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Abstract

Leveraging Trajectory Optimization to Improve Deep Reinforcement Learning, with

Application to Agile Wheeled Robot Locomotion

by

Guillaume D. Bellegarda

There exist several approaches to robot locomotion, ranging from more traditional

hand-designed trajectories and optimization-based methods, to more recent successes

with deep reinforcement learning (DRL). The advantage of traditional model-based ap-

proaches lies in the ability to perform stability and robustness analyses on the generated

motions and trajectories, but such methods can suffer from modeling mismatches or ex-

pensive computation times for real-time control. DRL on the other hand requires very

little information to be known a priori to (eventually) find a solution, at the cost of high

sample complexity (long training times) and no stability or robustness guarantees on the

learned policies. This thesis seeks to bridge the gap between these two areas by inject-

ing model-based ideas and methods into deep reinforcement learning towards efficient,

robust, and explainable learned control policies.

The application of this strategy is in agile wheeled robot locomotion, for example

to JPL’s RoboSimian and vehicles performing drift parking. A novel wheel model is

presented, which when applied in an optimization framework, naturally results in tra-

jectories that avoid or exploit wheel slipping depending on the task. These methods

demonstrate the first planned and controlled drifting maneuvers for a wheel-legged sys-

tem, with additional hardware results on a model vehicle.
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Chapter 1

Introduction

Research over the past decade has shown increasingly agile and dynamic robotic systems.

Perhaps most famously, Boston Dynamics’ biped Atlas has recently demonstrated abili-

ties that are difficult even for humans, such as performing backflips, agile ‘parkour’ stunts,

and running and jumping in nature [1–3]. Another Boston Dynamics robot, Handle, is

a wheel-legged biped system that can perform a variety of dynamic maneuvers such as

jumping over obstacles, descending stairs, and carrying payloads of over 100 pounds [4].

By leveraging a suction-cup end effector, it can also be used in a factory setting to move

and arrange boxes onto pallets [5].

Within academia, the MIT Cheetah 2 has shown the ability to jump up to 80%

of its nominal leg length while running at a speed of 2.4 (m/s) [6]. Its successor, the

MIT Cheetah 3, demonstrates additional results in fast control of various gaits and

jumps [7–9]. The smaller and more recent Mini Cheetah is the first four-legged robot to

do a backflip [10]. Miniature robot jumpers such as Salto [11] or the EPFL jumper [12]

can achieve impressive high jumping due to their small weight and design for storing

energy using springs.

The above dynamic motions have all been executed from model-based trajectory
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Introduction Chapter 1

optimization methods, such as [13, 14], which involve the generation of a trajectory for

a system by optimizing a certain cost function subject to various constraints. This

optimal solution is then used as a reference trajectory for the actual system through

the use of a low level controller, which enforces contraction of the system onto a low

dimensional manifold. For example, for underactuated dynamics, some subset of directly-

controlled degrees of freedom (DOFs) converge rapidly to desired trajectories, compared

to other (passive, slower, but still stable) DOFs. Also within these methods is Model

Predictive Control (MPC), which instead of first generating an entire reference trajectory

and then tracking it, solves an online optimization at each time step for some finite

horizon, executing only the first action and then re-solving the optimization from its new

state [15–17].

Such methods have also shown impressive results in more general robotics applica-

tions, such as within the DARPA Robotics Challenge (DRC) [18, 19]. However, this

same challenge produced a now famous robot ‘blooper’ reel of many different robots

falling over, often times for what appears to be no reason [20]. A number of factors

make robotics a challenging discipline, including perception, state estimation, modeling

mismatches, and uncertainty in the environment. For example, if a biped ‘thinks’ it has

contact with a handle and begins to turn it, when in reality it is not grasping anything,

the forces it has planned for in the optimization are not actually present and a fall can be

likely. Additionally, due to computational constraints, the models used in the optimiza-

tions are usually simplified from the true dynamics, and mismatches occur, especially if

the true state is in poorly modeled areas of the workspace. In unmodeled regions, even

the most well-designed controllers cannot provide guarantees or convergence. There is

also no attempt to adapt or increase the fidelity of the model in these methods even as

experience is gained from real-life executions.

In contrast, deep reinforcement learning (DRL) methods have shown recent success

2



Introduction Chapter 1

on continuous control tasks in complicated robotic systems by making iterative improve-

ments on the model and/or policy [21–24]. However such methods are applied with no

prior knowledge of the systems, leading to problematic sample complexity and thus long

training times. Unfortunately, little can be said about the stability or robustness of these

resulting control policies, even if more traditional model-based optimal control solutions

exist for these same systems. Additionally, DRL has been almost exclusively applied in

simulation, where a failed trial has no repercussions. In the real world a failure can have

catastrophic consequences, including damaging the robot or causing injury to humans in

the area. Some recent works have successfully learned a policy for a real robot [25] [26],

or transferred policies learned in simulation to the real system [27] [28]. Of particular

note in [28] is that the learned policies outperform the authors’ previous model-based

methods with respect to both energy-efficiency and speed, as policies are not constrained

with an incorrect or overly-simplified model.

A primary goal of this thesis is to bridge the gap between both areas of model-based

trajectory optimization and deep reinforcement learning. In particular, DRL can be ap-

plied to many problems without needing any modeling or intuition about the system, and

has empirically shown to outperform model-based methods both with respect to energy-

efficiency and speed of resulting control policies. However, the high sample complexity

and inability to prove any metrics about these learned policies makes real world training

and deployment difficult. Model-based trajectory optimization methods, on the other

hand, allow for stability and robustness analyses on generated motions and trajectories,

but are only as good as the often over-simplified derived model, and may have pro-

hibitively expensive computation times for real-time control. This work presents several

methods of injecting model-based ideas and methods into deep reinforcement learning,

towards efficient, robust, and explainable learned control policies. We also investigate

both the emergence and use of non-intuitive optima in both of these areas.

3
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In this thesis, the application of such methods is in agile wheeled robot locomotion.

Wheel-legged systems in particular have the potential to combine benefits of two heav-

ily studied research areas: the speed and efficiency of locomotion on wheels with the

versatility and agility to surmount various obstacles of legged systems. However unlike

in purely legged robots where a considerable challenge is avoiding falling down, to date

most wheeled systems have been designed and studied only in the static stability sense,

circumventing this issue. A notable exception is the aforementioned Boston Dynamics

system Handle [4], and a comprehensive overview of existing wheeled robotic systems is

given in Chapter 2. Most of these control systems either do not model or actively try

to avoid wheel skidding/slipping (drifting), which can however easily occur in real world

applications. We are particularly interested in such dynamic maneuvers here. Thanks to

a novel wheel model formulation, we present a versatile trajectory optimization frame-

work that can either avoid or exploit wheel skidding, depending on the desired trajectory

length and goal, which also allows for gait scheduling that makes and breaks contact with

the ground as in human skating.

The contributions and outline of this thesis are as follows:

• Chapter 2 introduces JPL’s RoboSimian in the context of wheel-legged systems,

for which a literature review is performed on the current state-of-the-art. Noting a

research gap in dynamic maneuvers involving wheel slipping, we draw inspiration

from the vehicle drifting community.

• Chapter 3 serves as a survey of the necessary background for the rest of this thesis,

including discussion on robot dynamics and existing constraints in wheeled sys-

tems, and presents our novel wheel model to be used in our trajectory optimization

framework. We also give an overview of trajectory optimization, and review con-

cepts from applying machine learning in robotics, as used in the later chapters of

4



Introduction Chapter 1

this work.

• Chapter 4 describes skating locomotion for RoboSimian for omnidirectional mo-

tion primitives with both three- and four-wheeled skating. These primitives are

evaluated over mildly rough terrain with varying coefficients of friction.

• Chapter 5 explores the emergence of nonintuitive optima by optimizing both design

parameters and motion trajectories for a novel wheeled system. By carefully ana-

lyzing and validating such solutions, we discover novel motion planning strategies

that we, as human designers, would truly never have anticipated.

• Chapter 6 presents our versatile trajectory optimization framework for wheeled

systems using our novel wheel model, that can either avoid or exploit wheel slipping

for dynamic maneuvers.

• Chapter 7 proposes integrating forward and inverse kinematics into deep reinforce-

ment learning for faster training and more robust control policies. We also show

that we can model a high degree-of-freedom system such as RoboSimian as a rep-

resentative simple one, and transfer learning of policies between these two systems.

• Chapter 8 proposes a method to combine the benefits from both areas of trajectory

optimization (TO) and deep reinforcement learning while mitigating their draw-

backs by (1) decreasing RL sample complexity by using existing knowledge of the

problem with optimal control, and (2) providing an upper bound estimate on the

time-to-arrival of the combined learned-optimized policy, allowing online policy de-

ployment at any point in the training process by using the TO as a worst-case

scenario action.

• Chapter 9 discusses conclusions and future work.

5



Chapter 2

Wheeled Systems

This chapter introduces the main robotic system studied throughout this thesis, Jet

Propulsion Laboratory’s (JPL’s) RoboSimian. We also review the wide variety of wheel-

legged systems that have been studied in the robotics community, where we differentiate

between passive wheeled (no motor at the wheel) and actuated wheeled (motors directly

providing forces to the wheel) systems. Lastly, noting that to date wheel-legged robotic

systems have not planned for motions that exploit wheel slipping (drifting), we draw

literature review from methods applied to vehicles, ranging from model RC cars to every

day road vehicles.

2.1 RoboSimian

RoboSimian is a quadruped robot developed by NASA’s Jet Propulsion Laboratory

(JPL) in cooperation with the University of California, Santa Barbara (UCSB) [29–

33]. Its purpose was primarily to compete in the DARPA Robotics Challenge (DRC),

including trials in 2013 and finals in 2015, where Team RoboSimian achieved a fifth place

finish. The robots competing in the DRC were challenged to perform various disaster
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relief tasks in environments that would be unsafe for humans. These tasks included

examples such as driving a vehicle, opening and entering doors, turning valves, using

tools, and walking on uneven terrain [32,33], with two snapshots shown in Figure 2.1.

Figure 2.1: Versatile locomotion with RoboSimian. At top: Walking on rough terrain
at the DARPA Robotics Challenge in 2015. Bottom Left: RoboSimian bipedal and
grasping a handhold during “egress of car” task. Bottom Right: RoboSimian with
fully extended (and compact folded) limbs.
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RoboSimian has four identical limbs, each with seven degrees of freedom. Each limb

consists of three rigidly connected L-shaped elbow structures that contain two orthogonal

actuators. All actuators in the limbs are identical, each consisting of a DC brushless

motor that drives a (160:1) gearbox. These actuators produce peak torques of 580 [N·m]

and a peak speed of 3.4 [rad/s] [33]. The distal end of each limb contains a seventh

actuator allowing this end to rotate relative to the limb, without requiring any limb

reconfiguration. In summary, RoboSimian has seven degrees of freedom (DOF) per limb,

which results in a robot with high flexibility and many redundant solutions for end effector

configurations.

The redundant solutions that come with such high flexibility offer both possibilities

and challenges. For a desired end effector position, each ‘elbow’ of the limb has two con-

figuration possibilities. With three such structures, an end effector configuration can be

reached with up to 23 = 8 different feasible limb configurations, as shown in Figure 2.2.

For a given desired end effector configuration and terrain mapping, a subset of the 8 ‘IK

families’ may be better suited than others when considering collision avoidance, stability,

and overall locomotion speed. Thus the high flexibility offers possibilities for avoiding

collision by choosing a feasible limb configuration out of the redundant solutions, at the

cost of increased complexity [31].

Figure 2.2: Eight different possible inverse kinematic (IK) solutions for reaching a
particular end effector position.

8
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As RoboSimian was designed with the ability to apply high torques at low speeds, it

is very suitable for tasks involving heavy manipulation and climbing. However, such low

actuator speeds result in slow locomotion, even over flat ground. Work in [34,35] explored

walking with two limbs in contact with the ground at a time, commonly referred to as a

static trotting gait, comparing with a static walking gait where at least three limbs were

always in contact with the ground. Results showed that for the current actuator velocity

limits, the overall body speeds were surprisingly similar for both methods.

During the DRC, RoboSimian was equipped with two omnidirectional driven wheels

and two passive wheels to traverse relatively flat ground, as can be seen at the bottom

right of Figure 2.3. Unfortunately, locomotion speed gains were limited by the actuators

powering the wheels, with more powerful actuators increasing the weight of the robot.

Additionally, due to the locations of the active/passive wheels, elaborate configuration

changes were required to transition between walking and driving, further reducing the

overall speed increase of using wheels.

It would be very beneficial if the high torques at low speeds of RoboSimian’s limbs

could be used to create high accelerations for the overall body. Attaching passive wheels

at each forearm is one such idea, while minimizing weight from no added actuators, and

leaving free six actuated degrees of freedom (DOFs) to set the 6-DOF pose for each

skate, as shown in Fig. 2.3. Additionally, this allows for greater flexibility and quicker

transitioning between walking and skating configurations than with the previously used

driven wheels during the DRC. A caveat of mounting the skates at the forearms however

is that there is currently no sensing available to sense contact of the skate with the

ground. This eliminates the practical use of force feedback during any designed skating

maneuvers.

9
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Figure 2.3: RoboSimian on wheels.

2.2 Passive Wheel Systems

A wide variety of skating robots have already been studied. We first perform a

literature review of passive-wheeled systems, which means those for which the wheels are

10
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unactuated (no motor driving each wheel).

Among quadrupeds, perhaps the most famous skating robot is the roller-walker, which

was developed and studied by Hirose and his research group [36–40]. The roller-walker

has a reconfigurable end effector, to be used as either a foot or skate, quite similar con-

ceptually to the added wheel we use with RoboSimian, as depicted in the lower left of

Figure 2.3. A body of work exists on system design and motion planning for the roller-

walker, for four-wheeled skating locomotion in a mostly-forward direction on flat ground.

The leg-wheel concept has been extended to develop robot designs to minimize the num-

ber of required actuators, for example a unique design using a hexagonal frame [41].

Biped skating on passive wheels has also been explored by many researchers [42–45].

For such humanoid systems, balance becomes a greater concern, although few works deal

directly with dynamic motions and generally employ static stability, using both skates

always in contact. An exception includes [43], which includes two-wheel balance on a

single skate, essentially becoming a special type of planar inverted pendulum system.

The focus for skating with RoboSimian is higher-dimensional limbs, in which all six

degrees of freedom of each wheel can be controlled, with the motivation of enabling a

wide range of motion primitives, ideally including agile and dynamic maneuvers.

2.3 Active Wheel Systems

In wheel-legged systems with actuated wheels, there are few examples of hybrid

walking-driving motions. The focus has been predominantly on statically-stable driving

motions, where the legs are used as an active suspension or to step over obstacles [46–54].

