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Abstract

Negative Feedback Confers Mutational Robustness in Yeast Transcription Factor
Regulation

Charles Morrison Denby
Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley

Designated Emphasis in Computational and Genomic Biology

Professor Rachel Brem, Chair

Organismal fitness depends on the ability of gene networks to function robustly in the
face of environmental and genetic perturbations. Understanding the mechanisms of this
stability is one of the key aims of modern systems biology. Dissecting the basis of
robustness to mutation has proven a particular challenge, with most experimental models
relying on artificial DNA sequence variants engineered in the laboratory. In this work, we
hypothesized that negative regulatory feedback could stabilize gene expression against
the disruptions that arise from natural genetic variation. We screened yeast transcription
factors for feedback, and used the results to establish the hypoxia regulator Rox1 as a
model system for the study of feedback in circuit behaviors and its impact across
genetically heterogeneous populations. Mutagenesis experiments revealed the mechanism
of Rox1 as a direct transcriptional repressor at its own gene, enabling a regulatory
program of rapid induction during environmental change that reached a plateau of
moderate steady--state expression. Additionally, in a given environmental condition,
Rox1 levels varied widely across genetically distinct strains; the ROX1 feedback loop
regulated this variation, as the range of expression levels across genetic backgrounds
showed greater spread in ROX1 feedback mutants than among strains with the ROX1
feedback loop intact. Our findings indicate that the ROX1 feedback circuit is tuned to
respond to perturbations arising from natural genetic variation, in addition to its role in
induction behavior. We suggest that regulatory feedback may be an important element of
the network architectures that confer mutational robustness across biology.
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Chapter 1

An introduction to biological robustness



Living systems show a remarkable ability to maintain stable phenotypes despite
diverse perturbations. This principle, broadly referred to as robustness, can be defined as
the stability of a system’s characteristic phenotype in the face of environmental and
genetic variation'. Biological robustness was first theoretically formalized by
Waddington®. He argued that phenotypic variation in conditions similar to those of wild
populations tends to be small compared to the variation observed after major
environmental insults. To illustrate this point, he showed that developing Drosophila
embryos subjected to heat shock showed more morphological variation in Drosophila
wing-vein pattern compared to embryos grown at milder temperatures’. In this way,
Drosophila development at temperatures characteristic of wild habitats is more robust
than at higher temperatures.

Robustness is a complicated concept. To characterize a system as robust, one has
to define the phenotype of interest and the underlying source of variation. In the above
example, the phenotype is the presence or absence of a cross-vein formed between two
specific wing veins of adult Drosophila subjected to heat shock during development. The
variation in this experiment derives from two sources: Firstly the strain used for these
experiments was a wild isolate. Due to the heterozygosity of wild strains, recombinant
progeny contain genetic variation. Secondly the stochastic nature of biochemical events
and low copy number of biochemical species results in stochastic variation®. It is
important to note that the variation between developmental temperatures in this
experiment is part of the phenotype under consideration, and is not the source of
variation. By increasing the temperature of development, the system is sensitized to the
effect of stochastic and genetic variation on wing morphology, and demonstrates that
wing morphology variation is buffered during development at lower temperature. That
is, Drosophila wing cross-vein development at a temperature characteristic of a wild
habitat is more robust than at higher temperatures.

Waddington observed that conditional robustness could have profound
evolutionary consequences”. On the one hand, robustness ensures a consistent
developmental program that is well suited for conditions characteristic of wild habitats
despite the accumulation of genetic variation in the population. On the other hand, if the
stability breaks down, that genetic variation manifests as diverse phenotypes on which
natural selection can act. In other words, conditional robustness gives rise to a general
mechanism where genetic variation can be tolerated in some conditions and serve as the
substrate of evolutionary adaptation in others, potentially giving rise to greater
evolvability.

Has conditional robustness been selected to increase evolvability? Some have
argued that a single mechanism confers robustness to both environmental and genetic
variation. This leads to the possibility that robustness to genetic variation is simply a side
effect of selection for robustness to environmental variation’. It is unknown whether all
mechanisms of genetic robustness also confer environmental robustness. One of the
major motivations for the continued study of robustness is the expectation that ultimately,
these hypotheses can be tested. First, however, we need a better understanding of what



mechanisms underlie either class of variation, and where these mechanisms are used in
biology.

Robustness in networks

Since Waddington’s pioneering work, the principle of biological robustness has
been widely appreciated. However, the underlying molecular mechanisms that give rise
to robust behaviors have been emerging slowly ever since. The first and now canonical
example of a molecular determinant of robustness is HSP90, a chaperone protein
involved in maturation and maintenance of signal transducers®. In wild-type flies grown
under non-stressful conditions, recombinant progeny rarely display morphological
variation. However, strains that are mutant for HSP90 give rise to recombinant progeny
with diverse and pervasive morphological variation. The morphological variation was
proposed to be due to preexisting cryptic genetic variants, although recent work suggests
that it could have been due to transposon-based lesions’. Regardless of the source of
genetic variation, the original study proposed a molecular mechanism by which a single
locus could buffer phenotypic variation in some conditions, while in other conditions
could allow genetic variation to manifest as phenotypic variation on which natural
selection could act.

Another instructive, but more opaque example of robustness lies in the yeast
genetic network. For 80% of the ~6000 yeast genes, deletion mutant strains grow
indistinguishably from wild-type strains on rich media®. This suggested that the large
majority of yeast genes either serve no function in growth on rich media, or the network
is robust to individual deletions. Subsequent studies of synthetic lethality—where two
non-essential genes are shown to be lethal in combination—distinguished between these
possibilities: nearly all non-essential genes have many synthetic lethal interactions’,
suggesting that each of these genes has a function. Growth on rich media is therefore

robust to genetic variation in the form of single gene deletions”'’.

The major question that arises from these studies is what mechanisms encode
robustness in this genetic network? A great deal of theoretical work has sought an
answer. One simple strategy is redundancy—where multiple components or pathways
encode a single network function. There are two types of redundancy mechanisms. The
first type is genetic redundancy, where multiple genes encode the same activity. The
propensity for gene duplications in living systems provides the potential for genetic
redundancy. Yitzhak Pilpel’s group showed that for a class of yeast paralogs, deletion of
one paralog leads to upregulation of the corresponding paralog, supporting genetic
redundancy as a mechanism for robustness''. However, genetic redundancy cannot
account for a significant proportion of observed robustness. First, only 13% of yeast
genes have paralogs, and second, only 30% of paralogs have the capacity to back each
other up'?. Therefore, given the observed robustness in this model system, there must be
other mechanisms of robustness that cannot be accounted for by genetic redundancy.

The second type of redundancy mechanism that encodes robustness is pathway
redundancy, where an essential metabolite is synthesized through an alternate series of



chemical reactions. There are a number of known systems that illustrate how pathway
redundancy confers robustness. For example, in wild-type E.coli strains, pyruvate kinase
connects glycolysis with the Krebs cycle by converting phosphoenolpyruvate to

pyruvate. When pyruvate kinase is deleted, this step is bypassed through the metabolic
intermediates oxaloacetate and malate'>. However, pathway redundancy also cannot
account for the bulk of observed robustness, as in silico analysis of the yeast metabolic
network suggests that only a small fraction of gene deletions are likely to be compensated
by metabolic flux redistribution'*.

Another line of reasoning argues that robustness is an inherent property of
complex regulatory networks subject to stabilizing selection. Bergman and Siegal
performed simulations of complex regulatory networks illustrating this point'”. Starting
with an in silico gene network composed of 10 factors with random connections of
varying sign and strength, they simulated mutation, quantified steady state expression
levels, and selected new genotypes most closely matching a given expression state
phenotype. Over the course of simulated evolution, the network connections diverged
between individuals, while the phenotype remained stable. At the end of simulations, all
strains closely resembled the optimal phenotype, while single gene deletions showed
considerable variation in their distance from the optimal phenotype. In sum, in genetic
networks subject to stabilizing selection, genetic variation accumulated within a
population without a loss of fitness. But when a single gene was deleted from the
network of each individual, the accumulated genetic variation manifested in large
phenotypic variation between individuals.

In support of the Bergman-Siegal model, a subsequent study showed that deleting
at least 5% of yeast genes results in greater morphological variation across different
environments compared with a wild-type strain'®'”. In contrast with the Bergman-Siegal
model, the source of variation in these experiments is environmental and not genetic.
However, the authors argue that because mechanisms conferring robustness to genetic
variation or environmental variation are often congruent, these results reflect how such
genes are capable of buffering genetic variation.

Case studies of regulatory networks illustrating robust behaviors

In addition to systematic gene deletion studies, case studies have proven useful
for determining mechanisms of robustness. Barkai and Leibler provided an example
where mathematical modeling predicted how a complex regulatory network confers
robust adaptation in bacterial chemotaxis'®. Here, “adaptation” refers to how the
chemotaxis network adapts to changes in concentration of chemostimulants instead of
absolute chemostimulant levels. In this system, the authors found that some properties of
chemotaxis are sensitive to variation of component protein concentrations, while others
maintain stability across a wide range of variation.

Bacterial chemotaxis has been the subject of extensive genetic and biochemical
study for many decades, and thus provided an excellent case for systems
analysis. Bacteria can sense chemical gradients by continuously monitoring chemical



concentrations as they swim. If they sense increasing concentrations of attractant over
time (or decreasing repellent), they continue swimming. If they do not sense a gradient,
they randomly reorient their direction of swimming—a behavior called tumbling.
Chemical sensing in E. coli is mediated by receptor proteins that bind attractant or
repellent molecules. These receptors relay information about the environment to flagellar
motor proteins through a complex biochemical network, the output of which controls the
frequency of tumbling and swimming. When an organism is placed in an environment
with fixed concentration, it exhibits constant rates of switching between swimming and
tumbling. When the organism is placed in an attractant concentration gradient and begins
swimming up the gradient, the network senses the increase and responds by reducing the
transition rate between swimming and tumbling, thereby increasing the chance that it
reaches the attractant. Shortly after the organism reaches the higher concentration, it
adapts to the new concentration and resumes the original rates of swimming and
tumbling. An amazing feature of E. Coli chemotaxis is that it functions over a broad
range of chemical concentrations. This type of system—where the output responds to
changes in concentration rather than absolute concentration—is said to exhibit perfect
adaptation.

Initial models describing the output of the genetic network with changing
attractant concentrations explained the observed perfect adaptation behavior'”. However,
whereas E. coli adaptation is robust to various modifications to network components, the
models failed to exhibit robustness when a corresponding modification was added to the
model. A key insight came when Barkai and Leibler revisited the models and showed
that a minor modification—restricting a particular chemical modification to a specific
receptor conformation—gave rise to a system that is robust to parameter
modifications'®. Their new model was then validated experimentally: when various
component concentrations were modified, the model mimicked the observed effects on
behavior where previous models did not™. Interestingly, while behavior of perfect
adaptation was robust to major network perturbations, the steady-state behavior and
timescale of adaptation were not. One possibility is that the network architecture has
been selected to ensure stability of adaptation while affording plasticity in component
expression levels and adaptation time scale.

Another example of a network architecture that confers robustness lies in
biosynthetic pathway metabolism. In a foundational paper on metabolic control analysis,
Kacser and Burns put forth the flux summation theorem to show that, for a given
enzymatic pathway, the amount of control that each enzyme imparts on total pathway
flux sums to one®'. Here, control is defined as the ratio between the fractional change of
flux and the fractional change of enzyme concentration for a given enzyme in a pathway:
If a 1% increase in an enzyme’s concentration brings about a 1% increase on pathway
flux, that enzyme is said to have perfect control (i.e. control = 1). The flux summation
theorem implies that flux control can be either i) evenly distributed throughout the
pathway, or ii) restricted to a small number of control points. In either situation, the
result is that, for at least some of the enzymes in the pathway, small changes in enzyme
concentration will yield little or no effect on pathway flux—in other words, the pathway
is robust to concentration changes for those proteins. To demonstrate that the theory



applies to biological systems, the dose of three enzymes in the terminal steps of the
arginine biosynthesis pathway of Neurospora were altered. As predicted, reducing the
genetic dose of each enzyme to as little as %4 of wild-type gave nearly equivalent pathway
flux*.

Another interesting conclusion from Kacser and Burns’ work is that end-product
feedback regulation—where a pathway product represses production of an upstream
enzyme—can result in near complete control of flux by a single enzymatic step”'. That s,
the levels of all other enzymes in the pathway are robust to modification since changes in
their activity can be compensated by the feedback mechanism. This architecture is
extremely common for metabolite homeostasis in biological systems™.

Negative feedback on gene expression as a mechanism for robustness

In addition to feedback acting on metabolic outputs, a number of studies have
shown that direct transcriptional feedback on gene expression is a recurrent “motif” of
biological networks***. This suggests that negative feedback may encode robustness for
expression of particular genes. Many regulators are known to have dose-dependent
signaling properties, such that proper cellular concentration may be of critical importance
for fitness; one hypothesis is that appropriate levels are maintained via negative
feedback. However, it remains unclear whether the widespread incidence of feedback is
the product of selection or not. Supposing that feedback has been broadly selected to
confer gene expression robustness, it is unknown what type of variation—whether
environmental/stochastic or genetic—it would have been selected to buffer. In addition,
regardless of the selective pressures underlying the widespread incidence of feedback, if
feedback buffers genetic variation, this may have evolutionary importance: If feedback
buffers variants that would be deleterious in some set of conditions, feedback may allow
for such variants to persist in the population until a distinct set of conditions arise in
which the variants are favorable. In this sense, feedback may contribute to evolvability®.

