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SUMMARY

Animals benefit from knowing if and how they are moving. Across the animal kingdom, sensory 

information in the form of optic flow over the visual field is used to estimate self-motion. 

However, different species exhibit strong spatial biases in how they use optic flow. Here, we 

show computationally that noisy natural environments favor visual systems that extract spatially 

biased samples of optic flow when estimating self-motion. The performance associated with 

these biases, however, depends on interactions between the environment and the animal’s brain 

and behavior. Using the larval zebrafish as a model, we recorded natural optic flow associated 

with swimming trajectories in the animal’s habitat with an omnidirectional camera mounted on 

a mechanical arm. An analysis of these flow fields suggests that lateral regions of the lower 

visual field are most informative about swimming speed. This pattern is consistent with the recent 

findings that zebrafish optomotor responses are preferentially driven by optic flow in the lateral 

lower visual field, which we extend with behavioral results from a high-resolution spherical arena. 

Spatial biases in optic-flow sampling are likely pervasive because they are an effective strategy for 

determining self-motion in noisy natural environments.

In brief

Alexander et al. model natural motion statistics, neural responses, and behavior to show the benefit 

of spatial biases for self-motion estimation from optic flow, both in general and for the larval 

zebrafish. Their analysis combines a framework for self-motion estimation in noisy environments 

with a dataset of optic flow in zebrafish habitats.

Graphical Abstract

Alexander et al. Page 2

Curr Biol. Author manuscript; available in PMC 2022 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Information about self-motion is potentially available from many sources. Inertia-based 

signals can be measured by vestibular systems, proprioception provides feedback on the 

forces generated by motor systems, and even haptic information is available, for example, 

from the wind in our hair. Among the diverse sensing modalities for self-motion, vision 

stands out as a key source of information for self-motion estimation across the animal 

kingdom. Visual cues to self-motion are well characterized by optic flow: the movement of 

features or brightness gradients across the visual field over time.

Laboratory experiments have shown that visual stimuli simulating optic flow during self-

motion prompt robust behavioral responses in an impressive array of animals. The responses 

of flying insects to optic flow are well studied, from flies and bees to dragonflies and 

locusts.1 For example, bees have been shown to use optic flow to measure distance, maintain 

flight speed, control landings, and detect objects.2–4 Birds are likewise responsive to optic 

flow5: for example, parakeets navigate corridors by balancing lateral optic flow,6 and 

seagulls use optic flow to set their hovering height.7 Optic flow is not just important for 

animals that fly. Humans can use optic flow cues to predict collisions,8 estimate direction 

and distance of travel,9,10 maintain upright posture,11,12 and walk toward targets.13–15 In 

rodents, optic flow has been shown to affect representations of heading direction16 and to be 

combined with proprioceptive information during locomotion.17
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In aquatic environments, optic flow is an important cue for self-motion estimation during 

swimming and self-stabilization against water currents.18 Like terrestrial vertebrates, 

different species of fish move both their eyes and their bodies in response to optic-flow 

cues.19–22 The larval zebrafish, Danio rerio, is of particular interest in this domain due to its 

use as a model organism in neuroscience for a broad set of behaviors and neural systems. 

Their tendency to swim along with moving visual stimuli is called the optomotor response 

(OMR). This behavior likely allows these fish to self-stabilize in moving currents in the 

wild; for example, as they swim forward in response to forward drifting stimuli, they stay 

“in place” visually. The amenability of larval zebrafish to whole-brain functional imaging, 

combined with the OMR behavior, has supported advances in understanding the circuitry 

that drives optic flow processing in the vertebrate brain.23,24

Although self-motion can in principle produce useful optic flow cues across the entire visual 

field,25,26 many animals appear to give priority to motion cues in a subset of their visual 

field. For example, different species of moths prefer to look either up or down to guide 

their behaviors,27,28 wasps maintain a specific visual angle above their nests during homing 

flights,29 praying mantises respond preferentially to optic flow in the central visual field,30 

and humans prioritize the lower visual field to maintain posture.31 In flies, the lower field 

is preferred for course correction,32 and lower and upper fields are used for translation and 

rotation estimation, respectively.33 It was recently shown that the zebrafish OMR is driven 

preferentially by visual motion in regions of the lower visual field on the left and right sides 

of the animal.34

Optimal coding models of sensory processing predict that these spatial biases should vary 

lawfully in response to the statistics of the motion cues available in the visual experience 

or evolutionary context of each animal.35,36 Indeed, optic flow fields generated from natural 

environments can be sparse and noisy, putting pressure on animals to sample the most 

informative spatial regions. Different ecological niches likely correspond to systematic 

differences in spatial patterns in the availability of optic-flow cues. Previous work has used 

geometric models and measurements from videos to examine how natural experience may 

shape spatial biases in the fly26,37 and hawkmoth27 for estimating self-motion. However, 

given the complexity of self-motion-generated optic flow during natural behavior, the 

hypothesis that spatial biases are adaptive has proven challenging to test, both in general and 

for any specific model organism. Modeling the relationship between optic flow signals and 

self-motion estimates requires a combined consideration of environment geometry, signal 

and noise strength, motion-limiting behaviors, and neuronal receptive field structure.

We begin with an exploration of the general problem of visual self-motion estimation in 

natural environments. We model self-motion estimation from samples of naturalistic optic 

flow fields, demonstrating the effects of a set of pertinent environmental, behavioral, and 

neural factors. We show that a wide variety of error patterns are generated by different 

settings for each of these factors, suggesting that a holistic understanding of an animal’s 

habitat, actions, and receptive field structure is required to determine an advantageous spatial 

bias. We then model each of these factors for the visual experience of a specific model 

organism, the larval zebrafish, using omnidirectional videos captured in their native habitats 

during calibrated self-motion trajectories controlled by a custom-built robotic arm. Our 
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results suggest that these animals can most reliably estimate their forward self-motion from 

regions in the lateral lower visual field, which is consistent with prior behavioral measures.34 

Using a spherical stimulation arena covering more than 90% of the visual surround,38 we 

augment previous behavioral results with an extended map of the spatial biases in zebrafish 

OMR. These results bring together converging lines of evidence that biases in motion 

estimation reflect a general strategy to optimally measure behaviorally relevant information 

from natural environments.14,15,37,39–44

RESULTS

Determining self-motion from natural optic flow

We demonstrate the advantage of spatially biased optic flow sampling using the pipeline 

shown in Figure 1. Self-motion is estimated by comparing measured optic flow with 

idealized templates associated with each possible direction of self-motion (Figure 1A), 

as seen in the motion tunings of neuronal populations in several animals24,26,33,37 (for a 

comparison of other methods, see Tian et al.45 and Raudies and Neumann46). We consider 

both full field (Figure 1B) and local (Figure 1C) flow templates.

Self-motion can be recovered perfectly if these templates match the environmental geometry, 

optic flow signals are available throughout the visual field, and nothing else in the 

environment is moving. Real optic flow fields, however, are rarely dense or clean. Sparsity 

in natural optic flow fields follows from the sparsity of spatial and temporal contrast.47–49 

External noise is caused by motion cues in the environment, such as particles moving 

through air or water, swaying vegetation, moving animals, and optical effects like caustics 

and shadows. To examine the effects of noise and sparsity on spatial biases, we selected 

self-motion velocity components uniformly at random, synthesized optic flow samples, 

added Gaussian noise, and sparsified (by setting both sample and template values to zero at 

random locations). We initially assume the animal can move with six degrees of freedom 

(DOF) in a spherical environment with spatially uniform noise, then consider variations on 

each of these conditions (see figure captions for simulation details). We show that some 

regions are more useful than others in each of these conditions. This observation holds 

whether the full visual field is used or only a small contiguous local region is visible.

To evaluate self-motion estimation from the full visual field (global optic flow), we 

iteratively sampled optic flow across random sets of locations in the visual field and 

combined the self-motion estimation error across all sample sets (Figure 1D). This approach 

allows us to examine how each location in the visual field contributes to self-motion 

estimation, regardless of which other locations it is combined with. The median absolute 

error in all components of self-motion show small but consistent spatial variations (Figure 

1E). Regions with smaller signal-to-noise ratios based on flow magnitude in the global 

templates (foci of expansion and contraction) are associated with larger errors, and regions 

with higher signal-to-noise ratios are associated with lower errors, consistent with the results 

derived from an internal noise model analyzed in Franz and Krapp.37 Importantly, sampling 

the set of low error locations results in better self-motion estimation than the same number 

of samples distributed evenly across the visual field. This is demonstrated in Figure 1F for 

forward translation (VZ). Selecting only the high error samples results in worse forward 
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translation estimation (Figure 1F). We make no claims of optimality for this sampling 

strategy, instead noting that even naive use of error patterns can generate useful spatial 

biases.

Next, we restrict sampling to small contiguous regions of the visual field similar to 

individual receptive fields (RFs) (Figure 1G). In each region, we consider the self-motion 

estimation errors resulting from these isolated, contiguous samples (local optic flow). Note 

that the templates for these local regions are less distinct for each component than the global 

templates are (Figures 1B and 1C), such that the local self-motion estimation problem is 

generally less well conditioned. This leads directly to a reversal in the pattern of high and 

low error locations compared with the global sampling strategy, as local condition number 

has a greater impact than signal to noise (Figures 1H versus 1E). The errors are overall much 

higher for the local samples and the advantage of spatial biasing is amplified in this case 

(Figure 1I). Thus, while the visual ecology of different animals can vary widely, if natural 

flow cues tend to be sparse and noisy, then there will be an advantage for individuals that 

prioritize informative regions of the visual field.

Using this simulation and estimation framework, we will next evaluate the impact of 

behavioral and environmental factors on the relative accuracy of self-motion estimates 

derived from sampling locations across the visual field. We focus on the estimation of 

forward translation velocity (VZ) and heading direction (tan−1(VZ/VX)), because these are 

particularly ecologically relevant aspects of self-motion.

Behavior: Self-stabilization improves performance and shifts local spatial biases

Organisms are not entirely in control of their motion, particularly flying or swimming 

animals that navigate through moving air or water currents. However, many animals stabilize 

in several dimensions of motion, which simplifies the problems of self-motion estimation 

and control. This is particularly true for visual systems that rely on localized regions that 

suffer from template ambiguity. Motion-limiting behaviors can eliminate these ambiguities.