These applications either completely avoid wheel lift-off, or consider maintaining only

static stability to avoid falling when planning motions that involve steps.

Within quadrupeds, ETH Zurich’s ANYmal [55], equipped with non-steerable, torque-

11
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controlled wheels, has demonstrated agile motions combining walking and driving, includ-

ing full flight modes in simulation [56]. More recently in hardware, for example at the

DARPA Subterranean Challenge, locomotion planning for ANYmal on wheels resulted in

dynamic hybrid walking-driving motions on various terrains [57]. However, this planning

did not explicitly account for wheel slipping, as modeling enforced no-slipping conditions,

and due to the low coefficient of friction of the muddy environment, the robot had issues

with balancing and falling.

A family of wheel-legged systems are the Skaterbots [58], in which the authors present

a general optimization framework for motion planning for a wide variety of wheel-legged

systems, including those with either passive or actuated wheels. Examples include pas-

sive wheel ‘swizzlebots’ and quadruped ‘skatebots’, to varying legged systems such as a

‘dinobot’. Motions are generated by formulating a general trajectory optimization prob-

lem that explicitly models each wheel’s full state and enforces no-slip constraints when a

wheel is in contact with the ground. Thus this framework does not account for skidding

or slipping of the wheel.

Perhaps the currently most agile and dynamic wheeled system is the previously dis-

cussed Boston Dynamics robot Handle [4]. Handle has actuated wheels and can perform

a variety of impressive motions quickly and agilely, for sufficiently smooth terrain. How-

ever, since there is no associated publication, little is known about the design of its

modeling and control framework.

2.4 Motion Planning for Vehicles with Wheel Slip

As accounting and planning for wheel slipping/skidding in wheel-legged systems has

not been studied, we draw inspiration from work in dynamic vehicle maneuvers involving

sustained and transient drift.
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Vehicle dynamics have been well studied at varying levels of abstraction. These

range from simple models such as kinematic and dynamic bicycle models with few state

variables, to a popular high fidelity vehicle dynamics simulator, CarSim, which uses over

250 state variables to estimate full vehicle dynamics. Ideally, the simplest model that

still accurately captures the true dynamics is desired for planning and control purposes.

We are specifically interested in dynamic maneuvers for both wheel-legged systems

and vehicles involving skidding/drifting. There have been a number of recent works in

this area, and of note are the different models used as well as the (mostly) decoupling of

planning and control with a variety of techniques.

Borrelli et al. [59] note that a bicycle model with constant normal tire loads capture

most of the relevant nonlinearities associated with lateral stabilization of the vehicle, and

present an MPC based approach to active steering, such as used during lane changes,

showing results in simulation. Kong et al. [60] studied using kinematic and dynamic

vehicle models for autonomous driving with MPC, noting the kinematic model is both

computationally less expensive as well as avoids the singularity of popular tire models,

and so can be used at low speeds.

Velenis et al. introduced a bicycle model with suspension dynamics and applied nu-

merical optimization to analyze drft cornering behavior [61] [62]. They proposed a frame-

work for achieving maximum corner exit velocity or minimal time cornering, and validated

their method in CarSim.

Kolter et al. [63] remarked that over short periods of time, even complex dynamics

such as a car while skidding are often remarkably deterministic. With this intuition they

developed a mixed open-loop and closed-loop control framework using a probabilistic

method called multi-model LQR, which they applied on a real vehicle for a sliding parking

maneuver. The vehicle model for normal driving was learned from experimental data from

real driving, and the system was provided a demonstration of the desired maneuver.

13
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Other works adopting mixed open-loop closed-loop control include [64], [65]. These

works study drift parking and cornering, and use a rule-based algorithm to plan a refer-

ence trajectory. In [66] the authors divide the cornering problem into free, transit, and

drifting regions; where path planning is done by an RRT and rule-based method, with a

PI controller for the transit segment. A mixed open-loop closed-loop controller is used

to track the trajectory, and the authors validate their methods in CarSim and/or on the

BARC car model.

Williams et al. [67] present a MPC algorithm based on a stochastic optimal control

framework, where the optimal controls take the form of a path integral, approximated

with an importance sampling scheme. The algorithm is validated on a 1/5 scale Auto-

Rally vehicle, at speeds beyond the friction limits of the vehicle.

Voser et al. [68] present an analytical framework to understand the dynamics of

drifting with a simple bicycle model with nonlinear tires, modeling different coefficients

of friction between the front and rear tires with the ground. Experimental evidence was

collected on a physical all-electric vehicle, P1. Goh et al. [69] present a controller to

drift while tracking a reference path, using a four-wheel model with steady-state weight

transfer, with experimental validation on the physical vehicle MARTY.

Most of the above works decouple planning from control, that is to say, use differ-

ent models for, as well as separate the processes of, planning and control of a desired

motion. Ideally we would want to plan (and then execute) motions through the same

well understood real dynamic model. Additionally, the tire approximations in the above

works all rely on some variant of the linear, Fiala, or Pacejka models [70] [71], which

all depend on the tire slip angle. This angle becomes singular at low vehicle speeds due

to the vehicle velocity term in the denominator, and is thus difficult to use in a general

trajectory optimization framework, additionally so because of the discontinuities in the

latter two of these models. These tire models and the slip angle will be further discussed

14



Wheeled Systems Chapter 2

in Section 3.3, and we will introduce our novel tire model to be used in our optimization

framework for dynamic maneuvers for general wheeled systems in Section 3.4.

15



Chapter 3

Preliminaries

This chapter serves as a survey of the necessary background for the rest of this thesis.

Sections 3.1 and 3.2 discuss robot dynamics and nonholonomic constraint considerations

(usually) implemented for wheels, as well as methods to solve for the associated λ mul-

tipliers. Section 3.3 reviews existing tire models and the challenges involved with their

integration into general trajectory optimization frameworks. Section 3.4 reviews friction

as a linear complementarity problem and presents our novel wheel model. Section 3.5

presents an introduction to trajectory optimization methods and provides the formula-

tion used in the rest of this thesis. Section 3.6 reviews background in deep reinforcement

learning and imitation learning, to be used in Chapters 7 and 8.

3.1 General Dynamics

The equations of motion for a general robotic system can be written as:

M(q)q̈ + C(q, q̇)q̇ +G(q) + A(q)Tλ = B(q)u+ F (3.1)
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where q are the generalized coordinates, M(q) is the inertial matrix, C(q, q̇)q̇ denotes

centrifugal and Coriolis forces, G(q) captures potentials (gravity), A(q)Tλ are constraint

forces (where λ are unknown multipliers a priori), B(q) maps control inputs u into gen-

eralized forces, and F contains non-conservative forces such as friction.

3.2 Nonholonomic Constraints

free rolling

no slip

?
!
" no skid

no slip #

$ = !"

free rolling

no slip

?

Figure 3.1: Simple wheel with no-slip and no-skid constraint axes: planar, angled,
and overhead views.

For general wheeled mobile robots, A(q)Tλ in Equation 3.1 typically contains con-

straints ensuring no slip (free rolling in the direction the wheel is pointing, xw) and no

skid (no velocity along the wheel’s rotation axis yw perpendicular to the free rolling di-

rection), which come from writing these constraints in Pfaffian form A(q)q̇ = 0. These

constraints are visually depicted in Figure 3.1, and derived below.

If we take xw and yw to be unit vectors in the wheel frame, then they are defined as:

xw = R(θ)

1

0

 (3.2)

yw = R(θ)

0

1

 (3.3)
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where R(θ) represents the counterclockwise rotation matrix for angle θ:

R(θ) =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 (3.4)

The displacement of a non-slipping wheel with radius r and angle φ is d = rφ, and

its velocity is v = rφ̇. Due to the non-holonomic nature of the system, the constraints

appear in global (x, y) coordinates as follows:

xTw

ẋ
ẏ

 = rφ̇ (3.5)

yTw

ẋ
ẏ

 = 0 (3.6)

These constraints can be added to the equations of motion through the term A(q)Tλ.

In fact, the constraints can be written in Pfaffian form, where if the generalized coordi-

nates for the 3D wheel model (assuming it cannot tip over) are

q = [x, y, θ, φ]T (3.7)

can be written in the form

A(q)q̇ = 0 (3.8)
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with

A(q) =

 cos θ sin θ 0 −r

− sin θ cos θ 0 0

 (3.9)

The coordinates and matrix A(q) have been derived here for a single wheel, but adding

the same constraint for every wheel in the system is straightforward.

3.2.1 Solving for Lambda Multipliers

To determine the λ multipliers in Equation (3.1), we consider three different methods,

which are more detailed in [72], for example.

Method 1

As q ∈ Rn×1 and A(q) ∈ Rm×n, where m is the number of constraint equations (in

general for a system with W wheels, m = 2W ), we can define a matrix S(q) ∈ Rn×(n−m)

to be a full rank matrix formed by a set of smooth and linearly independent vector fields,

spanning the null space of A(q) such that:

S(q)TA(q)T = 0 (3.10)

Then we can find a set of vectors of time functions v(t) ∈ R(n−m)×1 so that

q̇(t) = S(q)v(t) (3.11)
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and use S(q) to eliminate the Lagrange multipliers in (3.1). Differentiating (3.11) to get

the state acceleration gives:

q̈(t) = Ṡ(q)v(t) + S(q)v̇(t) (3.12)

Plugging (3.11) and (3.12) into (3.1), and pre-multiplying by S(q)T :

S(q)T
(
M(q)

(
Ṡ(q)v(t) + S(q)v̇(t)

)
+ C(q, q̇)S(q)v(t) + A(q)Tλ = B(q)u

)
(3.13)

S(q)TM(q)S(q)v̇(t) +
(
S(q)TM(q)Ṡ(q) + S(q)TC(q, q̇)S(q)

)
v(t) = S(q)TB(q)u (3.14)

and dropping (q), (t) for clarity gives:

STMSv̇ +
(
STMṠ + STCS

)
v = STBu (3.15)

D̃v̇ + C̃v = B̃u (3.16)

with D̃ = STMS, C̃ = (STMṠ + STCS), B̃ = STB.

To map back from this transformed and reduced set of coordinates to our original

generalized coordinates from the full system, Equations (3.16) and (3.12) can be solved

together.

Method 2

It is also possible to solve the constraint equation (3.8) directly in conjunction with

the general dynamics equation (3.1), by first differentiating (3.8):

A(q)q̈ + Ȧ(q)q̇ = 0 (3.17)

A(q)q̈ = −Ȧ(q)q̇ (3.18)
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and then solving for the λ’s as well in (3.1), in matrix form:

M AT

A 0


q̈
λ

 = −

C
Ȧ

 q̇ +

B
0

u (3.19)

Method 3

We can also explicitly solve for the λ’s by considering equations (3.17) and (3.1),

reproduced below:

A(q)q̈ + Ȧ(q)q̇ = 0 (3.20)

M(q)q̈ + C(q, q̇)q̇ +G(q) + A(q)Tλ = B(q)u (3.21)

Dropping (q), (q, q̇) for clarity, we can rewrite (3.21) as:

q̈ = M−1 (Bu− Cq̇ −G− ATλ) (3.22)

and plug this result into (3.20):

A
(
M−1 (Bu− Cq̇ −G− ATλ))+ Ȧq̇ = 0 (3.23)

−AM−1ATλ = −
((
AM−1)(Bu− Cq̇ −G)+ Ȧq̇

)
(3.24)

λ =
(
AM−1AT

)−1 ((
AM−1)(Bu− Cq̇ −G)+ Ȧq̇

)
(3.25)

λ can then be plugged directly into (3.1).
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3.2.2 Solving for λ conclusion

There are tradeoffs in the above methods. Method 1 requires finding a matrix S(q)

in the nullspace of A(q), which can be non-obvious. Method 2 allows the λ’s to be

free variables in the optimization framework, which can however lead to unnecessary

computation. Method 3 avoids the number of open variables in the optimization, but

can lead to greater computation time due to the explicit expression for λ, which can

be an expensive evaluation. Both methods 2 and 3 are used in this thesis, switching

based on experimental computation time evaluations in the optimization framework.

The interested reader is directed to [72] for more details.

3.3 Existing Wheel Models

In the previous section we considered adding nonholonomic constraints to the dy-

namics equation to represent non-slipping and non-skidding wheels. Such constraints

can represent a good approximation at low speeds on terrains with high enough coeffi-

cients of friction. However, in this thesis, we are interested in dynamic and agile motions

such as skidding/drifting into a parking spot, for which the above constraints do not

capture the true dynamics. This section provides details on existing tire models in the

context of vehicles.

Characterizing tire forces is a major subject of vehicle dynamics [70, 71, 73, 74], but

developing accurate tire models remains a challenge due to the myriad of factors that

affect the forces generated from them. Many mathematical models have been developed

for tire forces, ranging from physics-based models that treat the tire as a spring, to

empirical-based models that simply fit a function with parameters to data.

The forces generated at each tire depend on several variables, including the slip angle

α, slip ratio ω, normal force Fn, coefficient of friction µ, and temperature of the tire. For
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Figure 3.2: Overhead view of a tire. The tire side slip angle α measures the angle
between the lateral and longitudinal component of the overall tire velocity vector.

dynamic skidding maneuvers, of particular interest is the slip angle α, which is defined

as the angle between the lateral component and longitudinal component of the velocity

of a tire, in the local tire frame. As shown in Figure 3.2, xw and yw are the local axes

of the tire, with corresponding velocities vxw and vyw , respectively. The overall velocity

of the tire is v, and thus the slip angle α captures the angle between the wheel’s rolling

direction and the actual direction of motion. A non-zero slip angle α means that slip is

occurring, and there is a lateral force at the tire perpendicular to the direction of travel.

More formally, the tire side slip angle is defined as:

α = tan−1
(
vyw
vxw

)
(3.26)

The tire approximations used in existing works investigating drifting [59–69], previ-

ously discussed in Section 2.4, all rely on some variant of the linear, Fiala, or Pacejka

models [70, 71], which all depend on this tire slip angle. This angle becomes singular at

low vehicle speeds due to the velocity term in the denominator, and is thus difficult to

use to generate versatile motions through a general trajectory optimization framework,
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additionally so because of the discontinuities in the latter two of these models.

For this reason, most of the above works decouple planning from control, that is to

say, use different models for, as well as separate the processes of, planning and control of a

desired motion. Examples have included rule-based methods to switch between models,

or planning with a kinematic model only, or planning under very specific conditions

avoiding the discontinuous ranges of the existing tire models. Ideally we would want to

plan (and then execute) motions through the same well understood real dynamic model.

