
UC Berkeley
UC Berkeley Previously Published Works

Title

13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for 
Overproduction of Fatty Acids

Permalink

https://escholarship.org/uc/item/6zx3v61n

Journal

Frontiers in Bioengineering and Biotechnology, 4(OCT)

ISSN

2296-4185

Authors

Ghosh, Amit
Ando, David
Gin, Jennifer
et al.

Publication Date

2016

DOI

10.3389/fbioe.2016.00076
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6zx3v61n
https://escholarship.org/uc/item/6zx3v61n#author
https://escholarship.org
http://www.cdlib.org/


ORIGINAL RESEARCH
published: 05 October 2016

doi: 10.3389/fbioe.2016.00076

Edited by:
S. Venkata Mohan,

CSIR-Indian Institute of Chemical
Technology, India

Reviewed by:
G. Venkata Subhash,

Reliance Industries, India
Jens Nielsen,

Chalmers University of
Technology, Sweden

*Correspondence:
Héctor García Martín

hgmartin@lbl.gov

Specialty section:
This article was submitted to

Bioenergy and Biofuels, a section of
the journal Frontiers in Bioengineering

and Biotechnology

Received: 16 August 2016
Accepted: 20 September 2016
Published: 05 October 2016

Citation:
Ghosh A, Ando D, Gin J,

Runguphan W, Denby C, Wang G,
Baidoo EEK, Shymansky C,

Keasling JD and García Martín H
(2016) 13C Metabolic Flux Analysis for

Systematic Metabolic Engineering
of S. cerevisiae for Overproduction

of Fatty Acids.
Front. Bioeng. Biotechnol. 4:76.
doi: 10.3389/fbioe.2016.00076

13C Metabolic Flux Analysis for
Systematic Metabolic Engineering
of S. cerevisiae for Overproduction
of Fatty Acids
Amit Ghosh1,2,3, David Ando1,2, Jennifer Gin1,2, Weerawat Runguphan1,2,4, Charles Denby 1,2,
George Wang1,2, Edward E. K. Baidoo1,2, Chris Shymansky 1,2,5, Jay D. Keasling1,2,5,6,7 and
Héctor García Martín1,2*

1Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, USA, 2Joint BioEnergy
Institute, Emeryville, CA, USA, 3 Indian Institute of Technology (IIT), School of Energy Science and Engineering, Kharagpur,
India, 4National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand, 5Department of
Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA, 6Department of Bioengineering,
University of California Berkeley, Berkeley, CA, USA, 7Novo Nordisk Foundation Center for Biosustainability, Technical
University Denmark, Horsholm, Denmark

Efficient redirection of microbial metabolism into the abundant production of desired
bioproducts remains non-trivial. Here, we used flux-based modeling approaches to
improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling
data with comprehensive genome-scale models to shed light onto microbial metabolism
and improve metabolic engineering efforts. We concentrated on studying the balance
of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-
wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a
robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for
downregulation in terms of acetyl-CoA consumption. These genetic modifications were
applied to S. cerevisiaeWRY2, a strain that is capable of producing 460mg/L of free fatty
acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the
engineered strain produced 26% more free fatty acids. Further increases in free fatty acid
production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate
dehydrogenase, which flux analysis had shown was competing for carbon flux upstream
with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total,
the genetic interventions applied in this work increased fatty acid production by ~70%.

Keywords: flux analysis, 13C metabolic flux analysis, -omics data, predictive biology, metabolic engineering

1. INTRODUCTION

In spite of several successes (Keasling andChou, 2008; Goh et al., 2014), the production of renewable,
economical, and environmentally sustainable fuels and chemicals from microbial fermentation
remains challenging (Sims et al., 2010). There is a particular interest in the production of second-
generation biofuels, which have the potential to provide significant environmental benefits in the
form of reduced global dependence on crude oil and minimizing CO2 production (Naik et al.,
2010). Second-generation biofuels and bioproducts also have higher energy densities and improved
handling and performance characteristics (e.g., water miscibility) over ethanol produced from corn
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stocks (Fortman et al., 2008). Some types of second-generation
biofuels can be produced from fatty acids produced through fer-
mentation of sugars, in which the free fatty acids can be converted
to alkanes by catalytic esterification or decarboxylation (Fjerbaek
et al., 2009). Conversely, the host organism can be bioengineered
to convert fatty acids into fatty acid ethyl esters [FAEE, Steen
et al. (2010a)]. Moreover, unprocessed medium chain fatty acids
(C6–C14) are commonly used in industrial applications as sources
for bioproducts other than biofuels: lubricants, cosmetics, and
pharmaceuticals. Free fatty acids can also be directly hydrogenated
to form fatty alcohols (Voeste and Buchold, 1984).