Here, we consider two behavioral simplifications. First, an animal might remove all self-

motion other than forward translation (VZ; Figure 2A). In this case, there is a reduction 

in overall error, and there is still a clear advantage for spatially biased sampling. In this 

highly simplified setting, many local regions provide near-optimal performance (black and 

green overlap, bottom). The higher error regions occur primarily at the foci of expansion/

contraction. With no ambiguity between templates in the local regime, the problem is 

perfectly conditioned, and signal to noise alone drives estimation errors, matching the 

global regime. The resulting spatial pattern of errors is a complete reversal of the local 

estimation error pattern for an animal moving with 6 DOFs (Figure 1H). While moving 

in only one direction is infeasible in most natural settings, this example illustrates that the 

motion behaviors of an animal are highly relevant in shaping their optimal spatial biases, 

particularly when optic flow is sampled locally.

For a terrestrial animal, or a swimming or flying animal that stabilizes its motion to a plane, 

three degrees of freedom may be a more reasonable simplification: forward translation 

(VZ), lateral translation (VX), and yaw (left/right) rotation (ωY) only. These can occur 
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simultaneously, as when forward body motion is combined with a rotation of the head. This 

behavior, illustrated in Figure 2B, does not affect the spatial error patterns for global optic 

flow, but for local sampling, it leads to high estimation error in regions to the left and right 

sides, particularly along the equator where yaw rotation can be confused for forward or 

lateral translation. Elsewhere in the visual field, self-motion can be recovered reliably from 

local optic flow.

Environment: Spatially varying noise and scene geometry drive spatial bias

The previous examples showed environments with spatially uniform sparsity and noise. 

In reality, natural environments likely feature statistical regularities in the availability and 

reliability of optic flow signals across space. Figure 2C shows the result for estimating 

3DOF motion in a sphere where the noise increases linearly from top to bottom. This shifts 

the low-error regions upward while maintaining the general spatial pattern for both globally 

and locally derived estimates. Spatial variations in sparsity have similar effects (not shown). 

When noise and sparsity are not present, all regions of the visual field are equally, perfectly 

informative; hence, the spatial distributions of noise and sparsity in an environment are 

fundamental drivers of error patterns in self-motion estimation.

The previous examples also all modeled the environment as a sphere. This could be 

considered a reasonable simplification for the ecological niches of some animals, like insects 

that fly through dense foliage. However, many natural environments are better modeled as 

having a ground plane that creates systematic depth variation as a function of elevation in 

the visual field.37,50,51 Figure 2D shows the different error patterns that emerge as a result of 

ground plane geometry for 3DOF motion. Here, we assume that all points above the ground 

are too distant to provide motion parallax cues so that forward velocity estimation errors 

shift from an elevation-symmetric pattern in the sphere (Figure 2B) to strongly favoring the 

lower field (Figure 2D). The worst errors in local VZ estimates occur at the equator toward 

the front/rear of the animal, where the small expected optic flow magnitude can lead to very 

large and incorrect predictions if rotation cues are mistaken for translation. Nonetheless, 

broad regions of the lower field are useful for determining the speed of forward translation.

When scene geometry is only known up to a scale factor, translation magnitudes cannot be 

accurately recovered, as a scene point moving fast and far away will generate the same optic 

flow as one moving slower and closer. This issue can be mitigated by comparing translation 

components (for example, by taking the heading angle) for a depth-independent estimation 

of self-motion. In the floor geometry, errors in horizontal heading angle estimation are also 

lowest in the lower visual field (Figure 2D, right). Spatial biases in heading error also have 

less azimuth dependence, as the foci for VX and VZ, both of which are needed to recover 

horizontal heading, are offset by 90°.

Simulations predict advantage to spatial biases of self-motion estimation

In summary, animal behavior, environmental noise, scene geometry, and sampling strategy 

all influence spatial patterns of error for an animal attempting to infer its self-motion from 

optic flow measurements. These error patterns can be used to easily generate a spatially 

biased sampling pattern that outperforms uniform sampling. The most informative regions 
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of the visual field will differ for organisms in different niches, but with sufficient context, 

we should be able to quantify the advantage of a spatial bias for a particular animal. Next, 

we will apply this framework to the larval zebrafish and compare the predictions based on a 

model of these factors with direct measurements of spatial biases in the OMR.

Larval zebrafish optomotor swimming is driven by the lateral lower visual field

Larval zebrafish OMR is driven preferentially by moving stimuli in the lateral lower visual 

field,34 and pretectal neurons tuned for self-motion direction tend to have receptive fields in 

the lower visual field.24 To explore this behavior in more detail, we employed a spherical 

arena of over 10,000 individually controlled LEDs38 and displayed a series of moving stripe 

patterns to head-fixed larval zebrafish (Figures 3A, 3B, and S1A). The new arena allowed 

greater flexibility of stimulus patterns, larger coverage of the visual field, and higher spatial 

resolution for mapping of the spatial biases in the optomotor drive.

We consider tail beat responses to patterns that simulated backward drift in a tunnel (Figures 

3B and 3C). These patterns were presented over 19 visual regions (Figure S1B), and the 

responses were combined to map the regions of the visual field that most effectively elicited 

an OMR (i.e., tail beats) (Figure 3D). These new data confirm and extend the conclusion 

that the fish preferentially use the lateral lower visual field to estimate self-motion signals 

pertinent to the forward swimming OMR (although substantial variation was observed from 

fish to fish; Figures S1C and S1D).

We now test the hypothesis that this spatial bias in OMR behavior reflects an adaptation 

to optic flow signals in the fish’s habitat. Combining knowledge of the fish’s behavior and 

visual system, ecological assessments of the zebrafish’s habitats, and a novel optic flow 

dataset, we model the factors relevant to zebrafish self-motion estimation. First, we use a 

natural video dataset to create a generative model of local flow regions observed in the 

zebrafish habitats, enabling an exploration of spatial biases in simulation. Then, we confirm 

simulation results by using the dataset videos directly to characterize elevation-dependent 

performance in self-motion recovery from natural optic flow recordings.

Dataset from the zebrafish habitat

We collected a video dataset from natural zebrafish habitats (Figures 4A and 4B; Table S1), 

which can be found in shallow freshwater environments throughout South Asia.52 Videos 

were collected using a waterproofed 360° camera mounted to a robotic arm for controlled 

motion trajectories: translations forward/backward, translations sideways, translations at 45°, 

clockwise/counterclockwise rotations, and circular turns (Table S2). A sample video frame 

from each site is shown in Figure 4C, with short video samples in Video S1. All frames and 

code used in the analyses are publicly available.53,54

Calibrated camera parameters were used to reproject frames onto smaller planar tangent 

surfaces, creating image samples analogous to the local flow regions described in the 

previous section (Table S3). Optic flow was measured using two different algorithms: the 

Lukas-Kanade (LK) method56 and the Farid and Simoncelli (FS) differentiation method.57 

Both methods apply the brightness constancy constraint to spatiotemporal derivatives, 

similar to the canonical computations thought to underlie motion processing across the 
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animal kingdom.24,58–60 Whereas the LK method performs sparse tracking of informative 

flow features (e.g., corners), the FS derivative filters were applied to a pre-specified 

grid of points so that optic flow was computed regardless of the features present. Optic 

flow measurements were considered valid when features were successfully matched by 

the LK method and when the condition number and gradient magnitude met appropriate 

thresholds for the FS method. Since there is no a priori way to select a biologically 

meaningful threshold on gradients for the larval zebrafish, we consider two luminance 

gradient thresholds for the FS method, one relatively high (tight) and one relatively low 

(loose).

Motion sparsity and noise vary over elevation in the zebrafish habitat

The sample in Figure 4B illustrates several elevation-dependent sources of signal and noise 

typical of shallow aquatic environments. Due to refraction at the water’s surface, light from 

above the waterline fills the region from +90° to approximately +43° in elevation, known as 

Snell’s window. This fixed waterline (dashed blue line) often provides very strong optic flow 

cues, due to the high contrast edge between water and sky and the frequent presence of high 

scene velocities, but much of this optic flow is caused by the motion of the water surface and 

is misleading as a self-motion cue. In the portion of the upper field between Snell’s window 

and the equator (dashed black line), scene texture is somewhat sparse but can be augmented 

by reflection off of the underside of the water surface (red boxes). In a perfectly still and 

clear scene, the water surface would mirror the texture of the floor up to Snell’s window. 

In reality, scattering through turbid water and motion of the surface disrupt this reflection, 

so that high contrast edges are rare in the upper field. The equator generally lies in a region 

with very sparse contrast due to long viewing distances through turbid water. The lower field 

tends to provide much more visual contrast due to the texture and nearness of the floor. 

Optic flow in this region is not always informative to self-motion, though. For example, the 

bright lines visible are caustics caused by local focusing of sunlight by the water surface, 

and they provide a consistent but misleading optic flow field caused by water motion.

The video dataset was first used to determine an appropriate noise and sparsity model for 

the native habitat of the zebrafish. We focus on quantifying two features of optic flow: signal 

sparsity, modeled from the portion of valid flow measurements, and environmental noise, 

modeled from the deviation from ground truth flow fields in rotation videos. Elevation-

dependent measurements were made covering a total visual area from −80° to +60°.

We found that signal sparsity was lowest in the lower visual field, increased up to the 

equator, and then dipped slightly with increasing elevation (Figure 4D). This trend held 

across optic flow calculation methods. The FS threshold can be set to match LK sparsity 

with more noise (loose, blue) or recover accuracy at the cost of higher sparsity (tight, green). 

We also found that the noise variance was larger in the upper visual field (Figure 4E). To 

accurately capture the high kurtosis of the flow errors, we fit the error distributions with 

a generalized zero-mean Gaussian at each elevation (Figure S2; Table S4). These models 

were used to generate optic flow simulating the sparsity and noise of the zebrafish habitat at 

each elevation. We report the results from the LK optic flow method in the main manuscript 
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and include the results from the FS methods in the Supplement. The findings do not differ 

meaningfully between the different methods.

Shallow aquatic scene geometry in the zebrafish habitat

We adopt a simplified and widely applicable geometric model for a shallow underwater 

environment: a floor below the fish and a ceiling above, with features above the waterline 

too distant to provide accurate translation cues. We compare this model with estimates 

derived from translational trajectories in Figure 4F, based on elevation-dependent nearness 

(1/distance).