3.4 Friction as a Linear Complementarity Problem

Toward deriving a general wheel model not dependent on the aforementioned slip

angle, that can be used in an optimization framework, we first consider the classical

Coulomb friction model, which has been widely used in robotics applications [13, 19, 75,

76]. Determining the friction forces for a contact point can be posed as a set of Linear

Complementarity Problems (LCPs), as detailed by Stewart and Trinkle [77, 78]. The

circular Coulomb friction cone, assuming a single contact, can be approximated by a

polyhedral cone F (see Figure 3.3):

F(q) = {Fnn + Dβ |Fn ≥ 0, β ≥ 0, eTβ ≤ µFn} (3.27)

where Fn is the magnitude of the normal contact force, n is the local unit z-axis repre-

senting the six dimensional unit wrench of the normal component of the contact force, the

columns of D are direction vectors that positively span the space of possible generalized

friction forces, e = [1, 1, ..., 1]T ∈ Rp where p is the number of edges of the polyhedral

approximation, and β ∈ Rp is a vector of weights.

The polyhedral cone in the Figure is made up of 8 direction vectors dj, as an example,
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Figure 3.3: Circular friction cone and polyhedral approximation [77].

where increasing the number of vectors corresponds to a more accurate representation of

the friction cone. Note that if s is a vector in the subspace of D, then dTj s ≥ 0 for all j

implies that s = 0. Here n and dj are unit vectors for isotropic Coulomb friction modeled

in the space of the contact force, however, the lengths of dj would vary for anisotropic

Coulomb friction.
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Figure 3.4: Isotropic and anisotropic polyhedral (shown here as octagonal) friction
cone approximations of a contact point at the center of the wheel, when viewed from
above. The normal force is coming out of the page, and each arrow represents a
direction vector.

Under Coulomb friction, the frictional force opposes the direction of motion. In the

wheels of a typical 2D planar car model, this would largely be opposite to the direction
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of wheel roll, for most behavior, not lending to be super useful for an optimization

framework to produce through-contact motions.

If we consider the wheels of a physical car model, we can directly input forces along the

rolling direction xw, and thus set the net force in these directions to overcome any static

friction trying to oppose motion along this axis, if we neglect wheel slip. In Figure 3.4,

this means that d1 should be of minimal importance, and in fact we will set |d1| ≈ 0,

and consider an anisotropic friction model. For RoboSimian with passive (unactuated)

wheels, we cannot directly control forces along the direction of roll, which will depend on

terrain properties and the body to which the wheels are attached. Some small damping

should be expected to slow down a rolling wheel, motivating keeping |d1| � 1.

Intuitively, when driving a car, there is a force perpendicular to a wheel’s rolling

direction preventing skidding from happening under normal circumstances. During ag-

gressive maneuvers however, the body/tire may overcome the static frictional force in

this direction, causing a loss of traction and thus skidding. This implies that the magni-

tude of vector d3 from Fig. 3.4 will be most important to plan realistic skidding (or lack

thereof) as in the dynamic parking tasks in Chapter 6.

In this thesis, we will consider two different anisotropic friction models, that essen-

tially amount to considering each wheel as more of a (possibly powered) ‘ice’ skate than

a ‘roller’ skate, as we do not model wheel rotation angles:

(1) |d1| = |d2| = |d4| = 0, |d3| = 1

(2) |d1| = 0.01, |d2| = |d4| = 0.3, |d3| = 1.
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LCP Formulation

For a given wheel contact at each time step, using the above anisotropic friction cones,

the following inequality constraints are enforced to produce the correct friction forces:

γe+DTvk+1 ≥ 0, β ≥ 0 (3.28)

µFn − eTβ ≥ 0, γ ≥ 0 (3.29)

with the complementarity conditions:

(γe+DTvk+1)Tβ = 0 (3.30)

(µFn − eTβ)γ = 0 (3.31)

where γ can be interpreted as a scalar roughly equal to the magnitude of the relative

tangential velocity at a contact, and vk+1 is the global 2D planar velocity vector of the

contact point at the end of the next time step. In this thesis, the contact schedule

is known, so Fn ≥ 0 when a wheel is in contact, otherwise there are no friction forces.

These conditions ensure that the friction force lies within the friction cone approximation,

and that the friction forces push against the tangential acceleration. From the above

constraints the friction Ffric at a particular contact can then be recovered with:

Ffric =

Ffricx
Ffricy

 = Dβ (3.32)

Ffric for each contact can then be mapped from global coordinates to generalized

coordinates with matrix J(q)T and input into Equation 3.1 as part of the non-conservative

forces F .
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3.5 Trajectory Optimization

In robotic locomotion applications, the term trajectory is often used to describe the

full path from a starting position to an end goal location. This path usually includes both

states (i.e. positions and velocities) and controls (i.e. motor torques) as functions of time.

Trajectory optimization thus refers to a set of methods used to find the ‘best’ choice of

trajectory, typically by selecting the inputs to the system (control inputs) as functions of

time. An objective function is used to mathematically describe what is meant by ‘best’

trajectory, which may for example penalize control inputs (i.e. an efficient trajectory is

desired) or maximize speed (i.e. we want the trajectory getting to the goal location as

fast as possible, ignoring efficiency).

3.5.1 The Trajectory Optimization Problem

There are many ways to formulate trajectory optimization problems [79–83]. We

will first focus on single-phase continuous-time trajectory optimization problems, where

the system dynamics are continuous throughout the entire trajectory. In general, the

objective function can include any number of terms depending on the desired task, but

usually we consider two terms: a boundary objective J(·) and a path integral along the

entire trajectory, with the integrand w(·), as follows:

min
t0,tF ,x(t),u(t)

J
(
t0, tF , x(t0), x(tF )

)
+

∫ tF

t0

w
(
τ, x(τ), u(τ)

)
dτ (3.33)

For the rest of this thesis, we will often refer to the entire cost function as J(·), to

include both terms above. In the context of optimization, the term decision variable is

used to describe the variables that the optimization solver is adjusting to minimize the

objective function. In general these decision variables include the initial and final time
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(t0, tF ), the state x(t) and control u(t) trajectories, and possibly additional variables left

free in the optimization (i.e. normal forces or constraint forces).

The optimization is subject to a variety of limits and constraints, shown in the fol-

lowing equations 3.34–3.41. For feasible and realistic trajectories, perhaps the most

important of these constraints is the system dynamics, which are typically nonlinear and

describe how the system changes over time:

ẋ(t) = f
(
t, x(t), u(t)

)
System Dynamics (3.34)

Another important type of constraint enforces restrictions along the trajectory. These

path constraints may arise, for example, to avoid collisions with obstacles in the envi-

ronment or between robot links, or to maintain an end effector at a particular location

during a time step.

h
(
t, x(t), u(t)

)
≤ 0 Path Constraint (3.35)

In addition to path constraints, there may be nonlinear boundary constraints, which

place restrictions on the initial and final states of the system. Such a constraint could be

used to find a trajectory to a particular goal location for the robot, or to find periodic

walking (or rolling) gaits.

g
(
t0, tF , x(t0), x(tF )

)
≤ 0 Boundary Constraint (3.36)

There are also often limits on states and control, such as physical limitations from

the motors which can only produce a finite and maximum torque. A robot’s joints would

then also have a maximum angular rate, and may have additional physical limits on
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possible position angles.

xlow ≤ x(t) ≤ xupp Path Bound on State (3.37)

ulow ≤ u(t) ≤ uupp Path Bound on Control (3.38)

It might also be necessary to include specific limits on the initial and final time and

state, to ensure that the solution to the path planning problem reaches the goal within

a desired time window, or that it reaches a particular goal region in state space:

tlow ≤ t0 < tF ≤ tupp Bounds on Initial and Final Times (3.39)

x0,low ≤ x(t0) ≤ x0,upp Bound on Initial State (3.40)

xF,low ≤ x(tF ) ≤ xF,upp Bound on Final State (3.41)

3.5.2 Transcription Methods

A popular class of techniques for solving trajectory optimization problems are tran-

scription methods. Such methods form a finite dimensional optimization problem by

discretizing the trajectories in time at N knot points as x1, ..., xN , u1, ..., uN , and be-

tween these knot points, enforcing the integral of the dynamics as a constraint. Within

this class are multiple-shooting methods, which typically use variable step numerical in-

tegrators between each pair of knot points, and have been successfully applied to robotic

locomotion tasks as in [84, 85]. Other common methods avoid the costly variable step

integration by using implicit, single step schemes between knot points, such as via Euler

integration schemes or by approximating trajectories as Hermitian splines [80,82,83,86].

Direct collocation [86] and variants have been widely used to optimize walking and run-

ning gaits as in [13,14,19,75,76,87,88].

30



Preliminaries Chapter 3

In this thesis, we take direct inspiration from the work done in [13, 19, 75, 76], where

full body control for underactuated systems is achieved via trajectory optimization and

stabilization under constraints. [13] in particular introduces an algorithm (DIRCON) that

extends the direct collocation method, incorporating manifold constraints to produce

nominal trajectories with third-order integration accuracy. In the rest of this thesis we

will make use of such methods in the application to agile wheeled systems, using the novel

wheel model explained in Section 3.4. This discrete time optimization has the following

format:

minimize
xk,uk; k=1...N

J
(
xN
)

+ h
N∑
k=1

w
(
xk, uk

)
(3.42)

subject to d
(
xk, uk, xk+1, uk+1) = 0, k = 1, ..., N − 1 (3.43)

φ
(
xk, uk

)
= 0, k = 1, ..., N (3.44)

ψ
(
xk, uk

)
≥ 0, k = 1, ..., N (3.45)

where xk is the full state of the system at sample k along the trajectory, uk is the

corresponding control input, J and w are final and additive costs we are interested in

minimizing, and N is the total number of samples along the trajectory. The function d

captures the dynamic constraints between two consecutive knot points, which depends

on the integration scheme. In this thesis we use the backward Euler method as follows:

d
(
xk, uk, xk+1, uk+1) := xk+1 −

(
xk + hf(xk+1, uk+1)

)
(3.46)

where h is the time between sample points k and k + 1. The functions φ(·) and ψ(·)

capture arbitrary constraints on the path, boundary, state, and control inputs.
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3.6 Robot Learning

There is rich literature in applying machine learning to robotics, ranging from deep

reinforcement learning to learning from demonstration. This section reviews the neces-

sary background in reinforcement learning and imitation learning for Chapters 7 and 8.

For a more comprehensive overview, the reinforcement learning (RL) framework is de-

scribed thoroughly by Sutton and Barto [89], and more recent survey papers review the

current state of learning in robotics, from deep reinforcement learning to learning from

demonstration [90–93].

3.6.1 Reinforcement Learning

A robotics task such as navigation, manipulation, locomotion, etc. can be formalized

as a Markov Decision Process (MDP), in which the agent interacts with the environment

through a sequence of observations, actions, and reward signals. At each time step t, the

agent receives a state st in state space S, and selects an action at from an action space A,

following a policy π(at|st), which maps from states st to actions at. The agent receives

a scalar reward rt, and transitions to the next state st+1 according to the environment

dynamics, or model, for reward function R(s, a, s′) and transition function P(st+1|st, at)

respectively. An MDP is thus given as a tuple (S,A,P ,R, γ), where γ ∈ (0, 1) is a

discount factor placing more emphasis on immediate rewards.

If an MDP is episodic, i.e. the state is reset after each episode of length T , then the

sequence of states, actions, and rewards in an episode constitutes a trajectory (or rollout)

of the policy. We will formally define a trajectory τ as:

τ = (s0, a0, s1, a1, ...) (3.47)
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The first state of the world, s0, is randomly sampled from the start-state distribution ρ0,

by s0 ∼ ρ0(·). The goal of the agent is to maximize some notion of cumulative reward

over a trajectory, which will be notated as the return R(τ). One kind of return is the

finite-horizon undiscounted return, which is just the sum of rewards obtained over the

episode of length T :

R(τ) =
T∑
t=0

rt (3.48)

Another kind of return is the infinite-horizon discounted return, which is the sum of all

rewards ever obtained by the agent, but discounted by how far off in the future they are

obtained:

R(τ) =
∞∑
t=0

γtrt (3.49)

which intuitively corresponds to a reward now is better than a reward later. Mathemati-

cally we note that an infinite-horizon sum of rewards may not converge to a finite value,

making such a scenario hard to deal with in the following discussion.

The Reinforcement Learning Problem

The goal of a reinforcement learning agent is to find a policy which maximizes the

above expected return (whether infinite or finite horizon, discounted or undiscounted).

If we suppose that both the environment transitions and the policy are stochastic, then

the probability of a particular trajectory τ is:

P (τ |π) = ρ0(s0)
T−1∏
t=0

P (st+1|st, at)π(at|st) (3.50)
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The expected return J(π) is then:

J(π) =

∫
P (τ |π)R(τ)dτ = Eτ∼π[R(τ)] (3.51)

The central optimization problem in RL can then be expressed as finding the policy that

maximizes the expected return as

π∗ = arg max
π

J(π) (3.52)

where π∗ is the optimal policy.

Value Functions

It will often be useful to know the value of a state, or state-action pair. The value of a

state (state-action pair) means the expected return for starting in that state (state-action

pair), and then acting according to a particular policy henceforth. Value functions are

used in almost every RL algorithm.

The on-policy value function V π(s) gives the expected return for starting in state s

and always acting according to policy π:

V π(s) = Eτ∼π [R(τ)|s0 = s] (3.53)

The optimal policy, π∗, has a corresponding state-value function, V ∗(s), and vice-versa,

the optimal state-value function can be defined as:

V ∗(s) = max
π

V π(s) ∀s ∈ S (3.54)

Similarly, the on-policy action-value function Qπ(s) gives the expected return for
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starting in state s, taking an arbitrary action a (which may not come from the policy),

and then always acting according to policy π:

Qπ(s, a) = Eτ∼π [R(τ)|s0 = s, a0 = a] (3.55)

The optimal policy, π∗, has a corresponding action-value function, Q∗(s, a), and vice-

versa, the optimal action-value function can be defined as:

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S, ∀a ∈ A (3.56)

From the above definitions, there are straightforward but key connections between

the value function and action-value functions:

V π(s) = Ea∼π [Qπ(s, a)] (3.57)

V ∗(s) = max
a
Q∗(s, a) (3.58)

Another observation is the relation between the optimal policy when in state s with the

optimal action-value function Q∗. If we know Q∗, the we can directly obtain the optimal

action, a∗(s), via

a∗(s) = arg max
a

Q∗(s, a) (3.59)

Bellman Equations

All of the above defined value functions obey self-consistency equations called Bellman

equations, for which the basic idea is that the value of a particular starting point is the

reward you expect to get from being there, plus the value of wherever you land next. For
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the on-policy value functions, this is written as:

V π(s) = E
a∼π
s′∼P

[r(s, a) + γV π(s′)] (3.60)

Qπ(s, a) = E
s′∼P

[
r(s, a) + γ E

a′∼π

[
Qπ(s′, a′)

]]
(3.61)

where s′ ∼ P is shorthand for s′ ∼ P(·|s, a), indicating that the next state s′ is sampled

from the environment transition rules; a ∼ π is shorthand for a ∼ π(·|s); and a′ ∼ π is

shorthand for a′ ∼ π(·|s′).