Previous engineering attempts with Saccharomyces cerevisiae
(Rodriguez et al., 2016) to produce fatty acid-derived biofuels
(Runguphan and Keasling, 2014) from sugars have, for example,
involved the overexpression of all three fatty acid biosynthe-
sis genes, namely, acetyl-CoA carboxylase (ACC1), fatty acid
synthase 1 (FAS1), and fatty acid synthase 2 (FAS2), as well as
knocking out fatty acyl-CoA synthetases 1 and 4 (FAA1 and
FAA4). Altering the terminal converting enzyme in the engi-
neered strain led to the production of free fatty acids at a titer of
~400mg/L, fatty alcohols at ~100mg/L, and fatty acid ethyl esters
(biodiesel) at ~5mg/L directly from simple sugars in shaking
flask cultivation. More recent work (Zhou et al., 2016) reached
a titer of 1 g/L of free fatty acids in shaking flask cultivation
and 10.4 g/L in fed-batch cultivation. Besides blocking fatty acid
activation and degradation and overexpressing ACC1, the cell
was further engineered by introducing an optimized acetyl-CoA
pathway and expressing a more efficient fatty acid synthase. In
spite of this progress, higher yields, titer, and productivity are
needed in order to obtain commercially viable strains. Further-
more, toward this goal it would be desirable to develop systematic
methods. These systematic methods should not heavily rely on a
detailed biochemical knowledge of the selected host or pathway
but rather be generalizable and suggest non-intuitive engineering
approaches.

Metabolic modeling provides a way to systematically deter-
mine genetic modifications that may improve yield. Flux-based
metabolic modeling is particularly well suited for this endeavor
since metabolic fluxes describe how carbon flows from feed to
final product. Flux balance analysis (FBA) has previously been
used successfully for this purpose (Asadollahi et al., 2009; Park
et al., 2009). FBA obtains fluxes by using a network of cellular
metabolism which includes all reactions, or at least as many as
can be inferred from the genome through a metabolic reconstruc-
tion that yields a genome-scale stoichiometric model (Thiele and
Palsson, 2010). This genome-scale model is coupled with a linear
programing (LP) assumption that metabolism is tuned, due to
evolutionary pressure, to maximize growth rate [or other evolu-
tionary assumptions can be used, see Schuetz et al. (2007)]. Two-
scale 13C metabolic flux analysis (2S-13CMFA) improves on FBA
by retaining the genome-scale metabolic network but drops the
evolutionary assumption in favor of 13C constraints from cellular
metabolites measured experimentally (Martín et al., 2015). This is
achieved by modeling fluxes at two different levels of resolution:
for coremetabolites and reactions, both stoichiometry and carbon
labeling information are used, whereas for the remaining non-core
metabolites and reactions, only stoichiometry is tracked, and their

contribution to the core set labeling is considered to be negligible.
This multiscale approach is valid as long as metabolic flux flows
from core to peripheral metabolism and does not flow back, an
assumption that is supported by the good fits between experi-
mentally measured and computed labeling distributions obtained
in general by 13C MFA methods thus far [which only consider
core reactions, Moxley et al. (2009); Kajihata et al. (2015)]. 2S-13C
MFA combines the informative constraints of 13C labeling exper-
iments with genome-scale stoichiometry to improve the determi-
nation of metabolic fluxes and set confidence intervals based on
experimental data. This method allows us to constrain metabolic
fluxes without the need for carbon transitions for every reac-
tion in the genome-scale model (Gopalakrishnan and Maranas,
2015a,b) and provides flux estimates for peripheral metabolism
such as fatty acid production, which are the subject of this
manuscript.

In this paper, we improved a strain of S. cerevisiae (WRY2)
that was previously constructed for free fatty acid production
(Runguphan and Keasling, 2014). The previous metabolic inter-
ventions for this strain consisted of the overexpression of acetyl-
CoA carboxylase and fatty acid synthases, and the elimination of
FAA1 and FAA4 involved in the fatty acid degradation pathway
of S. cerevisiae. Flux analysis guided further improvement of this
strain (see Figure 1). First, we performed 13C tracer experiments
onWRY2 so that we could apply 2S-13CMFA to determine fluxes
in a genome-scale model of metabolism for our reference strain.
We used this new approach to determine fluxes for WRY2 both
before and after boosting acetyl-CoA production via the addition
of ATP citrate lyase [ACL, Rodriguez et al. (2016)] from Yarrowia
lipolytica. Although acetyl-CoA is the substrate for fatty acid
production, the introduction of ACL resulted in only a small gain
in fatty acid production of around 5%. 2S-13CMFA identified the
most significant sink of acetyl-CoA after the introduction of ACL
to be malate synthesis. After downregulating malate synthesis, we
measured a significant increase in fatty acid production of 26%.
Finally, as fatty acid production increased as we engineeredWRY2
through both the addition of ACL and the downregulation of
MLS, 2S-13C MFA showed that the glycerol-3-phosphate dehy-
drogenase (GPD1) pathway, which competes for carbon with the
acetyl-CoA production pathway, was acting as a large carbon sink.
We knocked out GPD1 in our engineered strains so more carbon
flux would be available for fatty acid production, and as expected,
these strains had increased fatty acid production of 33%. In total,
the genetic interventions applied in this work increased fatty acid
production by ~70%.