Larval zebrafish receptive fields for optic flow

We sampled optic flow in local regions spanning 40° × 40°, similar to larval pretectal 

and tectal RF sizes.34,61 RFs were placed without reference to the larval zebrafish field of 

view (approximately 160° per eye22) or binocular overlap. Each model RF contained a set 

of up to 25 flow measurements, modeling inputs from retinal ganglion cells with smaller 

receptive fields.62,63 RFs were considered in bimodal pairs (Figure 4G), as these bimodal 

pairings (i.e., two spatial regions per RF) are common in the larval zebrafish.24 In the 

larval zebrafish, these bimodal pairs tend to prefer a specific translation direction, with each 

mode offset symmetrically from the preferred translation axis and positioned away from 

the foci of that translation. By considering a grid of base RF locations and examining how 

performance varies when these are paired with a second RF across all potential locations in 

the visual field, our analysis predicts such symmetric equal-elevation pairs without a priori 

assumptions beyond the size, density, and bimodality of RFs.

Larval zebrafish swimming

Larval zebrafish display a diverse repertoire of visually driven swimming behaviors,64,65 but 

most of their self-generated translation is restricted to the horizontal plane.66,67 Using the 

vestibular system, the fish balance against roll and pitch;68,69 hence, we ignore these degrees 

of freedom as well. For underwater and flying animals, there is growing evidence for 

“saccadic locomotion” strategies, in which rotational movements (i.e., turns) are performed 

quickly and in temporal separation from translational movements, likely simplifying self-

motion estimation.70–73 Thus, two swimming behaviors are considered here: saccadic 

swimming in which forward swimming is combined with slower passive horizontal drift 

due to water currents (Figure 4H, left) and compound swimming that additionally includes 

horizontal rotation (Figure 4H, right).

Simulation results show advantage for lateral lower visual field bias

Following the models described above for the environment sparsity and noise, scene 

geometry, RF structure, and swimming behavior, we simulated realistic local optic flow 

measurements across the visual field and assessed their informativeness for self-motion 

estimation using the framework described previously.

We found that the lowest forward translation (VZ) estimation errors were associated with 

RF pairs in the lateral lower visual field for saccadic swimming behavior. The lowest error 

occurred when the base and second RF were located at an elevation of −60° and has 
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azimuths of 90° and −90°, respectively (marked with an x and o in Figure 5A, left). The 

heatmap shows the median absolute VZ error for all second RF locations paired with the best 

base RF location: there is a general trend of lower error in the lower visual field. This trend 

is not unique to the base RF shown. For each base RF, the error as a function of second RF 

elevation trended downward toward the bottom of the visual field (means shown in middle 

panel of Figure 5A, full results in Figure S4). Indeed, error was minimized by moving both 

the base and second RFs into the lower visual field (i.e., the green line has the lowest errors 

and slopes right-wards). The error in heading direction as a function of RF elevation matches 

these elevation-dependent effects. Examining the mean VZ error over azimuth (Figure 5A, 

right) across all second RF elevations demonstrates the importance of lateral RF placement. 

Here, we show just the errors for the best base RF elevation (−60°). Overall, errors tended to 

be minimized for RFs placed at azimuths of +90° and −90°.

The results for translation estimation were similar for compound swimming (Figure 5B, top 

row). For RF azimuth, there was an extra boost (lower error) associated with placing the 

second RF on the opposite side of the nose, since this location is helpful for disambiguating 

optic flow caused by translation versus rotation. Rotation estimation errors were minimized 

with samples placed closer to the equator within the lower field (Figure5B, bottom row) and 

separated by 180° in azimuth. For rotation, the elevation of the best pair was −20° (purple 

lines), although the error averaged across all azimuths was slightly lower for the lowest base 

RF (−60°). The equatorial bias for rotation reflects the tension between the higher quality 

optic flow signals in the lower field and the geometric advantage of the distant equator for 

rotation estimation (the large distance removes ambiguities with translation signals). Full 

error maps are in Figure S5. The results shown in Figure 5 all use the LK-based noise 

model; similar results are shown for the two FS-based noise models in Figure S6.

We then considered the performance of combined bimodal RFs using an analysis similar to 

the global optic flow sampling shown in Figures 1 and 2. Rather than randomly sampling 

individual flows, we randomly sampled sets of 20 bimodal RFs, enough to cover the entire 

visible region when evenly spaced. The heatmaps in Figure 5C show the resulting median 

absolute errors associated with each spatial location in the visual field. The lower errors in 

the lateral lower field for translation, and toward the equator for rotation, are preserved even 

when multiple RFs are incorporated.

Comparing translation error across the two behavior types, we see that the lowest errors 

are comparable, but the highest errors are worse for the fish that combines translation with 

rotation while swimming. In noisy natural habitats, we infer that motion-limiting behaviors 

like saccadic swimming may reduce the advantage of spatial biases and allow more accurate 

self-motion estimation from less complex visual systems or more challenging scenes.

Results with real optic flow reiterate lower visual field bias

The previous section asserted a generative model of optic flow based on separate models of 

the scene geometry, signal availability, and noise in the native habitat of the zebrafish. This 

allowed for flexibility in our analysis: we could consider arbitrary velocities and simulate 

different locations across the visual field without loss of resolution or distortions in the 

camera. However, real optic flow samples from the video dataset provide a better reflection 
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of higher order statistics of signal and noise, such as the spatial correlation of strong contrast 

cues or the presence of coherently moving distractors and scene geometry, which determines 

the tradeoff between translation and rotation cues. Thus, we turn to an analysis of real optic 

flow samples. Bimodal optic flow samples were collected from the high-resolution lateral 

regions of omnidirectional videos during several translation and rotation trajectories (see 

Table S2). Each flow sample contained two 40° × 40° regions, centered at ±90° in azimuth 

and matching in elevation. Each bimodal sample was used to estimate self-motion, both in 

isolation and combined with samples from other elevations in the same video frames.

Figure 6 shows the elevation-dependent errors for forward translation (Figure 6A), heading 

direction (Figure 6B), and rotation speed (Figure 6C) from these data. The first column 

compares the estimation errors from single-sample estimates (gray line, illustrated with 

inset of visual field) with the error from using all elevation pairs in each frame (dashed 

black line). In general, single-elevation estimates perform less well than using all of the 

data, but in each case, there are elevations where a single sample is as effective or more 

effective than using the entire field. These correspond to the high-performing elevations 

in our simulation: −60° for translation and −20° for rotation. The rest of the visual field 

contains many misleading flow vectors, ultimately doing more harm than good. We also 

considered the effect of excluding single-elevation samples from the full field (Figure 6, 

second column). For both translation and rotation, ignoring data from the lower field reduces 

performance but ignoring data from the upper field improves it.

DISCUSSION

Taken together, these results suggest that spatial biases in optic flow sampling represent an 

adaptation to reliably estimate self-motion in noisy natural environments. Here, we highlight 

how the current approach can be extended and contextualize our findings in the broader 

literature on motion processing in the zebrafish.

Spatial resolution across the visual field

The retinas and brains of many organisms feature anatomical and functional spatial biases 

that are not yet fully understood. These additional spatial biases can be readily incorporated 

into the current framework to explore new questions. For example, our predictions for a 

lower field bias in rotation estimation in larval zebrafish appears to contradict a recent study 

showing more robust behavioral responses to rotational optic flow in the upper visual field.38 

It was hypothesized that higher cone density in the upper visual field may contribute to 

this rotational spatial bias. We can test the hypothesis that variation in retinal resolution is 

sufficient to overcome elevation-dependent noise patterns in rotation estimation. To do so, 

we modeled the retinal resolution bias by reducing sparsity by a factor of 4 for elevations 

above the equator, on the assumption that more sample locations increases the probability 

of detecting sparse scene points. We then considered a base RF in the upper visual field, 

placed laterally and at a 20° elevation to stay fully below the waterline, and examined 

the mean self-motion estimation error across azimuths for each possible elevation of a 

second RF (Figure 7). For rotation, the best second elevation moved into the upper visual 

field, whereas for translation, the best second RF elevation remained in the lower visual 
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field, consistent with the spatial biases seen in both behavioral responses. This preliminary 

observation suggests that anatomical biases can be powerful enough to change the reliability 

of optic flow across space. Although the upper visual field may not be a more reliable 

source of self-rotation information per se, other behavioral pressures (e.g., hunting, predator 

avoidance) may drive photoreceptor density in this region and affect downstream optic 

flow processing for self-motion.74 These interactions across different spatial biases and 

different anatomical/functional stages would be a fruitful direction for future work. Based 

on this analysis, we might predict, for example, that genetically diverse but closely related 

species, such as cichlids, should also have different spatial biases in optic flow processing. 

These biases could be predicted independent of behavioral experiments by taking similar 

measurements from their anatomy and environment.75

Behavioral adaptation and energy allocation

An important driver of sensory and motor systems throughout the animal kingdom 

is metabolic efficiency. In addition to the energetic demands of processing sensory 

information, many animals also sample the world using eye, head, and body movements. 

Complex energy tradeoffs determine ideal motion patterns for optimal sensing.44 It is 

perhaps no surprise then that spatial biases in optic flow responses emerge as being 

particularly important for understanding highly energy-constrained animals such as insects 

and simple vertebrates such as the larval zebrafish.27,29,30,32,33 In more complex-brained 

animals, like humans, such spatial biases are seen in low-level dynamic tasks like keeping 

us upright as we stand31 and walk,14 which may require faster and more efficient visual 

processing. Limitations on energy and response time may drive organisms to rely on 

heuristics and clever tricks over higher-level scene processing.

In this context, it is interesting to consider whether the larval zebrafish visual system is 

adapted to larval or adult swimming behavior. Since the larval brain is more computationally 

constrained than the adult brain (many additional pretectal neurons will be added during 

ontogeny), we believe that it is likely that larvae are specifically adapted to larval behavior. 

Indeed, larval behavior has characteristic properties, such as swimming in discrete bouts, 

that may facilitate self-motion estimation with simple circuits.64 For example, during quick 

turns, larvae turn at a speed of about 30,000°/s.76 Since retinal speeds above 100°/s are 

unlikely to evoke motion responses in retinal ganglion cells,77 such high speeds are likely 

ignored by the fish when estimating self-motion, in favor of using the slower components of 

motion following the initial acceleration. Bouting thus likely matters for motion processing 

strategies, since it structures locomotor trajectories to be (1) mostly saccadic and (2) 

sometimes too fast for the associated optic flow to be perceivable. However, the spatial 

biases explored in the current report appear largely robust to different swimming behavior 

models, suggesting that both larval and adult zebrafish may benefit from the same spatial 

biases in optic flow processing. We therefore speculate that developmental plasticity of the 

lateral lower field bias may be relatively low, on the basis that it need not adapt between 

larval and adult behavior.
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Conclusions

The self-motion estimation problem has been solved across the animal kingdom with a 

widespread reliance on spatially biased optic-flow processing, shaped by the combination 

of brains, behaviors, and backdrops that determine each species’ unique visual ecology. The 

larval zebrafish has emerged as a model organism in neuroscience, with a body of work 

describing their genetics, brain structures, and single-cell responses. The use of such model 

organisms is a powerful technique for moving neuroscience forward, but it must be done 

carefully, with a full understanding of the context that has driven their neural and behavioral 

responses. For example, both humans and zebrafish exhibit a lower field bias in optic flow 

responses, but our environments, behaviors, and receptive fields are drastically different. 

