #13, and #14), and 
$120,000 or more (Groups #15 and #16). For households with annual income lower than 
$60,000 (and with two or more persons), the non-working households were classified into 
Group #6, and two-person working households were classified into Group #7.  Then, the 
working households with three or more persons were classified based on whether they are 
single parent with children (Group #8) or without children (Group #9). For the households with 
annual income from $60,000 to $120,000, the households with either no or one worker were 
classified based on whether they have at least one kid (Group #10) or not (Group #11), and the 
two-person households with two workers were classified into Group #12. The three-person 
households with at least two workers were classified into Group #13, and those households 
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with four or more persons and with at least two workers were classified into Group #14. The 
households with annual income of $120,000 or more were classified into Group #15 (with no or 
one worker) and Group #16 (with two or more workers).  The classifications result in each 
household being placed into one, and only one, group. 

The team is working on expanding the comparison across demographics by introducing the 
variables from the Epsilon 2019 dataset (after the synthetic household pairing process), such as 
ethnicity, as shown in Figure 16. However, race and income are highly correlated in the Atlanta 
metro area, so the income-based results shown in this work are still revealing. 
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Table 7. Definition of the 16 Demographic Groups based on ABM Household Information 

Group # 
Own 

Vehicles 
Low 

Income 
HH Size Annual Income Workers Vehicles With Kid(s) 

Single Parent 
w/kid(s) 

Percentage 

1 No Any Any Any Any 0 Any Any 2.2% 

2 Yes Yes Any $0 - $25k Any 1+ Any Any 6.7% 
3 Yes No 1 $25k - $60k 0 1+ Any Any 0.8% 

4 Yes No 1 $25k - $60k 1 1+ Any Any 4.1% 

5 Yes No 1 $60k+ 0 or 1 1+ Any Any 3.4% 

6 Yes No 2+ $25k - $60k 0 1+ Any Any 2.5% 

7 Yes No 2 $25k - $60k 1+ 1+ Any Any 5.4% 
8 Yes No 3+ $25k - $60k 1+ 1+ Any Yes 1.9% 

9 Yes No 3+ $25k - $60k 1+ 1+ Any No 11.7% 

10 Yes No 2+ $60k - $120k 0 or 1 1+ Yes Any 3.4% 
11 Yes No 2+ $60k - $120k 0 or 1 1+ No Any 8.8% 

12 Yes No 2 $60k - $120k 2 1+ Any Any 5.3% 
13 Yes No 3 $60k - $120k 2+ 1+ Any Any 6.4% 

14 Yes No 4+ $60k - $120k 2+ 1+ Any Any 14.0% 

15 Yes No 2+ $120k+ 0 or 1 1+ Any Any 5.9% 
16 Yes No 2+ $120k+ 2+ 1+ Any Any 17.4% 
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Figure 16. Percentages of Race Distributions by TAZ from the Epsilon 2019 Dataset 
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Chapter 3. Results and Discussion 

This section presents and discusses the results of the modeling framework, including the 
predicted concentration profiles (in heat maps), the population exposure across demographic 
groups, and the kernel density maps of household income to help interpret the results. 

A sample of the predicted PM2.5 concentration profiles is presented in Figure 17, where the 
temperature, relative humidity, wind speed and wind directions are marked on the heat map.  
The team is converting the heat maps into animations, and uploading them to the YouTube 
channel operated by the transportation group of Georgia Tech. 

The predicted concentration by receptor is largely dependent on the meteorology settings, 
especially wind direction and wind speed. Near-road concentrations are generally higher than 
in areas that are further away. This is consistent with the link screening results where receptors 
more than about 5 kilometers from the roadway links are barely impacted (concentration 
impact less than 0.01 µg/m3 under all meteorological circumstances). 