2. MATERIALS AND METHODS

2.1. Media, Cultivation, and Yeast
Transformation
The parent strain for all genetic engineering, WRY2, was gener-
ated as described in Runguphan and Keasling (2014). For strain
construction (see Table 1), precultures were grown with 5mL of
yeast extract+ peptone+ dextrose (YPD) medium in glass test
tubes at 30°C with shaking at 200 rpm. After 18 h of growth,
precultures were used to inoculate 50-mL cultures in 250-mL
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Erlenmeyer flasks. After 6 h of growth, strains were transformed
by the lithiumacetatemethod (Gietz andWoods, 2002)with linear
DNA containing the genetic modification cassette as specified

FIGURE 1 | Overview of S. cerevisiae metabolic pathways relevant to
this study and metabolic interventions. A non-native ATP citrate lyase
(ACL) was introduced with the intention of increasing acetyl-CoA (accoa)
supply, but fatty acid production did not increase significantly (Figure 2). The
use of flux analysis suggested that more acetyl-coA was indeed produced,
but that it was lost through malate synthesis (MLS, Figure 3). Downregulating
this enzyme increased fatty acid (FA) production 26% (Figure 2). The use
again of flux analysis suggested knocking out glycerol production (GPD1) for
increased production. FA production improved an extra 33% (Figure 2). The
mitochondrial and peroxisomal compartments are represented as blue and
yellow circles, respectively. Metabolite abbreviations follow the BIGG
database (Schellenberger et al., 2010).

below. Transformed yeast cells were plated on non-selective
YPD+ 2% agar and were grown at 30°C for 18 h. The resulting
cells were replica plated onto YPD agar plates+ 200mg/L of the
following selective antibiotics: hygromycin B (X), nourseothricin
(X), or G418 (X). Colonies were picked after 2 days and re-
streaked on selective media. Integration of genetic modifications
was confirmed by performing colony PCR on a single colony of
the propagated strain.

2.2. Strain Construction
PCR amplification was performed using Prime STAR GXL
DNA polymerase using the manufacturer’s instructions (Takara).
Primers used in this study are listed in Table 2. Assemblies were
performed using Gibson assembly master mix (New England
Biolabs) and were transformed into DH10b competent cells for
propagation. Plasmid DNA was purified using a QIAprep Spin
Miniprep Kit (QIAGEN), and plasmids were sequenced with 2×
coverage (Quintara). DNA sequences derived from S. cerevisiae
were amplified from genomic DNA prepared using a modified
Miniprep protocol: 1mL of yeast cell culture in YPD medium
was centrifuged in a screw cap tube (3000× g) and resuspended
in buffer P1 (from Qiagen kit). Cells were lysed by adding glass
beads and shaking in a benchtop homogenizer/bead beating
instrument (FastPrep-24, MP Biomedicals) for ~1min. Resulting
suspension was used for remaining steps in Qiagen Miniprep
protocol.

For construction of GPD1::hphMX4 (GPD1 knockout), the
hphMX4 cassette was amplified from pAG32 (Goldstein and
McCusker, 1999) with primers containing 50 bp corresponding to
the chromosomal sequence immediately 5′ and 3′ of the GPD1
locus.

For construction of NatMX3-PTEF1m2::PMLS1 (MLS1 down-
regulation), the NatMX3-PTEF1m2 cassette was amplified from
pAG35-PTEF1m2, a plasmid containing the NatMX3 cassette
immediately 5′ of PTEF1m2. pAG35-PTEF1m2 was generated by
restriction cloning as follows: a mutant variant of TEF1 promoter
was amplified from p416-TEFm2 (Nevoigt et al., 2006) using
primers flanked with restriction sites, and the resulting amplicon

TABLE 1 | List of strains and genotypes.

Strain name Genotype Description Reference JBEI registry

BY4742 Matα; his3∆1; leu2∆0; lys2∆0; ura3∆0 Direct descendent of S288C Brachmann et al. (1998)

WRY2 WRY2* BY4742 where promoters of ACC1, FAS1
and FAS2 changed to TEF1 promoter and
FAA1 and FAA4 were deleted

JBx_026085

WRY2 ACL WRY2 ACL WRY2 with ACL plasmid with TEF1
promoter

This study JBx_048834

WRY2 ACL PTEF1-MLS1 WRY2 ACL; PTEF1m2-MLS1 WRY2 with ACL plasmid and
downregulation of MLS1

This study JBx_048836

WRY2 ∆GPD1 WRY2 gpd1∆ WRY2 with the deletion of gpd1 This study JBx_026430

WRY2 ∆GPD1 ACL WRY2 gpd1∆; ACL WRY2 with ACL plasmid and the deletion
of gpd1

This study JBx_048838

WRY2 ∆GPD1 ACL PTEF1-MLS1 WRY2 gpd1∆; ACL; PTEF1m2-MLS1 WRY2 with ACL plasmid plus deletion
of gpd1 plus downregulation of MLS1

This study JBx_048840

Details are available in the public instance of the JBEI public registry (Ham et al., 2012), https://public-registry.jbei.org.
WRY2* genotype: BY4742 FAA1∆; FAA4∆; acc1::PTEF1-ACC1; fas1::PTEF1-FAS1; fas2::PTEF1-FAS2.
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TABLE 2 | List of primers used in this study.