Rather than simply concluding that organisms benefit from lower field biases in general, we 

must consider that they may have arrived at similar solutions for solving diffent self-motion 

estimation problems.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Emma Alexander (ealexander@northwestern.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—The video dataset and the zebrafish behavioral data have 

been deposited at Zenodo and are accessible via the URL in the key resources table.54 All 

original code is on Github and accessible via the URL in the key resources table.55 Any 

additional information required to reanalyze the data reported in this paper is available from 

the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The behavioral experiments with zebrafish were approved by the government authorities 

(Regierungspräsidim Tübingen) and carried out in accordance with German federal 

and Baden-Württemberg state law. Eight animals aged between 5 and 7 days post 

fertilization were used in this experiment. These animals had different genotypes (e.g., 

broadly expressing a GCaMP calcium indicator using the transgenic lines Tg(elavl3:nls-
GCaMP6s)mpn40078 or Tg(elavl3:H2BGCaMP6f)jf779) that were likely heterozygous. The 

pigmentation ensured high visibility of the animal body against the background in the 

experiments (animals were likely heterozygous for mitfa80). The sex of zebrafish is only 

determined at late larval stage and genetic as well as environmental factors affect sex 

determination81. Therefore, the larvae used in our experiments did not have an (identifiable) 

sex yet and experiments were thus agnostic to sex.

METHOD DETAILS

Coordinate system—We adopt an East-North-Up, or ENU, geographic coordinate 

system to represent angular positions around the animal. In this system, all positions are 

defined relative to the animal’s head, and expressed as azimuth (horizontal angle, with 
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positive values to the right of the animal), elevation (vertical angle, with positive values 

above the animal), and radius (or distance to the animal). The point directly in front of the 

animal (at the rostrum) is located at [0°, 0°] azimuth and elevation. Azimuth angles cover 

the range [−180°, 180°] and elevation angles [−90°, 90°]. Further details are described in 

Dehmelt et al.38

Estimating self-motion from optic flow—We denote the locations of physical points in 

the world relative to the eye as X,Y,Z, and we denote the radial distance of these points as r. 
At each angular location around the animal, with elevation α and azimuth θ in radians, the 

optic flow associated with a translation of (VX,VY,VZ) and a rotation of (ωX,ωY,ωZ) takes 

the form:

θ̇ideal = (cosθ/r)V X + (sinθ/r)V Z + (sinα sinθ)ωX − (cosα)ωY − (sinα
cosθ)ωZ

(Equation 1)

α̇ideal = ( − sinα sinθ/r)V X + (cosα/r)V Y + (sinα cosθ/r)V Z + (cos θ)ωX
+ (sin θ)ωZ . (Equation 2)

We refer to these as “ideal flows” because they will only occur when motion cues are dense 

and accurately sensed.

When examining contiguous local regions of the visual field, we consider instead a 

simplified pinhole camera model with focal length f and a planar sensor, so that world 

points are projected to pixel locations x = fX/Z, y = fY/Z (note we assume here an imaging 

plane in front of the pinhole, without loss of generality). In an ideal setting, optic flow on 

this plane takes the form:

ẋideal = − f
z V X + x

z V Z + xy
f ωX + − f2 + x2

f ωY + (y)ωz (Equation 3)

ẏideal = − f
z V Y + y

z V Z + − xy
f ωY + f2 + y2

f ωX + ( − x)ωZ . (Equation 4)

These equations illustrate that the optic flow components in both systems can be modeled 

as weighted sums of optic flow templates, where the weights are translational and rotational 

components of self-motion and the templates are determined by a combination of location 

in the visual field, scene depth, and, in the tangent projection, focal length. If the depth of 

each point is known, we can render the library of six local optic-flow templates for each 

spatial region corresponding to the six components of self-motion (Figures 1B and 1C). We 

assume a unit focal length for these local projections, equivalent in the small angle regime 

to representing x and y in terms of visual angle rather than pixel location. In either setting, 

flattening the flow samples into a vector flow and stacking the flattened templates into a 

matrix A, we can consider the previous equations as
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flow = A v , (Equation 5)

where v  is the 6-component self-motion velocity vector. Under ideal circumstances, the 

templates in A will be linearly independent, so that the velocity of self-motion can be 

recovered exactly by inverting the system. However, this recovery can degenerate in practice 

for a number of reasons, for example, when the measured optic flow is too sparse or 

impacted by other sources of motion. To model noise in optic flow available from natural 

environments, we initially assume additive Gaussian noise. For the noise model derived for 

the zebrafish habitat, we use a fitted generalized Gaussian additive noise model (see below).

To model sparsity in optic flow signals, we delete some percent of a signal’s samples at 

random. The samples must be removed from the calculation, rather than set to zero, because 

setting only the samples to zero indicates a signal of zero motion. While the sparsity of 

successfully computed optic flow samples provides a powerful metric for the quality of 

motion signals available in the environment, it is not clear how the early visual system of 

the zebrafish would detect and discard the samples we exclude. That is, we do not propose a 

specific model for how high contrast stationary signals are represented differently from low 

contrast, subthreshold signals with some motion. We simply assume that a sample with no 

motion signal is discarded.

This template-based approach for determining self-motion relies on some knowledge of 

scene geometry because the pattern of the translational templates depends on the distance 

of points from the animal. It is currently unknown how biological visual systems handle 

this ambiguity. We employ a plausible model of average scene geometry so that in our 

simulations the templates precisely match the simulated environment, but when using optic 

flow data from our video dataset directly the templates are only an approximate match.

General simulations: Global flow samples—To calculate the self-motion estimation 

errors shown in Figure 1 and Figure 2, we began by selecting a sparse, random sample of 

optic flow vectors from across the visual field. Sample locations were drawn uniformly at 

random in sets of 60 from a lattice of 20 azimuths and 9 elevations (that is, 33.3% of 180 

possible locations, which we term 66.7% sparsity). For each random sample set, we then 

simulated the optic flow associated with random self-motion by selecting each self-motion 

component uniformly at random between −1 and 1 (in units of m/s for translations and 

rad/s for rotations). For each random self-motion trajectory, independent additive noise was 

applied to each flow vector, drawn from a Gaussian distrinution with a standard deviation 

of 0.25 (relative to a maximal per-component flow magnitude of 1). We then calculated the 

median absolute error of the self-motion estimate for each of the 6 velocity components 

as well as for the heading direction in the horizontal plane. In the plotted heatmaps, we 

report the median of median absolute errors at each location, for 10,000 iterations containing 

10,000 random trajectories each. This method provides an estimate of the performance 

associated with each spatial location, independent of which other locations are measured at 

the same time, without asserting a specific population decoder. Similar patterns of results are 

obtained for different noise levels and sample set sizes.
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To summarize the effects of spatial biases and compare biased sampling to completely 

unbiased sampling strategies, we then defined three global sampling strategies, each using 

half of the possible samples (90 out of 180). In the “full-field” strategy, samples are spread 

evenly across the visual field (unbiased). In Figure 1, we compared this strategy to two 

biased strategies: concentrating the samples away from the VZ foci of expansion/contraction 

or concentrating these samples towards these foci. We simulated 1000 batches of 1000 

random trajectories and plot histograms of the median absolute VZ estimation error across 

these batches for each strategy. We then fitted each distribution with a Gaussian and 

computed the effect size between sampling strategies (the difference between the means 

normalized by the pooled standard deviation). In Figure 2, this analysis was performed the 

same way, except the two biased strategies were determined by performing a median split on 

the errors and selecting the sample locations associated with top half and bottom half of the 

errors.

Figure 1 shows results for 6DOF motion in a 1m radius sphere. In Figure 2 this baseline 

condition from Figure 1 has been altered in several ways. In Figure 2A, all velocity 

components except VZ are set to zero and removed from the templates. This in fact implies 

two restrictions – the first is that some directions of self-motion are successfully removed 

from the locomotive process that generates the optic flow samples, and the second is 

that the animal is sufficiently successful in this restriction that they can remove irrelevant 

DOFs from their estimation process. That is, in our template-based framework, if rotational 

self-motion is absent but the system still solves for rotation components, performance will 

not improve. Estimation errors are caused by the combination of noise in the input data and 

sensitivity in the estimation method, and this sensitivity is determined by the characteristics 

of the template matrix (e.g., condition number, minimum mean square error). A softer 

version of this restriction might be achieved through a Bayesian process that uses a strong 

zero-centered prior on some motion directions. In this 1DOF reconstruction, the matrix of 

templates in Equation 5 above is 120×1 instead of 120×6 in the 6DOF case. In Figure 2B, 

all velocity components except VX, VZ, and ωY are similarly set to zero and a template 

matrix of size 120×3 is used. In Figure 2C, the same three degrees of freedom are included 

in the motion trajectories, but the standard deviation of the additive Gaussian noise varies 

with elevation. Rather than a uniform value of 0.25 across the visual field, it varies linearly 

in elevation: from zero at the north pole to 0.25 at the south pole. In Figure 2D, the 3DOF 

motion continues, but the geometry changes from a 1m sphere (r=1) to a floor with distant 

walls (r = sinα for α < 0, r = ∞ for α ≥ 0). In addition to the VZ error, we also include 

errors in heading (tan−1(VZ/VX)).

General simulations: Local flow samples—The self-motion estimates from localized 

optic flow were calculated in much the same way, with minor modifications. In each region, 

a number of samples was generated, noise was added, then the sample was sparsified. For 

example, for a sparsification of 67%, a random number was uniformly generated between 

0 and 1 at each pixel location, and any pixel with a value below 0.67 was set to 0, with 

the corresponding template value also set to zero to prevent systematic underestimation 

of speeds. For Figure 1 and Figure 2, each region is 10°×10° and originally includes 100 

flow vectors before additive Gaussian noise with standard deviation 0.25 and sparsification 
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of 67% (corresponding to selecting 33.3% of the possible samples as in the global flow 

simulation). We report the median absolute error associated with each local region, as well 

as showing full histograms of errors associated with the best, worst, and middle or median 

location. Similar patterns of results are obtained for different noise and sparsification levels.