The Bellman equations for the optimal value functions are the maximum over actions,

indicating that whenever the agent gets to choose its action, it has to pick whichever

action leads to the highest value:

V ∗(s) = max
a

E
s′∼P

[r(s, a) + γV ∗(s′)] (3.62)

Q∗(s, a) = E
s′∼P

[
r(s, a) + γmax

a′
Q∗(s′, a′)

]
(3.63)

Advantage Functions

The advantage function Aπ(s, a) corresponding to a policy π describes how much

better it is to take a specific action a in state s, over randomly selecting an action

according to π(·|s), assuming the agent acts according to π forever after. Using the

above definitions of the value and action-value functions, this can be formally defined as:

Aπ(s, a) = Qπ(s, a)− V π(s) (3.64)

The advantage function is crucial to policy gradient methods to solve RL problems,

discussed in the next section.
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3.6.2 Solving the RL Problem

Now that we have introduced the basic terminology and functions of a reinforcement

learning problem, the question becomes: what do we need to learn? Generally reinforce-

ment learning is divided into two sub-categories: model-based RL and model-free RL.

Model-based algorithms allow the agent to plan by thinking ahead, seeing what would

happen for a range of possible choices, and explicitly deciding between its options. How-

ever, a ground-truth model of the environment is usually not available to the agent, which

it has to learn purely from experience. A big challenge in this aspect is that bias in the

learned model can be exploited by the agent, resulting in an agent that performs well

with respect to the learned model, but sub-optimally in the real environment.

Model-free RL in contrast does not make any effort to learn the underlying dynamics

that govern how the agent interacts with the environment. Model-free RL algorithms

forego the potential gains in sample efficiency from using a model, but are typically easier

to implement and tune, and are thus more popular. Such algorithms directly estimate

the optimal policy or value functions.

We will specifically consider policy optimization algorithms for the rest of this sec-

tion, which represent a policy explicitly as πθ(a|s). The parameters θ are optimized either

directly by gradient ascent on the performance objective J(πθ), or indirectly, by maxi-

mizing local approximations of J(πθ). This optimization is typically performed on-policy,

which means that each update uses only the data collected while acting according to the

most recent version of the policy. Policy optimization also usually involves learning an

approximator Vφ(s) for the on-policy value function V π(s), which gets used in determin-

ing the policy update. Towards discussing the current state-of-the-art, Proximal Policy

Optimization (PPO) [22], we first review policy gradients, and its predecessor, Trust

Region Policy Optimization (TRPO) [94].
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Policy Gradient Methods

Policy gradient methods work by computing an estimator of the policy gradient and

plugging it into a stochastic gradient ascent algorithm. A commonly used gradient esti-

mator has the form

ĝ = Êt
[
∇θ log πθ(at|st)Ât

]
(3.65)

where πθ is a stochastic policy and Ât is an estimator of the advantage function at

timestep t as in [95]. The expectation indicates the empirical average over a finite batch

of samples, in an algorithm that alternates between sampling and optimization. Imple-

mentations that use automatic differentiation software, such as OpenAI Baselines [96]

which use TensorFlow, work by constructing an objective function whose gradient is

the policy gradient estimator. The estimator ĝ is thus obtained by differentiating the

objective:

LPG(θ) = Êt
[
log πθ(at|st)Ât

]
(3.66)

However, while it may seem appealing to perform multiple steps of optimization on this

loss function using the same trajectory, empirically doing so often leads to destructively

large policy updates.

Trust Region Methods

To mitigate these possibly destructively large policy updates, the authors of TRPO [94]

propose maximizing a “surrogate” objective function subject to a constraint on the size
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of the policy update:

maximize
θ

Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
(3.67)

subject to Êt
[
KL
[
πθold(·|st), πθ(·|st)

]]
≤ δ (3.68)

where δ is a hyperparameter for the upper bound of the KL divergence between the old

and the updated policy, and θold is the vector of policy parameters before the update.

This constrained optimization problem is solved using a conjugate gradient followed by

a line search [94].

Proximal Policy Optimization

PPO [22] is motivated by the same question as TRPO: how can we take the biggest

possible improvement step on a policy using the data we currently have, without stepping

so far that we accidentally cause performance collapse? Where TRPO tries to solve this

problem with a complex second-order method, PPO is a family of first-order methods

that use a few other tricks to keep new policies close to the old. PPO methods are

significantly simpler to implement, have fewer hyperparameters to tune, and empirically

seem to perform at least as well as TRPO. Open AI states that PPO has become their

default reinforcement learning algorithm because of its ease of use and good performance.

To recap from TRPO, if we let rt(θ) denote the probability ratio

rt(θ) =
πθ(at|st)
πθold(at|st)

(3.69)
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so that rt(θold) = 1, then TRPO maximizes the “surrogate” objective:

LCPI(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
= Êt

[
rt(θ)Ât

]
(3.70)

The superscript CPI refers to the conservative policy iteration [97] where this objective

was proposed. Without a constraint, maximization of LCPI would lead to an excessively

large policy update; hence, PPO proposes a modification to the objective to penalize

deviations of rt(θ) from 1 as follows:

LCLIP (θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
(3.71)

where ε is a hyperparameter (ε = 0.2 in the implementation in this thesis). The first

term is simply LCPI , and the second term modifies the surrogate objective by clipping the

probability ratio, removing the incentive for moving rt outside of the interval [1−ε, 1+ε].

Taking the minimum of the clipped and unclipped objective results in a final objective

with a lower bound on the unclipped objective.

PPO is an actor-critic algorithm and thus uses an explicit representation of both

the policy (actor) and value (critic) functions, implemented as Neural Networks. To

compute the variance-reduced advantage function estimator using a learned state-value

function V (s), we must create a loss function that combines the policy surrogate and a

value function error term. This objective is additionally augmented by adding an entropy

bonus to ensure sufficient exploration [22, 98]. These three terms are combined into the

following objective, to be (approximately) maximized at each iteration (after each policy

rollout):

LCLIP+V F+S
t (θ) = Êt

[
LCLIPt (θ)− c1LV Ft (θ) + c2S[πθ](st)

]
(3.72)
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where c1, c2 are hyperparameters, S denotes an entropy bonus, and LV Ft (θ) is a squared-

error loss:

LV Ft (θ) =
(
Vθ(st)− V targ

t

)2
(3.73)

3.6.3 Imitation Learning

Reinforcement learning offers a formulation for control skills acquisition, relying on

learning from trial and error. Such methods typically require a significant amount of

system interaction time (high sample complexity), and carefully designed well-shaped re-

ward structure is necessary to guide the search of optimal policies. This can be especially

non-trivial in complex scenarios.

The goal of imitation learning, on the other hand, is to learn a policy that reproduces

the behavior of experts who demonstrate how to perform a desired task. Suppose that

the behavior of the expert demonstrator (or the learner itself) can be observed as a

trajectory τ as we defined for reinforcement learning:

τ = (s0, a0, ..., sT , aT ) (3.74)

where ai is the action taken by the agent in state si. One way to obtain a policy that

reproduces the demonstrated behavior is to learn a policy that directly maps from the

state to the action/trajectory. If we have a dataset of demonstrated trajectories of state-

action pairs D = {τ0, ..., τN}, we can directly compute a mapping from states to control

inputs as

at = π(st) (3.75)
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This kind of policy can be obtained through a standard supervised learning method.

Learning a policy that directly maps from the state to the control input is often referred

to as Behavioral Cloning (BC) [99].

In Chapter 8 we will use this classical behavioral cloning approach to imitation learn-

ing, and define the following objective function that seeks to minimize the error between

an expert action and the maximum likelihood estimate action from the current policy

πθ:

LBC(θ) =
1

N

N∑
i=1

(
a∗i − arg max

ai

πθ(ai|si)
)2

(3.76)

for expert demonstration state-action pairs {si, a∗i }Ni=1, where arg max
ai

πθ(ai|si) is the

maximum likelihood estimate action ai for state si using policy πθ.
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Chapter 4

Design and Evaluation of Skating

Motions for a Dexterous Quadruped

This chapter describes skating locomotion for RoboSimian, a quadruped robot with dex-

terous limbs. The emphasis is on design of omnidirectional motion primitives and quan-

tification of resulting speed and accuracy when traversing different types of smooth but

potentially non-flat terrain. In particular, we study trade-offs between using four-wheeled

versus three-wheeled skating maneuvers. In four-wheeled skating, motions have the ben-

efit of symmetry, so that errors due to wheel slip should theoretically cancel out on

average. Three-wheeled skating, by contrast, introduces significantly more asymmetry in

configuration and contact force distribution over time; however, it has the advantage of

guaranteeing continuous ground contact for all skates when terrain has bumps or other

curvature. We present simulation results quantifying errors for each approach, for var-

ious terrains. These results allow the possibility to tune motions to reduce biases and

variability in motion, which are primarily due to accelerations as locomotion begins.
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4.1 Introduction and Motivation

While previous work has been done on skating robots, it has largely focused on robot

designs and/or relatively simple, symmetric motions, as discussed in Section 2.2. Here,

more diverse, omnidirectional motions for skating are explored, to enable dual-locomotion

strategies: rolling rapidly on relatively smooth terrain and switching to quadruped walk-

ing for rough or intermittent terrain. The emphases are on design parameterization

and data-based evaluation, with the purposes of examining uncertainty propagation and

enabling later algorithms (i.e., learning) for parameter tuning and optimization.

As discussed in Section 2.1, while force and torque sensing are available at the most

distal tip of each of RoboSimian’s limbs, there is currently no sensing available to sense

contact of the skate with the ground. This eliminates the practical use of force feedback

during skating, and as such, the focus is on execution of “open-loop” motion primitives,

in which encoder feedback is available and used to control desired joint angle trajectories,

while the joint trajectories themselves are not updated or modified during execution based

on feedback. This opens the question of what planned trajectory length is suitable, to

balance the reduced cost of replanning against the increasing variability in end state as

such motion sequences become longer.

Another objective we have is to explore design and resulting performance of motion

primitives for mildly stochastic terrain. Speed and accuracy of locomotion are our pri-

mary concerns. Friction variations, non-zero slopes, and bumps along terrain all clearly

affect skating locomotion, and we will quantify some of these effects. We hypothesize

that using three wheels instead of four may increase accuracy, since wheels will stay in

contact across mild terrain curvatures. However, such motions may also introduce ad-

ditional asymmetries and/or uncertainties in contact forces that may not produce a net

benefit in performance, motivating this study.
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The rest of this chapter is organized as follows. Section 4.2 describes our modeling

framework for planning skate motions and subsequent joint trajectories of the robot.

Sec. 4.3 outlines the design of simple, forward-facing motion primitives to skate in a

straight line, for both pairwise skating with all four limbs and three-wheeled skating for

more consistent ground contact at all skates. Section 4.4 presents design and results for

speed and accuracy of more complex motions primitives and stochastic terrain situations,

based on Monte Carlo simulations on stochastically generated terrain using Klamp’t

(Kris’ Locomotion and Manipulation Planning Toolbox) [100]. Finally, conclusions and

discussion of applications toward both high-level motion planning and low-level learning

for our work are presented in Section 4.5.

4.2 Modeling

Planning effective, feasible skating motions for RoboSimian involves two complemen-

tary problems. The motions of the skates must enable generation of required ground

reaction forces without excessive slipping, to move the robot as desired, and solutions

for inverse kinematics must be tractable, smooth, and within the dynamic velocity and

acceleration limits of the joint actuators of the robot.

4.2.1 Skating Kinematics and Dynamics

Each “skate” we use for RoboSimian is a simple, ideal wheel under standard constraint

assumptions. For motion planning, we assume that no slip occurs along the axis of the

wheel, and that the wheel can roll freely perpendicular to the no-slip axis. We additionally

assume that the wheel can rotate freely about a point contact with the ground. In the

no-slip direction, however, achievable lateral forces are limited by friction, so that in

reality, |Fx| ≤ µFz, where µ is the coefficient of friction between the ground and the
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wheel, and Fz is the normal force at the ground contact. Figure 4.1 illustrates the no-slip

and free-wheeling directions; free rotation about the contact point corresponds to angle

φ. We also assume no force or torque can occur along the freely-moving DOFs.

fre
e ro

llin
g

no slip

?

Figure 4.1: Simple wheel, with constraint axes: angled and overhead views.
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Figure 4.2: Overview of planning for skating kinematics.

Given these constraints, one can plan co-compatible motions for the body (globally)

and for the skates (with respect to the local body coordinate frame). As with many

locomotion problems, planning can be achieved by first reasoning about allowable com-
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binations of body and end effector motions that satisfy the required constraints. Then,

enforcing those particular motions must result in the desired forces, at least to the extent

that modeling assumptions for the dynamics are correct. Zero-moment point (ZMP)

planning is a classic example of this basic approach, in which desired forces are achieved

not directly through force feedback, but indirectly through enforcing joint-level trajecto-

ries compatible with desired ground reaction forces [101,102].

In Figure 4.2, the top image shows an overhead view of a particular pose and robot

configuration. This robot example has two skates and a third spherical wheel (with no

constraints on direction of free rolling), for simplicity. A desired instantaneous center of

rotation (ICR) is defined for the robot body path. The ICR in turn defines the relative

direction and magnitude of any point in the local body reference frame: direction will be

perpendicular to the radial line, Rn, from the ICR to that point, and magnitude must

be proportional to this distance. At the midpoint of each skate, the total velocity will

be the sum of this local “body velocity”, shown as blue vectors in this figure, plus the

relative velocity of the skate with respect to the local body reference frame.

Let us also assume that we pick a particular direction of motion for each skate,

depicted by the red dashed lines in the middle image. Referring to the lower left image of

Fig. 4.2, in order for both the simple kinematic constraints shown in Fig. 4.1 and desired

absolute body trajectory motions to be achieved, the sum of the velocity due to body

motion (blue vector) plus the relative velocity of skate with respect to body (red vector)

must align along the “free rolling” direction of the skate (yellow vector), since no motion

(i.e., slip) is assumed perpendicular to this direction.

During execution of the resulting motion plan, forces are generated only along the no

slip axis, with zero force along the free rolling direction. So long as friction limits along

the no slip axis are not exceeded, the planned constraints should theoretically be obeyed,

resulting in desired body motion.
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Of course, real-world skates do not have point contacts, friction on terrain is not

always well-characterized or consistent, and even guarantees of expected z-directed con-

tact forces, Fz, required for corresponding lateral friction forces, cannot necessarily be

made for quadruped skating, once terrain becomes uneven. Coping with such non-ideal

situations is a large focus of this chapter.

