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Abstract

Understanding problem solving and methods for learning is a main goal of cognitive science. Analogical
reasoning simplifies problem solving by transferring previously learned knowledge from a source problem to
the current target problem in order to reduce search. To provide a more detailed analysis of the mechanisms
of transfer, we describe a process called internal analogy that transfers experience from a completed subgoal
in the same problem to solve the current target subgoal. We explain what constitutes an appropriate source
problem and what knowledge to transfer from that source, in addition to examining the associated memory
organization. Unlike case-based reasoning methods, this process does not require large amounts of
accumulated experience before it is effective; it provides useful search control at the outset of problem
solving. Data from a study of subjects solving DC-circuit problems designed to facilitate transfer supports
the psychological validity of the mechanism.

1. Introduction

Analogical reasoning is an effective method of recycling past experience to guide problem solving. To
begin the analysis of this process, we formulate the following five steps. First, the problem solver must
determine a set of candidate sources. The utility of the procedure relies on the identification of the relevant
knowledge. Second, one solution must be retrieved to function as the actual source. Third, the source
solution must be reinstantiated and modified to solve the target problem. Fourth, the new solution should be
stored so that the problem solver can reason from it to solve future problems. Fifth, the problem solver
should receive some knowledge of results concerning the effort required to perform the analogy and the
successfulness of the procedure. This information can be used to provide feedback to the retrieval steps of
the process.

Although analogy has been explored previously [1, 2, 7, 8, 16, 17], most of the work has focused on the
mapping procedure outlined in step three above. [11], [12] and [19] have addressed memory organization
(related to steps one, two, and four above) in detail, but their ideas have not been integrated with an
analogical mechanism. ICARUS [14] and EUREKA [10] have incorporated the whole process to some
extent. However, neither system embeds its solution within a general implementation of a problem solver
(for example, EUREKA is not capable of backtracking). As a result, they cannot solve problems which are
as difficult as those reported in this study.

This paper addresses the first four steps of the process with a transfer mechanism called internal analogy,
which works on similar subgoals of a single problem. This is in contrast to within-domain and cross-domain
analogy which transfer knowledge across separate problems from the same domain and different domains,
respectively. Work in progress using derivational analogy [4] in PRODIGY [3, 22] is beginning to address
most of the steps above, but for cross-problem, within-domain analogy.

Our internal analogy mechanism is tightly integrated into a general problem solver for the physical
sciences, RFERMI, and is effective in reducing search [9]. Unlike case-based reasoning methods, the process
does not require large amounts of accumulated experience before it is effective; it provides useful search
control at the outset of problem solving. In addition, psychological predictions drawn from the
computational model of internal analogy were supported by data from a study of subjects solving DC-circuit
and fluid statics problems that were designed to facilitate transfer.

The next section presents the implementation of the internal analogy algorithm in RFERMI, as well as an
example trace of the non-learning system. Section 3 contains the psychological predictions derived from the
computational model and the analysis of the data we collected. We conclude with a discussion evaluating
internal analogy.

2. Computational Model

The internal analogy process described in the preceding section is implemented in a problem solver for the
physical sciences named RFERMI. This system is a rule-based version of the FERMI system [15] and is based
in part on studies of effective representations and methods for solving physics problems [5, 18]. Its task

53


mailto:ach@ml.ri.cmu.edu
mailto:larkin@tulip.psy.cmu.edu

domains range from linear algebra and DC-circuits to fluid statics and classical mechanics. RFERMI
maintains a principled decomposition of knowledge in order to retain the power of its domain specific
knowledge while utilizing the cross-domain applicability of its more general knowledge.

RFERMI’s declarative knowledge of scientific principles is organized in a quantity hierarchy which is
stored as frames. The frame system used to implement the hierarchy is a component of FRulekit [20], a
forward chaining production system. Through the use of inheritance, this hierarchy efficiently stores
knowledge about quantities such as resistances, pressure drops, potential drops, and two dimensional areas.

RFERMI’s procedural knowledge, as organized in its actions hierarchy, is of two types. First, domain
specific knowledge is stored in puller frames that are interpreted into FRulekit rules. These pullers encode
equational knowledge, such as Ohm’s law, and procedures, such as those for finding the pressure drop
between two points in a static liquid or the electro-magnetic force of a battery. Second, RFERMI's more
general and widely applicable knowledge, such as its iterative decomposition procedure, constitute its
methods. Methods are associated with generalized quantities so that a quantity inherits access to a method
from superordinate quantities. For example, potential drop inherits access to the path invariance method
from scalar field difference, which is a generalized quantity. Therefore, the method for equating potential
drops along two alternate paths can be used to solve for a potential drop.