Modified gene Template F-primer R-primer

GPD1 deletion pAG32 TATATTGTACA CATATAGGCATG
CCCCCCC AATATAT

CCTCCACAAACA TTTTATATATGTG
CAAAT TACACT

ATTGATAATATAAA GGGGCAAGGGAG
Gttgcc Aacggaa

tcgtccccgccgg agaagaaatggatcc

MLS1 pAG35- ATTGTTTTGAACT TTATCAACATCCA
downregulation pTEF1m2 AAACA CCAGT

AAGTAGTAAAAGC AATTTGACGTTAT
ACATA CCAAA

AAAGAA TTAAGAAA CTGACCTTAACC
tcgac ATtttttcta

actggatggcggc gaaaacttggatt

was ligated into the BamHI andHindIII sites of pAG35 (Goldstein
and McCusker, 1999).

For construction of ura3::PPGK1-YlACLb-PTEF1-YlACLa-
kanMX4 (ACL addition), the PPGK1-YlACLb-PTEF1-YlACLa-
kanMX4 cassette was generated by restriction digest of plasmid
pCV278 with PmeI. pCV278 was generated by replacing the
GAL1/10 promoters from pCV256 with PGK1/TEF1 promoters
using a 3-fragment Gibson assembly reaction. The assembly
was designed using Device Editor bioCAD software (Chen
et al., 2012), and assembly primers were generated with j5 DNA
assembly design automation software (Hillson et al., 2012)
using the default settings. The fragment containing YlACLb-
PTEF1-YlACLa-kanMX4 was amplified from pCD256, and the
TEF1/PGK1 promoters were amplified from yeast genomic DNA.

Immediately preceding production experiments, all strains
were transformed with pESC-Leu2d-’TesA and plated on -Leu.
Colonies grew after 2 days and were used to inoculate minimal
media with appropriate amino acid dropouts: CSM with 60mg/L
His, 90mg/L Lys, 60mg/L Ura, and 60mg/LMet (HKUMmedia).

2.3. 13C Labeling Experiments
All liquid cultivations were carried out in minimal medium (1×
yeast nitrogen base, 1.5% glucose, and 1M phosphate buffer in
HKUMmedia). After precultivation overnight in glucoseminimal
medium, 30-mL cultures were inoculated to a starting OD600 of
0.05 and grown in 250-mL shake flasks at 30°C and 250 rpm.
Aliquots were withdrawn during the exponential growth phase on
glucose. For flux analysis experiments, natural abundance glucose
was replaced by mixture of 80% of the 1-13C glucose and 20%
of the U-13C isotopologue (13C-enrichment Z99%, Cambridge
Usotope Laboratories, Andover). Sampling formetabolite labeling
measurements for all the strains was done at 15 h: 6–8mL of
culture from liquid cultivations were removed for metabolites
measurement using LCMS (see below). Extracellular metabolite
concentrations were measured using HPLC at two time points:
13 and 15 h. These measurements were later converted into fluxes
using OD values for different strains; the conversion factor from
OD to cell dry weight (cdw) was 0.835.

2.4. Measurement of Labeling Patterns
(Mass Distribution Vectors, MDVs)
For metabolite labeling samples, 5mL of cell culture was pel-
leted at 8000× g for 3min at 4°C and resuspended in 300µL
of methanol, 300µL of chloroform, and 250µL of water. After
vortexing, the suspension was transferred into 1.7-mL screw cap
tube and 500µL of beadswere added. Bead beatingwas performed
on samples for 10 s for 10 timeswith 1min on ice between samples.
Then, 350µL of the aqueous layer was removed from the tube and
filtered through aMillipore™ Amicon Ultra 3 kDaMW cut-off fil-
ter at 14,000× g for 60min at−2°C.Water was added to the flow-
through to give a total volume of 1mL. Following flash-freezing
(with liquid nitrogen) then lyophilization, samples were reconsti-
tuted in 50µL methanol–water (50:50, v/v) prior to analysis.

Formeasurement of intracellular amino acids, liquid chromato-
graphic separation was conducted at 30°C with a Kinetex HILIC
column (100-mm length, 4.6-mm internal diameter, 2.6-µm par-
ticle size; Phenomenex, Torrance, CA, USA) using a 1200 Series
HPLC system (Agilent Technologies, Santa Clara, CA, USA). The
injection volume for each measurement was 2µL. The sample
tray and column compartment were set to 6 and 40°C, respec-
tively. The mobile phase was composed of 20mM ammonium
acetate inwater (solvent A) and 10mMammonium acetate in 90%
acetonitrile and 10% water (solvent B) (HPLC grade, Honeywell
Burdick & Jackson, CA, USA). Ammonium acetate was prepared
from a stock solution of 100-mM ammonium acetate and 0.7%
formic acid (98–100% chemical purity, from Sigma-Aldrich, St.
Louis, MO, USA) in water. Amino acids were separated with the
following gradient: 90 to 70%B in 4min, held at 70%B for 1.5min,
70 to 40% B in 0.5min, held at 40% B for 2.5min, 40 to 90% B
in 0.5min, held at 90% B for 2min. The flow rate was varied as
follows: held at 0.6mL/min for 6.5min, linearly increased from
0.6 to 1mL/min in 0.5min, and held at 1mL/min for 4min. The
total run time was 11min. Mass spectrometry parameters can be
found in Bokinsky et al. (2013).