Negative feedback as a robustness mechanism for stochastic variation

Despite considerable effort, whether feedback functions to reduce stochastic
variation of gene expression in natural circuits is unclear. Theoretical work predicted that
negative feedback would stabilize expression in response to stochastic variation®”*, and
a prominent study used a synthetic circuit to show that negative feedback can in fact
decrease stochastic variation in gene expression”. However, subsequent work suggested
that the expression variation observed in the latter experiment was likely due to variation
in plasmid copy number’’, and therefore the result did not necessarily bear on feedback
loops encoded in the genome. Follow up studies using the same system showed that
stochastic models could only explain the observed gene expression behavior when the
effect of plasmid variation was included®'. Additional studies using various
computational modeling techniques suggest that negative feedback is not predicted
to reduce expression variation under a physiologically relevant parameter
regime3233, An additional study argues that using signaling-based mechanisms to
cope with molecular fluctuation associated with low molecule number is a



metabolically expensive solution for reducing variation, and that cells generally
reduce molecular variation associated with small molecule number by transcribing
regulatory genes tens of thousands of times per cell cycle34. Furthermore, studies of
circuits with naturally occurring negative feedback loops have yielded mixed reports of
whether feedback reduces stochastic variation of gene expression®°,

In contrast, a recent synthetic study reported that feedback at a chromosomally
integrated transcription factor reduces stochastic variation of downstream gene
expression at a chromosomally integrated downstream reporter’ . Interestingly, the most
pronounced noise reduction occurred at intermediate expression levels, consistent with
earlier studies showing that noise strength from a reporter expressed from GALI1
promoter is maximal at intermediate gene expression levels™™. This phenomenon may be
limited to the synthetic system: the GAL1 promoter is regulated by the SAGA complex,
the targets of which show particularly high expression noise*”’. It seems unlikely that a
transcription factor gene selected for stable expression would fall under the regulation of
the most unstable known regulatory mechanism observed in yeast.

In sum, it remains to be seen whether the high incidence of endogenous feedback
circuits do in fact reduce stochastic variation in naturally occurring biological networks,
and whether feedback was widely selected to reduce stochastic variation.

Negative feedback as a robustness mechanism for genetic variation

Despite the impressive effort that has gone towards studying whether gene
expression feedback buffers stochastic variation, what effect gene expression feedback
has on genetic variation has received considerably less attention. If stability of certain
transcription factors is critical for organismal function over the course of evolution,
genetic variation in regulatory factors that affect that transcription factor’s expression
may not be tolerated. However, feedback on transcription factors could buffer variation
affecting their expression, thereby allowing for variation in their regulators. Much like
the case where E. coli exhibit robustness for chemotactic adaptation while allowing for
plasticity of other properties, feedback may enable robust transcription factor expression
while allowing for plasticity of their regulatory genes’ activity. Therefore, feedback may
facilitate accumulation of genetic variants upon which selection can act, and could have a
crucial role in evolution of adaptive genotypes.

To begin to address which functions feedback may have in the yeast regulatory
network, in Chapter 2, we identify cases of feedback in yeast transcription factors. In
Chapter 3, we show that feedback can in fact confer gene expression robustness in the
face of naturally arising genetic variation. We also provide evidence that feedback may
have evolved to prevent transcription factor misexpression.

Negative feedback as a robustness mechanism for environmental variation

The relationship between feedback-mediated robustness and environmental
variation is in some ways similar to that of stochastic variation. Just as individual cells



are subject to internal environmental changes due to stochastic processes, they are also
subject to external environmental changes in nutrients and stresses. Feedback may confer
robustness to variation in the external environment much the same as it may confer
robustness to stochastic variation.

On the other hand, in some cases a transcription factor has evolved to vary with
specific environmental changes. There are two potential functions for feedback in this
case. First, when a cell transitions between environments the time it takes for a
transcription factor to reach its new steady state concentration can be accelerated by
feedback®™*. This principle has been shown to be true in both synthetic’®*’ and
biological systems***', and, in chapter 3, we show that this is true of the yeast
transcription factor ROXI.

The other function for feedback in responding to environmental change lies in
linearizing dose response. The relationship between input (i.e. promoter activation) and
output (i.e. gene expression level), referred to as “dose-response,” can be made more
linear by feedback, and may prove selectively advantageous. Dose response linearization
was first conceptualized in engineering systems””*' and was later extended to biological
systems in theory?”"**, in synthetic circuits®”***, and in natural regulatory networks*"
s, Importantly, dose-response linearization can also improve the fidelity of information
transmission. For example, if a transcription factor gene is controlled by an activity that
reports an environmental signal, a more linear dose-response can encode more
information about the signal to downstream components.

Is dose-response linearization likely to provide a selective advantage in natural
systems? The authors of Yu ef al. make a compelling argument for how linearization
may be important for fitness: Differences in pheromone concentration are important for
haploid yeast cells’ mating partner choice—they show a remarkable ability to
preferentially mate with partners producing the most pheromone*®. Surprisingly, when
Yu et al. disrupt the putative feedback mechanism, although the dose response curve
shifts significantly, it does not change its linearity. This finding illustrates how it can be
difficult to predict the function of a negative feedback loop embedded inside a large
regulatory network with many unaccounted interactions.

As we note in Chapter 2, many of the transcription factors found in negative
feedback loops are themselves embedded in larger metabolic homeostasis feedback
loops. In Chapter 4 we show preliminary evidence that feedback linearizes the ROX1
transcription factor’s dose-response, and discuss the potential importance of linearization
in the context of metabolite homeostasis.



Chapter 2

A method for measuring feedback for yeast transcription factors



Introduction

Cells rely on regulatory networks to modify the expression of genes in
response to information about their environment. This allows cells to make the
proteins they need at the correct times and amounts. Much is known about how
regulatory networks are connected, however, it is not clear whether there are
principles that explain why natural networks have evolved particular topologies.
One possibility is that naturally selected topologies offer evolutionary advantages
over alternate topologies.

In recent years, new technologies have enabled regulatory interactions to be
catalogued on a genomic scale in a variety of model systems. One regulatory
structure common to all model systems examined to date is that of direct
transcriptional feedback, where a gene product regulates its own expression®2.
Theoretical work has proposed that feedback may perform information-processing
functions, and a number of case studies have illustrated its potential functional
relevance3. For example, negative feedback on gene expression has been shown to
confer gene expression homeostasis in the face of various perturbations*-¢, and can
improve information transmission by linearizing a transcription factor’s dose
response’8. On the other hand, positive feedback on gene expression has been
shown to drive phenotypic diversity?10. While such case studies have firmly
established that feedback circuits have the capacity to confer the proposed
functions, it is difficult to judge whether the proposed functions have been selected
in biological systems. A first step towards addressing the general relevance of
feedback in naturally evolved systems would be to test how often negative and
positive feedback occurs in regulatory networks. A second step would be to ask
what cellular processes negative and positive feedback are associated with. If
negative or positive feedback is associated with a common cellular process, this
could drive hypotheses for what information-processing functions feedback may
have been selected to confer.

The organism Saccharomyces cerevisiae has proven an excellent model
system for studying eukaryotic gene expression. Given the small gene size and
compactness of the genome, yeast has been an ideal system for applying genomic
technologies. Microarray and RNA-seq studies have been used to characterize the
relationship between genetic perturbations and gene expression by modulating
expression of a regulatory protein (i.e. deleting or overexpressing), and measuring
the effect on gene expression!-12, This approach has proven successful in revealing
relationships between regulatory proteins and other genes; however, it does not
reveal cases where regulatory proteins affect their own expression. Two strategies
have emerged that circumvent this shortcoming. First, genome-wide ChIP-on-chip
studies have determined which transcription factors bind to their own encoding
genes. This strategy has its own major shortcomings, the most notable of which is
that it does not distinguish between positive and negative feedback. An alternative
strategy is to use a transcriptional reporter to test for feedback. The general
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approach measures expression from a reporter, while varying copy number of the
gene of interest. If a promoter drives higher expression of a f-Galactosidase gene in
a deletion strain than in a strain bearing a wild-type gene copy, this is taken as
evidence of a negative feedback loop. Such experiments, however, have only been
performed on a limited scale or on a gene-by-gene basis13-19.

Two recent studies surveyed the yeast genome for feedback on non-
regulatory genes, and reported conflicting results. In a first study, gene expression
was measured in strains with different gene copy number. The authors reasoned
that if genes were dosage compensated (i.e. subject to negative feedback), then each
strain would show similar total expression levels. They observed dosage
compensation for 13 of 16 genes, and concluded that the majority of yeast genes are
subject to feedback?0. In a second study, gene expression from a single GFP-tagged
locus was compared between diploid strains carrying either a deletion or an
untagged gene at the second locus. If these genes were dosage compensated, then
expression from the tagged locus should increase by two-fold when the copy
number is reduced by half. In contrast with the first study, less than 5% of 730
genes examined showed dosage compensation?1.

Neither of these studies tested transcription factors for feedback, despite the
fact that feedback in transcription factors could have particular importance for
ensuring homeostatic expression. Given that small differences in transcription
factor concentrations can have a major impact on expression of a multitude of
genes, small deviations from their optimal levels can have strong deleterious effects
on cellular physiology. Furthermore, there are many known cases of transcription
factor feedback from previous studies, and a transcription factor’s ability to directly
regulate transcription provides a simple mechanism by which feedback can act.

In this study, we systematically tested transcription factors for feedback.
Previous studies have avoided testing transcription factors because many are below
the threshold of detection using standard high-throughput methods?!. Here, we
developed a highly sensitive fluorescence microscopy method that enabled us to
measure expression of many transcription factors that are below the detection limit
of other methods. We used this method to test for feedback by measuring
expression from a GFP-tagged locus in strains with varying untagged gene copy
number (Figure 2.1). This strategy improved on previous ChIP-on-chip studies
because it identified cases of functional feedback, and informs the sign of feedback.
We found evidence that many transcription factors are subject to negative feedback,
consistent with our expectation that feedback functions widely in expression
homeostasis. We also found evidence that a number of transcription factors were
subject to positive feedback. Each of these transcription factors is involved in yeast
stress response, consistent with our expectation that positive feedback may
promote phenotypic variation when cells are faced with stressful conditions.
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Results
Establishing a reporter system for measuring feedback

Transcription factors are expressed at low levels from their endogenous
locil22—the majority of the transcription factors whose expression we set out to
measure were not detectable using a flow cytometer?3, which is the industry
standard for sensitive high-throughput fluorescence quantification. Thus, our first
step towards assaying for feedback was to develop a method for quantifying
transcription factor expression. As a first strategy, we attempted to avoid the
difficulty of measuring low endogenous expression by using a collection of multi-
copy plasmids, each bearing a promoter of interest fused with GFP24. Each plasmid
also contains a URA3 gene, which compliments the uracil auxotrophy of the parent
strain. In a pilot experiment, we measured cellular fluorescence of a strain bearing
the prYHP1-GFP plasmid by flow cytometry. The strain was grown in synthetic
media lacking uracil in order to ensure the presence of the plasmid within all cells of
the culture. We found that the distribution of cellular fluorescence intensities
within the cultures varied between parent strains of different ploidy and different
culture densities. We also found that population fluorescence measurements
conformed to a bimodal distribution, with the higher expressing mode spread over
many orders of magnitude (Figure 2.2a-d). We corroborated this distribution
pattern using fluorescence microscopy (Figure 2.2e), observing that some cells
exhibit low GFP expression and cells with higher expression vary widely in
expression magnitude. The ratio of total number of cells conforming to each mode
varied greatly between haploid and diploid strains (Figure 2.2a and b) and high and
low density cultures (Figure 2.2b and d). The mean and median value of the
plasmid-bearing mode differed substantially (~1.5 fold) between different culture
densities (Figure 2b and d), suggesting that gating out non-expressing cells would
not be sufficient to normalize expression.

We hypothesized that the low-expressing cells did not contain plasmid, and
that the expressing cells contained the plasmid, but with highly variable copy
number. We confirmed that some fraction of the culture had lost plasmid by sorting
the cells based on fluorescence and measuring the viability of resulting cells grown
on a media lacking uracil. All GFP positive cells grew on plates lacking uracil, but the
large majority of GFP negative cells did not, indicating that they had lost the
plasmid. We concluded that a reporter system with variable copy number was not
ideal for making sensitive and reproducible measurements of gene expression.

Having ruled out the strategy of increasing copy number to improve signal,
we resorted to a second strategy of developing a more sensitive method for
quantifying low fluorescence signal. In reviewing data from a fluorescence
microscopy based genome-wide protein localization screen?>, where each gene was
tagged with GFP at their endogenous locus, we noticed that the large majority of
genes we intended to measure had been reported as “nuclear localized.” Inspection
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of the image files showed that nuclear fluorescence signal for many of these factors
was clear but weak. We reasoned that quantifying the ratio between nuclear
fluorescence and background autofluorescence in microscopy images may enable us
to accurately quantify fluorescence for factors that were previously undetectable by
flow cytometry?23. Thus, the anticipated advantage of fluorescence microscopy was
not in sensitivity per se, but in the ability to measure fluorescence in subcellular
structures to enhance signal-to-noise ratio. Previously reported quantification
measurements using these expression constructs proved extremely reproducible?3,
presumably because the reporter was stably integrated at a single locus. We next
made strains with which we could assay feedback for 105 regulatory genes, most of
which were transcription factors, corresponding to a collection of over-expression
plasmids that we received from Bhupinder Bhullar (Figure 2.1). We successfully
generated 95 sets of strains (Table 2.1).

Quantification Method

As a pilot experiment we imaged OPI1-GFP tagged strains using fluorescence
microscopy, and analyzing images with Cell-ID software, developed at the Molecular
Sciences Institute. The software takes as input a brightfield and fluorescence image,
and uses the brightfield image to determine cell boundaries. We used the brightest
fluorescence-channel pixel inside each cell’s boundary as a proxy for the center of
the nucleus, and calculated nuclear intensity by subtracting average background
cellular fluorescence from average nuclear fluorescence (Figure 2.3a, see figure
legend for details). As expected, a small increase in total cellular fluorescence
relative to background (~15%; Figure 2.3b) corresponded to a much greater
nuclear signal increase relative to background (~130%; Figure 2.3c). Furthermore,
we found that expression differences between strains that were undetectable when
comparing total cellular fluorescence measurements became substantial when
comparing nuclear signals (compare Figure 2.3b and 2.3c).