Natural optic flow from larval zebrafish habitat field recording sites—We 

conducted a survey of zebrafish habitats in the Indian state of Assam over a two-week 

period in October 2019. This geographic region was chosen for its history of zebrafish 

sampling52,82 and due to its varied geography within relatively short distances. Using 

Guwahati as a base, we took daily excursions to potential sampling locations using local 

knowledge and satellite imagery of water features as guides. All recordings were conducted 

in areas outside of protected lands. Videos were acquired from nine sites across central 

Assam. Data from two sites were excluded from the current analysis because no videos 

were captured with camera motion or the camera was unstable. Thus, seven different sites 

are used here (Table S1). These sites had a range of different qualities (e.g., still vs. 

flowing water; bottom substrate: silt, sand, rock; vegetated vs. non-vegetated; shaded vs. full 

sun). See supplemental video for brief clips from each site. Adult zebrafish were observed 

at all sites that were sampled. Other surface feeders were also present, most commonly 

Aplocheilus lineatus and Rasbora species. It is important to consider that changes in water 

turbidity occur throughout the year in Assam. Turbidity levels increase dramatically during 

the monsoon season that spans the summer months,83 which can influence underwater 

visual statistics. We did not experience precipitation during the period when recordings were 

obtained, although there was substantial rainfall in the preceding weeks.

Camera calibration

Cameras: Videos were recorded using a high frame rate omnidirectional camera positioned 

in the water using a custom boom rig attached to a programmable robot. Underwater WiFi 

control of the camera was achieved by affixing a coaxial cable (6 cm exposed ends) to 

the camera’s dive case. Two recording devices of the same make and model were used 

(Insta360 One X). These devices have two fisheye cameras placed back to back, each with 

a field of view of approximately 180°. The devices were housed in a waterproof dive case 

during video recording. All videos were recorded at 100 frames per second with a pixel 

resolution of 1504×1504 for each fish-eye camera using the h.264 codec (MP4 file format). 

We used FFmpeg to extract 8-bit RGB frames from the compressed video and filtered the 

resulting frames with a Gaussian smoothing kernel (σ = 2 pixels) to reduce compression 

artifacts. During data acquisition, the cameras were set to a fixed ISO of 800 and a “cloudy” 

white balance profile. Exposure time for each video was chosen manually between 1/240 

and 1/4000 seconds depending on the lighting conditions of each recording site. For each 

device, we performed a series of measurements to characterize the spatial distortion of 

the lenses, the spectral sensitivity of the color channels, the nonlinearity between pixel bit 

levels and world light intensity, and the spatial resolution (modulation transfer function). All 

calibration procedures were based on PNG frames recorded with the same settings used for 

in-field data collection, and with the camera housed within the dive case.
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Spectral sensitivity: We characterized the sensitivity of each camera color channel as a 

function of the wavelength of incident light. First, we recorded a set of calibrated narrow-

band light sources produced by a monochromator in steps of 10 nm from 380–790 nm. We 

modeled each light source as an impulse function and determined the sensitivity that best 

fit the cameras pixel response at each wavelength. Sensitivity was highly similar across the 

two cameras for each device, so we averaged the sensitivities together. It is important that 

the imagery analyzed is well-matched to the spectral sensitivity of zebrafish. The zebrafish 

retina has four cone variants that bestow broad spectral sensitivity ranging from the UV to 

red (UV cone λmax ~ 365nm; blue cone λmax ~ 415nm; green cone λmax 480nm; red cone 

λmax ~ 570nm).84,85 As such, we conducted our analyses on the camera’s central (green; G) 

channel which spans red cone spectral sensitivity and the upper half of green cone sensitivity 

(Figure S7A). Red and green cones are known to dominate zebrafish motion vision.86

Spatial calibration: The fisheye lenses introduce substantial spatial distortions across the 

video frames. We characterized the spatial distortion for each camera using a standard 

fisheye camera model defined by a set of 10 intrinsic parameters that describe the distortion 

magnitude at each pixel in terms of the distance and direction from a distortion center.87 

Parameters for each camera and each color channel were estimated using the Computer 

Vision System Toolbox in Matlab, by finding the set of parameters that minimized the error 

between the measured and expected images of a set of calibration points (~1700 points on 

average were used for each camera). The fitted parameters for each calibration are provided 

in Table S3 along with the average reprojection error in pixels.

Response nonlinearity: Pixel values do not necessarily increase linearly with increases in 

radiometric power within the sensitivity range. To characterize these response nonlinearities, 

we again recorded a set of calibration images, this time captured from a broadband light 

source at 50 different calibrated intensity levels. This range was selected to encompass the 

full range and ceiling of the sensitivity at the chosen exposure duration. To confirm the floor 

of sensitivity, we also measured the dark response (the average pixel value returned when 

all illumination is absent). Using the spectral sensitivity profile described in the previous 

section, we created a look up table to convert the G pixel bit values (0–255) into linear light 

intensity within the spectral envelope of the channel. The linear bit values were used for the 

FS method of optic flow measurement (see below).

Spatial resolution: We also characterized the quality of the camera’s optics within the 

range of spatial frequencies pertinent to zebrafish motion perception. Using an approach 

adapted from the Siemens STAR Method,88 we imaged a calibration target with radially 

increasing bands (a pinwheel) at a range of locations in each camera’s field of view. We used 

the fitted camera distortion model to correct distortion of the pinwheel images and applied 

the linearization look up table. We then computed the Michelson contrast as a function 

of distance from the pinwheel center and converted into cycles/degree (cpd) based on the 

camera pixel resolution. Initially, we found that the two cameras in both devices exhibited 

slightly different transfer functions, with one camera always having higher resolution. To 

achieve consistent resolution in the spatial frequency range of interest, we increased the blur 
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kernel applied to the higher resolution camera (σ = 3 pixels). This resulted in sensitivities 

plotted in Figure S7B.

Camera motion control—Camera trajectories were controlled using a custom robotic 

system built for the project. The system is supported by three expandable carbon fiber 

tripod legs (DragonPlate, New York) that screw into an aluminum base. An XYZ motorized 

gantry system (MOOG Animatics, Mountain View, California) is secured to the top of 

the base using a leveling screw apparatus (gantry system travel: 300 mm in X & Y, 150 

mm in Z). An expandable horizontally oriented carbon fiber pole extends from the Z-axis 

gantry with a rotary motor affixed to the pole’s far end (Zaber Technologies, Vancouver, 

RSW60C-T3-MC03). The dive case for the Insta360 One X camera screws into the end of 

a vertically oriented expandable carbon fiber pole whose opposite end screws into the rotary 

motor. A variety of custom aluminum fittings for the robotic system were designed and 

machined by Micrometric (Toronto). The system is controlled by a Getac V200 (New Taipei 

City, Taiwan) rugged laptop running SMNC (geometric code software; MOOG Animatics) 

for gantry control and Zaber Console (Zaber Technologies) for rotary motor control. A 

CLICK programmable logic computer (AutomationDirect) triggered by the gantry system 

coordinates the timing of camera rotations relative to XYZ motion. All components of the 

system are powered by a small portable generator (iGen1200, Westinghouse).

We used camera trajectories that can roughly be interpreted as motion of a zebrafish 

relative to the visual surround (Table S2). Camera trajectories were in the horizontal plane, 

which is also the plane that zebrafish mostly use during swimming and presumably also 

mostly occupy during passive drifts. Pure rotation and pure translation were included, along 

with combined rotation and translation. That being said, these camera trajectories did not 

faithfully recapitulate swimming behavior: the camera is much larger (approximately 4.5 cm 

wide) than a larva (4 mm) and only certain speeds were accessible in the field, so that scene 

geometry and speed magnitudes do not correspond well to zebrafish behavior. In particular, 

the recorded camera turns were much slower than turns of a larva. Therefore our camera 

trajectories only correspond to some aspects of the expected self-motion patterns. Another 

question is whether the visual system is adapted to the motion statistics of passive drifts or 

locomotion. Passive drifts are oftentimes much slower than speeds during locomotion (in the 

beginning of a bout). Passive drifts are furthermore known to evoke optomotor responses 

and such responses are suppressed during an ongoing swim bout. Therefore it seems 

likely that the visual system is using information from the slower periods of self-motion 

(passive drift, and glides after bout initiation) to estimate ego-motion. However, further 

investigation is needed to understand the adaptation of the visual system to the precise 

locomotor kinematics of zebrafish larvae, which are also known to include frequent pitch 

bout/swimming in the water column.67,69

Measurement of optic flow, noise, sparsity

Data selection: We analyzed a subset of collected video data. For the selected trajectories, 

described in Table S2, we discarded data beyond four seconds (400frames) of video from 

each site, so that each velocity is represented roughly equally in our analysis. This duration 

was selected because at least five seconds of video were recorded for each velocity (with 
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the exception of circular arcs, which were slightly shorter). We omitted 500ms from the 

beginning and end of each trajectory to account for acceleration artifacts. Optic flow 

measurements that would include a key frame were skipped, leaving over 90% of the 

frames for each trajectory. Some trajectories were unavailable in the collected data: the 50°/s 

clockwise rotation at Site 2 was missing, so the 50°/s counterclockwise rotation video at that 

site was used instead, reversed in time. An analysis of the optic flow for the 20°/s rotation 

on Oct 17th suggested that the camera rotational control malfunctioned, so we excluded this 

sample from the noise model. Circular arcs were only collected at Sites 3, 4, and 7.

Optic flow algorithms: Based on the spatial calibration of the cameras, local patches were 

sampled from the green channel of the video frames and undistorted to a local tangent 

projection. Patches were 40×40 pixels and covered 40°×40° in visual angle. Two optic flow 

calculation pipelines were used.

The first pipeline relied on the OpenCV implementation of the Lukas-Kanade algorithm 

(LK). Up to 25 features were selected using the OpenCV function cv2.goodFeaturesToTrack 

with a minDistance and blockSize of 6 and a qualityLevel of 1e-9. These points were 

tracked to a second patch extracted from the same spatial location in a frame 50 ms later, 

unless that 50 ms period included a key frame. Key frames were seen to disrupt optic 

flow estimates, so these flow samples were excluded. Tracking was then performed using 

the OpenCV function cv2.calcOpticalFlowPyrLK with 10-pixel windows and 2 levels. This 

function implements an iterative version of the Lucas-Kanade algorithm, which applies 

the brightness constancy constraint to spatiotemporal derivatives computed at points pre-

identified as informative (i.e., corner-like features, in order to avoid the aperture problem). 