Data acquisition and processing were performed by the
MassHunter software package. The mass isotopomer distribution
of the amino acid was obtained without fragmentation. From
the mass isotopomer distribution of the amino acids, fluxes were
calculated with the 2S-13C MFA software as described later.
Labeling patterns were measured for the following intracellular
amino acids: glycine (Gly), alanine (Ala), valine (Val), threonine
(Thr), leucine (Leu), isoleucine (Ile), asparagine (Asp), glutamate
(Glu), glutamine (Gln), arginine (Arg), phenylalanine (Phe), and
tyrosine (Tyr).

2.5. Biomass and Extracellular Metabolite
Concentrations
Biomass concentrations were determined by recording OD600
with a spectrophotometer (Novaspec II, Pharmacia Biotech, Upp-
sala, Sweden). Extracellularmetabolite concentrations for ethanol,
acetate, glycerol, and glucose were determined with an Agilent
1200 Series HPLC system equipped with a photodiode array
detector set at 210, 254, and 280 nm (Agilent Technologies, Santa
Clara, CA, USA). The separation of metabolites was conducted
on an Aminex HPX-87H column with 8% cross linkage (150mm
length, 7.8mm internal diameter, and 9µmparticle size; Bio-Rad,
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Richmond, CA, USA). A sample injection volume of 5µL was
used throughout. The sample tray and column compartment were
set to 4 and 50°C, respectively. Isocratic elution was performed
with 4-mM sulfuric acid at a flow rate of 0.6mL/min. The HPLC
system was equipped with a refractive index detector (Agilent
Technologies), which was used to detect organic acids and glu-
cose. Data acquisition and analysis were performed via Agilent
Chemstation software. Biomass yields were obtained from a linear
fit of substrate or byproduct concentrations during exponential
growth as a function of corresponding biomass concentrations.
Multiplication with the growth rate then yielded specific glucose
uptake and byproduct secretion rates. The physiological param-
eters were determined from at least two independent biological
replicates.

2.6. GC–MS Analysis of Free Fatty Acids
For free fatty acid production, strains were precultured in 5mL
aliquots in minimal medium (1× yeast nitrogen base, 1.5% glu-
cose, and 1M phosphate buffer in HKUM media) over night and
used to inoculate 30mL minimal medium (1× yeast nitrogen
base, 1.5% glucose, and 1M phosphate buffer in HLKUM media)
in 250-mL flask cultures to achieve an initial OD600 of 0.05. After
96 h, 100µL of yeast culture were spiked with 5µL of pentade-
canoic acid standard (3mg/mL) and thenmixedwith 10µLof 40%
v/v tetrabutylammonium hydroxide (TBAH) solution (Sigma).
Then, 100µL of dichloromethane (DCM)/iodomethane (MeI)
was added to the sample, and the mixture was agitated by vortex
for 10 s. The organic (bottom) layer was transferred to a GCMS
vial, and the solvent was allowed to evaporate completely. Then,
100µL of fresh DCM was added to the extract, and the samples
were run using a previously describedmethod (Steen et al., 2010b)
with some minor differences. The GC program was as follows: an
initial temperature of 40°C was maintained for 3min, followed by
ramping to 250°C at a rate of 20°C/min, where the temperature
was held for 5min.

2.7. Flux Calculation
Fluxes were calculated through 2S-13CMFA (Martín et al., 2015),
using code that is included as part of the Supplementary Material.
Files containing all input information for 2S-13C MFA can be
found therein: feed labeling information, measured extracellular
fluxes, carbon transitions, measured labeling information, and
SBML file for the genome-scalemodel [iMM904 (Mo et al., 2009)].
Detailed instructions on how to calculate fluxes and produce the
figures in this manuscript can be found in the jupyter notebook
provided as Supplementary Material.

For the purposes of fitting the measured labeling patterns,
intracellular amino acidswere assumed to be cytosolic, as has been
assumed in previous studies (Moxley et al., 2009). Confidence
intervals for fluxes were calculated through 13C flux variability
analysis (13C FVA) by solving equations (16–23) in Martín et al.
(2015). This procedure allowed us to calculate all fluxes compati-
ble with the labeling data [equation (23) in Martín et al. (2015)],
instead of only the fluxes that best fit the data, a piece of infor-
mation of vital importance in order to produce valid conclusions.
Confidence intervals are presented throughout the manuscript as,
e.g., 0.5 [0.3–0.66], where 0.5 is the flux that best fits the available

experimental data, 0.3 is the lowest flux that is compatible with
the data, and 0.66 is the highest flux compatible with the data.
External labeling variability analysis (ELVA) was performed and
used to decide the size of the core set of reactions, as explained in
Martín et al. (2015).