 

Figure 17. Predicted PM2.5 Concentration Profiles of the NWC 

The population exposure modeling results (average exposure across 24 hours) by demographic 
group are presented in Table 8. This assessment only accounted for the I-75/I-75 NWC subarea, 
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and only for the Interstate highway and overpass arterials that were modeled. The modeling 
results are predominantly based on the at-home exposure (only about 10% to 15% of the travel 
paths for these households fall inside the modeling area because trips are predominately made 
from home to other areas in the region); hence, it is likely that the results for the entire subarea 
will yield somewhat different patterns in terms of the overall exposure profiles once all metro 
area households and all metro subareas are included in the analyses. 

Demographic Group #6 was found to be exposed to the largest amount of traffic-related PM2.5, 
which is not surprising giving that these individuals are likely to spend much more time at home 
than members of working households. Similarly, Group #10, Group #3, and Group #11 were 
also found larger than the rest of the groups (either non-working households, or not everyone 
in the households works), likely because they have smaller number of workers (more at-home 
time). Larger households (with three or more persons) with two or more workers were found to 
be exposed to much lower amounts (2.11 μg/m3 for Group #13, and 2.14 μg/m3 for Group #14), 
which is also not surprising giving their decent income (over $60,000) and that more workers 
were going to work (likely outside of the modeling area). 

Households with children were exposed to more traffic-related PM2.5 than those with no 
children, with all other demographic information held consistent, which is anticipated given 
that children are likely to spend more time at home, school, or in short trips where they are 
likely to stay within the modeling subarea. 

The households with no vehicles (Group #1) were exposed to a relatively low amount of traffic-
related PM2.5 (2.11 μg/m3, similar to the high-income households), which could be that these 
households were close to transit terminals (e.g., Cumberland Mall, which is near the edge of 
the modeling subarea), and were not located near the modeled roadway. 

It might seem counterintuitive that the low-income Group #2 was exposed to a lower amount 
traffic-related PM2.5 (2.18 μg/m3), but this is likely due to:  1) these households are located near 
the Dobbins Air Reserve Base that are either not close to the Interstate (low accessibility to 
freeway) or near a major branch of I-75 before the split, close to the edge of the study area 
(low-concentration), as shown in Figure 18. It could also be related to the longer commute 
distance (e.g., working in downtown Atlanta), and possibly longer working hours (i.e., longer 
time that is outside the study area). The results for the whole metro area (with all links of 
freeway and major arterials) could indicate a larger exposure. 

The middle-income household groups (Groups #7 with 2.19 μg/m3, Group #8 with 2.20 μg/m3, 
Group 9 with 2.19 μg/m3, and Group #12 with 2.19 μg/m3) fell into the middle of the group 
exposure metrics, which could be due to that their households were neither too far nor too 
close to the modeled roadway (see Figure 19 and Figure 20), and these groups could be sharing 
similar travel patterns (in terms of their working schedule, travel distances, etc.). 

Overall, the high-income groups of Group #5 (over $120,000), Group #15 (more than $120,000), 
and Group #16 (more than $120,000) were found to be exposed to the lowest traffic-related 
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PM2.5, which is not surprising given their resident locations (further away from the Interstate 
and consequently away from traffic-related air pollutions and noise), as shown in Figure 21. 

Although the modeling results are indicating a correlation between household income and 
exposure, these patterns could change when the whole metro area is modeled, given that the 
overall spatial distributions of the households (e.g., middle-income and high-income 
households) and their travel activity will likely be different along other major corridors. 

The proposed modeling framework offers a high-efficiency modeling tool for conducting 
detailed environmental justice and equity assessments of individual and household exposure to 
traffic-related PM2.5 across demographic groups.  Specifically, this framework enables high-
resolution modeling of population exposure through second-by-second vehicle travel paths and 
demographic overlays, which allows for the identification of pollution exposure disparities 
among groups defined by income, ethnicity, and household characteristics.  The framework can 
also assess the impact of proximity to major roadways, and provide insights into how exposure 
varies by locations and travel activities. 