While this method is not modeled on a biological pipeline for processing optic flow, we 

adopt this algorithm because it can robustly characterize the motion information that is 

available in the environment. Further, the reliance on local brightness derivatives is similar 

in principle to the canonical computations thought to underlie motion processing across 

the animal kingdom.59,60 By drawing each flow vector from a 10°×10° area, we roughly 

matched the difference in RF area between input units and integrating RFs (16x difference 

in area) to biological considerations based on the literature.62 Stopping criteria were 10 

iterations or a change of less than 0.03 pixels. Matches were discarded if they were returned 

with a status of zero, indicating that the tracked points were missing from either of the two 

frames or that derivative matrices were poorly conditioned.

The second pipeline is based on a direct comparison of spatiotemporal derivatives following 

the method described by Farid and Simoncelli for differentiating discrete signals such 

as movies (FS).57 This pipeline was designed to follow principles more directly inspired 

by biological motion perception (e.g., spatially fixed sample locations and derivatives 

calculated on calibrated light input). Unlike the LK method, where points of interest are well 

localized so that flow is calculated in varying positions in different frames, in this method 

a set grid of 25 locations was used, leading to a slight decrease in performance. These 

locations were separated by 7 pixels (corresponding to 7 degrees). At each point on the grid, 

9-tap spatiotemporal filters were used to measure spatiotemporal derivatives (again, roughly 

matching the assumed scale of integration windows of larval zebrafish retinal ganglion 

cells). Also unlike the LK method, which is optimized for standard camera applications, we 
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converted the pixel values to units that are linear with respect to incident light according to 

the calibration. In lieu of an explicit status indicator, as in the LK method, thresholds on 

condition number and luminance gradients were used as a proxy for success, described in 

more detail below.

Quantifying noise & sparsity: To estimate noise and sparsity for our generative model, 

only rotational trajectories were used (ωY of 20°/s and 50°/s), because these trajectories 

allowed us to compare the measured optic flow to a ground truth flow field that is 

independent of scene geometry. Measurements were made covering a total visual area from 

−80° to +60°, along the high-resolution central azimuth in each camera at 11 elevations. 

As a data cleaning step, errors over 100°/s were discarded. In the LK model, flows that 

returned a failed match status were also excluded. In the FS model, flows measured with 

a condition number over 100 were excluded, as were flows with insufficient luminance 

gradient magnitude (we applied two gradient thresholds: 10−5 for the loose threshold, 10−4 

for the tight threshold). The proportion of excluded flow samples was also used as a measure 

of sparsity.

To capture the high kurtosis of the flow errors, we fit the error distributions with a 

generalized zero-mean Gaussian. This function is described by its width σ and shape 

parameter β,

GG(x; σ, β) = β
2σΓ(1/β)e−( x /σ)β (Equation 6)

where Γ is the Euler gamma function. To provide adequate data for a robust maximum 

likelihood fit, all samples collected at each elevation were used, collapsing across camera, 

rotation speed, flow component, and field site. With up to 25 flow vectors per sample, 

this could have provided up to 560,000 optic flow component error samples per elevation, 

but in practice between 167,506 and 376,012 samples were available for the LK model 

(176,031 – 407,755 for FS loose and 101,015 – 326,832 for FS tight). This was due in part 

to the high sparsity of the natural flow and low contrast of underwater imagery. Thus, we 

characterized the elevation-dependent native scene sparsity by quantifying the percentage 

of possible flow vectors that were available. The flow error probability distributions and 

generalized Gaussian fits are shown in Figure S2 and flow from an example site is shown 

in Figure S3. The sparsity, width, and shape parameters are listed in Table S4, and can be 

used to simulate realistically challenging flow data across the sampled elevations. All three 

approaches lead to similar results.

Depth model: Based on the description of shallow water habitats in McClure et al.89 and the 

data collection team’s practice of placing the camera roughly 10 cm from the river bottom, 

we assume a stream depth of 20 cm with a swimming height in the middle of this water 

column. This leads to an effective depth of

Z = 10/ sin α cm, −90° ≤ α ≤ 43°
∞, α > 43° . (Equation 7)
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This is more typical to the swimming behavior of an adult zebrafish than that of the larvae, 

which tend to swim quite close to the water surface,66 but the camera was too large to move 

closer to the surface without creating unnatural disruptions in the water’s surface. Because 

a change in camera height would alter the elevation-dependent noise model described in the 

following section, we match the scene geometry model to the dataset, mimicking the swim 

depth of an adult fish. This depth model also neglects some environment features seen in 

Figure 4B. For example, rocks and sturdy vegetation are prominent sources of texture that 

will be closer to the fish than this model indicates. Additionally, above-water features will 

sometimes be near enough to provide useful translation cues. These factors will affect our 

final analysis of self-motion estimation directly from optic flow samples in the dataset.

To examine how well our model conforms to the zebrafish habitat, we used the translational 

trajectories to estimate the environment nearness (1/distance) at each elevation in our 

dataset. At each site, LK-based optic flow in forward translation videos was considered 

at regions of visual space that were oriented orthogonal to the forward translation. In these 

regions, all valid optic flow vectors are horizontal and their magnitudes compared to ground 

truth camera speeds provide single-elevation estimates of nearness. Optic flow vectors more 

than 5° from horizontal were discarded, and the average nearness estimate per elevation 

was calculated. Figure 4F illustrates the approximate match of the nearness model to the 

nearness calculated from the real data.

Larval zebrafish optic flow simulation—Natural optic flow data were simulated using 

the above described models of sparsity/noise and environment depth. This analysis was 

run using each of the noise models, with the results from the LK-based analysis shown 

in Figure 5 and from the FS loose and tight threshold models shown in Figure S6. We 

modeled individual receptive fields (RFs) as described in the main text: optic flow was 

sampled in local regions spanning 40°×40°, per reported larval pretectal and tectal RF 

sizes.34,61 RFs were placed with centers every 10° in elevation from −60° to +40°, such 

that we consider data from −80° to +60°. Each model RF contained a set of flow vectors 

modeling inputs from retinal ganglion cells with smaller receptive fields.62,63 Each RF 

featured 25 flow vectors, which were made noisy then deleted at random according to the 

elevation-dependent noise and sparsity of our model.

RFs were considered in bimodal pairs, as these bimodal pairings (i.e., two spatial regions 

per RF) are common in the larval zebrafish and seem to be important for their self-motion 

estimation.24 Bimodal pairs were sampled by considering twenty base RFs centered at a 

grid of locations at −60°, −40°, −20°, 0°, and 20° in elevation and 0°, 30°, 60°, and 90° in 

azimuth. Each base RF was paired with a set of second RFs with centers ranging from −60° 

to +40° in elevation and −180° to +180° in azimuth, each sampled every 10°. To characterize 

the performance in individual bimodal RFs, we then followed the methods described for the 

local optic flow simulations above over second RF locations, reporting the median absolute 

error over 10,000 trajectories at each location for local error maps and averaging across 

azimuth/elevation for summary line plots.

To characterize the performance across the visual field, we followed a similar method to 

the global method above, with a few significant changes. Now, instead of a location sample 
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corresponding to a single flow vector, it provides a bimodal RF, with the base RF centered 

at the sample location and the second RF 180° away in azimuth at the same elevation. Sets 

of 20 locations were sampled at a time, as 20 evenly spaced bimodal RFs would cover the 

entire visual region. The median absolute error over 1,000 estimates was reported.

In both settings, we considered two behaviors: saccadic swimming and compound 

swimming. For both behaviors, we also modeled random motion generated by passive 

drifting. For the saccadic swimming behavior, the fish moves forward with a speed 

uniformly sampled between 0 and 1 m/s while drifting isotropically in the XZ plane at 

a speed uniformly sampled between −0.5 and 0.5 m/s in both directions. For compound 

swimming, the motion is the same except that the fish combines the forward swimming with 

rotation around the y axis, uniformly sampled in speed between 0 and 1 rad/s.

For the final analysis (Figure 6), we wanted to examine performance on real-world optic 

flow rather than samples simulated with our model. In this analysis, we consider optic flow 

from elevation-matched 40°×40° RF pairs. As in the samples used for the noise model 

and depth model, each RF contained up to 25 LK flow samples and was drawn from the 

high-resolution central view of the cameras (for an azimuth separation of 180°) and RF 

centers ranged in elevation from −60° to +40°. Self-motion was estimated using a 3DOF 

reconstruction on all of the data listed in Table S2 (up to 4560 frames per site). Several 

subsets of the data were considered: single elevation pairs, all elevation pairs but one, and 

the full range of elevations. For each subset of elevations, we show the median absolute error 

in VZ, heading, and ωY over all sites and trajectories.

In the discussion (Figure 7) we return to the original bimodal simulation framework, 

considering a base RF at 20° elevation and 90° azimuth with a full range of second RF 

locations. As a rough approximation of spatial resolution in the upper visual field, the 

sparsity was reduced by a factor of 4 for elevations above the equator. We report the mean 

across azimuths of the median errors over 10,000 trials per azimuth and elevation.

Additional limitations and caveats—In this work, we have not considered how 

estimates of self-motion are used for behavior. For example, self-stabilization from optic 

flow can be approached differently from a controls standpoint compared to pure self-motion 

estimation (e.g., due to continuous feedback during stabilization). Eye and head movements, 

which may themselves be driven by optic flow, can complicate the determination of 

body heading during locomotion. Other behaviors related to self-motion, however, can 

be controlled without obtaining estimates of translational speed. Retinal and non-retinal 

neurons can also vary in the resolution with which they encode motion direction, and this 

variation is not currently included in the framework.90,91–93 Our model is also ignorant 

to the precise temporal frequency and velocity tuning of the visual system as well as to 

the precise spatial depth structure and spatial frequency statistics of natural scenes. For 

example, our current models do not implement the precise receptive field statistics and the 

behavioral and neuronal tunings that have been measured before.24,94 More refined models 

that take these additional biological intricacies into account could show whether they can be 

explained in the context of evolutionary adaptations to habitat and behavioral tasks, and to 

what extent they lead to systematic biases of behavioral responses.
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Larval zebrafish behavioral experiment

Animals: All fish were pre-tested to determine if they showed an OMR. Briefly, a plastic 

tray of concentrically arranged and interconnected water channels was placed on a flat 

screen running a pattern of moving stripes. The moving pattern was arranged such that 

OMR-responding animals should be driven to the center of the tray. Animals were inserted 

at the periphery of the tray and good responders were selected once they reached the center. 