Although the system is implemented in a forward chaining production system, it maintains a backward
chaining control structure via the goal monitor. The space it searches while solving for an unknown quantity
is structured in a traditional AND-OR manner. When there are multiple means for pursuing a goal (i.e.,
pullers and methods) an OR node is generated, and when a method spawns a conjunctive set of unmet
subgoals (i.e., unknown quantities) an AND node is generated. RFERMI organizes its search in a manner
combining depth-first and breadth-first expansion. At OR nodes, it contains heuristic preferences for using
the specific puller knowledge over the more general methods.

As an example, we present RFERMI's problem solving without learning on the problem in Figure 2-1(see
Figure 2-2). The system first solves for I, by applying a puller. Lines 7-14 show that it solves for R; by
generating subgoals for V, and I;. V,, is solved using a puller, which results in R;’s solution. In line 16,
RFERMI chooses a different puller to solve I; than it used to solve I;. (It could reduce the required search by
solving I3 in a similar manner since the goals are analogical and the system solved I; with relatively little
effort.) In both cases, both pullers were applicable, and the system chose randomly. However, this line of
reasoning ends in goal circularity (see line 20) since V_, has already been posted. In lines 21-23, it tries
another instantiation of the same puller, which also results in goal circularity. Finally, in lines 24-29, it
obtains the value of V4 by using the puller that solved I;. The end of the trace shows how R, is solved.

%2:2
Ic=6
R1 b l
C
»B 14=4
12V — pa A

R3=4

Figure 2-1: Problem 5.

The implementation of internal analogy in RFERMI relies on the trace facility of the problem solver. While
solving a problem, the system stores the expanded goal tree along with the status of each goal (succeeded,
failed, or pending). For goals that succeed, the instantiated productions that achieved the goal are also
stored. As shown by the internal analogy algorithm in Figure 2-3, when the system begins to solve a new
target subproblem, it checks if it has previously solved a goal of the same quantity type. (For example, I, is

of the same quantity type as I, in Figure 2-1 since they are both currents.) If so, the most recently solved
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1. Post Goals: L, Ry, I3, Ry
2. Choose Goal: 153

3. Apply Puller: L=1-1 current flowing into a =
current flowing out of a

4. Lookup: I,=6

5. Lookup: I, =4

6. Compute: =2

7. Choose Goal: R,

8. Apply Puller: R =V, /1 Ohm’s law (V=IR)

9. Apply Puller: V. =Ry Ohm’s law (V = IR)

10. Lookup: I, =2

11. Lookup: R, =

12: Compute: V=4

13. Lookup: =4

14. Compute: R, =1

15. Choose Goal: I,— internal analogy would apply

16. Apply Puller: I3=V_4/R, Ohm’s law (V = IR)

17. Apply Puller: V.a=LRy Ohm’s law (V = IR)

18. Lookup: I, =4

19. Apply Puller: Ry=V4/1; Ohm’slaw (V =1IR)

20. Fail Circular Goal: Vi

21. Apply Puller: Vq4=13R, Ohm’s law (V =IR)

22. Apply Puller: I,=V_4/R; Ohm’slaw (V=1R)

23. Fail Circular Goal: Y

24. Apply Puller: L=1 -1, current flowing into ¢ =
current flowing out of ¢

25. Lookup: I.=6

26. Lookup: I,=4

27. Compute: =2

28. Lookup: R;=4

29. Compute: V=8

30. Lookup: Ry=4

31. Compute: I; =2

32. Choose Goal: R — internal analogy would apply

33. Apply Puller: Ry=V /1, Ohm's law (V = IR)

34, Lookup: Va=8

35. Lookup: I,=4

36. Compute; Ry=2

Figure 2-2: RFERMI's behavior on Problem 5 with no learning.

instance is chosen as the candidate source. If the candidate source succeeded and no more information was
known aboult it than is known about the current problem, then it is chosen as the actual source. Otherwise, it
is rejected because the system had additional knowledge during the previous problem solving which may
have been crucial to its success. Without that knowledge, it may be unable to recycle the old solution to
solve the current target problem. The failure case is decided in just the opposite manner. If the candidate
source failed and contained no less information than the current problem, it is chosen. Otherwise, it is
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rejected. This check ensures that RFERMI does not choose a source that failed because there was less
information available to the problem solver and prematurely fail the current target as a result. The mapping
proceeds based on the success or failure of the source. If the source failed, then the processing of the current
goal is suspended and another goal is explored. If all other problem solving fails, this goal may be later
reopened. If, on the other hand, the source succeeded, its solution is appropriately reinstantiated for the
current subgoal, and the solution is replayed. Since this newly solved subgoal is contained in the current
problem, it is available 1o the algorithm as a future candidate source.