We used fluorescence microscopy in conjunction with our image processing
protocol to quantify fluorescence for all generated strains. Each strain was grown in
rich media to mid log phase, cells were deposited on glass-bottom plates in rich
media, and then rich media was replaced with a minimal media. Images were
acquired within ~30 minutes of replacing the media. For imaging we chose to use a
minimal media lacking sugar and amino acids because of its low autofluorescence.
However, this had the additional effect of inducing the stress response, as illustrated
by expression dynamics of the stress-induced transcription factor CIN5 (Figure
2.5c). 62 of the 95 factors showed mean nuclear fluorescence (averaged across
varying doses) 295-fold greater than background and were considered for further
study (Figure 2.4; table 2.2). We found that our measured expression levels were
significantly correlated with expression levels reported in Newman et al.23
(Pearson’s product-moment correlation; p-value=0.005; r=0.65). From this analysis,
we confirm that our quantification method is both sensitive and accurate.
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Assaying transcription factors for feedback

For each of the 62 sets of strains, we calculated the ratio of expression levels
between hemizygote and wild-type and between wild-type and over-expression.
The genes for which both ratios were above 292 were considered as subject to
negative feedback, while the one gene for which both ratios were below 2-02 was
considered as subject to positive feedback (Figure 2.5a and Table2.3). We initially
collected data for only a single biological replicate. To assess reproducibility of our
measurements, we next performed the same experiments in biological triplicate for
17 of the 62 factors. Comparing replicate values revealed a modest amount of
variation between biological replicates (Figure 2.5b). We used these data to
generate an error distribution from which we estimated the false discovery rate of
feedback (see Methods). We identified feedback for 10 of 62 factors at a cutoff
where only one was expected by chance.

The effects indicating feedback by single replicate measurements were
generally consistent with biological triplicate experiments (Figure 2.5c-e). The
overlap between factors identified as subject to feedback in single replicate
experiments and triplicate experiments is shown in Figure 2.7a. The three genes
where single replicate measurements report feedback but triplicate measurements
do not agree have all been inferred to have feedback in other studies (Table 2.5),
suggesting that our triplicate measurements resulted in a high rate of false
negatives. A high rate of false negatives is not ideal for a comprehensive screening
method, so we next sought to modify our growth and imaging protocol to improve
reproducibility.

In order to achieve higher measurement reproducibility, we imaged each
strain in rich media instead of minimal media. Because rich media is more
autofluorescent, and because some genes are not expressed as highly in rich media,
we could only detect a subset of the factors that were detected in minimal media
(Figure 2.6a). On the other hand, comparing expression values between replicates
confirmed that imaging in rich media improved measurement reproducibility
(compare r2=0.82 with r2=0.96 between Figure 2.5b and Figure 2.6¢, see figure
legends for details). In rich media, we identified feedback for 7 of 36 factors, with a
FDR estimation of 0 false positives (Table 2.3), and genes identified as subject to
feedback by single replicate measurements were generally consistent with
biological triplicate experiments (Figure 2.6d-e and Figure 2.7b). Of the 36 factors
we detected in rich media, only 13 were previously detected by flow cytometry in a
similar synthetic complete media?23, suggesting that our method offers a substantial
improvement in sensitivity for nuclear localized factors.
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Discussion

We present a simple, accurate, and highly sensitive method for detecting
functional feedback on yeast transcription factors. By using fluorescence
microscopy with image processing we are able to interrogate functional feedback
for a class of genes that could not be detected using whole-cell fluorescence
quantification methods?123. The results generated using our method, combined
with results from previous whole-genome ChIP studies?2¢, provide a substantially
richer view of feedback. There are a number of sources of uncertainty in ChIP
studies that can be informed with functional feedback assays. First, functional
feedback assays can determine if a gene that binds its promoter actually affects gene
expression at that locus. Second, functional feedback assays can detect cases of
indirect feedback. Third, when a gene is known to be auto-regulated, auto-activation
can be distinguished from auto-repression.

By combining ChIP data with our functional feedback results, we are able to
infer a mechanism of feedback for a number of factors. Of all the cases of feedback
we identified in this study, we describe either a direct (i.e. a transcription factor
binds its own gene) or semi-direct (i.e. a transcription factor forms a complex with
other proteins, which in turn bind the transcription factor’s gene) mechanism by
which feedback is imparted for ~%2 of the factors (Table 2.5). Furthermore, our
results indicate that negative feedback is far more prevalent than positive feedback.
This is consistent with previous meta-analysis results from E. Coli transcription
factors! and also with previous reports focused on non-transcription factor
genes20.21,

Many of the transcription factors that we find to be subject to negative
feedback are regulators of metabolism. Specifically, ROX1, MOT3 and SUT1 regulate
heme and ergosterol biosynthesis genes; OPI1 and INO2 regulate inositol
biosynthesis genes; NRG1 regulates glucose-repressed genes (such as the GAL genes
involved in galactose metabolism); and ARG80 regulates arginine biosynthesis
genes. A number of these factors transmit information from a metabolite sensor (or
are themselves metabolite sensors) to the regulon encoding the control point for
that metabolic pathway (Figure 2.8). In this way, they are involved in larger
feedback loops that may serve to maintain homeostasis of a metabolic end product.
Given their position within the control circuit, a compelling hypothesis is that the
direct feedback loops we identified have evolved to increase information
transmission between metabolite levels and metabolite production, thereby
improving the precision of metabolite homeostasis.

Interestingly, the factors that display evidence for positive feedback—CIN5,
YAP3, YAP5, and HOG1 (see Table 2.3 and Figure 2.5e)—are all related to stress
response. There are two major functions for positive feedback that may explain this
observation. First, positive feedback can drive expression diversity?’. Expression
diversity may in turn lead to phenotypic diversity?28, which can confer an advantage
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in surviving stresses that cannot be precisely sensed??. It seems possible that
positive feedback in yeast transcription factors has evolved to ensure diverse
responses to various stresses. A second known function of positive feedback is in
enhancement of cellular memory3%. For a number of stresses, a population of yeast
cells become more resistant to a particular type of stress if they have been
preconditioned with that stress31. It seems possible that when a stress-responsive
transcription factor is induced by exposure to a stress, positive feedback encodes
memory of that environment by prolonging expression of that factor in some
fraction of the cells, thereby conferring greater resistance to future instances of such
a stress.

In sum, our results hint at general functions that positive and negative
feedback may confer. It would be interesting if these trends could be statistically
substantiated with a larger data set, though the low quality of functional
annotations is currently a major limitation. For instance, the YAP protein family
contains 8 stress response transcriptional activators that are known to mediate
stress response, however there is no single Gene Ontology term that unites them.
Finally, future studies will be needed to determine what functions each of these
feedback loops confer. In the next two chapters, we investigate potential functions
of negative feedback for the Repressor of hypOXia transcription factor ROX1.

An additional advantage of our using fluorescence microscopy as a method for
quantifying gene expression is that we obtained expression levels for individual
cells of an isogenic population. Because negative feedback has been proposed to
reduce expression variation between isogenic cells, we had initially hypothesized
that feedback would be correlated with lower variation between cells grown in log-
phase cultures. This turned out not to be true, and there are a number of potential
explanations for this. First, it is possible that feedback does not reduce expression
variation at all—although a number of studies have predicted that negative
feedback reduces expression variation27.32, other studies have suggested that such a
prediction is ill founded3334. A second possibility is that negative feedback only
reduces expression variation in certain conditions. In some cases, when a gene is
activated at intermediate induction levels, variation is at its maximum?®35. This is
due to the inherent switch-like activation behavior of some gene’s expression;
Intermediate induction results in some cells with active expression, and others
without. The feedback effects we measured here may in fact reduce variation, but
only in conditions where genes are intermediately activated. The conditions we
used probably resulted in low or high induction of gene expression for most genes
tested. A third possibility is that negative feedback does reduce expression
variation in the conditions we used and our experimental design fails to measure it.
This could be due either to measurement error, or to heterogeneity of cellular state
in the given growth condition. For a number of yeast genes, the majority of cell-to-
cell variation is due to differences in cellular state rather than stochasticity of gene
expression3%37. For example, a number of studies have shown that differences in
cell-cycle position result in considerably increased variation3638. Even if gene
expression were perfectly coordinated in every cell, because many genes are
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expressed throughout the cell cycle, we would expect to see some level of variation
between cells due to differences in cell-cycle positions. Therefore, it remains a
formal possibility that we did not detect differences in expression variation for
genes with feedback because we had not controlled for differences in cellular states.
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Materials and methods

Yeast strains, and genetic manipulations. BY4741 was transformed with the
URA3-marked plasmid containing YHP1 promoter fused with GFP24 (“haploid”
strain in Figure 2.2), and mated with BY4742 (“diploid” strain in Figure 2.2).

For each of 95 yeast transcription factors (Table 2.1), a strain bearing one copy of a
GFP-fused gene?> (Invitrogen) was transformed with either an overexpression
plasmid3? bearing URA3 and the corresponding open reading frame under the
GAL1,10 promoter, or the backbone of the overexpression plasmid. Strains bearing
the backbone plasmid were mated to either the corresponding gene deletion
strain#? (Invitrogen) to form “hemizygote” strains, or BY4742 to form “wild-type”
strains. Strains bearing the overexpression plasmids were mated to BY4742 to form
“overexpression” strains. All plasmid transformations and yeast cell matings were
performed by standard techniques*®.

Feedback assays. For feedback assays, a culture of each yeast strain was inoculated
into CSM -uracil media (MP Biomedicals) with 2% raffinose and grown in 2ml
round bottom 96-well plates with a glass bead at 30°C with shaking to saturation.
These plates were then refrigerated and served as stocks from which we could
inoculate cultures for experiments. 10pul of re-suspended fridge-stock solutions
were inoculated into 1ml fresh media and grown overnight to saturation. Strains
were then back-diluted into CSM -uracil media with 2% galactose to an optical
density of 0.1. Strains were imaged after ~6 hours of growth, having reached optical
density 0.5-1.0. Upon preparation of 96-well plates (see below), 100 pl of cell
suspension was added to each well and allowed to settle and bind for 30 minutes
before imaging as described below. For replicate experiments three independent
cultures of each strain were grown and prepared for imaging as above.

Fluorescence microscopy. 96-well glass bottom plates (Falcon) were coated with
100 pl of a 100 pg/ml solution of concanavalin A type V (Sigma-Aldrich), incubated

1 hour at room temperature and then washed three times with water. Wells were
then washed and resuspended with media immediately before imaging. For imaging,
we used a 60X PlanApo objective (N.A.=1.4) under oil immersion in a Nikon TE2000
inverted microscope equipped with a mercury lamp, a motorized stage and 512BFT
MicroMax cooled CCD camera (Photometrix, Tucson, AZ). We imaged 3-6
observation fields per strain, with each field containing ~100 cells. For each field we
acquired a 0.5-second GFP exposure and a defocused bright field image for cell
identification and boundary determination, using Metamorph 7.0 software
(Universal Imaging Corporation, Downingtown, PA). We used Cell-ID 1.0%2 to
process images. We imposed the following gates to remove spuriously identified
cells: Cells were removed if 1) the average pixel intensity of the edge of the cell was
not darker than the inside of the cell in the brightfield image, 2) the fft statistic—an
indicator of circularity—was greater than 0.5, or 3) cells were less than 200 pixels in
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area, or 4) cells were greater than 600 pixels in area. We estimated nuclear
fluorescence by calculating average pixel intensity in the area of 3-pixel radius
around the brightest point. We estimated background fluorescence by calculating
the average intensity of pixels immediately inside the cell’s edge. Normalized
nuclear fluorescence was calculated by subtracting the estimated background
cellular fluorescence from the estimated nuclear fluorescence. Total cellular
fluorescence was calculated for each cell by subtracting the average fluorescence of
pixels surrounding the cell’s boundary from the average fluorescence of pixels
inside the cell’s boundary.

Flow cytometry. An Epics XL-MCL Flow Cytometer Analyzer (Beckman Coulter,
Brea, CA) was used to quantify total cellular fluorescence as in Figure 2.2a-d. Strains
were grown overnight to saturation in complete synthetic media (CSM) lacking
uracil, and were then back-diluted to OD 0.05 (“low-density” in Figure 2.2) or 0.2
(“high-density” in Figure 2.2) and grown for 8 hours before performing flow
cytometry.

For cell sorting, a Influx Cell Sorter (BD Bioscience, San Jose, CA) was used to sort
highly fluorescent cells and non-fluorescent cells. Resulting populations were then
plated on Yeast Peptone Dextrose (YPD) media at a density ~ 100 cells/plate and
were allowed to grow 2 days. Colonies were then replica plated onto CSM lacking
uracil and the number of colonies that grew on this media was scored by hand.