Only fish that showed a clear OMR in this pretest were used in the experiments. After the 

pretest the fish had a break of at least 2 hours before starting the experiment.

Stimulus arena and spatial patterns: The spherical arena (Figure S6A) was made up 

of 232 green LED tiles (8×8 LEDs each, 568 nm peak wavelength) from Kingbright 

(TA08-81CGKWA). Due to the construction of the arena and the structure of the set-up, 

there were areas that were not covered by the LEDs (Figures 3 and S7). The luminance in 

the bright areas covered by the LED tiles was approximately 10.9 cd/m2. The luminance in 

the dark areas between the tiles was approximately 0.6 cd/m2. LEDs were also absent at the 

poles, so that the fish could be illuminated from below with infrared light and the camera 

could film the fish from above. Because of the holes at the poles, the arena only covered 72° 

to −72° in elevation. Since the arena was made up of a separate left and right hemisphere, a 

few LEDs were also missing at 0° azimuth and 180° azimuth. The infrared emitter used in 

the experiments had its peak at 840 nm (Roschwege StarIR840-01-00-00, 125°). Above the 

infrared light, a milk glass was attached to provide homogeneous background illumination 

around the fish. The infrared-sensitive high-speed camera (Model IDT iNdustrial Speed I, 

Integrated Design Tools Inc.) was stimulus-triggered, so that the camera started recording 

as soon as the stimulus was played (via LabVIEW DAQ box). For each trial, the camera 

recorded for 6 s at 250 frames per second. Additional information about the arena has been 

published elsewhere.38

The stimulus pattern corresponded to the geometrical projection of a horizontally oriented 

cylindrical pipe with vertical stripes onto the LED arena sphere (Figure S6A). The striped 

pattern was then moved as if the fish were moving backward through this striped pipe, 

in order to elicit a forward swimming OMR. Because the simulated environment was 

cylindrical, the spatial frequency varied across the visual field. The spatial frequency was 

the highest at azimuth 0° (where the head of the larva pointed) and 180° (where the tip 

of the tail pointed) and decreased towards the sides (spatial frequency: 0.028 cycles/°). 

The maximum stimulus velocity was set to 30°/s. Each stimulus was played for about 

6.2 seconds (the duration that was specified in the script did not exactly correspond to 

the time in which the stimulus was then played). This approach simulated a specific 

tunnel scene geometry, however prior work that revealed the lateral lower visual field bias 

used fixed angular horizontal velocities, inconsistent with any realizable scene geometry.34 

This suggests that realistic global flow fields are not essential for revealing biases in this 

experimental paradigm. In each trial, one of 19 different stimulus patterns were shown 

(Figure S1B). For each stimulus pattern, one region of the spherical arena showed moving 

bars. The size and location of this stimulus was varied, in order to probe how robustly 

different spatial regions could drive the OMR. Stationary bars were presented in the 

remainder of the arena, except at the foci of contraction and expansion where the spatial 
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frequency was particularly high. At these foci, a region of LEDs covering approximately 50° 

was turned off to avoid the fish’s perception of disturbing flashes resulting from the high 

spatial frequency at this location in combination with the limited LED array resolution and 

aliasing.

These data were collected as part of a larger experiment that included additional stimuli 

that simulated translational self-motion in five additional directions (forward, leftward, 

rightward, upward, and downward). However, we found that the simulated backward body 

motion elicited the strongest OMR responses and we thus focused on analyzing these data 

and comparing them to our predictions for determining self motion in the forward/backward 

direction. The stimulus patterns were all generated with Python and their presentation on the 

arena was controlled with Matlab and LabView. Matlab was used to define when and which 

stimulus was to be played for how long. The arena and the high-speed camera were then 

controlled via LabView. Due to the low performance of the experiment PC, the signals from 

LabView were split between two PCs. One PC only gave the ON signal for the arena and the 

other PC then gave the signals for the stimuli.

Embedding: To immobilize animals in the center of the spherical arena, a dedicated animal 

embedding procedure was used (see Dehmelt et al.38 for additional details). Animals were 

embedded in low melting agarose (1.6% agarose in E3 medium) onto a glass triangle, which 

itself sat inside an agarose mold to facilitate addition of agarose solution. Agarose was 

added in order to cover the triangle. After the agarose had hardened, a notch was cut in the 

agarose in front of the tip of the triangle in order to place the zebrafish larva. The space 

below the larva contained only agarose and the glass triangle tip was behind the tip of the 

tail of the larva (to ensure good imaging contrast of the fish body against a homogeneous 

background). As a final step in embedding, E3 medium was added and the agarose around 

the tail was removed. Now the larva could move its tail freely (90° to the left and right), 

while head and trunk were embedded and physically connected to the glass triangle via 

agarose. The fish was cut out of the mold together with the glass triangle (connected to a 

glass rod) and part of the agarose. After that the larva was placed in a transparent glass bulb 

filled with E3. This bulb was then attached to the spherical arena.

Test procedure: Each fish had an adaptation time of at least 25 minutes in the arena before 

the experiment started. One experiment consisted of 3 repetitions of each of the 19 stimuli 

(duration of approximately 1h). The order of the stimuli was different in these 3 repetitions. 

The stimulus order in repetition A and B were randomized and the order for repetition C was 

the order of A but backwards. The stimulus order within each repetition A, B and C was the 

same for all fish, but the presentation order of the three blocks A, B, and C was randomized 

for every fish. Between the repetitions there was a cooling break for the high-speed camera 

of at least 30 minutes.

Analysis: The videos from the high-speed camera were analysed with the help of 

DeepLabCut (DLC).95 For the training of the neural network, we used 10 videos with 100 

frames each. Eleven markers were set by hand in each frame. These markers were in the 

following positions: left eye, right eye, the beginning of the tail, 1/8 of the tail, 2/8 of the 

tail, 3/8 of the tail, 4/8 of the tail, 5/8 of the tail, 6/8 of the tail, 7/8 of the tail and tail tip. 
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The training was used to generate a neural network to analyse the videos. To find a suitable 

model, the calculation was divided into 4 steps. The first 1,000 calculations were carried out 

with an allowed error of 0.005, then 42,000 calculations with 0.02, then 30,000 calculations 

with 0.002 and the last 30,000 calculations with 0.001.

Tailbeat analysis on the DLC tailbeat tracking data was done in Python 3.8 using standard 

libraries and NumPy (1.21.3), SciPy (1.7.1), Pandas (1.3.4), h5py (3.5.0). A tail deflection 

angle φ was calculated for each frame individually as

φ = 180
π atan2 diy, dix − atan2 by, bx (Equation 8)

where di is the unit direction vector of the tail in frame i and b is the baseline unit direction 

vector which was calculated from the first 4 frames of each recording. Subscripts x and 

y denote the components of each 2D vector, and atan2 denotes the four-quadrant inverse 

tangent. Tail bend direction vectors were defined based on the line connecting the beginning 

of the tail and the 7/8 mark in each frame. The final angle φ was corrected to −(360° − φ) if 

φ was greater than 180°, so that clockwise deflections resulted in in a positive angle between 

0° and +180° and counterclockwise deflections resulted in a negative angle between −180° 

and 0°. Finally, tailbeat events were detected by filtering the deflection angle timeseries 

for instances (frames) where a sign change of φ coincided with an instantaneous deflection 

velocity of at least 250°/s.

To characterize behavioral drive across the visual field, the number of OMR tail beats per 

presented stimulus was quantified. Tail beat counts were then averaged across the 3 stimulus 

repetitions and normalized by the per-fish maximum average tail beat count. For each 

stimulus, the respective normalized responses during the presentation were then weighed by 

the inverse of the active stimulation area for that stimulus (in steradians) and divided by 

the total trial duration of 6s. This approach ensured that stimuli whose active stimulation 

area was smaller contributed more strongly to the overall estimated response, mitigating 

the effects of the size of stimulation area on the OMR in our analysis. The responses 

obtained in this way for all stimuli and fish were then used to calculate the OMR mean 

(Figure 3) and standard deviation (Figure S6C) maps for backwards self-motion optic flow. 

For estimating elevation-only effects on OMR (Figure S6D), the same analysis steps were 

performed using only the small-size elevation stimulus masks (see Figure S6B) and without 

the initial averaging across repetitions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• In nature, the utility of optic flow for estimating self-motion varies across 

space

• A video dataset characterizes spatial patterns of optic flow in zebrafish 

habitats

• Modeling the environment, brain, and behavior shows advantage to spatial 

biases

• Zebrafish motion response bias is well matched to this model applied to the 

dataset
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Figure 1. Spatial biases in optic flow sampling for self-motion estimation improve performance
(A) We consider the optic flow generated by 6 components/directions of self-motion 

including translation and rotation, illustrated for a moth.

(B) Idealized optic flow templates for recovering each component of self-motion in a 

spherical environment are shown across the full visual field.

(C) For the blue and green regions highlighted in (B), we show the local flow templates for 

a 10° square region under a tangent projection. A small field of view can lead to a high 

degree of similarity between translation and rotation template patches (e.g., VX and ωY look 

very similar locally at these two positions but are more distinguishable with the full field 

of view). Arrowheads for the templates located at foci of expansion/contraction have been 

scaled up for visibility.

(D) To model self-motion estimation from sparse, noisy optic flow across the full visual 

field, we randomly sampled 60 visual field locations (of 180 predetermined possible 

locations) and calculated the median absolute self-motion estimation error for each 
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component. Once a sample set was chosen, self-motion components were drawn uniformly 

at random from −1 to 1 (m/s for translation and rad/s for rotation), and additive Gaussian 

noise of standard deviation of 0.25 (relative to a maximal per-component flow magnitude 

of 1) was applied to the resulting flow vectors. The environment was modeled as a 1-m 

radius sphere. Each row illustrates one iteration of the model: we ran 10,000 iterations 

with different sample locations each time, and each iteration included 10,000 random self-

motions for computing the median absolute error. Color bars indicate the median self-motion 

estimation error associated with each sample set. We then computed the overall median 

absolute error (median of medians) associated with each visual field sample location across 

all iterations.

(E) Heatmaps show the overall median absolute errors associated with each sample 

location for each self-motion component, with VZ plotted larger for visibility. The heatmap 

ranges for the other components are: VX (2.59,2.61), VY (2.94,2.99), ωX (1.48,1.50), ωY 

(1.68,1.71), and ωZ (1.48,1.50).