1. IF there are untested previously explored subgoals of the same type as target

THEN candidate := most recently explored same-type subgoal

ELSE fail internal-analogy

. [F candidate succeeded

THEN IF information-content(candidate) <= information-content(target)
THEN source := candidate & reinstantiate the source solution
to solve the target
ELSE tested(source) := TRUE & internal-analogy(target)

ELSE IF information-content(candidate) >= information-content(target)
THEN source := candidate & suspend(target)

0. ELSE tested(source) := TRUE & internal-analogy(target)

AU B W

SN

Figure 2-3: The internal analogy algorithm.

Steps 5 and 8 of the algorithm in Figure 2-3 compare the amount of information known about a candidate
goal at the time it was solved with the amount of information known about the current target goal. This
comparison is carried out in RFERMI by calculating the set of variables in the left hand sides of the rules that
solved the candidate source goal and that had known values. We call this the information content of the
candidate source. The information content of the current target goal is computed by calculating the set of
these same variables that have known values in the current working memory. For example, suppose the
candidate source goal is to find the potential drop between points a and b in a circuit, and the resistance and
the current between those two points were known. Now suppose the current target goal is to find the
potential drop between points ¢ and 4 in the same circuit, and the equation that solved the candidate source
goal was potential-drop = current * resistance. If the resistance between ¢ and 4 is known but the current is
not, then the information content of the candidate source goal is said to be greater than that of the target goal
(because the current was known in the candidate source goal).

Step 6 of Figure 2-3 reinstantiates and replays the solution of the source problem in order to solve the
target problem. RFERMI carries out this step by instantiating the productions that solved the source goal in
the current working memory and applying them. We call this operator-driven mapping, and it answers the
important question that Structure Mapping [7] inadvertently poses: how does one identify the salient
structure 10 map? We operationally define the salient structure to be the relevant variables that are tested in
the left-hand sides of the operators that solved the source goal.

As a last comment, we mention that it is especially important to only suspend the processing in Step 9 of
Figure 2-3. The system cannot terminally fail the goal because one of RFERMI's other general methods may
still solve the problem, although more expensively.

The internal analogy mechanism described above has proven to be an effective learning mechanism in
RFERMI. Detailed theoretical and empirical analyses of the search reduction it provides are described in [9].

3. Protocol Data

If, as hypothesized, the internal analogy mechanism embedded in RFERMI has any psychologically
validity, then the computational model described in the previous section predicts that subjects will exhibit the
following behaviors during problem solving:

* Knowledge will be transferred from either previously successful or previously failed goals.

¢ The source will be of the same quantity type as the target and have a compatible information content.

» Problem solving using analogy will require less effort (search) than would otherwise be necessary.

e Transfer from previously failed problem solving will enable the subject to know that a particular
procedure as instantiated at the current point will fail. Thus, he should choose a different procedure.
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e Transfer from previously successful problem solving will allow the subject to know precisely which
procedures to choose to calculate the quantity and all its subquantities. For problems in the physical
sciences, this means that the subject should know which equations to reuse to solve the unknown.
However, these equations must be reinstantiated to reflect the new problem solving context.

e Since RFERMI randomly selects among its applicable pullers for solving any given subgoal, we predict
that subjects will show individual differences in their problem solving behavior. The system also has
two different control strategies: one strictly depth first and the other more breadth first. It’s problem
solving differs according to the current control strategy. As a result, we predict further individual
differences will arise from the subjects’ varied control strategies.