Evaluating significance of feedback effects. For each of the 62 factors we tested
for feedback in minimal media, we calculated the expression ratios between
different untagged gene doses, and called the factors that showed consistent effects
exceeding a given cutoff value as subject to feedback. Then we used the expression
values from triplicate experiments to generate an error distribution—for each
strain that we measured three replicate expression values for, we calculated the
ratio between the measured expression values of a given replicate and the mean
expression value of the three replicates. To estimate the number of genes that
would be called as subject to feedback due to measurement error alone, we used the
error distribution to generate mock expression values for 62 sets of strains, each set
containing 3 different doses. The number of feedback effects observed over 100,000
permutations was averaged to generate a false discovery rate. The same procedure
was used for experiments performed in rich media.
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Figures
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Figure 2.1. Design of assay for regulatory feedback. Each panel represents one
yeast strain. Green rectangles indicate the coding sequence of Green Fluorescent
Protein (GFP), and the oval in (c) represents a plasmid carrying an overexpression
construct controlled by the GAL1-10 promoter. A represents a whole-gene deletion.
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Figure 2.2 Promoter-GFP construct expression. (a-d) Each histogram displays a
distribution of fluorescence intensities. Strains and growth conditions are as
indicated. (e) Brightfield and fluorescence channels captured by fluorescence
microscopy for the diploid prYHP1-GFP strain.
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Figure 2.3 Quantifying Opi-GFP fluorescence. (a) Schematic illustrating Cell-ID
process. A brightfield image is used to determine cell boundaries, which are
transposed onto the fluorescence image (white ovals). Cell-ID generates nuclear
expression values by subtracting the estimated background fluorescence intensity
from the estimated nuclear intensity (see Methods for details). Quantities measured
for 15 cells are in red text. (b) Histograms displaying distributions of total cellular
fluorescence values for OPI1-GFP wild-type and hemizygote strains (see Methods
for details). Expression levels are normalized by dividing by the median total
cellular fluorescence of a strain without GFP. (c¢) As in b, except with nuclear
fluorescence values.
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Figure 2.4 Distribution of fluorescence levels for all factors assayed in YNB.
For each strain, the median expression value of ~500 cells was used to calculate the
average expression across three strains of different untagged gene dose. This value
was divided by the background fluorescence, and plotted on a logz-scale. The 62
strains exhibiting expression at least 29-5-fold higher than background are
represented in red, and the 33 strains exhibiting expression less than 29-5-fold
higher than background are represented in grey. The blue boxes indicate the
distribution of the flow cytometry-detectable factors from Newman et al.23, as
quantified by our microscopy method.
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Figure 2.5 Assaying feedback in YNB. (a) The measured expression ratios
between wild-type and hemizygote and overexpression and wild-type are plotted on
the x and y axes, respectively. Each dot represents one of 62 strains. Red dots
indicate negative feedback and the blue dot indicates positive feedback. (b)
Correlation between replicate measurements. Expression values of each pair-wise
combination of 3 replicates were plotted. r? value was calculated using the cor
function in R. Axes are in arbitrary fluorescence units. (c) Cin5-GFP expression in
cells transferred from rich media to minimal media. (d) CIN5-GFP strains
illustrating reproducibility of CIN5 positive feedback effects. (e & f) Selected results
from biological triplicate measurements. Expression effects for WTM2 and YAP5
strains exhibit negative and positive feedback respectively, though neither of these
effects was detected in single replicate experiments. Genes in f exhibited feedback
in single replicate experiments. Single replicate experiments were generally
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recapitulated in triplicate experiments. Asterisks indicate effects that are significant
at Wilcoxon p < 0.1.
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Figure 2.6 Assaying feedback in rich media. (a) Distribution of fluorescence
levels for all factors tested in rich media. Color labeling as in 2.4. Here, there are 36
strains exhibiting expression at least 20->-fold higher than background, and 19
strains exhibiting expression less than 209-5-fold higher than background. (b)
Expression ratios between strains of differing gene dose as in 2.5a. (c) Plot
illustrating replicate measurement correlations as in 2.5b. (d) Triplicate
measurements of genes that showed feedback in single replicate measurements. (e)
SUT1 exhibited negative feedback in biological triplicate experiments, though this
effect was not present in single replicate experiments.
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Genes subject to feedback
Single replicate feedback assays
effect size = 202
FDR 0.013

Not subject to feedback
Triplicate feedback assays
Nominal p < 0.1
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Triplicate feedback assays
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DIG1
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Genes subject to feedback
Single replicate feedback assays
effect size = 202
FDR 0.013

Not subject to feedback
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Nominal p <0.1
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ARGS80
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Figure 2.7 Overlap between single replicate and triplicate feedback assays.
Genes in the center circles were determined to be subject to feedback by single
biological replicate measurements performed in minimal media (a) and rich media
(b). Genes in the left and right circles were classified as either exhibiting or not
exhibiting feedback, based on biological triplicate experiments performed in the
respective media.
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Figure 2.8 Feedback on factors transmitting information from metabolite
sensors to biosynthesis pathways. Left: HAP1 encodes a transcription factor that
directly senses/binds heme*3 and activates ROX1 in the presence of heme#4. ROX1
represses HEM1345, the gene encoding a rate-limiting step in heme biosynthesis*®.
Center: OPI1 encodes a transcriptional regulator that senses the signaling molecule
phosphatidic acid. Phosphatidic acid on the endoplasmic reticulum binds the
transcriptional repressor Opil, thereby excluding it from the nucleus. When in the
nucleus, Opil represses the INO2/4 complex. Ino2/4 is an activator of INO1, which
codes for the rate-limiting enzyme in inositol synthesis4’. Right: The arginine-
repressed ArgR-Mcm1 complex, composed of Arg80, Arg81, Arg82, and Mcm1,
activates*8 transcription of ARG14° and ARG359%, which may be the rate-limiting steps
in arginine biosynthesis.
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Detected in Newman et al.

YDRO49W
YPROO8W
YHLOOSC
YHLO20C
YMRO70W
YKLO32C
YOR229W
YPRO65W
YERO68W
YOR230W
YML113W
YGLO35C
YPLO49C
YLR113W
YJRO60W
YBR267W
YOR298C-A
YOLO67C
YBLO21C

Table 2.2 continues on
following page

Detected YNB

YHLOOSC
YHLO20C
YMRO70W
YKLO32C
YOR229W
YPRO65W
YERO68W
YOR230W
YML113W
YGLO35C
YPLO49C
YLR113W
YJRO60W
YBR267W
YOR298C-A
YOLO67C
YBLO21C
YIRO18W
YDR207C
YMRO75W
YMLO81W
YDROOSW
YOLO89C
YGRO40W
YGL162W
YKRO99W
YDR216W
YIRO23W
YLR228C
YIL101C
YDR463W
YER169W
YFLO44C
YJR147W
YPL177C
YOL028C
YDLO56W
YNL167C

Detected Gal

YHLO20C
YMRO70W
YKLO32C
YOR229W
YPRO65W
(not tested)
YOR230W
YML113W
YGLO35C
YPLO49C
YLR113W
YJRO60W
(not tested)
(not tested)
YOL067C
YBLO21C

YDR207C
YMRO75W

(not tested)

YGRO40W
YGL162W

(not tested)
YIRO23W
YLR228C
YIL101C
(not tested)
YER169W

YJR147W
YPL177C
YOL028C
YDLO56W
YNL167C
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YDR026C
YFLO21W
YKLO15W
YOL116W
YDR213W
YGL254W
YOR358W
YBR150C
YOR162C
YHR206W
YMLO51W
YJL110C
YDR451C
YORO028C
YMR182C
YBRO83W
YDR0O43C
YIR017C
YMRO42W
YOR113W
YOL108C
YDR123C
YER111C
YHROO6W

(not tested)
YDR213W

YOR358W

YMLO51W
YJL110C
YDR451C
YORO028C

YMRO42W
YOR113W
YOL108C

YHROO6W

Table 2.2 Genes detected by microscopy compared with previous study.

30



YNB (62 genes)

Ratio cutoff (X in legend) 0.25 0.2 0.15 0.1
Genes above cutoff INO2 INO2 INO2 INO2
NRG1 NRG1 NRG1 NRG1

ROX1 ROX1 ROX1 ROX1

MOT2 MOT2 MOT2 MOT2

RTG1 RTG1 RTG1 RTG1

ARG80 ARG80 ARG80 ARG80

DAT1 DAT1 DAT1 DAT1

SWi4 SWi4 SWi4 SWi4

CINS CINS CINS

MOT3 MOT3 MOT3

HOG1 HOG1

DIG1 DIG1

OPI1 OPI1

HAPS HAPS

OoTU1

GZF3

YDR026C

UME6

YAPS

MBP1

YAP3

RGM1

Number of genes called 8 10 14 22
Expected by chance 0 1 2 6
FDR 0.005 0.013 0.031 0.09

Table 2.3 Feedback results for single replicate measurements in YNB media.
All genes for which expression ratios between both hemizygote and wild-type and
wild-type and over-expression exceeded 2X show evidence for negative feedback
and are in red. Genes for which expression ratios are both less than 2-X show
evidence for positive feedback and are in blue.



Galactose (36 genes)

Ratio cutoff 0.25
Genes above cutoff MOT3
ROX1

MBP1

OPI1

Number of genes called 4
Expected by chance 0
FDR 0.0003

0.2
MOT3
ROX1
MBP1
OPI1
WTM2
DAL81
UME6

0.012

Table 2.4 Feedback results in rich media.

0.15
MOT3
ROX1
MBP1
OPI1
WTM2
DAL81
UME6
KSS1

0.032

0.1
MOT3
ROX1
MBP1
OPI1
WTM2
DAL81
UME6
KSS1
AZF1
HAP5
IXR1
11

0.074
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Chapter 3

Negative feedback confers mutational robustness in yeast transcription factor
regulation
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Introduction

Robustness of organismal function in the face of perturbations is critical for
fitness. Since the seminal work of Waddington?, biologists have remarked on the
stability of phenotypes against environmental and genetic variation, and
understanding how organisms achieve robustness remains one of the major
challenges in systems biology?-4. Much of the search for molecular mechanisms of
robustness has focused on gene regulation. Characteristics of regulatory networks
that confer robustness include pathway redundancy and master regulatory
organization®, phenotypic capacitors®-8, paired activating and inhibiting input, and
cooperative and feed-forward regulation®. Additionally, negative regulatory
feedback, in which a biomolecule represses its own abundance, can buffer variation
in gene expression1011, and negative feedback loops have been shown to underlie
robustness to variable environmental conditions and to stochastic intracellular
changel?-14, Negative feedback may also confer network stability against the effects
of mutations315, but evidence for negative feedback as a driver of mutational
robustness in vivo has been at a premium?16; the relevance of this principle to
natural genetic variation remains largely unknown.

In this work, we focused on negative feedback in yeast hypoxia regulation,
motivated by the extensive evidence for feedback in oxygen response pathways
across biologyl”. We characterized the feedback loop at the yeast hypoxia regulator
ROX1 in molecular detail, and we harnessed this system as a test bed to study how
feedback confers stability against naturally occurring mutations. Given the
precedent for negative feedback as a determinant of quantitative behaviors of
inducible circuits!8-22, we also investigated the role of Rox1 feedback in expression
regulation during oxygen response.
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Results

We set out to establish a tractable model system for the study of feedback
and robustness using yeast transcription factors. For this purpose, we first screened
transcription factor genes for feedback on protein abundance. We used fluorescence
microscopy?3 to measure protein expression from a single genomic copy of each
factor tagged with GFP in a diploid strain?4, while varying levels of an untagged copy
of the factor (Figure 3.1a). To maximize signal to noise, we analyzed the 23 most
highly abundant factors in rich medium (Table 3.1), and found evidence for negative
feedback in four cases (Figure 3.1b). As expected2425, these screen hits included
Rox1 and Swi4; we also found as yet uncharacterized feedback loops by Mbp1 and
Mot3. Independent replicate experiments confirmed the ability of each factor to
repress its own abundance (Figure 3.1c).

To investigate the role of feedback in mutational robustness and systems-
level network behaviors, we focused on the transcription factor Rox1. This master
regulator is repressed in hypoxic conditions and induced under normoxia to
regulate biosynthetic pathways that use molecular oxygen as a substrate?26.
Anticipating that Rox1 would act directly at the ROX1 promoter24, we identified four
candidate Rox1 binding sites in the 500 bp upstream of the ROX1 coding start site
(Figure 3.2). Mutagenesis confirmed the role of these sites in ROX1 feedback, with
each site contributing incrementally to the strength of auto-regulation in a ROX1
transcriptional reporter (Figure 3.3). Promoter response to changes in dose of ROX1
was markedly reduced when all four sites were mutated in combination, indicating a
near-complete abrogation of feedback (Figure 3.3). We used these mutations to
engineer a version of ROX1 in which the feedback-mutant promoter drove
expression of Rox1 fused to GFP; to avoid potentially confounding effects from
elevated Rox1-GFP steady-state levels in the presence of the feedback mutations, we
manipulated the usage of optimal codons?7 in the ROX1-GFP coding region. The
suboptimized sequence, in conjunction with mutated Rox1 binding sites in the ROX1
promoter, gave rise to steady-state expression levels comparable to those of the
wild-type (Figure 3.4). In what follows, we refer to this version of ROX1 as the
suboptimized feedback mutant; a strain harboring this gene grew indistinguishably
from the wild-type across environmental conditions (Figure 3.5).

To analyze the role of feedback during ROX1 induction, we grew wild-type
and feedback-mutant strains under hypoxic conditions and measured Rox1-GFP
expression upon oxygenation. For the feedback-mutant promoter driving
expression of a wild-type reporter, levels during induction far overshot the steady
state of the wild-type (Figure 3.6). Such elevated expression was toxic to cells, as
this strain displayed growth defects under a variety of environmental conditions
(Figure 3.5). As expected, in the suboptimized feedback mutant, protein levels
reached those of the wild-type at steady state but with slower kinetics, owing to the
reduced translation efficiency of the reporter construct (Figure 3.6). We conclude
that the ROX1 locus harbors regulatory information encoding strong activation
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upon oxygenation. In wild-type cells, repression by Rox1 serves as a brake on this
induction signal, avoiding the deleterious effects of elevated expression. Thus, the
feedback loop tunes the kinetics of ROX1 induction, enabling a rapid approach to a
moderate level of steady-state expression during the transition from hypoxia to
normoxia.