The purpose of this research is to develop a modeling framework, compatible with a wide-
variety of modeling tools, that creates a complete modeling chain that starts with travel 
behavior, incorporates emission modeling, integrates dispersion modeling, and ends with 
population exposure.  Some items not yet included in this process but relevant for future 
expansion include: 1) indoor versus outdoor concentration results, 2) in-vehicle versus outdoor 
concentration results, 3) micro-activities within each TAZ (e.g., walking from a parking lot to a 
destination, trips within the TAZ, and indoor activities), 4) inhalation rates that vary based on 
individual attributes (e.g., age, gender) and activities (e.g., walking versus sitting).  However, 
this framework provides flexibility for future research expansions that address these elements 
as additional data and resources become available. 
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Table 8. Population Exposure to Traffic-Related PM2.5 by Demographic Group 

Group 
# 

Own 
Vehicles 

Low 
Income 

HH Size 
Annual 
Income 

Workers Vehicles 
With 
Kid(s) 

Single Parent 
w/kid(s) 

Percentage 

Average 
Hourly 

Exposure 
(μg/m3) 

1 No Any Any Any Any 0 Any Any 2.2% 2.11 
2 Yes Yes Any $0 - $25k Any 1+ Any Any 6.7% 2.18 

3 Yes No 1 $25k - $60k 0 1+ Any Any 0.8% 2.29 
4 Yes No 1 $25k - $60k 1 1+ Any Any 4.1% 2.17 

5 Yes No 1 $60k+ 0 or 1 1+ Any Any 3.4% 2.10 

6 Yes No 2+ $25k - $60k 0 1+ Any Any 2.5% 2.38 
7 Yes No 2 $25k - $60k 1+ 1+ Any Any 5.4% 2.19 

8 Yes No 3+ $25k - $60k 1+ 1+ Any Yes 1.9% 2.20 

9 Yes No 3+ $25k - $60k 1+ 1+ Any No 11.7% 2.19 

10 Yes No 2+ $60k - $120k 0 or 1 1+ Yes Any 3.4% 2.29 

11 Yes No 2+ $60k - $120k 0 or 1 1+ No Any 8.8% 2.24 
12 Yes No 2 $60k - $120k 2 1+ Any Any 5.3% 2.19 

13 Yes No 3 $60k - $120k 2+ 1+ Any Any 6.4% 2.11 
14 Yes No 4+ $60k - $120k 2+ 1+ Any Any 14.0% 2.14 

15 Yes No 2+ $120k+ 0 or 1 1+ Any Any 5.9% 2.12 
16 Yes No 2+ $120k+ 2+ 1+ Any Any 17.4% 2.04 
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Figure 18. Kernel Density Map of Lowest Quartile (Q1) of Household Income 

 

Figure 19. Kernel Density Map of Second Lowest Quartile (Q2) of Household Income 
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Figure 20. Kernel Density Map of Second Highest Quartile (Q3) of Household Income 

 

Figure 21. Kernel Density Map of Highest Quartile (Q4) of Household Income 
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Chapter 4. Conclusions and Future Work 

This study developed a modeling framework to integrate predicted person and household 
activity (person locations and predicted vehicle paths) from the regional activity-based travel 
demand model (ABM2020), with MOVES-Matrix energy and emission rates, and the AERMOD 
microscale dispersion model, to assess near-road population exposure to traffic-related PM2.5 
across demographic groups. All of the modeling components were to run on the Georgia Tech 
PACE supercomputing cluster.  A case study of the I-75/I-575 Northwest Corridor demonstrated 
the capabilities of the overall modeling framework. 