(F) Histograms illustrate the median VZ estimation error when 50% of the sample locations 

were used. These 50% could be spread evenly across the visual field (black), concentrated 

away from the VZ foci of expansion/contraction (green) or concentrated at these foci 

(orange). The anti-focus spatial bias leads to better estimates. We fitted each distribution 

with a Gaussian and computed the effect size (the difference between the means normalized 

by the pooled standard deviations) between the full field and biased samples as follows: 

anti-foci versus full field = −3.6; foci versus full field = 5.0.

(G) To model self-motion estimation from sparse, noisy optic flow using contiguous local 

visual field regions similar to receptive fields, we repeated this analysis on small, spatially 

contiguous regions. Each contiguous region subtended a 10° square and contained up to 100 

contiguous optic flow samples, each of which had a 67% chance of being deleted after noise 

was added, with self-motion and additive noise sampled as before.

(H) Heat maps of the resulting median absolute errors. The heatmap ranges for the non-VZ 

translation components are the same as the VZ plot, and for the rotation components, they 

range from 20 to 350 deg/s.

(I) Histograms illustrate the median VZ estimation error (log-spaced) for the best local 

region (located at the VZ focus), the worst local region (located at the antifocus), and a 

region mid-way between those two. Effect sizes are as follows: focus versus mid-way = 

−64.8; anti-focus versus mid-way = 9.2.
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Figure 2. Animal behavior and environment shape spatial biases
(A) An animal only moving forward removes the ambiguity in local flow templates so that 

both global and local errors indicate an away-from-foci advantage. Histograms on the left 

indicate the distribution of median absolute self-motion estimation errors for the best 50%, 

worst 50%, and full field global samples at matched resolution, and the best, worst, and 

median local regions over 1,000 simulations of 1,000 self-motion trajectories. Heatmaps 

indicating median errors are plotted in the same format as Figure 1. All model parameters 

are the same as Figure 1, except self-motion components other than VZ were all set to zero 

and a 1 DOF estimation applied. For the local optic flow, both the best and median regions 

are associated with very low error, resulting in a high degree of histogram overlap.

(B) An animal translating and rotating in a plane sees higher errors and expanded regions of 

ambiguity. All model parameters are the same as Figure 1, except self-motion components 

other than VZ, VX, and ωY were all set to zero and a 3 DOF estimation applied.

(C) When noise varies linearly from none at 90° elevation to a maximum at −90° elevation, 

low error regions are shifted upward. All model parameters are otherwise the same as (B), 

and maximum noise had a standard deviation of 0.25 (relative to a maximal per-component 

flow magnitude of 1).

(D) When the environment is a floor plane rather than a sphere, VZ error explodes at and 

above the equator. Heading estimates remove the depth ambiguity in translation component 

magnitude by comparing VX and VZ estimates, eliminating azimuth dependence for a pure 

lower field bias. All model parameters are the same as (B) except for the scene geometry, 

which is modeled as a flat floor 1m below and an infinitely far away wall in the upper visual 

field. Note that histograms and heatmaps for local errors in this figure are all on a log scale 

to account for the larger variability associated with different environmental settings.
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Figure 3. Larval zebrafish optomotor swimming is driven by the lateral lower visual field
(A) Layout of individual LEDs in our spherical visual stimulation arena. The visual stimulus 

consisted of a pattern of vertical bars meant to simulate the fish swimming through a pipe 

with transverse stripes. Fish were placed in the center of the spherical arena, thus allowing 

for stimulation of an extended range of elevations (almost 140° × 360° of its visual field).

(B) During individual trials, stripes in different regions of the visual field were moving 

(example areas marked green or purple), whereas the rest remained static. Stimulus motion 

was from back to front, providing the percept of backward drift to the fish.
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(C) Tail bend angles were measured for each recorded video frame to calculate behavioral 

responses to different stimulus locations. Fish generally responded more strongly to motion 

in the lower (purple trial), than in the upper (green trial) visual field.

(D) Heatmap color indicates the strength of the OMR to motion stimuli in different parts 

of the visual field. OMR drive was strongest for motion in the lateral lower visual field. 

To quantify the behavioral response, the number of tail beats per unit time was averaged 

over repeated trials for each fish, normalized by the fish’s maximum response to any of the 

stimuli, and scaled by the inverse of the area (in steradians) that was active (i.e., moving) for 

each stimulus to account for effects of stimulation area size on response strength. Responses 

were then combined into a single average across fish (n = 8 fish). Motion stimuli covered 19 

different combinations of positions and steradian sizes in visual space.

See also Figure S1.
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Figure 4. A model for natural optic flow statistics during zebrafish self-motion
(A) Seven sites in the native range of the zebrafish were sampled, see Table S1 for details. 

Image from Google Maps.55

(B) An equirectangular projection of a sample frame shows elevation-dependent sources of 

signal and noise.

(C) Frames from each site summarize visual variation across the native range.

(D) Optic flow sparsity at individual sites (thin lines) and averaged across the dataset (thick 

lines, ±SEM in filled region) show high sparsity near and above the equator. This pattern 

holds across motion measurement algorithms (black, blue, and green).

(E) Errors in optic flow, attributed to natural motion within the environment, show higher 

variance in the upper visual field.

(F) The geometry estimated from optic flow vector magnitudes roughly matches a 

floor+ceiling model (dashed red) below the water line (~40°). Individual sites, SEM, and 

mean are plotted in the same manner as in (D) and (E).

(G) Receptive field structure is modeled in spatially separate bimodal pairs. Base RFs were 

placed in a predetermined grid of locations and paired with a range of possible second RFs.

(H) Two swimming behaviors are considered: saccadic swimming, where forward motion 

is added to lateral drifting (VZ ~ U[0,1] m/s + (VX,VZ) ~ U[−.5, −.5] m/s) and compound 

swimming, which additionally includes rotation (ωY ~ U[−1,1] rad/s). For more details, see 

Figures S1–S3 and S7, Video S1, and Tables S1–S4.
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Figure 5. The visual ecology of the larval zebrafish generates lower translation estimation errors 
in the lateral lower field
Data were simulated using naturalistic models of signal sparsity and noise, environment 

geometry, RF size and structure, and swimming behaviors. For each possible base RF 

location (see legend in B), median absolute errors were computed for 10,000 iterations 

across all second RF locations.

(A) Left: for saccadic swimming, the lowest error occurred when the base and second RF 

were located at an elevation of −60° and had azimuths of 90° and −90°, respectively. The 

plot shows a heatmap of the median absolute VZ error over across all second RF locations 
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for the best base RF, and the single best base/second pair is indicated with an x and o. 

middle: for VZ and heading error, median absolute errors are averaged across azimuths to 

isolate elevation trends for each base RF location (colors indicate base RF elevation, line 

thicknesses indicate base RF azimuth). Both metrics show that translation is best recovered 

by RF pairs in the lower visual field. Right: When averaging across elevation for azimuth 

trends, the lower field base RFs tend to be best matched with a second RF at ±90° azimuth. 

For clarity, we only plot the results for the best base elevation (−60°).

(B) For compound swimming behavior, local translation errors (top left) show more extreme 

penalties for same-side sampling due to ambiguity with rotation. Elevation trends (top 

middle) are largely unaffected, other than an increase in average error, but azimuth trends 

(top right) show a strong advantage to sampling the lateral region on the other side of the 

body. The azimuth and elevation of the best individual pair are the same as for saccadic 

swimming. For rotation estimation (bottom), the lower field advantage is less strong, and 

the best performing bimodal RF (bottom left) appears at −20° elevation. Elevation trends 

(bottom middle) show strong performance throughout the lower field, whereas azimuth 

trends show no clear advantage to lateral regions, instead suggesting an azimuth separation 

of 180° minimizes error (bottom right). Full error maps can be seen in Figures S4 and S5, 

with a comparison across flow calculation methods shown in Figure S6.

(C) To characterize the performance across the visual field, we followed a similar method 

to the global method described in the previous section. Instead of a location sample 

corresponding to a single flow vector, we sampled sets of 20 RF pairs, with one centered at 

the sample location and the other 180° away in azimuth at the same elevation. The median 

absolute error over 1,000 estimates is shown for each of the motion directions from (A) and 

(B). Again, we see better performance in the extreme lower field for translation estimation 

(left, middle) and in the mid-lower field for rotation (right).

See also Figures S4–S6.
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Figure 6. Ignoring the upper field improves motion estimates from optic flow measured in the 
native habitat of the zebrafish
We demonstrate the value of spatial biases by showing an advantage to excluding 

elevations from self-motion estimation across our dataset of natural optic flows. For velocity 

distribution and dataset size, see Table S2.

(A–C) We consider forward translation (A), heading (B), and rotation (C) errors for single 

RFs pairs, comparing with a baseline of using all elevations (dotted vertical line). When 

using a single elevation (first column), the best regions predicted by our simulations are 

equal to or outperform the baseline. When all but one elevations are used (second column), 

removing lower field samples damages performance while removing upper field samples 

improves it.
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Figure 7. Spatially varying resolution of the front end of the sensory system can shift rotation 
bias
Beginning with the compound swimming setting in Figure 5, we modified our sparsity 

model to increase sample probability by a factor of 4 in the upper visual field, as a proxy 

for higher retinal resolution. In this setting, a base receptive field located at 20° elevation 

(black dashed line) and 90° azimuth is better paired with another upper field RF for rotation 

(purple arrow) while still benefiting from a lower field partner for translation (green arrow). 

Compare with Figure 5D in which both types of motion estimation show lower error in the 

lower field. Spatial variations in anatomical resolution may be responsible for a slight upper 

field bias observed in rotation responses in the larval zebrafish.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Custom Python code and information about field sites This paper https://doi.org/10.5281/zenodo.7120876

Video dataset This paper https://doi.org/10.5281/zenodo.6604546

Experimental models: Organisms/strains

Tg(elavl3:nls-GCaMP6s)mpn400 Förster et al.78 ZFIN ID: ZDB-ALT-170731-37

Tg(elavl3:H2B-GCaMP6f)jf7 Vladimirov et al.79 ZDB-ALT-150916-4

mitfa Lister et al.80 ZFIN ID: ZDB-GENE-990910-11

Software and algorithms

Python 3.8 python.org RRID:SCR_008394

Jupyter jupyter.org RRID:SCR_018315

Numpy numpy.org RRID:SCR_008633

SciPy scipy.org RRID:SCR_008058

Pandas pandas.pydata.org RRID:SCR_018214

h5py h5py.org https://doi.org/10.5281/zenodo.4584676

Opencv (Matlab and Python versions) opencv.org RRID:SCR_015526

FFmpeg ffmpeg.org RRID:SCR_016075

Matlab 2022a Mathworks RRID:SCR_001622
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