We next sought to evaluate Rox1 feedback as a mechanism for robustness of
gene expression to naturally occurring genetic variation. For this purpose, we
developed an assay to interrogate the effects on ROX1 expression of the spectrum of
variants present in a set of divergent yeast strains of environmental and laboratory
origin. For each such tester strain, we crossed it to a laboratory strain bearing the
wild-type ROX1-GFP reporter, and we performed an analogous cross using the
suboptimized feedback mutant. Haploid recombinant progeny, each a mosaic of
inheritance from the tester parent and the laboratory parent, served as a panel of
genetically distinct strains among which Rox1 expression could vary. For a given
cross, we measured the median Rox1-GFP levels in a culture of each progeny strain.
The results, shown in Figure 3.7, revealed deviation in Rox1-GFP abundance of up to
eight-fold across strain cultures, reflecting the impact of naturally occurring genetic
variation on Rox1 expression. Eliminating feedback compromised robustness to
these variants, with a wide spread of median Rox1-GFP levels across genetic
backgrounds in feedback-mutant strains relative to wild-type; the coefficient of
variation across strains was 2 to 5-fold higher in the presence of the feedback
mutation (Figure 3.7). Control experiments ruled out codon suboptimization as a
predominant cause of this effect (Figure 3.8). Interestingly, the extent of expression
variation across recombinant progeny was a function of the tester strain parent,
indicating that some testers harbored alleles with more dramatic consequences for
Rox1-GFP expression than others (Figure 3.7). We conclude that Rox1 auto-
repression buffers the effects of natural genetic variation on ROX1 expression,
establishing regulatory feedback as a determinant of mutational robustness in this
system.

We hypothesized that the ability to buffer gene expression could be a driver
of the prevalence of feedback circuits across yeast transcription factors. In
particular, we reasoned that evolutionary pressures for buffering expression levels,
and thus for feedback, would be strongest among factors for which deviations from
homeostatic expression levels gives rise to fitness defects. In the case of Rox1, both
increases and decreases in dosage were toxic to yeast cells (Figure 3.5). To test the
relationship between expression homeostasis and feedback more generally, we used
growth rates of yeast strains manipulated to overexpress each transcription factor
in turn28. We first integrated these data with the results of our reporter-based
screen for feedback among transcription factors (Figure 3.1). Conforming to our
model, upon overexpression, factors subject to feedback conferred a fitness defect
~70% more severe than factors with no evidence for feedback (Wilcoxon p = 0.02;
Figure 3.9a). We next sought to expand our analysis beyond the transcription
factors detectable in our experimental screen. For this purpose, we used a
bioinformatic approach, described in Materials and Methods, to predict instances of
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direct transcriptional feedback by transcription factors based on the presence of
their binding sites in promoters of their own encoding genes. Even using this
unvalidated set of feedback inferences, evidence for auto-regulation was again
associated with overexpression toxicity, albeit to a less dramatic extent: toxicity
effects were 13% more severe for factors with inferred feedback relative to the
remainder of the set (Wilcoxon p = 0.04; Figure 3.9b). To address the possibility that
computationally predicted binding sites were better specified for factors with
stronger overexpression toxicity, we tested the relationship between
overexpression growth rate for a factor and the number of its predicted targets
genome-wide and found no effect (regression p = 0.2). Taken together, our results
highlight feedback by transcription factors as a correlate of the toxic effects of
overexpression, lending credence to the notion that many such feedback loops
function in vivo as a control against misregulation.
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Discussion

Landmark studies have identified negative feedback loops that tune the
quantitative properties of gene circuits18-2229, Negative feedback has also been
implicated in the robustness of gene networks to environmental and stochastic
changel2-14, but the role of native feedback circuits as buffers against natural genetic
variation has remained unknown. Addressing the question requires detailed
molecular analysis of feedback regulation and its impact across genetically
heterogeneous populations, for which we have established an experimental
paradigm using yeast Rox1 as a model system.

Rox1 regulates the expression of genes involved in oxygen-dependent sterol-
biogenesis and respiratory pathways. We have shown that cell growth is remarkably
sensitive to changes in this activity even in normoxic conditions, with
overexpression and deletion of Rox1 each conferring distinct defects. Consistent
with a requirement for tight regulatory control of Rox1, our analysis has revealed
two related ways in which Rox1 feedback limits deviations from steady-state
expression optima. In a constant genetic background, negative feedback enables
rapid ROX1 activation during oxygen exposure, minimizing the time spent in
intermediate expression states and avoiding toxic effects of overexpression in a
manner that dovetails with similar roles for auto-repression in other networks10.30,
Additionally, across genetic backgrounds, Rox1 feedback serves as a buffer against
the perturbations arising from naturally occurring sequence changes. A primary
implication of our findings is thus that the Rox1 negative feedback circuit is tuned to
respond quantitatively to subtle up- and down-regulating effects of natural genetic
variation as well as to dramatic shifts in regulatory input when conditions change.
In each case, trans-acting input which upregulates ROX1 would be counterbalanced
by increased Rox1 occupancy and repression at its own encoding locus, and input
which represses ROX1 would be counterbalanced by a reduction in Rox1 occupancy
atits own gene.

Will regulatory feedback prove to underlie mutational robustness as a
general mechanism across biology? Pathway-level feedback is common in yeast: in
many cases, the network can detect the perturbation of an artificially introduced
genetic lesion and upregulate functionally related genes to compensatel6. Whether
gene-level feedback will be of similar importance for robustness on a genomic scale
depends in part on the prevalence of auto-regulation in gene networks. Most highly
expressed genes in yeast are not subject to complete dosage compensation when
mutated3?, but feedback at the gene level may be particularly common among
transcription factors3233. In light of our evidence that feedback may serve to
constrain the deleterious effects of misregulation among transcription factors, a
model invoking especially strong pressures for such feedback control would be
consistent with the extreme overexpression toxicity observed across transcription
factors in yeast?8. The emerging picture is one in which both gene- and pathway-
level feedback, at transcription factor genes and elsewhere in the yeast network,
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may be key elements of the architecture that mediates buffering of genetic change.
Understanding which gene circuits are buffered, and how, will be of critical interest
in the effort to interpret the extent and phenotypic penetrance of regulatory
variation34-37, and the evolution of robustness mechanisms!538, Addressing these
questions, and application of the emergent principles to bioengineering3°® and
human disease treatment*%-42, will serve as continued motivation for the study of
feedback and robustness in regulatory circuits.

Has feedback at ROX1 likely been selected for robustness to natural genetic
variation or by another selective pressure? Previous work suggests that the
circumstances in which mutational robustness is a direct target of selection are
limited#3. In particular, evolution of mutational robustness is constrained to
organisms with high mutation rates and large population sizes. Recent work
suggests that outcrossing in S. cerevisiae occurs only once every 50,000
generations#4, and estimates of heterozygosity in wild populations have confirmed
that outcrossing is rare compared to inbreeding and asexual reproduction*>. Both
these observations argue that S. cerevisiae has a small effective population size, and
it is therefore unlikely that mutational robustness is under direct selection.
However, these observations do not preclude the possibility that feedback plays an
important role in shaping genome evolution.
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Materials and Methods

Yeast strain construction. For each of 67 yeast transcription factors (Table 3.1),
strains bearing one copy of a GFP protein fusion of the respective factor gene#¢
(Invitrogen) were mated to strains deleted for the respective gene #7(Invitrogen)
and imaged by microscopy as described below. For the 23 factors of highest
abundance (nuclear fluorescence >30000 in arbitrary units; Table 3.1), GFP-tagged
haploid strains were then mated to strains bearing URA3-marked plasmids
encoding each open reading frame under the GAL1,10 promoter48 for the complete
screen as shown in Figure 3.1. All plasmid transformations and yeast cell matings
were performed by standard techniques*°.

ROX1 knockout strains were generated by replacing the endogenous ROX1 gene and
the upstream 467 bp with a URA3 cassette>? or kanamycin resisance cassettesl. To
generate constructs for transcriptional reporters, a portion of the ROX1 promoter
was amplified from yeast genomic DNA and fused to CFP (Addgene) flanked by a
kanamycin resistance cassette>! via ligation-independent cloning (LIC)52. To
generate constructs for protein-fusion reporters with wild-type coding sequences,
the ROX1 promoter and coding sequence were amplified from yeast genomic DNA
and fused to GFP (Addgene) flanked by a kanamycin resistance cassette>! via LIC.
To generate constructs for protein-fusion reporters with suboptimized codons, we
first generated each coding sequence separately; sequences are provided in Figure
3.10. A suboptimized ROX1 sequence was synthesized and incorporated into a
cloning vector (GeneOracle). We also generated by PCR a fusion of commercial
oligonucleotides (IDT) corresponding to suboptimized GFP regions with
overlapping ends and ends containing LIC sites; the fused product was introduced
into a LIC vector. For reporter fusions bearing wild-type ROX1 and suboptimized
GFP, we then used primers containing LIC sites to amplify two regions with
overlapping ends, one containing the wild-type ROX1 promoter and ROX1 coding
sequence, and the other containing suboptimized GFP; we generated a fusion of
these regions by PCR and introduced the resulting construct into a LIC vector. For
reporter fusions bearing suboptimized ROX1 and suboptimized GFP, we used
primers containing LIC sites to amplify three regions with overlapping ends: one
containing the wild-type ROX1 promoter, a second containing the ROX1 coding
sequence, and a third containing suboptimized GFP. We fused these regions into
one combined fragment and cloned as above. Yeast strains bearing each reporter
were ultimately generated by transforming ROX1::URA3 strains with PCR-amplified
construct products. Integrants were selected by growing on YPD media
supplemented with 300ug/ml G418 (Cellgro).

To generate feedback mutant strains, Rox1 binding sites in the ROX1 promoter were
identified as perfect matches to the Rox1 consensus sequence>3. Site-directed
mutagenesis of these sites on cloned promoter constructs was performed with
QuikChange II XL Site-Directed Mutagenesis Kit (Stratagene). Sanger sequencing
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confirmed DNA sequences of the resulting constructs and ROX1::URA3 strains were
transformed with PCR products and selected for integration as above.

ROX1::CFP strains were generated in the S288c background. The background of
ROX1-GFP strains was as follows. The W303 derivative JRY23345* was mated to a
HEM1D DY150 derivative®5, kind gifts from J. Rine and ]. Kaplan, respectively, and a
haploid recombinant wild-type for HEM1 was isolated from the progeny. This
recombinant was then crossed to BY4742 (Open Biosystems), and a haploid
recombinant bearing the W303 allele of HAP1 rather than the S288C allele>¢ was
isolated.

Analysis of genetic variation. Crosses for analysis of genetic variation were
generated by mating ROX1-GFP strains with BY4741 (Open Biosystems); SK157;
YPS60657; and 22:3:b58. In the case of YPS606 and SK1, HO was replaced with URA3
by cloning and transformation as above. For each cross, hybrid diploids were
sporulated on solid minimal sporulation medium#?, haploids were isolated by spore
enrichment>?, and 60-90 GFP+ recombinants were selected by growth on YPD
medium#° supplemented with G418. To compare the variances of the feedback
mutant and wild-type distributions for a given cross, we first calculated the F
statistic for differential variance using the var.test function in R (www.r-
project.org). We then permuted mutant and wild-type strain expression values
10,000 times, repeated the F calculation for each permuted data set, and evaluated
the statistic from the real data against this null distribution to yield a one-sided
empirical p-value.

Feedback assays. For the feedback screen, one culture of each yeast strain was
inoculated into CSM -uracil media (MP Biomedicals) with 2% raffinose and grown
in 2ml 96-well plates at 30°C with shaking to saturation. Strains were back-diluted
into CSM -uracil media with 2% galactose to an optical density of 0.1. Strains were
imaged after ~6 hours of growth, having reached optical density 0.5-1.0. Upon
preparation of 96-well plates (see below), 100 pl of cell suspension was added to
each well and allowed to settle and bind for 30 minutes before imaging as described
below. In the screen, only transcription factors with putative feedback effects
consistent between overexpression and deletion assays were considered for further
study (Figure 3.11). For confirmation of screen hits in Figure 3.1c, three
independent cultures of each strain were grown and prepared for imaging as above.

Hypoxia time course. For induction experiments, a culture of each yeast strain was
grown in CSM with 2% galactose, back-diluted into deoxygenated media at OD
0.002, and grown for 40 hours at 30°C in a 16 x 125mm Hungate tube with septum
stopper and screw cap (Bellco). From each culture, a 10-mL aliquot was spun down
and cells were resuspended in 200 pL oxygenated media; 100ul was added to
concanavalin-treated glass bottom plate wells and allowed to settle for 1-5 minutes,
before imaging as described below, at timepoints as indicated in Figure 3.6. To
deoxygenate media, 10mL was added to a stoppered tube and boiled for 5 minutes
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with a syringe through the stopper. After boiling, the syringe was removed, and
each tube of media was cooled to < 50°C and purged with No.

Fluorescence microscopy. 96-well glass bottom plates (Falcon) were coated with
100 pl of a 100 pg/ml solution of concanavalin A type V (Sigma-Aldrich), incubated
1 hour at room temperature and then washed three times with water. Wells were
then washed and resuspended with media immediately before imaging. For imaging,
we used a 60X PlanApo objective (N.A.=1.4) under oil immersion in a Nikon TE2000
inverted microscope equipped with a mercury lamp, a motorized stage and 512BFT
MicroMax cooled CCD camera (Photometrix, Tucson, AZ). We imaged 3-6
observation fields per strain, with each field containing ~100 cells. For each field we
acquired a 0.5-second GFP exposure and a defocused bright field image for cell
identification and boundary determination, using Metamorph 7.0 software
(Universal Imaging Corporation, Downingtown, PA). Using Cell-ID 1.023, for each
cell, we estimated nuclear fluorescence by calculating average pixel intensity in the
area of 3-pixel radius around the brightest point. We estimated cytoplasmic
fluorescence by calculating the average intensity of pixels immediately inside the
cell’s edge. We then calculated normalized nuclear fluorescence by subtracting the
estimated cytoplasmic fluorescence from the estimated nuclear fluorescence.

Flow cytometry. Three independent cultures of each strain were grown in CSM
with 2% galactose media to saturation, and were back-diluted to OD 0.1 6-8 hours
prior to measurement. Fluorescence measurements of ~10,000 cells/sample were
acquired with an LSRFortesa (BD Biosciences) and analyzed in R with the flowCore
package (www.bioconductor.org). A given strain was eliminated from analysis if the
majority of side scatter values across cells in its culture sample did not fall within a
range typical of a non-flocculent lab strain growing at log phase. The median
background fluorescence from cells of a strain bearing no GFP gene was subtracted
from the median across cells of each culture of interest.