3. RESULTS

3.1. ACL Alone Improves Fatty Acid
Production Minimally
ATP citrate lyase (ACL) is an enzyme, which is not normally
present in S. cerevisae (Rodriguez et al., 2016), but which in other
organisms such as plants or oleaginous yeast produces additional
cytosolic acetyl-CoA, which further acts as a precursor in the
production of fatty acids or many thousands of other specialized
metabolites including waxes, sterols, and polyketides. In the pres-
ence of ATP and coenzyme A in the cytoplasm, ACL catalyzes
the cleavage of citrate to yield acetyl-CoA, oxaloacetate, ADP, and
orthophosphate (see Figure 1):

citrate + ATP + CoA + H2O → oxaloacetate + acetyl − CoA
+ ADP + Pi

As the ACL enzyme produces acetyl-CoA precursors
(Rodriguez et al., 2016), we introduced ACLY (from Y. lipolytica)
containing plasmids to our WRY2 strain (see Methods) to
increase the production of acetyl-CoA in WRY2, as has been
shown to be the case for the production of n-butanol (Lian
et al., 2014). This resulted in a small 5% increase in fatty acid
production (Figure 2). In order to investigate why the expected
increase in acetyl-CoA production had not resulted in higher
fatty acid production, we used 2S-13CMFA.

3.2. 2S-13C MFA Indicates Acetyl-CoA Is
Diverted from Fatty Acid Metabolism via
Malate Synthase
To diagnose and remedy the small increase in fatty acid produc-
tion in the face of acetyl-CoA substrate production increases via
the addition of ACL-containing plasmids to our WRY2 strain, we
performed 2S-13C MFA to determine acetyl-CoA substrate fates.
Fluxes for reactions producing and consuming acetyl-CoA for
the engineered fatty acid producing strain WRY2 and the WRY2
strainwithACL can be found in Figure 3, showing a genome-wide
balance as determined by 2S-13CMFA. The total amount of acetyl-
CoA produced by strain WRY2 ACL (2.42mmol/gdw/h) seems
to almost double that of strain WRY2 (1.25mmol/gdw/h) due to
acetyl-CoA production addition by ACL of 0.5mmol/gdw/h and
an increase in acetyl-CoA production by acetyl-CoA synthetase
(ACS) of ~0.7mmol/gdw/h. However, these flux estimates have
very large confidence intervals: 0.52–1.44mmol/gdw/h for ACS
flux where the best fit is 1.25mmol/gdw/h for the WRY2 strain,
and 1.38–4.85mmol/gdw/h for the addition of ACS and ACL flux
where 2.42 is the addition of best fits for the WRY2 strain with
ACL.The confidence intervals representmaximumandminimum
values of this flux compatible with the 13C labeling data (see
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FIGURE 2 | Fatty acid production for the various strains studied in this manuscript. S. cerevisiae WRY2 is the base strain used for these studies. The
addition of ACL was expected to increase acetyl-CoA availability but did not increase final production. However, the downregulation of MLS did increase production,
as suggested by flux analysis. The highest production was obtained by knocking out glycerol production, improving production in the overall engineering process by
70%. Fatty acid measurements shown here were performed at the end of 100 h, and the error bars represent the SD obtained for three replicates.

FIGURE 3 | Cytosolic acetyl-CoA balances obtained from 2S-13C MFA for WRY2, WRY2 ACL, and WRY2 ACL PTEF1-MLS1. Flux of acetyl-CoA (accoa)
producing and consuming reactions is shown as a sankey diagram. Reactions on the left of the diagram produce acetyl-coA and reactions on the right consume it,
with arrow size indicating total flux. Reaction and metabolite names follow the BIGG database conventions (Schellenberger et al., 2010). Numbers below the reaction
names indicate best fits to data and confidence intervals. For example, the acetyl-coA synthetase (ACS) for WRY2 shows that the flux that best fits the data is 1.25,
but the flux could be any value between 0.52 and 1.44 (confidence intervals). The top diagram (WRY2) shows that all acetyl-coA is produced by ACS and MALS may
act as a sink, although this is not assured (lower confidence interval is 0). Once the ACL is added (WRY2 ACL), total acetyl-coA increases, but the carbon sink into
MALS becomes certain (lower confidence interval 0.47 >0), which is consistent with the lack of fatty acid production increase (Figure 2). Downregulation of MALS
(WRY2 ACL PTEF1-MLS1) seems to have produced an increase in flux toward fatty acid metabolism, for which the reaction ACCOACr is the first step. The confidence
intervals for ACCOACr before and after the downregulation ([0.67–1.93] vs. [0.84–3.01]) are too wide to make this conclusion, but the increase in fatty acid
production (Figure 2) indicates this to be the case.
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Methods). Hence, the real flux for ACS in the WRY2 strain could
be anywhere between 0.52 and 1.44, but the best fit for the data is
1.25, and similarly, the real flux for the addition of ACS and ACL
could be anywhere in the interval 1.38–4.85 but our best guess is
2.42, based on the data. These wide confidence intervals represent
the fact that, for a genome-scale model, metabolites can follow
a variety of pathways to a given destination, and the available
experimental data (metabolite labeling and measured exchange
fluxes) cannot determine fully which ones are being used. This
multiplicity of available pathways can be captured by 2S-13CMFA
but not by 13CMFA (Martín et al., 2015). In this way, total acetyl-
coA flux has changed from a value between 0.52 and 1.44 to a
value between 1.38 and 4.85 (which may mean no change) where
our best fits indicate a doubling from 1.25 to 2.42. However, we
will see that in spite of these large confidence intervals, we can
still use this information to guide metabolic engineering efforts
to increase production (Figure 2). Hence, the addition of ACL
seems to have increased total acetyl-CoA substrate production,