Northwest Corridor population exposures were correlated with distance from homes to the 
modeled freeway network. High-income households do tend to live further away from the 
Interstate corridor, and were exposed to slightly less traffic-related PM2.5. However, low-
income populations were not among the groups with highest daily exposure along this corridor, 
predominantly due to the fact that household incomes tend to be relatively high throughout 
the NWC (compared to the rest of the region) and spatial clustering by income is not very 
notable on this corridor. Based upon the spatial clustering of low-income households 
throughout other portions of the metro area, the team anticipates that environmental equity 
disparities in exposure across income groups will be noted in modeling the entire metro area. 

The team is currently performing QA/QC processes on recently-procured Polk Data Services 
vehicle registration dataset that will be used to refine the next set of analyses for enhanced 
fleet composition to refine emission rates. Addresses were reformatted (e.g., Ave. to Avenue) 
using a machine learning process to identify common registration locations for demographic 
linkages and the team is currently performing a spatial completeness check. The team is also 
running algorithms to condense makes/models into common names (e.g., a 2019 Honda Civic 
may have 40 different names for the same vehicle), and comparing vehicle make, model, and 
model year groups with the anticipated values to assess potential sample bias (e.g., older 
vehicles in the fleet may tend to be missing). The team will also expand the equity assessment 
by integrating the vehicle profiles from Polk (make, model and model year) into the synthetic 
household and fleet generation, to pair the vehicle emissions at individual and household levels 
(modeled using MOVES-Matrix) with the corresponding exposure results.   
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Data Summary 

As described in this report, the team modeled the traffic-related PM2.5 emissions and 
concentrations, and analyzed the population exposure across demographics. 

Products of Research 

The traffic volume and speed data used in this study were derived from the Activity-based 
Model (ABM) by Atlanta Regional Commission (ARC).  Under the data user agreement, 
interested parties need to obtain these data from the corresponding contractors.  The energy 
and emission rate matrices applied are public domain and can be found at 
https://zenodo.org/records/13878218.  The AERMOD modeling results by receptors are also 
included at the repository. 

Data Format and Content 

The format and content of the MOVES-Matrix (MOVES2014b) data sets are documented in the 
NCST MOVES-Matrix overview and training documents at https://github.com/gti-
gatech/moves_training/. 

Data Access and Sharing 

The MOVES-Matrix data are open source and can be downloaded and freely shared from the 
link provided above. 

Reuse and Redistribution 

The MOVES-Matrix data are open source can be downloaded, used, and freely redistributed 
using the link provided above. 

The energy and emissions rate matrices should be cited as follows: 

Lu, H. (2024). A Modeling Framework for Near-Road Population Exposure to Traffic-Related 
PM2.5 and Environmental Equity Analysis: A Case Study in Atlanta, Georgia [Data set]. 
Zenodo. https://doi.org/10.5281/zenodo.13878218   

https://zenodo.org/records/13878218
https://github.com/gti-gatech/moves_training/
https://github.com/gti-gatech/moves_training/
https://doi.org/10.5281/zenodo.13878218
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Appendix. Randomization of Trip Departure Timestamp 

This appendix provides the detailed process and an example of the trip departure timestamp 
randomization based on the trip departure period and the constraints of trip chains. Two 
iterations were performed for every trip chain to generate the early bounds and late bounds for 
all trips, respectively. The forward checking generates the early bounds in a sequence from the 
first trip to the last trip in a chain (from trip 1 to trip n), as shown in (1), and the backward 
checking generates the late bounds in a sequence from the last trip to the first trip in a chain 
(from trip n to trip 1), as shown in (2). 