4.2.2 Constraints Particular to RoboSimian

As mentioned in Section 2.1, we mount a single wheel on the most distal link, or

“forearm”, of the robot. Along each limb, there are six actuated joints, more proximal to

the body, which set the six degree-of-freedom (DOF) pose, i.e., location and orientation

(x, y, z, roll, pitch, and yaw), of each skate. A seventh motor is located at the very end

of each leg, as depicted in Fig. 2.1.

Two issues make motion planning for RoboSimian particularly challenging. First, the

inverse kinematics (IK) to set the 6-DOF pose of the skate require choosing from among

one of eight IK families, each analogous to a choice of “elbow bending direction” for each

of three elbows on a limb [31]. Providing guarantees of smoothness requires precalculation

of IK solutions across a region as well as compromises between ideal theoretical contact

locations and achievable solutions for our particular robot. In particular, achieving exact

symmetry in end effector locations is either non-trivial or not achievable, for many desired

skate configurations.

A second constraint in planning is a lack of force sensing, to detect contact and loading

of the skate on the ground, as discussed in Section 4.1. More specifically, six-DOF force

and torque sensing is available at the most distal “foot” contact of each limb, but not

for the attached skate for the real robot. Our simulations in Klamp’t obviously provide

such contact force data, but we use this only in post-processing, to identify and quantify
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slip.

4.3 Design of Simple Skating Motions

This section describes three-wheeled and four-wheeled skating along a straight, forward-

facing path. Note throughout that skates are numbered 1 through 4, with limb/skate 1

at the front right of the robot, and numbering continuing sequentially going clockwise

when viewing the robot from above. For example, Figure 4.3 shows RoboSimian facing

to the left, within Klamp’t. At right, the skate in midair is on limb 4. The position of

each skate (xee, yee) is measured with respect to the body frame rather than the world

frame.

Figure 4.3: RoboSimian on 4 (left) and 3 skates (right), simulated in Klamp’t.

For all trajectories presented in this chapter, acceleration and deceleration of planned

body motions follow triangular waveforms, as illustrated in Figure 4.4.

4.3.1 Skating with Four Wheels

Skating with four limbs/wheels exploits symmetry, canceling out some effects of slip.

For straight-line body trajectories, the left versus right limbs move symmetrically with
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Figure 4.4: Acceleration (a(t)), velocity (v(t)), and position (x(t)) profiles for planned
robot body motions.

respect to one another, so that limbs 1 and 4 (front two limbs) have a phase difference

of π with respect to one another (as do limbs 2 and 3). There is a phase difference of

π/2 between the front and rear limbs, so that one set of skates will have maximum angle

of attack, φ, and (correspondingly) maximum force generation potential, exactly when

the other pair is aligned with the free-rolling axis pointing forward, with no ability to

generate a net ground reaction force in this forward direction. This effect is especially

important during acceleration and deceleration of the robot.

Figure 4.5 shows yee(t) and φ(t) trajectories for a desired robot body motion going

straight, in the (forward-facing) local +x direction. Skates do not move in the x direction,

with respect to the robot body frame, as the relative skate motions are perpendicular to

the robot’s direction of motion.
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Figure 4.5: At left, local skate end effector positions and angles φ for a simple, straight
body trajectory with 4 skates. The front two skates are out of phase by π/2 with the
back skates, and due to symmetry, are out of phase by π with each other to ensure
minimal slip and maximum propulsion forces. At right, analogous trajectories with
3 skates. Each skate is out of phase by 2π/3, with this configuration being the opti-
mal for straight ahead acceleration from stand still, as determined from simulations
associated with Figures 4.6 and 4.7.

4.3.2 Skating with Three Wheels

Using only three wheels to skate has two motivations. It leaves the fourth limb free for

manipulation tasks, and – more importantly – three skates provide more reliable ground

contact on curved terrain profiles than four.

In planning, we assume that limb 4 (front left limb) is up and “out of the way” of

any skating motions of the remaining three limbs, and primarily plan for trajectories
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with limb 1 placed nearly front and center of RoboSimian, as shown in Fig. 4.3. We also

designed and tested other three-skate configurations, which require additional planning

and offsets, but focus on this quasi-symmetric case, which improves performance.

The basic idea in three-skate planning is to use equal phase increments between skates

(i.e., “three-phase” waveforms). The asymmetry of using three skates has a significant

drawback, however: it increases vulnerability to yaw due to slip during accelerations of

the body. Toward mitigating this problem, we study three approaches, described below.

Careful selection of the phase offset of each skate

We start with initial phase offsets of 0 for skate 1, 2π/3 for skate 2, and 4π/3 for

skate 3. Corresponding simulations in Klamp’t show significant slip during the initial

acceleration phase of the skating motion, causing unwanted yaw (to the left) in the

actual body trajectory. Most of this yaw is due to wheel slip at skate 2 (i.e., right rear

wheel).

We study the effects of changing the phase offset at start-up by performing simulations

of a 10-meter straight trajectory on a flat terrain with friction coeffcicient µ = 0.3. Phase

offsets are parameterized as (0+γ, 2π/3+γ, 4π/3+γ) for skates 1, 2, 3, respectively, with

γ set to one particular value on each trial. Resulting body coordinate trajectories are

shown in Figure 4.6. The top plot shows the (x, y) body trajectory, while the lower plot

shows yaw angle over time. Figure 4.7 shows results for a similar case, except reversing

the sign on the 120◦ phase offsets among skates, to use offsets of (0+γ, 4π/3+γ, 2π/3+γ).

The two choices of symmetric phase offset for three-wheel skating should produce

identical steady-state motions, in theory. In simulation, however, each has different (non-

ideal) “problems”, due to asymmetries now. For Fig. 4.6, using (γ, γ+120◦, γ+240◦), the

straightest trajectory is for γ = 4π/3; however, total distance traveled (upper subplot)

has a 10% error, going only about 9 meters, instead of 10. For a reversed skate phasing
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Figure 4.6: Results for a 10 (m) straight trajectory, designed for 3-wheel skating,
with peak of a(t) = 0.5 (m/s2) at the midpoint of a 2-second triangular acceleration
profile, reaching a steady-state velocity of 0.5 (m/s), with a deceleration over the last
2 seconds of the trajectory. The phase offset, γ, is changed incrementally by π/6.

of (γ, γ − 120◦, γ − 240◦), Fig. 4.7 shows a somewhat more significant steady-state rate

of undesired body yaw (turning to the left, for each case), but this rate is quite small in

both cases, i.e., 0.17 (◦/s) vs 0.30 (◦/s), which map to circular paths with radii of 170

vs. 95 meters (i.e., very slight turning, indeed).

More importantly, the steady-state velocity for the latter case is now much closer to

its planned value. With γ = 11π/6, total distance traveled is almost exactly the desired

distance of 10 meters, as shown on the top subplot of Fig. 4.7, versus the 10% error
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Figure 4.7: Results using the same body trajectory as in Fig. 4.6 and again changing
the phase offset for each skate incrementally by π/6, but with the reversed order of
phase increment among the three skates.

mentioned above for Fig. 4.6.

For the remaining three-skate trajectories presented in this paper, an initial configu-

ration of (0, 4π/3, 2π/3) + 11π/6 is used as an “optimal offset”, since it minimizes error

in Fig. 4.7. The righthand trajectories in Figure 4.5 in fact present φ and y for this

particular parameterization. Note that during acceleration (near t = 4 s), the front skate

(i = 1) is the one pointing most nearly “straight forward”, while the two back wheels,

though still asymmetric with respect to one another, push in opposite directions, for an
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effect that somewhat mimics the symmetry of four limb skating.

Slowing down the initial acceleration rate from a stand still

We compared simulation results for both the initial acceleration profile shown in

Fig. 4.4 and for a similar profile that instead uses half the peak acceleration, spread over

twice the time (four seconds instead of two), to reach the same steady-state velocity

of 0.5 (m/s), to compare errors in body trajectory during acceleration. The slower

acceleration reduces required lateral forces (reducing chance of slip) but also clearly

increases required time to go a particular distance, so that we anticipate a classic trade-

off between speed and accuracy, in tracking planned body motions.

Pushing off with the free limb

While push-off, analogous to skate boarding, was successful, it demonstrated no per-

formance benefits (in speed or accuracy). See the video supplement for an example of

this motion.

4.4 Design for Variable Terrain Challenges

Toward more generalized motion planning, the forward-rolling motion primitives dis-

cussed in the previous section are now augmented by including diagonal trajectories,

curved paths, variable friction, and mild bumps on terrain. In this section we design

(and simulate with Klamp’t) such skating motions for both three- and four-limb skating.

Videos12 illustrating the motions described below, among others, can be found associated

with the publication on which this chapter is based on [103].

1https://youtu.be/kLEUTthCQt4
2https://youtu.be/bD5w1cxFFqE
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4.4.1 20 (m) Straight Trajectory

Straight trajectories were already discussed in Sections 4.3.1 and 4.3.2, where results

were presented assuming a friction coefficient of µ = 0.3 between each skate and the

ground. In Figure 4.8, we present additional results for a range of values of µ, with a

steady-state velocity of 0.5 (m/s). Errors are quite small for symmetric, 4-wheel skating,

in the leftmost subplots. Even for the lowest friction tested (µ = 0.1), error in end state

is only about 0.5 meters, or 2.5% of the total 20-meter desired distance.

For 3-limb skating, results are similar for all µ ≥ 0.3, with desired forward velocity

and a net yaw rate of about 0.26 ◦/s (i.e., turning radius of about 110 meters). Slip is

quite noticeable for µ = 0.1, however, with speed reduced to about 80% of the desired

rate and a tighter (unplanned) turning radius (about 40 meters) due to slip.
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Figure 4.8: Tracking a 20 (m) straight ahead trajectory with four (left) or three (right)
skates over varying µ.
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4.4.2 10 (m) Diagonal Trajectory

Here, motions are planned to move the body along a straight line, oriented 30◦ to

the left (nautical “port” side) with respect to the previous, forward-facing trajectories,

to test omnidirectional locomotion. Relative motions of the skates (with respect to the

body) are now generalized to travel perpendicular to the planned body motion, which

is an effective parameterization across all tested motions. To better visualize this, refer

to the lower left subplot of Fig. 4.2: the relative motion of the skate in this example is

also planned to be exactly perpendicular to the absolute body velocity at the ground

contact for this skate. This rule for planning relative skate directions is used across all

examples within this chapter. Rules for planning relative phase between skates and for

setting skate angles remain unchanged from Sec. 4.3.1.

Figure 4.9 shows results. As there is inherently less symmetry between limbs when

the robot travels diagonally, there are greater tracking errors, as expected. Compared

with the forward-facing trajectories (at left, in Fig. 4.8), four-limb skating does show

more sensitivity to µ, but it is still a mild effect. Three-limb skating is significantly

more sensitive to changes in µ; however, there is a relatively smooth mapping between µ

and the resulting offset in yaw angle, which occurs primarily during acceleration at the

start. A bifurcation in behavior occurs between friction values of 0.1 and 0.3, i.e., slip is

dramatic for µ = 0.1.

4.4.3 2 (m) Radius Circle Trajectory

For circular body trajectories, we again choose relative skate motions perpendicular

to absolute velocity of the body-fixed coordinate frame at the ground contact of each

skate. For curved trajectories, this means each skate oscillates back and forth on the

line extending radially from the desired ICR to the ground contact (see bottom left of
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Figure 4.9: Tracking a π/6 diagonal trajectory from straight ahead with four (left) or
three (right) skates over varying µ.

Fig. 4.2).

Simulations in Klamp’t track a circle trajectory of radius 2 (m). For µ = 0.1, three-

limb skating cannot complete the trajectory, which is shown in the accompanying video.

For the other coefficients of friction, three-limb skating performs quite well, and actually

close to as well as four-limb skating, unlike for the previous motions.

4.4.4 Monte Carlo Simulations over Rough Terrain

Over flat terrain, regardless of the coefficient of friction, four-wheel skating outper-

forms the accuracy of three-wheel skating, albeit sometimes only by a small margin. This

is no longer the case on bumpy terrain.

We created “smooth” wavy terrains via spline fits of randomly generated heights
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Figure 4.10: Tracking a circular trajectory with radius 2 (m) with four (left) or three
(right) skates over varying µ.

across a 2D grid. We present results here for terrains with peak bump heights of 0.1 (m)

and 0.2 (m), for the 20 (m) straight trajectory previously studied on flat terrain (in

Sec. 4.4.1) for 20 open-loop trials with each of four values of µ, randomizing initial

position and orientation on terrain for each trial.

Figures 4.11 and 4.12 show the final (x, y) coordinates of the robot for each of the tri-

als. Over the 0.1 (m) maximum height rough terrain, save for the µ = 0.1 case, three limb

skating always travels close to the desired 20-m distance, though the body trajectory may

be offset by up to 10◦, due to initial yaw perturbations. This significantly outperforms

four limb skating, which has a much broader distribution of end states, corresponding

to intermittent slip throughout motion and not just during initial acceleration (as for
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three-skate motions).
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Figure 4.11: Monte Carlo simulations of a 20 (m) straight trajectory over “smooth”
rough terrain that varies randomly uniformly over 0.1 (m).
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Figure 4.12: Monte Carlo simulations of a 20 (m) straight trajectory over “smooth”
rough terrain that varies randomly uniformly over 0.2 (m).
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The discrepancy between the two primitives becomes even more significant over the

rougher terrain with 0.2 (m) bumps. Three-limb skating is still reliable for µ = 1, with

some bifuractions in behavior appearing at lower frictions. With four skates, however,

behavior is unreliable regardless of the value of µ. RoboSimian consistently has trouble

going up the small wavy hills and sometimes even rolls backwards, getting stuck in a

trough where it often repeatedly slips and rolls/slides back down. The supplementary

video shows an example of this for four limb skating.

4.5 Conclusions and Discussion

Agile wheeled locomotion is one route toward increasing energy efficiency, stability,

and speed simultaneously on mild terrain for limbed robots also capable of rough terrain

walking and/or dexterous manipulation tasks. In this chapter, we outline design of and

present performance analyses for a small family of motion primitives, exploring trade-

offs between speed and accuracy as a function of (stochastic) terrain properties, toward

facilitating both high-level planning structures and low-level learning algorithms.

For high-level planning, we envision use of skating primitives within a larger frame-

work, to avoid obstacles, meet desired waypoints, and reach particular end destinations

on mild terrain. Real-world locomotion will involve terrain with variable contact friction

and unevenness, along with inherent time delays for sensor estimates of 6-DOF body

pose based on processed vision and lidar information. One practical planning strategy

would therefore be to employ a sequence of well-characterized but stochastic open-loop

dynamic maneuvers [102], using piece-wise composition with a receding horizon approach

for replanning to cope with uncertainty [104]. Such a strategy is in the spirit of sequential

composition via a funneling approach [105]; i.e., with a set of individual controllers that

can be nested, with the variability in end state of one sequence easily within the basin
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of attraction of the next sequential controlled action.