but the data suggest that this effect is offset by an increase in
malate synthase (MALS) consumption of acetyl-CoA of around
1.0mmol/gdw/h ([0.47–1.53] conf. interval), with not much flux
rerouted to acetyl-CoA carboxylase (ACCOACr, gateway to fatty
acidmetabolism): 0.49mmol/gdw/h ([0.49–0.83] conf. interv.) vs.
0.67mmol/gdw/h ([0.67–1.93] conf. interv.). This is consistent
with the small increase in fatty acid production after adding ACL
(Figure 2).

Since flux analysis indicated that the extra acetyl-CoA provided
by theACLwas being shuttled into theMALS reaction, we decided
that our next engineering step would be to downregulate the gene
corresponding to MALS in the hope that this would increase the
carbon flux toward fatty acid synthesis. Although the geneMLS1
which encodes cytosolic malate synthase has been shown to be
transcribed mostly during growth on C2 carbon sources, MLS1
transcription has also been observed during growth on glucose
(Regenberg et al., 2006). Therefore, deletion or downregulation
ofMLS1 should contribute to increasing the cytosolic acetyl-CoA

FIGURE 4 | Cytosolic acetyl-CoA balances obtained from 2S-13C MFA for strains with GPD1 knocked out. Flux of acetyl-CoA (accoa) producing and
consuming reactions is shown as a sankey diagram as in Figure 3. In spite of the large confidence intervals for the calculated fluxes, several conclusions can be
drawn. The total flux through ACCOACr, for example, is doubled through the full engineering process presented here: compare [0.49–0.83] for WRY2 in Figure 3
versus [1.43–3.39] for WRY2 ∆GPD1 ACL PTEF1-MLS1 in this figure. Also, the effect of the GPD1 knockout definitely increases flux through ACCOACr ([0.49–0.83]
for WRY2 in Figure 3 versus [0.97–4.38] for WRY2 ∆GPD1). Furthermore, the effect of ACL involves the definite activation of reaction MALS as a carbon sink (similar
effect as in Figure 3).
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supply.We found that knocking outMLS1 resulted in a very slowly
growing strain (perhaps due to acetyl-CoA accumulation, which
may be toxic due to protein acetylation). This effect was not of
interest to us since we are focused on total fatty acid production,
unlike Krivoruchko et al. (2013), who found a MLS1 knockout
to be key part of an engineering strategy to increase acetyl-CoA-
based production of butanol titers by 6.5-fold. However, we found
that downregulatingMLS1 (Methods), instead of knocking it out,
resulted in viable strains and an immediate fatty acid production
increase of ~26% (Figure 2). While this is consistent with our
previous deduction that theMALS reaction is a significant carbon
sink, the confidence intervals for MALS flux before and after the
downregulation ([0.47–1.53] vs. [0.35–2.19], Figure 3) are too
wide to confirm that MALS flux has indeed decreased. Although
the best fit values (1.0 vs. 1.19) have increased, the confidence
intervals provide the range of all possible fluxes compatible with
available experimental data and are not narrow enough to confirm
or discard that MALS flux has decreased. This case highlights
the strength of our analysis, which allows us to judge the extent
of validity of our inferences and when it is appropriate to derive
further conclusions.

3.3. GPD1 Knockout Improves Fatty Acid
Production
Glycerol-3-phosphate dehydrogenase (encoded by GPD1) cat-
alyzes the conversion of dihydroxyacetone phosphate to glycerol
3-phosphate and plays an important role in the synthesis of lipids.
Furthermore, it competes for carbon flux with the acetyl-CoA-
based fatty acid synthesis pathways whose production levels we
are attempting to maximize (Figure 1). Using 2S-13C MFA, we

determined that flux through reaction GPD1ir [reaction abbre-
viations follow the BIGG database (Schellenberger et al., 2010)]
in the WRY2, WRY2 ACL, and WRY2 ACL PTEF1-MLS1 strains
to be 2.45 [2.45–2.45], 0.6 [0.68–0.685], and 1.68 [1.2–1.69]
mmol/gdw/h. Therefore, as we engineered WRY2 for greater free
fatty acid production flux, the competing glycerol-3-phosphate
dehydrogenase pathway deviated carbon away from fatty acid
production. If this competing carbon flux could be decreased by
knocking out GPD1more carbon flux might be available for fatty
acid production. As expected,WRY2∆GPD1 andWRY2∆GPD1
ACL strains had higher fatty acid production over WRY2 and
WRY2 ACL of 22 and 56%, respectively (Figure 2).