Growth condition screen. Strains were grown overnight in CSM with 2% glucose at
30°C. 1:10 serial dilutions were performed in microtiter plates. Dilutions were
transferred to plates using a multipronged inoculating device (frogger). Plate media
were CSM with one of the following added: 2% glucose, 2% galactose, 3% glycerol,
or 3.2% ethanol; 2% glucose with 20 ug/mL fluoconazole (Sigma-Aldrich); or YPD4.

Bioinformatic predictions of feedback. Sequences corresponding to the 1000
base-pairs upstream of coding start for each of 5922 yeast genes were downloaded
from®0. Position weight matrices to score binding preferences for each yeast
transcription factor were downloaded from
http://fraenkel.mit.edu/Harbison/release_v24 /final_set/Final_InTableS2_v24.motif
s61. We used MCAST (http://meme.sdsc.edu/meme) to predict binding to each
upstream sequence for each factor, and we retained for analysis all matrix matches
with -log2(p/0.0005) > 3.45, where the p-value estimates the significance of
predicted binding, calculated with respect to a background model generated from
the complete set of nucleotide frequencies in all yeast upstream sequences®2.
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Figure 3.1 Screening yeast transcription factors for regulatory feedback. (a)
Each panel represents one schematized yeast strain. Green rectangles indicate the
coding sequence of Green Fluorescent Protein (GFP), and the oval at right
represents a plasmid carrying an overexpression construct controlled by the GAL1-
10 promoter48. A, whole-gene deletion. (b) Each data point represents the results of
two analyses of nuclear abundance of a transcription factor fused to GFP4¢,
measured via quantitative microscopy in a diploid strain. Each analysis, as indicated
on the x or y axis, compared fluorescence from a given tagged factor in two strains
encoding different doses of the untagged version of the factor, with strains named
according to the schematic in (a). (c) Each set of bars reports nuclear fluorescence
measurements of the indicated factor as a fusion with GFP, measured via
quantitative microscopy and normalized with respect to wild-type levels. Each bar
reports measurements from one strain, with names as in (a); error bars represent
the standard deviation over biological replicates and microscope fields. Asterisks
represent comparisons relative to wild-type which are significant at Wilcoxon p <
0.001.
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GGAGAGCTCT

TAACTTTAAG

GGGAATTACT

GATTGCTGAC

Site 3

ATTGTCTTGC

TTGCTATTAT

TTTTTTTTCG

GAAGTTTTAC

TTTATAATTT

CATTATTCCA

ATG

TTAATTAAGC GGCCGCCCTG CAGGACTCGA

AAGGAGATAT AGATCTTGGC CTGTCGAGGT

Site 1
ATGCAAAACA ATTGGAAATC TGGTAGGAAA

AAAGAAGAAA

CGGTGTTCTT

ATTTTCTTCG

CTCTTGCATT

TTAAATATAG

TCGCATATAA

GAAAATACTA

Site
AGGGCCTATT

TGTGTCTTTT

TTTTCACTTT

TTCCTTTTCT

CACTATTTTC

TTATACATTT

ATACTTCTTC

éTTGCTGCCT
GTGTGTAGGT
GCGTAATGTA
GCTCTATCTT
CAGTTTTAAT
ACGGTGTCTT

ACACAAAAGA

GTTCTAGAAA TAATTTTGTT

ATCGGCCGCG TGGAACTACC

ACCTTGTTCT AGAACTTGGC

CTTTTGTTGT TCTTCCTCGT

TCTTACTATT ATAGTGCTCT

ACGGTCTTAA ACAAAGTTTT

Site 4

ATTTGCTAAT TGTAGTTTCA

GTTTCTTCTC ATTGCTTTCT

AACTCTCCCT CTTCACCCCT

ACGCAGTTAG ACAATCAACA

Figure 3.2 Predicted binding sites for the Rox1 protein in the ROX1 promoter.
Shown is the yeast genome sequence between the ROX1 start codon (bold) and 600
base pairs upstream; predicted Rox1 binding sites are in yellow.
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Figure 3.3. Transcription factor binding sites in the ROX1 promoter are
required for transcriptional feedback. Each set of bars reports expression from
one ROX1 transcriptional reporter in a diploid yeast strain, measured by flow
cytometry. Shading represents the presence or absence of a single untagged copy of
ROX1 in the strain background. Each set of bars labeled with “Site” corresponds to a
reporter with the indicated Rox1 binding sites (Figure 3.2) mutagenized in the ROX1
promoter; “4site” indicates mutagenesis of all four sites. CFP, cyan fluorescent
protein. A, whole-gene deletion of ROX1.

47



o _
_
~ ——
G.)
2
T} .
(@)
(7))
]
- O P S
O «
>
= —
— — 1
v o | —1—
o - ——
o 4
a o o 9 9a
I I e I e I
G g g o
> S .
o 9 <9 O
x X X
S o £
S % <«
mm
LS
<

Figure 3.4 Suboptimized ROX1 expression reporters. Each bar reports
expression from a ROX1-GFP fusion reporter in a haploid yeast strain. Each bar
labeled with “so” corresponds to a reporter construct with the indicated sequence
component encoded with suboptimized codons; bars labeled with “4s” correspond
to reporters where the four Rox1 binding sites in the ROX1 promoter are
mutagenized as in Figure 3.3. “4s-soROX1-soGFP” corresponds to the suboptimized
feedback mutant in Figures 3.6 and 3.7, and “4s-ROX1-GFP” corresponds to the
feedback mutant with wild-type ROX1 and GFP sequences in Figure 3.6.
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Figure 3.5 Perturbing ROX1 expression affects yeast growth. Each panel
reports a comparison of growth across yeast strains in one environmental medium.
Each row represents a haploid strain with a ROX1-GFP fusion bearing the indicated
modifications, grown from inocula of varying densities; naming is as in Figure 3.4.
D, whole-gene deletion.
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Figure 3.6 The ROX1 locus confers strong induction during oxygen exposure.
Each set of points reports fluorescence of a haploid yeast strain bearing a ROX1-GFP
fusion reporter gene, measured by quantitative microscopy after a transfer of a
culture from hypoxia to normoxia. Each data point represents median nuclear
fluorescence across cells of one culture at the indicated time after oxygenation. Each
color represents one reporter: “FB mutant” indicates a feedback mutant ROX1
promoter with all four Rox1 binding sites mutagenized, and “subopt” indicates that
the ROX1 and GFP sequences were encoded with suboptimized codons. WT, wild-

type.
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Figure 3.7. Rox1 feedback as a mechanism for mutational robustness. Each
distribution in each panel shows ROX1 expression levels in haploid segregants from
crosses between a Rox1-GFP strain and a tester strain: 60-90 recombinant strains
from each cross were grown to log phase, flow cytometry was performed to
determine expression levels for ~30,000 cells in each culture, and the median
expression level of each culture was calculated. Each distribution is a probability
density function of normalized median expression levels for 60-90 strains. We used
a probability density function—where the y-axis is rescaled so the total area under
the curve is equal to 1—instead of a frequency distribution for the purpose of
comparing two distributions with different sample number. In other words, if the
two distributions had the exact same number of strains (i.e. both represented
median expression levels of 90 strains), a frequency histogram would look identical
to the probability density functions, with the y-axis rescaled. Each color represents
strains bearing a ROX1-GFP fusion with the indicated modification: “No feedback”
indicates the suboptimized feedback mutant (Figures 3.3, 3.4, and 3.6). WT, wild-
type. p, resampling p-value evaluating the F statistic for differential variance
between the feedback mutant and wild-type distributions. Coefficients of variation
of distributions of wild-type and feedback-mutant strains are 0.01 and 0.07,
respectively, for the BY4741 cross; 0.07 and 0.31 for YPS606; 0.26 and 0.75 for SK1;
and 0.10 and 0.18 for 22:3:b. BY4741, is a laboratory strain derived from a fig tree
isolate; YPS606, an isolate from an oak tree>’; SK1, a laboratory strain derived from
a soil isolate57; and 22:3:b, a strain of hybrid laboratory and vineyard origins.
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Figure 3.8 Eliminating feedback in an otherwise wild-type Rox1 reporter
compromises mutational robustness. Data are as in Figure 3.7, except that “No

feedback” indicates a ROX1-GFP reporter construct in whose promoter all four Rox1
binding sites are mutagenized, and whose coding sequence bears wild-type codons

(Figures 3.3, 3.4 and 3.6).
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Figure 3.9 Transcription factors subject to feedback are toxic when
overexpressed. Each panel represents analysis of growth rates across a panel of
yeast strains, each overexpressing a single transcription factor?8. Each distribution
represents growth rates across the set of genes with or without evidence for
feedback as indicated. The x-axis reports growth rate in doublings/hour. (A) Red
represents factors emerging as screen hits in Figure 3.1; blue reports all other
screened factors (n = 22). Distribution medians are 0.29 and 0.17, respectively. (B)
Red represents factors with significant sequence matches to their own binding motif
in their own promoters; blue reports all other tested factors (n = 83). Distribution
medians are 0.27 and 0.24, respectively. p, Wilcoxon p-value evaluating the
difference in growth rates between factors with and without evidence for feedback.
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Figure 3.10 Suboptimized ROX1-GFP sequence. Lowercase letters represent

ATGaacccga
cggCAGCACT
cacaactcgA
AAGgcgCACT
gagTACaagT
GAGCAACAGC
ctccagCAGe
tcgtcgTCGG
ctcccgatcece
ccgctcACGe
atcccgtacT
caggcgcagc
AACtcgtcgce
ccgGGGaagT
ATCAACaact
ctcgacCAGT
CACacgcggA
ccgAACcagA
aagacgtcgce
gaggagctcT
CACaagttct
aagttcatct
acgtacgggg
AAGtcggcgA
AACTACAAGa
ctcaagggga
tacAACtcgC
TTCaagatcc
aacacgccga
tcggcgetcet
acggcggcegg

agtcgtcgac
ACCACcggAT
ACatctcgaa
GGgagaacct
ACAAGCCGgt
AGCAGCAACA
cgttcAACAA
TGtcgtcgTC
cgtcggtgaa
acgacAAGAC
ACtcggcgcce
CgcgggcghAA
agacgCCGgt
TCtcgtcgtc
cgaaccagta
ACCAGCAGct
ACaacctcct
ACatcccgcet
tcgtgtcgCC
TCacgggggt
cggtgtcggg
gcacgacggg
tgcagtgctt
TGccggaggyg
cgcgggcgga
tcgacttcaa
ACaacgtgTA
ggCACAACat
tcggggacgg
cgaaggaccc
ggatcacgca

gccgAAGatce
CctcatcGAC
gatcatcggg
cGCGGAGAAG
gcggAAGtcg
ACAGaaggag
Caacatcgtg
GAACtcgtac
cacgtcgAAC
GgcgcggGAC
gCACGACccg
CTCGacgccg
gacgACTACT
gCCGAACtcg
cctccecgecg
cAAGCAGATG
ctcgacgacg
ccaccagatc
GaagGGTGAC
ggtgccgatc
ggagggggag
gaagctcccg
ctcgcggTAC
gtacgtgcag
ggtgAAGttc
ggaggacggg
CATCATGgcg
cgaggacggg
gccggtgcetce
gAACgagAAG
cgggATGgac

ccgcggccgA
gagTGGacgg
ACGAAGTGGA
GAGaagctcg
AAGAAGAAGCc
CAGCAGCAGC
ctcATGaagc
CAGTTCcagc
tacATGgtgt
ctcccgCAGe
tcgACGcggce
cagctccegt
accacgtcgA
tcggtgcectceG
ccgctectcece
gggccgacgt
acgccgACGe
atcAACtcgt
GGTGCTGGTt
ctcgtggagce
ggggacgcga
gtgccgTGGe
ccggaccacA
gagcggacga
gagggggaca
AACatcctcg
GACaagcagA
tcggtgcagc
ctcccgGACA
CcggGACCACA
gagctcTACa

AGAACgcgtt
cacaggggGT
AGgggctcca
agcacgagcg
agctcctcct
AGaagCAGtc
gggcgcactc
tcAACaacga
cgcggtcget
tctcgtcgea
accacTACCT
tcatctegtce
CTacgacgGC
AGAACAACcg
cgtcgctcca
acatcgtgaa
accacCACat
cgAACacgGA
taATTAACAT
tcgacgggga
cgTACgggaa
cgacgctcgt
TGaagcagca
tcttcTTCaa
cgctcgtgaa
ggCACaagct
AGaacgggAT
tcgcgGACca
ACcacTACct
TGgtgctcct
agTAA

catcctcTTC
Ggagatcccg
gCCGgaggac
gAAGtacccg
cAAGgagATC
gcagCCGcag
gctctcgeccg
cctcAAGegg
ctcggggcecte
gctcaactcg
CAACgtggcg
gatcATCAAC
Gacgtcgtcg
gctcAACtcg
ggacttccag
gccgctcteg
cccgcacatce
Ggtgacggcg
Gtcgaagggg
cgtgaacggg
gctcacgctc
gacgacgctc
CGACttcTTC
ggacGACggg
ccggATCgag
cgagTACAAC
CaaggtgAAC
ctaccagcag
ctcgacgcag

cgagttcgtg

codons that have been modified from the wild-type sequence to a codon
corresponding to a lower codon index value?’. Uppercase letters represent

unchanged codons. Uppercase italicized letters represent optimal non-wild-type
codons. Blue shaded codons were modified from sub-optimal codons to prevent
synthesis errors due to repeat sequence. Yellow shaded sequence represents the
linker between ROX1 and GFP incorporated to improve expression level>l. Green

shaded sequence represents the GFP coding sequence. Bold text represents the stop

codon.
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Figure 3.11 Complete data set from the screen of regulatory feedback across
transcription factors. All symbols and values are as in Figure 3.1.
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SWIi4
ZAP1
HIR1
GLN3
STP2
YAP3
AZF1
RPH1
GZF3
TEC1
OPI1
YMLO81W
HAL9
ARG81
BAS1
ASH1
MOT3
PHD1
YFL044C
PUT3
UPC2
YDR520C
IXR1
UGA3
WTM2
ROX1
INO2
YAPS
ZMS1
PDR3
UME6
RCO1
WTM1
MAC1
KSS1
SUT1
DAT1
DALS81
ECM22
XBP1
MIG1