A second purpose of this work is to explore uncertainty propagation of various skating

primitives, toward selecting and parameterizing low-level motion primitives for optimiza-

tion through learning algorithms. In particular, we highlight that skating with three

wheels (1) produces greater yaw disturbances and (2) results in more continuity and re-

peatability as parameterizations and/or noise vary. For example, Figures 4.6, 4.7 and 4.9

show yaw increasing smoothly as µ goes down, for µ > 0.1, and Figures 4.11 and 4.12

show more repeatable traction (i.e., clustering of end state) for three-wheel skating, while

results using four wheels yield more bifurcations and fewer examples of “smooth vari-

ations” in behavior. Correspondingly, we anticipate that three-wheeled skating can be

used more effectively within gradient-based learning algorithms, to deliberately exploit

slip for more dynamic, unactuated and agile maneuvers.

Finally, we note that the fidelity of dynamic simulations is an open question and

ongoing research challenge in itself; real robot locomotion will vary somewhat from simu-

lation predictions. In our experience, simulations provide an important step in efficiently

identifying and pre-tuning behaviors that are later verified and/or tweaked on real hard-

ware, also enabling safe and systematic development of dynamic motions. We highlight

that ensuring robustness to parameter variability within simulation, which is a central

goal in this work, typically improves real-world robustness, as well.
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Chapter 5

Nonintuitive Optima for Dynamic

Locomotion: The Acrollbot

This chapter explores locally-optimal, efficient locomotion of a two-link planar robot

balancing on a single, unactuated wheel. Because this model is essentially an acrobot

mounted on a passive wheel, we name this model the acrollbot. By actuating an internal

degree of freedom, the model can indirectly produce ground reaction forces yielding net

accelerations and decelerations, to achieve locomotion. As with bipedal robot locomo-

tion, this toy system is particularly challenging to control due to the need to balance

continuously while controlling forward locomotion speed. However, unlike typical legged

or rolling locomotion solutions, it is not immediately obvious how best to exploit ac-

tuation, internal reconfigurations, and motions to produce and control forward velocity

along the ground, providing a useful benchmarking system for exploring optimization

techniques. We use a direct collocation optimization framework to study this toy sys-

tem, both to achieve a range of feasible locomotion solutions for nonintuitive dynamic

robot models, and to investigate optimization of physical robot parameterizations, in

the sense of improving locomotion efficiency. The framework and example presented
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throughout are designed with an aim toward bridging the gap between non-intuitive,

data-driven optimization and model-based methods for design and control of underactu-

ated and dynamically-stable locomotion.

5.1 Introduction and Motivation

Agile legged and/or wheel-legged robots can potentially exploit inverted pendulum

dynamics for balance and locomotion. In this chapter, we study locally optimal solutions

for an underactuated multi-link rolling inverted pendulum, toward finding non-intuitive

strategies for balance and forward propulsion.

Our goal is to develop tools that can optimize both the mechanical design of a highly

dynamic robot and optimal motion trajectories, simultaneously. We hypothesize that

simple models, when chosen with care, are extremely useful for identifying fundamental

principles, and also that many interesting phenomena for producing balance and locomo-

tion (in particular, through creative use of internal degrees of freedom) may yet remain

undiscovered. We focus on a simple yet unusual model, which includes the challenge

of underactuated balance and potential use of internal degrees of freedom without the

additional complication of (dissipative/stabilizing) collision events, toward investigating

novel dynamic phenomena for locomotion.

While work has been done in recent years to optimize locomotion control for under-

actuated systems, we are particularly interested in methods with potential to explore

and reveal non-intuitive solutions, to use computing power to improve performance.

Many such examples were discussed in Chapter 1, ranging from switching between low

level controllers to produce robust, agile bounding gaits [106–108], to automated gait

generation through optimization frameworks [13, 19, 76, 109, 110]. Deep learning meth-

ods [23, 111–113] have also been widely used for robot motion planning. A particularly
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popular Google DeepMind AI locomotion video associated with [21] highlights the emer-

gence of a range of locomotion behaviors for various systems through deep reinforcement

learning. These animations include examples on seemingly non-optimal – or at least

non-intuitive – motions. For example, humanoid biped upper-body limbs sometimes flail

dramatically, although they never contact the environment. While these results are defi-

nitely intriguing, there is arguably a practical desire to know whether such non-intuitive

motions can be verified to have a specific (and significant) beneficial physical function

or not. As a preview of our results, our work produces similarly “suspicious-looking”

motions, which can be verified to assist in balance during efficient locomotion for our

simple, planar model.

Figure 5.1: The Acrollbot: a two-link acrobot on a passive wheel.

The system we study here, the acrollbot, shown in Figure 5.1, resembles the classic

two-link acrobot model [114] with a (passive) fixed pivot, except that it is mounted on a

passive wheel that can roll on the ground. Conceptually, the model is similar to a person

on a unicycle, except that the unicycle includes no pedals or other direct actuation at

its axis, and locomotion control must be achieved indirectly, by moving various joints

to exploit passive damping at the axle and/or forces generated indirectly at the ground
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contact due to the no-slip assumption for the wheel. The original inspiration for the

acrollbot was to create the simplest model to represent RoboSimian balancing on its rear

passive wheels in the sagittal plane, with only internal degrees of freedom available for

locomotion.

The rest of this chapter is organized as follows. Section 5.2 presents the Acrollbot

system and its equations of motion. Section 5.3 presents the optimization framework

used to develop motions for the system, as well as to find optimal parameters. Resulting

motions, system parameters, comparisons to “normal” systems, and parameter sensitivity

for various “optimal” systems are discussed in Section 5.4, and Section 5.5 concludes this

chapter with comments on the accompanying video, and a discussion of ongoing and

future work.

5.2 Acrollbot System

5.2.1 Parameters and Coordinates

The base of an acrobot is attached to a wheel at a “free axle”, meaning there is no

direct actuation between the wheel and the L1 link. The only torque input, τ , is applied

directly between the L1 and L2 links, as shown at right in Fig. 5.1. The wheel is modeled

as a solid disk with mass m0, radius r, and inertia J0 = 1
2
m0r

2. Link 1 is modeled as a

slender rod with mass m1, length L1 (center of mass [COM] at Lc1 = 1
2
L1), and inertia

about COM of J1 = 1
12
m1L

2
1. Link 2 is modeled as a slender rod with mass m2, length L2

(COM at Lc2 = 1
2
L2), and inertia J2 = 1

12
m2L

2
2. θ1 is the counter-clockwise (CCW) angle

measured from the positive x-axis to link 1, analogous to link 1 of an acrobot. θ0 is the

wheel angle, measured CCW relative to θ1, and θ2 is the angle of the upper (second/last)

link, similar to link 2 of an acrobot, measured CCW relative to θ1.
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5.2.2 Equations of Motion

The equations of motion for the system can be written in matrix form as:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Ξ (5.1)

where q = [θ0, θ1, θ2]
T . Nonconservative torques on the right-hand side include viscous

(linear) damping at the wheel axle, proportional to relative wheel velocity (θ̇0), and a

torque applied between links 1 and 2, u; i.e., Ξ is (3x1) with:

Ξ1 = − f0θ̇0, Ξ2 = 0, Ξ3 = u (5.2)

The torques due to centrifugal and Coriolis effects are:

C(q, q̇)q̇ = [C1, C2, C3]
T (5.3)

where:

C1 = rm2Lc2 cos (θ1 + θ2)
(
θ̇1 + θ̇2

)2
+ r (m1Lc1 +m2L1) cos (θ1) θ̇

2
1

C2 = C1 −m2L1Lc2 sin (θ2)
(

2θ̇1θ̇2 + θ̇22

)
C3 = m2L1Lc2 sin (θ2) θ̇

2
1

Similarly, the gravity-dependent terms are G(q) = [G1, G2, G3]
T, where

G1 = 0

G2 = G3 + (m1Lc1 +m2L1) g cos (θ1)

G3 = m2Lc2g cos (θ1 + θ2)
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Finally, the configuration-dependent terms in the inertia matrix D(q) are given below,

where Dmn corresponds to element D(m,n) of the matrix:

D11 = J0 + (m0 +m1 +m2) r
2

D12 = D11 +D13 + L1m2r sin (θ1) + Lc1m1r sin (θ1)

D13 = Lc2m2r sin (θ1 + θ2)

D21 = D12

D22 = D11 + 2D13 + J1 + J2 + L2
1m2 + L2

c1m1 + L2
c2m2 + ...

2L1Lc2m2 cos (θ2) + 2 (L1m2 + Lc1m1) r sin (θ1)

D23 = J2 + L2
c2m2 + L1Lc2m2 cos (θ2) + Lc2m2r sin (θ1 + θ2)

D31 = D13

D32 = D23

D33 = m2L
2
c2 + J2.

5.2.3 Note on the Linearized System

We can linearize this system about some equilibrium configuration, in which all an-

gular velocities are zero and the center of mass of the system is aligned at the same x

coordinate as the center of the wheel. We define the states of the system as:

X =
[
θ0, θ1, θ2, θ̇0, θ̇1, θ̇2

]T
(5.4)

and Xeq is some valid equilibrium configuration in which the system can balance (with

zero velocity for each DOF). One example is a fully upright configuration:

Xeq =
[
qTeq, q̇

T
eq

]T
=
[
0,
π

2
, 0, 0, 0, 0

]T
(5.5)
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Note that any choice is valid for the relative wheel angle, θ0. Toward deriving state space

equations, we can first write the linearized equations of motion in the following form:

Mq̈ + βq̇ +Kq = T = [0, 0, u]T (5.6)

where M = D(qeq), i.e., the inertia matrix D(q) evaluated at the equilibrium configura-

tion of interest. Terms due to C(q, q̇)q̇ drop out when linearizing about zero velocity, so

that the matrix β contains only the viscous damping term at the wheel, while K is the

Jacobian of G(q) evaluated at q = qeq. For Xeq as defined in Equation 5.5:

β =


f0 0 0

0 0 0

0 0 0

 (5.7)

K =


0 0 0

0 (−m2gL1 −m1Lc1g −m2gLc2) (−m2gLc2)

0 (−m2gLc2) (−m2gLc2)

 (5.8)

For example, linearizing about the upright position and using g = 9.8 (m/s2), m0 =

m1 = m2 = 1 (kg), L1 = L2 = 1 (m), r = 0.2 (m), J0 = 1
2
m0r

2, J1 = J2 = 1
12
m1L

2
1

and f0 = 0.3 (Nm/(rad/s)), the linearized state space equation matrices become (i.e., for
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Ẋ = AX +Bu):

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 −71.736 19.992 −7.152 0 0

0 24.696 −14.112 1.872 0 0

0 −32.928 48.216 −3.096 0 0


(5.9)

B =

[
0, 0, 0, 10.32,−5.52, 15.36

]T
(5.10)

The closed-loop poles of the linearized system can be set arbitrarily to regulate the

system about some desired equilibrium point (e.g., via pole placement, or LQR control)

if and only if the controllability matrix has full rank, i.e., rank 6 for our system (with 3

angles and 3 angular velocities as states). With non-zero wheel damping (f0) in β, the

controllability matrix for A and B has rank 5. When f0 = 0, the fourth column of A

becomes [1, 0, 0, 0, 0, 0]T (with B and the remainder of A remaining unchanged), and the

controllability matrix for the linearized system has rank 4.

5.2.4 Controllability

As summarized in Section 5.2.3 above, the full linearized system without friction

is not controllable. However, with some damping friction at the passive wheel, the

controllability matrix of the linearized system becomes rank 5. While this does not allow

the system to be stabilized about some arbitrary xw position for the wheel, an LQR

controller using the 5 other states of the system allows it to stabilize about the vertical

equilibrium position.

Additionally, using partial feedback linearization (PFL), it is also possible to control
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the system using only the acrobot-specific states, namely [θ1, θ2, θ̇1, θ̇2]. These states can

be used to stabilize the system about the vertical equilibrium point, when damping is

present at the wheel. Specifically, rank 5 of the controllability matrix here corresponds to

a lack of ability to control the overall x0 wheel location of the system, although velocity of

the wheel can be driven to zero. With no damping or friction at the wheel, the linearized

system can still be stabilized in an upright configuration, although now neither x0 nor

dx0/dt can be regulated at (i.e., driven to) zero.

5.3 Optimization Framework

5.3.1 Problem Setup

As discussed in Section 3.5, we discretize the full nonlinear system and use direct

collocation along with backward Euler integration as suggested in [75] to generate tra-

jectories for the rolling motions. The problem is formulated as

find q, q̇, u at discrete timesteps k = 1...N (5.11)

subject to minimize cost J (5.12)

D(q)q̈ + C(q, q̇)q̇ +G(q) = Hu (5.13)

φ(q, q̇, u) = 0, ψ(q, q̇, u) ≥ 0 (5.14)

where q ∈ Rn is the vector of generalized coordinates, D(q) ∈ Rn×n is the mass inertia

matrix, C(q, q̇) ∈ Rn×n represents the centrifugal and Coriolis forces, G ∈ Rn contains

gravitational forces, and H ∈ Rn is the input mapping. The cost function J is discussed

in the next subsection. φ(q) and ψ(q) are vectors of constraints: we assume no slipping

of the wheel, and constraints are imposed to ensure that the normal reaction force at the

71



Nonintuitive Optima for Dynamic Locomotion: The Acrollbot Chapter 5

point of contact is always positive.

The initial and end states ([θ1, θ2, θ̇0, θ̇1, θ̇2]
T) of any motion are also constrained to

both be some (identical) vertical equilibrium point, to enable either a single motion or a

repeated limit-cycle behavior, and we solve for the base of the wheel to move a certain

distance dstride in a fixed time interval through our framework. However, we note that

the same framework can also find trajectories for arbitrary starting and ending system

positions and velocities, if other limit cycles or continuing motions (when the system is

not starting or ending at rest) are desired.

5.3.2 Cost Function

We set up our cost function, J , as the Cost of Transport (COT) using the integral of

the absolute power:

J =

∫ t
0

∑N
i=1

√
L+ ε dt

(m0 +m1 +m2)gdstride
(5.15)

where

L =
(

[θ̇0, θ̇1, θ̇2]U
)2

=
(
θ̇2u
)2

(5.16)

since there is a single input, u; i.e., U = [0, 0, u]T. We use ε = 10−6 as a regularization

term to help smooth the cost function as suggested in [115], where N is the number of

sample points for the trajectory, and dstride is the horizontal distance traversed by the

center of the wheel. The motivation behind creating such a unitless COT is to allow

meaningful comparison between optimization results from using different parameters for

distance, time, system masses, and temporal discretizations. Without such a COT as we

have defined, it would not be fair to compare costs if one system has more mass or has
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Figure 5.2: Snapshots of the two-link acrollbot during locomotion.

more sample points, for example.