Confirming our intuitions that knocking out GPD1 allows for
more carbon flux into acetyl-CoA-based fatty acid synthesis, 2S-
13C MFA flux profiles on our GPD1 knockout strains suggest
increased acetyl-CoA production (Figure 4). In spite of wide
confidence intervals for fluxes, we can see that the total flux into
fatty acid production (ACCOACr in Figures 3 and 4) is doubled
through the engineering process presented here ([0.49–0.83] for
WRY2 in Figure 3 versus [1.43–3.39] for WRY2 ∆GPD1 ACL
PTEF1-MLS1 in Figure 4). As expected, less glycerol is produced
by the strains where GPD1 was knocked out (Figure 5).

3.4. Growth Rates and External Metabolite
Concentrations
Aswe have engineeredWRY2 for greater fatty acid production, we
found that growth rates and final biomass after 62 h did not change
very significantly (Figure 5). In total, we were able to bring fatty
acid production from 460 to 780mg/L, a 70% increase, through
the addition of ACL, downregulation of MALS, and knockout of

FIGURE 5 | Growth rates and external metabolite concentrations: shown are the external metabolite concentrations for ethanol, glycerol, and acetate
for the strains studied in this manuscript. Biomass for these strains is displayed in terms of optical density at 600 nm (OD600). All measurements are an average
over three biological replicates.
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GPD1, yet this metabolic burden was not large enough to slow
down the growth rate of our strains. Similarly, external metabolite
concentrations between strains were qualitatively similar, with
measured metabolite concentrations averaged over three biologi-
cal replicates shown over time in Figure 5.

4. DISCUSSION

In this study, we have shown that we can use flux profiles obtained
from2S-13CMFA to guide and troubleshoot a bioengineering pro-
cess aimed at increasing product yield. The flux profiles obtained
from 2S-13C MFA describing acetyl-CoA balances (believed to
be the limiting factor) have provided actionable insights for
metabolic engineering efforts that have culminated in a 70%
increase in fatty acid production. While the confidence intervals
in the fluxes are large, they can still be successfully used to guide
engineering efforts. Initially, the base strain was complemented
with ACL in the hope of producing more acetyl-CoA. The flux
profiles suggest that ACL is effective in increasing acetyl-CoA
production, in the order of ~0.5mmol/gdw/h higher than that for
the WRY2 strain alone. However, this extra acetyl-CoA supply
is not routed into fatty acid production but, rather, diverted into
malate production throughMALS. By downregulating the activity
of malate synthase, we were able to increase fatty acid produc-
tion by 26%. Similarly, carbon loss through GPD1 suggested
that knocking out this reaction would increase production. This
knockout resulted in increased acetyl-CoA creation, as well as a
fatty acids production increase of 70% over the reference strain,
when combined with ACL and MALS downregulation.

Free fatty acid production levels can probably be increased
further. Metabolite and biomass measurements are qualitatively
very similar across our engineered strains, indicating that the
metabolic burden of producing free fatty acids at the production
levels achieved in this manuscript are not severe even as we
increased fatty acid production by 70%. Growth rates have not
yet been affected by the metabolic engineering steps taken so far,
which likely indicates that maximum production levels have not
been reached.

A possible way to increase production further involves using
a different type of ACL gene. The origin of the ACL gene used
in the manuscript is Y. lipolytica, which is an obligate aerobic,
oleaginous yeast capable of accumulating large amounts of lipids,
predominately of the triacylglycerol type (Papanikolaou et al.,
2002). AlthoughACL fromY. lipolytica has previously been shown
to provideATP citrate lyase activitywhen expressed in S. cerevisiae
plasmids (Rodriguez et al., 2016), ACL from Aspergillus nidulans
is known to be roughly five times more active in the cytoplasm
(Rodriguez et al., 2016) of S. cerevisase. Significant increases in
fatty acid production might be possible if the strains studied in
thismanuscript are recreated with the ACL gene fromA. nidulans,
as has been shown to be the case when using a ACL from Mus
musculus (Zhou et al., 2016). However, it must be mentioned that

this production increase was obtained when theM.musculusACL
was combined with further engineering in acetyl-CoA supply and
a more efficient fatty acid synthase.

Another strategy to improve production might involve a pyru-
vate dehydrogenase (PDH) bypass (Kozak et al., 2014; Lian et al.,
2014). Our results are consistent with the availability of the fatty
acid precursor acetyl-CoA as a limiting factor to fatty acid pro-
duction for the S. cerevisiae strains studied in this manuscript.
Acetyl-CoA metabolism is strongly compartmentalized in yeast,
separated into four spatial regions, the cytosol, mitochondria,
peroxisomes, and nucleus. Acetyl-CoA in the cytoplasm is pro-
duced via the substrate acetaldehyde, formed by the decarboxy-
lation of pyruvate. Unfortunately, a large part of the glycolytic
flux is directed toward ethanol production due to the Crabtree
effect (Van et al., 1998) when grown on glucose. This limits the
availability of acetyl-CoA in the cytosol, with earlier research
showing that strategies such as engineering the PDH bypass in
S. cerevisiae enhanced the cytosolic acetyl-CoA supply, resulting
in increased production of acetyl-CoA-derived products such as
the isoprenoids amorphadiene (Shiba et al., 2007) andα-santalene
(Chen et al., 2013), and polyhydroxybutyrate (Kocharin et al.,
2012). A similar engineering strategy could be adopted to further
improve fatty acid production in our highest yielding strains.
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