To test the predictions, we studied subjects solving problems from two of RFERMI’s task domains, DC-
circuits and fluid statics. These problems were designed to facilitate three kinds of transfer: internal
analogy, within-domain analogy, and cross-domain analogy. The four subjects had all earned an A or a B in
a year-long college physics course, but they had not solved any problems in these domains for several years.
We chose subjects with this level of proficiency because we believed that they would be the most likely to
exhibit the desired transfer. Subjects with a high level of expertise tend to use compiled knowledge rather
than analogical reasoning; subjects with very little expertise tend to use brute force search. The subjects
were given a remedial, which was in a two-column format, covering the knowledge necessary for the
experiment. The left column contained the circuit information, and the right column contained the fluid
statics information. Analogical concepts were presented directly across the page from each other. In order to
verify the remediation, the subjects were asked to explain sparse written solutions to three example problems.
These example problems were also designed to serve as analogical sources for the five problems that the
subjects were asked to solve next.

We observed all three types of transfer. However, the more local types of transfer happened more
frequently; only one instance of cross-domain transfer occurred. Due to space limitations, we discuss the
subjects’ behavior only on Problem S, which was shown in Figure 2-1 and designed to facilitate internal
analogy. Below we demonstrate that RFERMI with the internal analogy mechanism models the subjects’
behavior well. The mechanism also reduces the search previously required to solve I3 and R, by about 50%

(compare lines 15-36 of Figure 2-2 with lines 16-30 of Figure 3-1).

We begin by comparing the behavior produced by RFERMI with internal analogy to that of Subject 1 on the
example problem (see Figure 3-1). Problem solving for both proceeds similarly, except for the following
differences which are unimportant with respect to the analogical mechanism. Between lines 2 and 3 of the
figure, Subject 1 does some erroneous problem solving and decides to start over. As can be seen in lines 3
and 18 of the protocol, the system always posts an equation with the desired unknown on the left hand side,
while the subject posts the version of the current invariance equation that corresponds to the associated prose
in the remedial. In lines 8 and 10 of the protocol, Subject 1 posts incorrect equations; this will have
interesting side effects later in the problem solving. The problem solver represents potential drops as a drop
between two points, regardless of the path. The subject, however, clearly distinguishes potential drops with
the same endpoints over different paths; this leads to his extra step in line 9. Occasionally, Subject 1 will
take an arithmetical "shortcut” by not restating the implied left-hand side of the equation or by reducing
fractions to their lowest terms (lines 11-12, 26-27 and 29).

Ignoring these small differences, RFERMI models the subject extremely well. Both solve equations for I,
and R, in a straightforward manner. At line 17, the system’s analogical mechanism is invoked because it is
has solved a goal of the same quantity type with a compatible information content, I, (I, and I; are known
while I, is unknown at line 3, and I, and I, are known while I; is unknown at line 18). It retrieves the
productions that solved I, and reinstantiates them. This saves the system search time in two ways. First, it
does not have to compute which productions to apply— the analogy mechanism specifies them. Second,

there are other applicable pullers at this point that would require more problem solving effort if they were
used, as shown in lines 15-31 of Figure 2-2. Subject 1 also recognizes that I5 is an analogical goal to I, at

line 17: he states, "this (pointing to 1) is just like that (pointing to 1,)". Then, he quickly reinstantiates the
equation that he used in line 3 and solves for I;. Similar recycling of past experience occurs for both the
problem solver and the subject in lines 22-30 while solving for R,. When Subject 1 says, "back to here," in
these lines, he is pointing to the equation R; = I,/V_; which he wrote in line 8. The subject analogizes from

the incorrect equations in lines 8 and 10 and reuses them in lines 24 and 25, which causes him to derive an
incorrect answer for R,. Had he used the correct equations earlier, he would have solved this problem
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FERMI Subject 1
1. Post Goals: L, R, I3, Ry I, Ry, I3, Ry
2. Choose Goal: I, I,
3. Apply Puller: L=1-1 =1+,
4. Lookup: =6 =
5. Lookup: I, =4 I, =4
6. Compute: I,=2 I,=2
7. Choose Goal: R, R,
8. Apply Puller: R;=Vyu /L Ri=1,/V,
9. Apply Method: Vi = Vrzi
10. Apply Puller: Vi, =LR, V=1L /R,
11. Lookup: I,=2 =2/
12. Lookup: R,=2 2
13. Compute: V=4 V=1
14. Lookup: I =4 I,=4
15. Compute: R;=1 R, =4
16. Choose Goal: I; I
17. Analogize: *Fires analogy to I,* *"This is just like that."*
18. Apply Puller: L=1-1 =13+,
19. Lookup: =6 I.=6
20. Lookup: Iy =4 I,=4
21. Compute: I;=2 I;=
22. Choose Goal: Ry R,
23. Analogize: *Fires analogy to R * *"Back to here."*
24. Apply Puller: R,=V_4/ I R =1, / Vi
25. Apply Puller: Va=1R, V.3 =13/R,
26. Lookup: I = =1/
27. Lookup: Ry=4 2
28. Compute: V4= V=12 :Apply Method
29. Lookup: I, =4 4/5=8 :Compute
30. Compute: R, = R,=8
Figure 3-1: The behavior of RFERMI with learning
and Subject 1 on Problem 5.
correctly.