5.3.3 Open System Parameters

An open question driving this current framework is: what effects and consequences

does changing system parameters have on metrics such as efficiency, robustness, and

agility? Motivated by this general question, with respect to the acrollbot system, we

leave not only the states/trajectories of each joint as open parameters in the system, but

also the system parameters themselves: r, L1, L2,m0,m1,m2, with r, L1, L2 ∈ [0.01, 1]

meters, and m0,m1,m2 ∈ [0.01, 1] kilograms.

Leaving all of these parameters open and finding an optimal solution with respect to

energy, for example, returns not only an optimal trajectory, but also the optimal robot

design to use for that motion.

5.4 Results

Figure 5.2 shows snapshots of a typical solution found for optimal robot design and

corresponding locomotion. Here, nearly all mass is concentrated as a small L2 link. Unlike

most inverted pendulum systems, such as a Segway or cart-pendulum system, the center

of mass (COM) does not lean forward as the system accelerates to the right. Instead,
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the mass lags behind the wheel contact, essentially driving the system forward much

like an off-balance ladder would slide on the ground. Stability is maintained through

an unanticipated vertical oscillation of the top-most mass of link 2. We have simulated

various solutions using MATLAB’s ode45, and the oscillation stabilizes the system using

a similar phenomenon to that used in Kapitza’s pendulum [116]; i.e., vertical oscillation of

a mass stabilizes an unstable pendulum. In our case, this oscillation can also be exploited

to control acceleration or deceleration, depending on the offset angle of oscillation, and

we used our optimal solutions to develop generalized control algorithms for locomotion,

which are illustrated briefly within videos12 associated with the publication on which this

chapter is based on [117].
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Figure 5.3: Optimal joint trajectories to move the acrollbot system 1.0 meters (at
top, COT=0.0284) vs 3.0 meters (bottom, COT=0.0529) in 3 seconds. θ1 remains
nearly constant (about a vertical angle of π2 ). A dashed, purple line, which represents a
half-cosine waveform, is overlaid on the solid trajectory for θ0, to show the smoothness
of overall wheel motion along the ground.

1https://youtu.be/C9-P72kI8xI
2https://youtu.be/PnD7-FHSfZ4
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For most locally-optimal solutions, L2 is set near its minimal allowed length, with

nearly all mass concentrated at this link. Figure 5.3 shows typical behaviors seen in these

optimal trajectories. Of note are oscillations, which suspiciously seem to correspond to

the knot points of our direct collocation solution. L2 oscillates during both the initial

acceleration period and final deceleration, and the overall motion of the wheel is rather

smooth. (We overlay cosine waves on θ0, the wheel angle, in this figure, for comparison.)

After much investigation, oscillations are a repeatable phenomenon and can take on a

range of frequencies. We have tested high-resolution simulations (ode45 set with 1E-8

tolerances) of feedback laws based on these motions, which stabilize and locomote the

system, as expected.

5.4.1 Optimization Parameter “Typical” Results

Shown in Figure 5.4 is a sample “optimal” trajectory for each of the joints of the

system, along with the input torques at link 2 that result in the system’s motion. With

masses and lengths constrained as described in Sec. 5.3.3 [r, L1, L2,m0,m1,m2 ∈ [0.01, 1],

SI units], the framework found the lowest COT for the following “optimal” parameters:

m0 = 0.01 (kg), m1 = 0.01 (kg), m2 = 1.0 (kg), r = 0.5393 (m), L1 = 0.8099 (m),

L2 = 0.0137 (m). The framework typically generates trajectories for parameters in

approximately these ranges, with minimal mass on the wheel and link 1, maximal mass

on link 2, an intermediate value in the range for r, large L1, and minimal L2. We

observe results in these ranges for any values of distance or time, so the parameters are

not tied to specific motion requirements. The trajectory input torques and resulting

system reactions always follow the same oscillation patterns at the beginning and end

of the trajectory, in the optimal cases. To start the motion, rapid oscillations in torque

put energy into the system and provide enough momentum to get the system to roll in
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Figure 5.4: Optimal joint trajectories to move the acrollbot system 0.3 meters in 2
seconds, where the corresponding optimal parameters are m0 = 0.01 (kg), m1 = 0.01
(kg), m2 = 1.0 (kg), r = 0.5537(m), L1 = 0.8522 (m), L2 = 0.0123 (m), as well
as the corresponding input torques at link 2 that results in the trajectories. Cost of
Transport is 0.0432.

one direction, and the “opposite” reactions cause the system to slow down and stop at

the desired distance. Between these beginning and ending oscillations, the torque stays

approximately constant, simply transitioning and positioning link 2 from the midpoint

of one set of oscillations to the other. The length of this transition period decreases as

the desired lateral distance to move increases, placing an upper bound on the furthest

distance the system can travel for a given total time interval.

5.4.2 Rare Optima: “Large Wheel, Short Links”

Although the local optima that the framework finds in repeated (and randomized)

searches typically results in the ranges as mentioned in the preceding section, very occa-

sionally returned is a lower COT solution consisting of a very large radius wheel r = 1.0

(m), with a minimal length L1 (i.e. 0.0180 (m)) and a lower value L2 (i.e. 0.1192 (m)),
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(L2 � L1). The optimal COT of this large-wheel system is typically less than half that of

the best, perhaps “more realistic” system previously discussed (0.0197 vs. 0.0432). Mass

distribution stays the same for both of these systems. Physically, with such a large wheel

and small internal links, there is no longer really a stabilization issue, but the constraints

are still there to keep the system balanced. Comparing Figs. 5.4 and 5.5, the large wheel

system requires fewer oscillations to start/stop the system, with one main peak torque

at the beginning and end of the motion. Magnitudes have also switched signs, though

both move the system in the same direction.
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Figure 5.5: Optimal joint trajectories to move the large wheel acrollbot system 0.3
meters in 2 seconds, where the corresponding optimal parameters are m0 = 0.01 (kg),
m1 = 0.01 (kg), m2 = 1.0 (kg), r = 1.0(m), L1 = 0.0180 (m), L2 = 0.1192 (m), as
well as the corresponding input torques at link 2 that results in the trajectories. Cost
of Transport is 0.0197.

5.4.3 Flywheel

Since our optimizations typically result in system parameters with all of the mass

located at m2 and a minimal length L2, we consider that perhaps a flywheel at the end
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of link 1 might be more optimal than a second link. From a controllability perspective,

this would also help with system stabilization, since the flywheel is not constrained to

a certain angle in order for the system to balance about an equilibrium point, as in the

acrollbot system.

At first, we take the optimal parameters from the acrollbot as found by the optimiza-

tion framework for m0,m1,m2, r, L1 and leave the inertia of the flywheel, J2, as an open

parameter. However, the resulting trajectories have a much larger COT, no matter what

value J2 takes. Compared to minimum COT value of 0.0432 for the acrollbot system we

found for T = 2 (s), dstride = 0.3 (m), the flywheel system returns trajectories costing

1.2750, which is very significantly worse.

Leaving all parameters open, however, the framework finds trajectories of lower cost

than those of the optimal two-link acrollbot, as shown in Figure 5.6. The same constraints

are set as before on the ranges for each parameter, except now we define a characteristic

length L̃2 ∈ [0.01, 1], to describe a flywheel centered at the end of link 1, with J2 = 1
2
m2L̃

2
2.

The optimal flywheel system parameters are m0 = 0.01 (kg), m1 = 0.01 (kg), m2 = 1.0

(kg), r = 1.0 (m), L1 = 0.0189 (m), L̃2 = 0.9999 (m), with a resulting COT of 0.0132.

From a physical standpoint, the optimal system consists of a large-radius (but nearly

massless) wheel, with a slightly offset from center, high-inertia flywheel. Leaving the

range of L̃2 extremely large (on the order of 1E3 or more) does not seem to have a

significant effect on the COT, though J2 does tend toward a large value, given this range.

This serves as inspiration for the next subsection of this chapter, where we check the

sensitivity of the Cost of Transport to the system’s optimal parameters found by the

optimization framework. Specifically, how does the COT vary as each of the available

parameters is de-tuned from its optimal solution?
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Figure 5.6: Optimal joint trajectories to move flywheel system 0.3 meters in 2
seconds, where the corresponding optimal parameters are m0 = 0.01 (kg), m1 = 0.01
(kg), m2 = 1.0 (kg), r = 1.0 (m), L1 = 0.0189 (m), L̃2 = 0.9999 (m), as well
as the corresponding input torques for the flywheel that results in the trajectories.
Associated Cost of Transport is 0.0132. Here, L1 oscillates while holding the flywheel
out to the side, to offset the system COM. The directions of rotation for the wheel
and flywheel are in the same direction, which defies physical intuition! Additional
simulations in MATLAB confirm this phenomenon, however. (See also supplemental
video.)

5.4.4 Parameter Sensitivity

Keeping 5 out of the 6 optimal parameters fixed and testing across a range of values in

a general neighborhood of the remaining optimal one, we record its effect on the Cost of

Transport. Figure 5.7, at top, shows such a (log) plot for the acrollbot model. The log of

the COT, rather than just the COT, is plotted for formatting and clarity. The parameter

that has the greatest effect on the COT as it varies from its optimal value is L2, whereas

m2, r, L1 can vary without having any apparent effect on the COT. A longer L2 means

that the center of mass of the link is farther from the joint, so it is reasonable that it

takes larger torques to control its movement. m0 and m1, which are always optimized to
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Figure 5.7: Top: Log Cost of Transport sensitivity to system parameters for the
optimized acrollbot system with original parameters m0 = 0.01 (kg), m1 = 0.01 (kg),
m2 = 1.0 (kg), r = 0.5537 (m), L1 = 0.8522 (m), L2 = 0.0123 (m) for T = 2 (s),
dstride = 0.3 (m). Increasing the length of L2 even minimally has a significant effect on
the COT. Increasing m0 or m1 also has some effect on the COT, though we see that
the specific values of m2, r, L1 have minimal effect on the COT. Bottom: Log of Cost
of Transport sensitivity to system parameters for the optimized flywheel-on-a-wheel
system with original parameters m0 = 0.01 (kg), m1 = 0.01 (kg), m2 = 1.0 (kg),
r = 1.0 (m), L1 = 0.0189 (m), L̃2 = 0.9999 (m) for T = 2 (s), dstride = 0.3 (m).
For this system, length L1 is the most sensitive parameter, with respect to COT.
Increasing m0 or m1 also has some effect on the COT, though we see that the specific
values of m2, r, J2 have minimal effect on the COT.

be the minimum value possible, also affect the COT as they increase in magnitude.

Fig. 5.7, at bottom, shows the log of the Cost of Transport sensitivity for the flywheel

model with a large radius wheel and a small flywheel. m2, r, J2 have almost no effect on

the COT when offset from their optimal values, as found by the framework. Increasing L1

from its minimal value, which puts the flywheel further from the center of the large wheel,

increases the COT most. m0 and m1, which were again optimized to their minimums

possible, also increase the COT as they increase, but at a slower rate than for L1.
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Figure 5.8: Trajectories for hand-picked design parameters. Optimal motions are
more extreme and exaggerated, and high-frequency oscillations in the last link are no
longer observed. At top, a slower motion (d = 1 (m) in T = 3 (s)) with a COT of
2.3739; at bottom, faster locomotion (d = 3.0 (m) in T = 3 (s)) with a COT of 5.4221.

5.4.5 Comparison to a “Normal” (Hand-Designed) System

To put the trajectories and system parameters discovered via the optimization frame-

work in perspective, we compare our optimal system with one that might be built in the

real world as an initial design. Intuitively, one might pick L1 and L2 to be roughly similar,

as in a typical acrobot design. Specifically, we choose the following system parameters

as a “typical” design choice: m0 = 0.2 (kg), m1 = 0.4 (kg), m2 = 0.4 (kg), r = 0.2 (m),

L1 = 0.4 (m), L2 = 0.4 (m). The total mass and height of this system is approximately

the same as that of our optimal system. For these parameter choices, our optimization

framework discovers trajectories with an associated Cost of Transport on the order of

1E2 times worse than any trajectories returned with optimal parameters, emphasizing

the importance of optimizing design parameters in tandem with motion trajectories.

Figure 5.8 shows example trajectories for such a hand-picked system. Of note is the
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lack of high-frequency oscillations here. Instead, more exaggerated (i.e., higher ampli-

tude), slower-frequency motions of the last link are used for simultaneous balance and

locomotion.

5.4.6 Effects of Passive Damping on System

Clearly, a passive mechanical spring could help generate the required oscillations for

the system more efficiently. However, it is less obvious how damping might help or

hurt the system. In general, damping seems likely to reduce efficiency, since energy is

dissipated. And yet, damping at the passive wheel (f0) increases the controllability of the

linearized system, as discussed in Section 5.2.4. Sweeping independently across values of

f0 and f2 (damping in parallel with the actuator) for travel of d = 0.3 (m) in T = 2 (s),

using a fixed set of parameters (r,L1,L2,m0,m1,m2) that are optimal in the zero-damping

case, we found a linear relationship between f2 and the COT, while f0 did not affect the

COT very much across the range tested, as shown in Figure 5.9.
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Figure 5.9: COT vs. friction for an optimized acrollbot system. Damping at the
wheel has minimal effect on the COT, but increasing damping at link 2, where the
input torques are, significantly increases required energy.
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5.5 Discussion and Conclusions

As mentioned in the previous section, the various motions described in this chapter

are illustrated in the supplementary videos34 associated with [117]. Below, we highlight

some details.

First, note basic elements of locomotion, which include two key aspects. (1) COM

is offset in a direction opposite the direction of COM acceleration. To remain balanced,

most inverted pendulums instead bias COM toward the direction of acceleration (“leaning

forward”), so the net ground reaction force (GRF) acts along the line of the pendulum.

(2) Vertical oscillations stabilize the system, as discussed earlier [116].

Next, when non-optimal design parameters are used, more exaggerated, bobbing mo-

tions are required (see Fig. 5.8). Also, since most of the optimal design solutions for the

two-link acrollbot include a tiny L2 value, close to 0.01(m), which is barely visible in

video, we highlight the angle of this link in such cases by including a dashed, red line.

For the flywheel acrollbot, note that L1 is quite short (see Sec. 5.4.3).

Finally, note that the simulations provided at the end4 (from 1:17 onward) all in-

volve control laws and dynamics simulations implemented using ode45 in MATLAB, as

an independent generalization (and confirmation) of the surprising dynamic locomotion

techniques we observe. Specifically, we can control forward and backward locomotion for

both the “Typical” (Sec. 5.4.1) and “Flywheel” (Sec. 5.4.3) systems.