Table 3.1 continues on following page

35186.53
26578.11
26386.28
26353.92
27919.37
26555.68
27732.27
26549.68

26801.2

26060.8
28371.46
26105.32
27385.85
26149.43
26061.96
26845.78
31713.58
25435.17
26348.15
24942.47
31527.14
24605.21
41224.61
24337.57
27119.07
34123.42
29926.03
24166.04
24004.79

23735.8
2771291
46841.26
135981.4
44675.11
51426.07
46944.43
49860.42

54671.8
49117.57
53446.87
54576.54
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DIG1
HMS?2
CUP9
YAP7
MBP1
SKO1
YDRO26C
GAT1
HOG1
CBF1
FZF1
HAPS
TBS1
LEU3
YRR1
SKN7
GAL80
YHP1
CIN5
RGM1
NRG1
MET28
ARG80
RTG1
INO4
HAP3

Table 3.1 Abundances of yeast transcription factors. Each row reports the total

52827.92
48718.59
48009.46
45950.59
55450.88

48905.9
23436.41
24449.59
29015.13
34552.59
24368.94
25887.41
22157.88
23521.49
22629.15
23984.04
28860.63
49703.81
20915.41
20419.31
21071.44
20420.98
20768.52

26675.7

20302.5
21632.88

cellular fluorescence in arbitrary units of the indicated transcription factor as a GFP

protein fusion in a diploid hemizygote, measured via quantitative microscopy.
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Chapter 4

The importance of feedback for dose response linearization
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Introduction

Transcription factor negative feedback can confer a number of information-
processing functions in regulatory networks: Previous work has demonstrated that
negative feedback confers homeostasis of gene expression against stochastic noisel
3. In Chapter 3 we provide evidence that direct ROX1 negative feedback can speed
response time and increase gene expression homeostasis in the face of natural
genetic variation. In this chapter I will explore the possibility that negative feedback
has been selected for a different function—to linearize transcription factor dose
response and thereby improve the fidelity of information transmission. The effect of
dose response linearization on information transmission was first conceptualized in
engineering systems*® and recent work has demonstrated its relevance in genetic
networks®.

The basic idea as applied to genetic networks is as follows: Many genes
exhibit step-like responses—a gene that is controlled by an inducer is only
expressed when inducer concentration exceeds a particular set point. The
relationship between inducer signal input and expression output is commonly
referred to as dose response. A step-like dose response distinguishes between a
limited number of inducer levels; for a perfect step function, the gene responds to
two distinct signal states (i.e. ranges of inducer levels): one state where inducer
signal is below a particular set point and one state where inducer is above that set
point. On the other hand, incorporating negative feedback into a simple genetic
circuit can convert a step-like dose response to a more linearized dose response.
Whereas a step-function distinguishes two states, a linear dose response can
distinguish any number of states. In information theory, “information” is defined as
the number of distinct states that can be transmitted between a source and a
destination’. In this sense, a linearized dose response conveys much more
information about the inducer level to the downstream gene than a step-like dose
response.

There is, of course, one additional confounding factor that requires
consideration: Biological systems exhibit variation of their molecular component
parts due to the stochasticity of cellular biochemical events. As a result, there are
limits to the amount of information that can be captured by and transmitted
between them. Which is to say that a linear dose response in a biological system
does not in fact transmit unlimited information. However, a linearized dose
response is expected to greatly improve the fidelity of information transmitted
between noisy components8. Consistently, a study by Nevozhay et al.® reported that
a synthetic step-like dose response converted to a more linear dose response by
incorporating direct transcriptional negative feedback. In addition, information
transmission between inducer signal and expression level of a downstream gene is
greatly improved. In fact, the feedback-free circuit is capable of distinguishing fewer
than two inducer signal states, while the feedback-linearized circuit is capable of
distinguishing a number of distinct signal states.
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An additional key finding that emerged from this study is that the feedback-
free system exhibited greater noise in downstream gene expression at intermediate
inducer levels. This can be explained by comparing how noise is propagated
through a step-like dose response versus a linear dose response. For a step-like
response, as inducer level approaches intermediate inducer levels, even small
variation in inducer level will cause some cells to respond strongly, while others will
respond weakly, resulting in greatly amplified variation in gene expression. In
contrast, for a linear dose response, small variation in signal intensity will result in
proportionally small variation in gene expression (Figure 1, red lines).

In what situations is either a step-like dose response or a linearized dose
response better suited for the cellular functions mediated by gene networks? A
step-like dose response can be advantageous for genes involved in many processes,
particularly in situations where an organism benefits when a cell commits to a
particular state. Commitment to on-or-off gene expression states can be important
in a number of biological contexts?10. For example, multi-cellular organisms avoid
developmental errors by enforcing commitment to a differentiated state with on-or-
off gene expressionll. On the other hand, there are situations in which a step-like
response may not be the ideal strategy. For example, many inducible bacterial
operons involved in metabolism exhibit expression levels that are proportional to
inducer levels!2. In this case, it may be advantageous for the genetic network to
match expression of catabolic enzymes with the level of precursor present in the
environment over a wide range of precursor levels. Interestingly, in most of these
cases, the operon is subject to direct negative transcriptional feedback!?, consistent
with the notion that negative feedback linearizes transcription factor activity.

In Chapter 2 we identified many cases of direct transcriptional negative
feedback on yeast transcription factors, and noticed that these factors often regulate
metabolic genes. As an added layer of complexity, the factors are often also involved
in larger indirect metabolic homeostasis feedback loops. One possible explanation
for this observation is that high fidelity of information transmission is generally
important for metabolic homeostasis across different environments. In this chapter
[ will propose prospective experiments to test this hypothesis using the heme
homeostasis feedback loop as a model. Heme is an important metabolite for yeast
physiology: It is thought to serve as an indicator of cellular oxygen levels, and it
functions as a prosthetic group for several enzymes, most of which are involved in
the electron transport chain of oxidative phosphorylation. Therefore, heme
homeostasis is likely of critical importance for cellular physiology. The heme
activator protein HAP1 directly senses heme and activates both cellular respiration
genes and the ROX1 transcription factor. ROX1 encodes a repressor of cellular
respiration and metabolite biosynthesis genes, and has been shown to be subject to
direct transcriptional negative feedback!3. One of its targets is a terminal step and
key control point in heme biosynthesis, the copropophyrinogen III oxidase encoded
by HEM1314, In sum, ROX1 expression levels communicate activity of the heme-
induced sensor protein to a control point for heme production, forming a heme
homeostasis feedback loop (Figure 4.2). In this chapter [ will present preliminary
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data indicating that negative feedback on ROX1 is important for fidelity of
information transmission within the heme homeostasis feedback loop, and propose
further experiments to rigorously test this hypothesis.

Free heme levels not only indicate environmental oxygen concentration, but
also reflect the balance between production and demand of heme. However, the
importance of heme homeostasis for organismal fitness has not been studied. Heme
is an essential prosthetic group of the cytochrome proteins that compose the
electron transport chain. In aerobic conditions, the electron transport chain
harnesses the energy from carbon metabolism to generate a proton gradient that in
turn drives ATP synthase to produce ATP. Thousands of copies of each cytochrome
complex are embedded in the folded inner membrane of each mitochondrion in
order to meet each cell’s energy demand. Heme demand changes drastically
between fermentative (no respiration), non-fermentative (pure respiration), and
respiro-fermentative metabolism. As cellular demand for heme changes, high or
low free heme levels may be communicated by the heme homeostasis feedback loop
so that production can be adjusted to match demand. I propose that high fidelity of
information transmission associated with direct transcriptional feedback at ROX1 is
important for precisely matching heme production with heme demand. In this
chapter [ will test whether feedback on ROX1 serves to optimize ROX1 expression
for respirative growth over a range of heme pathway fluxes.

61



Results and proposed experiments
ROX1 linearization and information transmission

Previous studies have taken advantage of heme biosynthesis mutants to
study the function of mitochondrial biogenesis?>. I reasoned that I could use this
approach to generate a ROX1-heme dose response curve: Deleting an early
enzymatic step in the heme biosynthesis pathway and supplementing growth media
with different concentrations of a complementary metabolic intermediate would
provide indirect control of free heme levels, which would in turn lead to differential
activation of ROX1 by HAP1. Deleting the gene encoding the first committed step in
heme metabolism, HEM1, and supplementing media with different levels of the
pathway intermediate 5-aminolevulinate, has been shown to result in different
levels of mitochondrial function and biogenesis®. I generated an analogous strain
where ROX1 was tagged with YFP (Figure 4.3a). By supplementing growth media
with different amounts of 5-aminolevulinate, I observed a linear increase in ROX1
expression with increasing 5-aminolevulinate (Figure 4.3b).

In order to evaluate whether feedback affects the linearity of ROX1 dose
response, [ set out to generate a strain lacking feedback. A previous study obtained
a structure for the ROX1 HMG domain by aligning its sequence with the human SRY
protein, the structure of which has been determined!6. Using this structure, they
predicted that 118 directly interacts with the first two thymine residues of the
ATTGT DNA consensus motif recognized by ROX1. They went on to show that Rox1
containing the 118T mutation lost the ability to auto-repress ROX1 gene expression
in vivo, presumably because it cannot bind to the ATTGT consensus sequences in its
promoter (see Chapter 3). I generated a strain containing an [18T mutation in a
ROX1-YFP tagged strain in the hem1 background and tested the effect of the
mutation on dose response (Figure 2.3b). [ observed a much more step-like dose
response function of [18T-ROX1-YFP, suggesting that feedback does function to
linearize dose response (Figure 2.3d). In addition, I observed a much higher
expression level of I18T-ROX1-YFP than wild-type ROX1-YFP across a range of 5-
aminolevulinate concentrations, as expected if the 18T mutation disrupts
autoregulation. The major caveat of this experiment is that the 18T mutation
probably eliminates all ROX1 activity, as a strain carrying this mutation shows
similar phenotype to a ROX1 null strain in a number of conditions (data not shown).
Although unlikely, it is possible that loss of linearization is not due to loss of direct
feedback but rather some other function of ROX1. For example, it is possible that the
indirect heme homeostasis feedback loop plays a role in linearizing the ROX1 dose
response. In order to rule out this possibility, I will repeat these experiments with a
set of strains that instead have mutations in the autoregulatory binding sites of the
ROX1-GFP promoter and have a range of expression levels modulated by codon
composition (see Chapter 3). These strains will be referred to as “direct feedback
mutant” throughout this chapter. Methods for constructing and validating these
strains are presented in Chapter 3. The important point is that the strains lack
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direct feedback, and their steady-state expression levels span a range that includes
wild-type expression.

In order to further test the hypothesis that linearization of dose response at
ROX1 is important for transmitting information to the metabolic control point
HEM13, I will next incorporate a RFP tag at the HEM13 locus in the wild-type and
direct feedback mutant ROX1-GFP strains. I will grow cells in synthetic media
supplemented with ethanol and varying concentrations of 5-aminolevulinate, and
measure single-cell expression of both ROX1-GFP and HEM13-RFP by flow
cytometry. | expect that Hem13 dose response will be aligned with that of Rox1.
This will manifest in an inverse proportional relationship between Rox1 and Hem13
dose response over a wide range of 5-aminolevulinate levels—where fractional
changes in Rox1 level correspond to opposite fractional changes in Hem13 level—so
as to maximize information transmission (Figure 4.4a). If this is the case, then a
linearized ROX1-heme dose response should result in a linearized Hem13-heme
dose response (black lines in Figure 4.4b and c). On the other hand, if Rox1 dose
response is made more step-like, as is expected to be the case in feedback mutant
strains, the Hem13 dose response will also become more step-like (colored lines in
Figure 4.4b and c). A key prediction that follows is that loss of linearization at ROX1
will lead to increased Rox1 expression variation at intermediate 5-aminolevulinate
concentrations, which will be propagated or even amplified when the Rox1 signal is
passed on to Hem1317. | therefore expect to observe increased expression variation
of Hem13 at intermediate levels of 5-aminolevulinate in direct feedback mutants
compared with wild-type (Figure 4.4d-f).

With these data [ will also quantify the capacity for each strain to transmit
information between heme and HEM13 in terms of bits of information819, The
schematic data in Figure 4.4d and e provide a qualitative illustration of how loss of
feedback results in loss of fidelity of information transmission. When feedback is
present, each cell’s expression level at a given 5-aminolevulinate concentration falls
within a range that is distinct from the range of each of the other 5-aminolevulinate
concentrations. As a result, for each individual cell, the Hem13 expression level
distinguishes which of the 5 concentrations the cells were grown in. On the other
hand, when feedback is absent, Hem13 expression variation is increased at
intermediate signal levels, and a cell’s expression no longer distinguishes which of
the five different concentrations the cells were grown in.
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Information transmission and fitness

If ROX1 feedback improves fidelity of information transmission between the
heme sensing protein HAP1 and the heme production control point, HEM13, and
improved information transmission is important for precisely balancing heme
demand with heme production, [ would expect that loss of feedback would lead to
impaired mitochondrial function. As a first step in testing this hypothesis, hem1
yeast strains were grown on synthetic media supplemented with ethanol and
varying concentrations of 5-aminolevulinate. Ethanol is a non-fermentable carbon
source, so ATP production depends solely on mitochondrial respiration on this
media. Each strain contained a copy of either [18T ROX1, wild-type ROX1, or direct
feedback mutant ROX1 (effectively serving as an overexpression construct) at the
ROX1 locus. The wild type strain grew at rates similar to HEM1 strains (data not
shown) over a wide range of 5-aminolevulinate concentrations. However, either
increasing or decreasing Rox1 activity relative to wild-type resulted in slower
growth (Figure 4.5). These data are consistent with the hypothesis that wild-type
ROX1 expression is closer to the optimal expression level for growth on ethanol
over a range of 5-aminolevulinate concentrations. However, they do not
demonstrate whether linearization or improved information transmission
associated with feedback achieves closer-to-optimal expression levels than can be
achieved without feedback.