All four subjects performed internal analogy on Problem 5, but each exhibited a different control structure.
Subject 1 backward chained much like RFERMI, while Subject 4 demonstrated more expertise in the domain
and forward chained. This behavior is consistent with the results reported in [21] that show that experts tend
to forward chain in search spaces that they expect to be small. Subject 2 began by backward chaining and
switched to forward chaining as he gathered more experience in the domain. Subject 3 struggled to complete
the problem and explored the subgoals in a nonstandard order. We now examine each of the other subject’s

problem solving more closely.

In contrast to Subject 1, Subject 4 solves the problem by forward chaining. This subject maps the

The potential drop between any two points is the same regardless of the path chosen between the points.
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analogical subgoals explicitly by their quantity type and information content. At the outset of the problem
solving, he says, "So, I have two resistors wherc the current is given and the resistance is left unknown (R,

and R,) and two resistors where the resistance is given and the current is left unknown (R, and R3)". He
proceeds to solve for I, and R,. At this point he says, "similar situation here," and solves for I, reusing the
the equation that solved I, reinstantiated for the current goal. In a similar fashion, he uses the equations that
solved R, to solve R,. This subject, like Subject 2 and Subject 1 on other problems, tends not to verbalize
the uninstantiated equation during the replay of the analogy but verbalizes the instantiated form instead.

Subject 3, who begins backward chaining and switches to forward chaining, states early in his problem
solving that 1;=I,=4 and I;=1.. When he solves I,, he immediately states the same answer for I, without

additional computation. It appears that his analogical reasoning is more advanced than RFERMI’s. In
addition to reposting and reinstantiating equations, this subject is able to recognize when the relevant
variables have exactly the same value, and the answer can be recycled directly. With this straightforward
extension added to the system, it could gain an even greater reduction in search. The point at which Subject
3 switches to forward chaining is also significant: he finishes solving for V, , and he recycles the equation he

used in a newly instantiated form for V 4. The switch from backward chaining to forward chaining seems to
be triggered, at least in part, by an analogical goal.

Subject 2 is considerably less skilled at solving these types of problems than the other subjects. He
struggles to solve any of the subgoals using the same knowledge encoded in RFERMI’s pullers, methods, and
algebra module. When he does finally solve I, and R;, however, he immediately restates the current

invariance relation and quickly solves I; and R,. There is nothing in his analogical transfer that we did not
observe in the previous three protocols.

4. Discussion and Conclusions

Although the subjects showed individual differences in their control strategies, the basic components of the
analogical reasoning were those that the computational mechanism predicted. The subjects transferred
knowledge from successful problem solving in order to reduce the effort required to solve the target subgoal.
They simply reposted the previously successful equations and reinstantiated them in the current context. In
every instance, the sources and targets were of the same quantity type and had compatible information
contents.

The system models Subject 1 well in its current state. With a forward chaining control strategy, it could
easily model Subject 4 as well. To model Subject 2, one additional capability must be added to the system: it
should recognize those occasions when the equations need not be reinstantiated but the value may be directly
recycled. Even though the computational model focused our attention toward particular problem solving
behavior in the protocols, the protocols continue to suggest useful extensions to the system.

Relaxing the notion of compatible information content will provide internal analogy with a more flexible
matching mechanism than either SOAR’s chunking [13] or macro-operators [6] possesses. This will allow
our learning method to provide search control when the others cannot. Extending the implementation to
effect within-domain and cross-domain transfer will also increase its utility.

In conclusion, our study of internal analogy has described a new process for transferring knowledge within
a single problem. It has also provided a more complete analysis of the processes needed for analogical
transfer than has previously been presented. We specify what constitutes an appropriate source and what
knowledge to transfer to the target. In addition, the mechanism is tightly integrated into a general problem
solver and does not require an alternate reasoning engine or large case libraries. The psychological validity
of the mechanism has also been supported through the psychological data presented.
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