𝐸𝐵𝑖 {
𝑃𝑆𝑖 𝑖 = 1

𝑀𝐴𝑋(𝑃𝑆𝑖 , 𝐸𝐵𝑖−1 + 𝑡𝑖−1) 𝑖 = 2, 3,… , 𝑛
 (1) 

𝐿𝐵𝑖 {
𝑃𝐸𝑖 𝑖 = 𝑛

𝑀𝐼𝑁(𝐿𝐵𝑖+1 − 𝑡𝑖+1, 𝑃𝐸𝑖) 𝑖 = 2, 3,… , 𝑛
 (2) 

where 𝐸𝐵𝑖 is the early bound for trip 𝑖, 𝐿𝐵𝑖 is the late bound for trip 𝑖, 𝑃𝑆𝑖 is the start 
timestamp for the departure period of trip 𝑖 (e.g., 8:00 AM if the departure period is 8:00 AM to 
8:30 AM), 𝑃𝐸𝑖 is the end timestamp for the departure period of trip (e.g., 8:30 AM if the 
departure period is 8:00 AM to 8:30 AM), and 𝑡𝑖 is the travel time of trip 𝑡𝑖. 

An example of dummy trip chain is presented in Table 9 with the calculation of the legitimate 
departure periods for a 7-trip chain, and the legitimate periods are illustrated in Figure 22. It is 
worth noting the legitimate periods across trips could overlap with each other (i.e., in this case 
trips could be generated in an incorrect sequence), and the departure timestamp 
randomization algorithm was designed to discard the invalid trip sequences (re-draw of all trips 
at a time). 
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Table 9. Sample of the Generation of the Legitimate Trip Departure Time Periods 

Trip 
# 

Departure 
Period # 

Assigned 
Departure Period 

Travel Time 
(Minute) 

Early Bound 
(Forward Checking) 

Late Bound 
(Backward Checking) 

1 17 8:00 - 8:30 AM 15 
8:00 AM 

MIN (8:45 AM - 15 Min, 8:30 
AM) = 8:30 AM 

2 18 8:30 - 9:00 AM 5 MAX (8:30 AM, 8:00 AM + 15 
Min) = 8:30 AM 

MIN (8:50 AM - 5 Min, 9:00 AM) 
= 8:45 AM 

3 18 8:30 - 9:00 AM 10 MAX (8:30 AM, 8:30 AM + 5 
Min) = 8:35 AM 

MIN (9:00 AM - 10 Min, 9:00 
AM) = 8:50 AM 

4 18 8:30 - 9:00 AM 5 MAX (8:30 AM, 8:35 AM + 10 
Min) = 8:45 AM 

MIN (9:10 AM - 5 Min, 9:00 AM) 
= 9:00 AM 

5 19 9:00- 9:30 AM 10 MAX (9:00 AM, 8:45 AM + 5 
Min) = 9:00 AM 

MIN (9:20 AM - 10 Min, 9:30 
AM) = 9:10 AM 

6 19 9:00 - 9:30 AM 40 MAX (9:00 AM, 9:00 AM + 10 
Min) = 9:10 AM 

MIN (10:00 AM - 40 Min, 9:30 
AM) = 9:20 AM 

7 20 9:30 - 10:00 AM 5 MAX (9:30 AM, 9:10 AM + 40 
Min) = 9:50 AM 

10:00 AM 
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Figure 22. Sample of the Legitimate Trip Departure Time Periods 

Legitimate Period Legitimate Period Overlapped with Other Trips Assigned Period That is Not Legitimate

Trip # Departure Period # Assigned Departure Period Legitimate Departure Period

1 17 8:00 AM - 8:30 AM 8:00 AM - 8:30 AM

2 18 8:30 AM - 9:00 AM 8:30 AM - 8:45 AM

3 18 8:30 AM - 9:00 AM 8:35 AM - 8:50 AM

4 18 8:30 AM - 9:00 AM 8:45 AM - 9:00 AM

5 19 9:00 AM - 9:30 AM 9:00 AM - 9:10 AM

6 19 9:00 AM - 9:30 AM 9:10 AM - 9:20 AM

7 20 9:30 AM - 10:00 AM 9:50 AM - 10:00 AM

Ganntt Chart of the Sample Trip Chain

Each Slot Represents a 5-Minute Interval.                Legend

8:108:00 8:20 8:30 8:40 8:50 9:00 9:10 9:20 9:30 9:40 9:50 10:00
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