Next [ will test whether the wild-type ROX1 direct feedback circuit achieves a
closer-to-optimal expression than is possible of ROX1 without direct feedback. In
order to test this, I will first establish the relationship between ROX1 levels and non-
fermentative growth rates over a range of free heme levels: I will generate strains
where the endogenous ROX1 promoter is replaced with a battery of constitutive
yeast promoters so that each strain will express ROX1 at different but fixed levels.
These strains will be grown in synthetic media supplemented with ethanol and
varying concentrations of 5-aminolevulinate. For each strain, growth rate and
expression will be measured in log-phase cultures. These data will compose a
fitness function, where growth is considered with respect to both 5-aminolevulinate
concentration and Rox1 expression (Figure 4.5a). The strain that exhibits the
fastest growth for each of the tested 5-aminolevulinate concentrations will be
considered to express ROX1 at the optimal level for that condition. To assess
whether the wild-type ROX1 direct feedback circuit achieves a closer-to-optimal
expression level than the direct feedback mutant strains, I will use the measured
fitness function to evaluate how closely the wild-type and direct feedback mutant
Rox1 expression levels coincide with the optimal expression levels over varying 5-
aminolevulinate concentrations (Figure 4.5a, black line versus colored lines). If the
wild-type curve matches the measured optima more closely, I will conclude that the
negative feedback loop facilitates closer-to-optimal expression over a range of free
heme levels.

An additional question is whether gene expression noise associated with
intermediate induction levels will give rise to deleterious phenotypic effects. Having
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measured growth for strains with a wide variety of promoters at ROX1, [ will likely
observe a range in magnitudes of expression variation between strains. If
expression variation does impact fitness, | expect that the growth rates of strains
with similar mean expression levels will decrease with increasing expression
variation. More specifically, I will test whether the expression variation reduction
associated with direct transcriptional feedback at ROX1 impacts growth: At the 5-
aminolevulinate concentration where wild-type and a given direct feedback
mutant’s ROX1 expression levels intersect, the two strains are expected to exhibit
the same mean expression but with different expression variation (Figure 4.3b and
f). If direct feedback does impact the capacity for information transmission, and
such information is important for respirative growth, I expect that the lowered
capacity for information transmission at the intersecting mean expression levels
will result in a growth rate decrease in the direct feedback mutant strain (Figure
4.5b).
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Discussion

It has long been appreciated that transcription factors and signaling
pathways control the metabolic state of the cell. However, the reciprocal
relationship, where the metabolic state feeds back on the transcription factors and
signaling molecules to impose itself on the regulatory state has not received equal
attention?20. Here, I propose to study how information about the metabolic state of
the cell is transmitted through the network to adjust further metabolite production.
In particular, [ set out to assess the importance of direct negative feedback for
transmitting such information.

How realistic are the proposed results in light of findings from previous
studies? The anticipated findings rely on a number of assumptions. First of all, it is
possible that loss of the direct feedback loop will be fully compensated by the
indirect heme homeostasis feedback loop. Preliminary evidence suggests that this is
not the case. The direct feedback mutant strain expresses ROX1 about four-fold
higher than wild-type in rich media. If the indirect loop fully compensated for the
broken direct loop, we would expect no change in the expression. Interestingly, the
expression from the direct feedback mutant is considerably lower than the [18T
mutant where ROX1 is likely totally non-functional, suggesting that the indirect loop
may partially compensate the broken direct loop.

Second, it is possible that the indirect heme homeostasis feedback loop is
important for homeostasis in a limited range. HEM13 has been shown to serve as a
limiting step at low O levels1#4. Because HEM13 uses molecular oxygen as a
substrate, it is possible that it only serves as a limiting step when oxygen is scarce. If
this is the case,  would not expect to observe the linear relationship between Rox1
and Hem13 expression levels (Figure 4.3a). On the other hand, HEM13 is the only
gene in the terminal steps of heme biosynthesis subject to substantial regulation in
response to varying heme demand?!. Given the preliminary evidence suggesting
that there is an indirect ROX1 feedback loop in addition to the direct loop suggest
that the HEM13 loop is operational over a broad range of oxygen concentrations.

Finally, it is possible that the expression of wild-type ROX1 does not match
the optimum of the fitness function. A previous study that measured a fitness
function for expression of the lac operon at different concentrations of lactose did
not observe alignment between wild-type expression and optimal expression?22.
Rather, they found that if strains were grown in a given lactose concentration for
many generations, they evolved to achieve a steady-state expression level matching
the optimum. In light of these findings, it seems reasonable to expect that ROX1
expression will not match the optimum of the fitness function. On the other hand, it
is also possible that the selective pressures on lac operon expression are different
than those of heme homeostasis such that ROX1 expression is under a more
constant selective pressure to align with the optimal fitness function. A key
observation supporting this possibility is that growth yield homeostasis in respiring
yeast is maintained across different growth conditions and genotypes?23. It has been
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shown that growth yield homeostasis depends on tight adjustment of the cellular
contents of the respiratory chain compounds to the growth rate, and that a defect in
this adjustment leads to energy yield decrease. The fact that this phenotype is held
constant across environments and genotypes suggests that it may have been under
constant selection. I have not directly measured whether the respirative growth
defects resulting from misexpressed ROX1 are due to loss of growth yield
homeostasis, but it seems likely that by losing heme homeostasis so that
mitochondrial component production is not coordinated with mitochondrial
demand could lead to a lack of coordination between mitochondria and growth rate.
[t therefore seems feasible that wild-type ROX1 expression has been under selective
pressures resulting in alignment with the optimal fitness function.

What do we stand to gain from these experiments? If direct feedback at ROX1
does function to improve information transmission in the heme homeostasis
feedback loop, this could serve as a paradigm for how feedback functions in other
metabolite homeostasis loops. Additionally, and perhaps more importantly,
studying the basic biology of model systems can result in a deeper understanding of
how analogous systems function in human biology. A key motivation for studying
heme metabolism is its central role in coordinating the mode of energy metabolism
between anaerobic and aerobic growth. Upregulation of genes that are normally
induced by hypoxia is coming to be recognized as a classic feature of cancer?4, and
genetic mutations that directly affect activity of the transcription factor hypoxia-
inducible factor-1 (HIF-1)25 have been shown to predispose people to highly
angiogenic tumors26. The experiments proposed here stand to inform the
regulatory mechanisms controlling metabolism in yeast, and may serve as a
paradigm for understanding similar processes in human biology.
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Materials and methods

Plasmids used for ROX1-YFP strains. To generate constructs for protein-fusion
reporters, the ROX1 promoter and coding sequence were amplified from yeast
genomic DNA and fused to YFP (Addgene) flanked by a kanamycin resistance
cassette?’ via ligation independent cloning?8. This plasmid was used to generate an
[18T mutant ROX1 construct or to generate a direct feedback mutant construct. For
the [18T mutant, the second base of the 18th codon was changed from T to C (codon
ATT -> ACT) by using the QuikChange II XL Site-Directed Mutagenesis Kit
(Stratagene). For the direct feedback mutant construct, Rox1 binding sites in the
ROX1 promoter were identified as perfect matches to the Rox1 consensus
sequence??, and mutated by converting ATTGT consensus sequence to ATGGT.

Generating ROX1-YFP strains. ROX1-YFP strains were generated as follows: A
HEM1::LEUZ2 strain in the DY150 background, obtained as a gift from Jerry Kaplan,
was used to generate a ROX1::URA3 strain by replacing the endogenous ROX1 gene
and the upstream 467 bp with a URA3 cassette30. The resulting strain was mated to
a W303 strain, sporulated, and a recombinant was then mated with BY4742 and
sporulated. Both the LEU2 and URA3 prototrophies were maintained through both
crosses/sporulations and the HAP1 locus in the resulting strain was confirmed to
have the non-mutant allele31. The resulting strain was transformed with PCR
products amplified from ROX1-YFP constructs, and selected by growing on YPD
media supplemented with 150mg/L 5-aminolevulinate (Merck) and 300mg/L G418
(Cellgro).

Measuring expression of ROX1-YFP strains across varying 5-aminolevulinate
concentrations. Synthetic complete media supplemented with galactose and
varying concentrations of 5-aminolevulinate was prepared using a 25mg/ml stock
solution of 5-aminolevulinate (Merck) dissolved in water. Wild-type, and [18T-
mutant ROX1-YFP strians were grown in triplicate in complete synthetic media with
galactose and 200mg/L 5-aminolevulinate in flasks at 30°C with shaking overnight
to saturation. 50l of each culture was transferred to 1ml synthetic complete media
with galactose and 10mg/L 5-aminolevulinate in 2ml 96-well plates, and incubated
at 30°C with shaking for 10 hours. Then cells were diluted to optical density 0.15
and 100 pl were added to 1ml synthetic complete media with galactose and varying
5-aminolevulinate concentrations in 2ml 96-well plates, and incubated at 30°C with
shaking for an additional 10 hours. The 5-aminolevulinate concentrations used
were, in mg/L: 1600, 800, 400, 200, 100, 50, 25,12, 6, 3, 1.5, 0. Then, fluorescence
was measured for each culture using a LSRFortesa (BD Biosciences) and analyzed in
R with the flowCore package (www.bioconductor.org). Mean expression for each
culture was calculated from cells that passed forward/side scatter gating. Gating
was based on the methods of Newman et al.l, where the ~1% of cells with
forward/side scatter closest to the mean forward/side scatter for the culture passed
the gate.
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Serial dilution assays. Strains were grown in flasks overnight in complete
synthetic media supplemented with 150mg/L 5-aminolevulinate at 30°C with
shaking. Each culture was diluted in fresh media at an optical density 0.2 and grown
to optical density 1.0. 1:10 serial dilutions were performed in microtiter plates.
Dilutions were transferred to plates using a multipronged inoculating device
(frogger). Plate media were synthetic complete supplemented with 3.2% ethanol,
0.5% Tween 80, 20mg/L ergosterol, and either 500, 50, 10 or 2 mg/L 5-
aminolevulinate. A Tween/ergosterol stock solution was prepared as in Crisp et
al32,
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Figure 4.1 Feedback linearizes dose response and improves fidelity of
information transmission. (a) Schematic illustrating alternate gene circuits.

(b and c) Schematic illustrating anticipated effect of incorporating direct
transcriptional feedback on gene expression dose response. Dose response (blue
line) in (b) is much more step-like compared with the dose response in (c). Red
shaded boxes indicate how small changes in inducer signal due to stochastic
variation would result in a different magnitude of gene expression variation
between step-like and linear dose responses at intermediate inducer
concentrations.
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Figure 4.2 Direct ROX1 feedback loop is embedded in a heme homeostasis
feedback loop. HAP1 encodes a transcription factor that directly senses/binds
heme?7 and activates ROX1 in the presence of heme?28. ROX1 represses HEM1329,
the gene encoding a rate-limiting step in heme biosynthesis®.
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Figure 4.3 ROX1 dose response is linearized by feedback. (a and c) Hem1

catalyzes the first committed step in heme biosynthesis by converting succinyl CoA

and glycine to 5-aminolevulinate. Heme levels were indirectly controlled by
generating a HEM1 deletion strain and supplementing media with varying
concentrations of 5-aminolevulinate. ROX1 was tagged with YFP and the effect of
varying levels of 5-aminolevulinate was quantified by FACS. Error bars represent
triplicate measurements of each population mean. (b and d) A mutation in I18T
renders ROX1 non-functional, thereby eliminating the feedback loop. The ROX1

dose response curve is less linear in the feedback mutant compared with wild-type.
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Figure 4.4 Anticipated results illustrating the loss of information transmission
capacity from Rox1 to Hem13 in the absence of feedback. (a) The anticipated
relationship between Rox1 and Hem13 expression if their dose response functions
are aligned. (b and c) Anticipated results of deleting the 4 Rox1 binding sites in the
ROX1 promoter. “no FB” (red curve) indicates the absence of Rox1 binding sites in
the ROX1 promoter. “%2 deopt.” indicates that the codons in the GFP sequence are
modified to reduce translational efficiency, and “deopt.” indicates that the codons in
the ROX1 and GFP sequences were modified to reduce translational efficiency. (d
and e) Anticipated results showing the expression distributions of Rox1 and Hem13
at increasing concentrations of 5-aminolevulinate. (f) Coefficient of variation
(variance/mean?) is a mean-normalized measure of expression variation.
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Figure 4.5 ROX1 mutants exhibit growth defect on ethanol over a range of 5-
aminolevulinate levels. Wild-type strains contain ROX1 tagged with YFP; [118T
strains contain ROX1 tagged with YFP and a mutation converting isoleucine to
threonine at amino acid 18 in the ROX1 coding sequence; and direct feedback
mutant (DFBM) strains contain ROX1 tagged with YFP and single base pair
mutations in each of 4 auto-regulatory binding sites in the ROX1 promoter.
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Figure 4.6 Anticipated growth rates over varying 5-aminolevulinate
concentrations. (a) Anticipated growth rates of hem1 strains with various yeast
promoters driving expression of ROX1 plotted with respect to mean ROX1
expression and concentration of 5-aminolevulinate. Because each promoter will
drive ROX1 expression with a different amount of variation, and strains with high
variation are expected to grow collectively slower than strains with low variation,
strains with low variation will be used to generate estimates of maximum growth.
Maximum growth rates will be plotted as values relative to growth of a strain with
an intact heme biosynthesis pathway (HEM1+). Lines represent expression levels
for wild-type and direct feedback mutant strains. (b) Anticipated results illustrating
growth of wild-type and direct feedback mutant strains at varying 5-
aminolevulinate concentrations relative to wild-type ROX1-GFP; hem1 strain.
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