Several goals motivate this work. In particular, while parameterizations (e.g., lengths

and mechanical impedances) of a robot clearly affect performance, better tools for op-

timizing such design parameters are needed. Also, optimization tools frequently suffer

from local minima, in turn requiring appropriate initialization for useful results. By

contrast, our framework allows us to optimize both design parameters (e.g., lengths and

3https://youtu.be/C9-P72kI8xI
4https://youtu.be/PnD7-FHSfZ4
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masses) and motion trajectories simultaneously, and it works with completely random-

ized initial conditions (e.g., trajectories which initially violated dynamic constraints),

which simplifies our search and in turn has allowed us to discover multiple local optima.

Finally, methods based on deep learning or other data-driven approaches typically do not

elucidate basic physics-based phenomena. In response, we have studied an intentionally

non-intuitive yet simple model, which captures key aspects of balance and underactua-

tion. By studying this simplified toy system, we have been successful in carefully analyz-

ing and validating non-intuitive solutions, and we have discovered novel motion planning

strategies that we, as human designers, would truly never have anticipated. For example,

the unanticipated cyclical “arm-pumping” style motions in our optimal solutions, which

can be explained as a Kapitza’s pendulum [116] effect, seem quite similar to us to those

seen in the Google Deepmind video mentioned in the introduction [21].

Recent work within the UCSB Robotics Lab has applied this optimization framework

to a 5-link biped model [118]. Future goals include improved optimization metrics to

quantify robustness and agility, in addition to the more easily-calculable energetic costs

typically used, and better understanding of the trade-offs and principles at play in opti-

mal humanoid locomotion, particularly as terrain properties, sensor noise, and external

disturbances (e.g., process noise) each vary.
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Chapter 6

Versatile Trajectory Optimization

for Dynamic Maneuvers that Allow

for Wheel Slip

Wheel-legged systems have the potential to combine the benefits of two heavily studied

research areas: the speed and efficiency of locomotion on wheels with the versatility

and agility to surmount various obstacles of legged systems. However, there have been

limited results in dynamic locomotion taking advantage of both of these areas. The

previously discussed exceptions [4, 56, 58] enforce traditional wheeled-system conditions

of non-slipping (the velocity in the rolling direction is exactly equal to the wheel angular

velocity multiplied by the wheel radius, without loss) and non-skidding (no velocity

perpendicular to the wheel roll direction), which may be violated in practice, especially

over terrains with low coefficients of friction such as icy or muddy roads as in [57].

Noting the research gap in wheel-legged systems for dynamic maneuvers that include

and account for wheel slip, we reviewed existing work in dynamic vehicle maneuvers

involving drifting [59–69] in Section 2.4. The tire models [70, 71] used in these works
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however do not lend themselves well to a trajectory optimization framework for general

motions, as discussed in Sections 3.3 and 3.4.

In this chapter, using our novel wheel model proposed in Section 3.4, we present a

versatile trajectory optimization framework for general (passive or active) wheeled sys-

tems that naturally discovers dynamic maneuvers to avoid and/or exploit wheel slipping

and skidding depending on the cost function. In simulation with RoboSimian, we show

the first results of deliberate and controlled skidding to a halt for a wheel-legged system,

and illustrate several other examples such as energy-efficient forward locomotion and hy-

brid wheel-legged skating. We additionally show experimental evidence of planning and

executing dynamic drift parking on a 1/16 scale model car.

The rest of this chapter is organized as follows. Section 6.1 discusses modeling de-

tails for RoboSimian and the car model, respectively, to be used in our optimization

framework, which is discussed in detail in Section 6.2. Results for various tasks for both

systems are presented in Sections 6.3 and 6.4, and discussions and conclusions are given

in Section 6.5.

6.1 Modeling

This section discusses modeling details for RoboSimian and the car model, respec-

tively, as used in our optimization framework.

6.1.1 RoboSimian

Kinematics

We first ignore all internal degrees of freedom for the full RoboSimian model and

consider a free floating body with floating skate end effectors, whose coordinate frames
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Figure 6.1: RoboSimian coordinates for optimization in MuJoCo [119], shown here
for skate 1, where skate numbering is clockwise. θ is the rotation about the z axis,
which points out of the page for the world, body, and skate frame coordinates.

are as shown in Figure 6.1. Throughout this work we will assume no pitch or roll from

any body.

In the figure, (xw, yw, zw) are the fixed world frame coordinates for the global origin,

and thus (xb, yb, zb) are the robot’s body center coordinates relative to the fixed world

frame. θb represents the counterclockwise (CCW) rotation of the body x-axis, relative to

the fixed world frame x-axis xw.

Each skate’s coordinates (xi, yi, zi) are relative to the body frame, where i ∈ {1, 2, 3, 4},

starting with the front right skate (shown), and proceeding clockwise (so skate 2 is the

rear right, skate 3 is the rear left, skate 4 is the front left, when viewed from above).

Each skate is also assumed to have an additional degree of freedom to rotate about its

z-axis (yaw), θi, which is relative to the body angle θb.

By not modeling each wheel’s rotational angle, we are treating each skate more as
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an “ice”-skate than a “roller”-skate. This decision comes from the fact that no sensing

is available at the wheel, as they are strapped onto the forearms, and since we are

interested in dynamic maneuvers, including those involving slipping and skidding, we

hypothesize that the wheel’s true position angle at a given time step may not be essential

to locomotion.

Dynamics

The dynamics of this simplified system can be derived via a Lagrangian approach.

The robot body has mass mb and inertia Jb, and each skate has mass mi and inertia Ji.

The equations of motion for the system can be written as:

M(q)q̈ + C(q, q̇)q̇ +G(q) + A(q)Tλ = B(q)u+ F (6.1)

where q are the generalized coordinates, M(q) is the inertial matrix, C(q, q̇)q̇ denotes

centrifugal and Coriolis forces, G(q) captures potentials (gravity), A(q)Tλ are constraint

forces (where λ are unknown multipliers a priori), B(q) maps control inputs u into gen-

eralized forces, and F contains non-conservative forces such as friction. In our model for

RoboSimian, q = [xb, yb, zb, θb, xi, yi, zi, θi]
T ∈ R20 where i ∈ {1, 2, 3, 4}. Since each skate’s

(xi, yi, zi, θi) can be individually set with inverse kinematics in the real system, each

skate’s coordinates are actuated, for 16 total actuators, i.e. u = [uxi , uyi , uzi , uθi ]
T ∈ R16

where i ∈ {1, 2, 3, 4}.

6.1.2 Car Model

The dynamics for the car model can also be derived via a Lagrangian approach, and

we use the dynamic bicycle model approximation as our basis.

For the car model, following from Figure 6.2, q = [xb, yb, θb, θf ]
T ∈ R4. (xb, yb) are
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the global coordinates for the center of mass (COM) of the body, and θb represents the

counterclockwise (CCW) rotation of the body x-axis, relative to the fixed world frame

x-axis x. The steering angle θf , relative to body angle θb, is not often included as a state

in the literature, but instead only as a control input. However, constraints on the angular

velocity θ̇f and limited steering torque input to the state must be included for realistic

motions, motivating our choice of including θf .
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Figure 6.2: Dynamic bicycle model.

The body has a point mass mb and inertia Jb, and each wheel has a point mass, m1

and m2, with the front wheel having inertia J1 about the z-axis (out of the page). Since

the COM may not be at the geometric center of the body, we consider the distance from

the COM to the center of the front wheel LF and the distance from the COM to the

center of the rear wheel LR. Friction forces are considered both in the direction of, and

perpendicular to, the direction of wheel roll.
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The inertial matrix M(q) can be written as:

M(q) =



M11 0 M13 0

0 M22 M23 0

M31 M32 M33 M34

0 0 M43 M44


(6.2)

where Mmn corresponds to element M(m,n) of the matrix:

M11 = (mb +m1 +m2)

M13 = sin (θb) (m2LR −m1LF )

M22 = M11

M23 =− cos (θb) (m2LR −m1LF )

M31 = M13

M32 = M23

M33 = m2L
2
R +m1L

2
F + J1 + Jb

M34 = M44

M43 = M44

M44 = J1

The torques due to centrifugal and Coriolis effects are:

C(q, q̇)q̇ = [C1, C2, 0, 0]T (6.3)
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where:

C1 = θ̇2b cos (m2LR −m1LF )

C2 = θ̇2b sin (m2LR −m1LF )

The two inputs to the system are a force to be set at all wheels (All Wheel Drive)

in the wheel-rolling directions, and a torque to control the steering angle of the front

wheels, or u = [uwheels, usteering]
T . These are mapped into generalized coordinates with

matrix B(q), defined as:

B(q) =



cos (θb + θf ) + cos(θb) 0

sin (θb + θf ) + sin(θb) 0

Lf sin(θf ) 0

0 1


(6.4)

If we first define the friction forces in global coordinates as:

FxFg

FyFg

 =

 cos (θb + θf ) sin (θb + θf )

− sin (θb + θf ) cos (θb + θf )


FxF
FyF



FxRg

FyRg

 =

 cos (θb) sin (θb)

− sin (θb) cos (θb)


FxR
FyR


then F can be written as:

F = [F1, F2, F3, 0]T (6.5)
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where

F1 = FxFg
+ FxRg

F2 = FyFg
+ FyRg

F3 =− FxFg
LF sin (θb) + FxRg

LR sin (θb)

+ FyFg
LF cos (θb)− FyRg

LR cos (θb)

6.1.3 Note on No-Skid Constraints

For general wheeled mobile robots, A(q)Tλ typically contains constraints ensuring no

slip (free rolling in the direction the wheel is pointing) and no skid (no velocity along

the wheel’s rotation axis perpendicular to the free rolling direction), which come from

writing these constraints in Pfaffian form A(q)q̇ = 0. λ can be explicitly solved for by

differentiating A(q)q̇ = 0 and substituting in q̈ from Equation 6.1. Details were discussed

in Section 3.2. We note that our framework can also find trajectories enforcing these

constraints when the assumptions of no slip and no skid are valid, but for the rest of this

chapter we set A(q)Tλ = 0.

6.2 Trajectory Optimization

This section provides details for formulating the locomotion problem for a wheeled

system as a trajectory optimization. The full nonlinear system is discretized, and di-

rect collocation along with backward Euler integration is used to generate motion as

in [75] [120] and Chapters 3.5 and 5. More precisely, with slight abuse of notation, the
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problem is formulated as:

find q, q̇, u, Fn, Ffric at discrete timesteps k = 1...N (6.6)

subject to minimize cost J

- State Constraints:

φ(q, q̇, u, Fn) = 0 (6.7)

ψ(q, q̇, u, Fn) ≥ 0 (6.8)

- Dynamics Constraints:

M(q)q̈ + C(q, q̇)q̇ +G(q)

+ A(q)Tλ = B(q)u+ Fn + J(q)TFfric

(6.9)

- Friction Constraints (for each contact i):

γe+DTvk+1 ≥ 0, β ≥ 0 (6.10)

µFni
− eTβ ≥ 0, γ ≥ 0 (6.11)

(γe+DTvk+1)Tβ = 0 (6.12)

(µFni
− eTβ)γ = 0 (6.13)

Ffrici = Dβ (6.14)

- ZMP Constraints (RoboSimian Only)

- Gait Constraints (RoboSimian Only)

where each of the above constraints is detailed below, along with cost function consider-

ations.
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6.2.1 Objectives

The cost function J is made up of terms penalizing both energy use over the entire

time interval, JE, as well as the offset from a set of final desired goal states, JF , in the

format discussed in Section 3.5. It is straightforward to add additional cost function

terms, depending on the desired task, for example measures between desired final and

intermediate body positions and/or orientations. To penalize energy use, for RoboSimian,

JE approximates the integral of the absolute power, as in Section 5.3:

JE =

∫ t

0

∑N

i=1

√
L+ ε dt (6.15)

where L = (q̇TU)2, ε = 10−6 is a regularization term to help smooth the cost function as

suggested in [115], and N is the number of sample points for the trajectory.

For RoboSimian, U = [0, 0, 0, 0, uxi , uyi , uzi , uθi ]
T ∈ R20 for i ∈ {1, 2, 3, 4}. Note that

the above cost function aims to minimize power consumption due to moving the end

effector in the simplified skating model, while the actual power cost for the full system

results from setting the joint positions via inverse kinematics, which will include some

additional energy, in moving internal joints appropriately. We are assuming here that

such considerations are on average highly correlated to motion of end effector, so that

this is still a good measure to account for energy-efficient motion. For the car model,

energy is more simply penalized by adding uTu to the cost function at each time step.

The cost term JF is defined as the weighted squared error between a set of goal

coordinates (xg, yg, θg) and the final body coordinates (xN , yN , θN) of the trajectory:

JF = αx(xg − xN)2 + αy(yg − yN)2 + αθ(θg − θN)2 (6.16)

where weights αx, αy, αθ can vary based on the desired task, i.e. if final body orientation
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is important. Additional terms can be added to minimize final velocities or intermediate

states.

6.2.2 State Constraints

The initial states q0 and q̇0 are constrained exactly based on the robot’s current state.

For the rest of the N time points, these are bounded by the feasible work space we

are considering (for example for placing each skate with inverse kinematics) and by the

physical limits of the robot. The input u is also bounded explicitly, as well as implicitly

by q̇ ranges. For RoboSimian, the normal force on each skate Fni
is constrained based

on the contact schedule as explained in Sec. 6.2.6, and forced to be approximately evenly

distributed between all skates currently in contact with the ground.

For the car model, we are also not explicitly modeling load transfer, but the normal

force Fni
at each contact (where i ∈ {1, 2}) is of large importance as its magnitude

directly sets a limit on the frictional force available at each contact point. We investigate

(1) leaving Fni
as a non-negative open variable, (2) constraining Fni

within “reasonable

bounds” (i.e. range in [1/4(mb + m1 + m2)g, (mb + m1 + m2)g] at each contact), and

(3) setting Fni
as 1/2(mb + m1 + m2)g. Clearly we can expect different results in each

of these scenarios, and future work will involve incorporating an accurate load transfer

model.

6.2.3 Dynamics Constraints

At each time step k, with h = ∆t the time step interval, the dynamics are constrained:

qk+1 = qk + hq̇k+1 (6.17)

q̇k+1 = q̇k + hq̈k+1 (6.18)
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with

q̈k+1 = M−1
k+1(Bk+1uk+1 + Fnk+1

+ JTk+1Ffrick+1

− Ck+1q̇k+1 −Gk+1) (6.19)

where we write M(qk+1) as Mk+1, and use similar notation for other terms.

6.2.4 Friction as a Linear Complementarity Problem

We have already discussed posing the friction for each wheel in the optimization as a

set of Linear Complementarity Problems (LCPs) at length in Section 3.4. As a reminder,

the circular friction cone is approximated by a polyhedral cone F :

F(q) = {Fnn + Dβ |Fn ≥ 0, β ≥ 0, eTβ ≤ µFn} (6.20)

where Fn is the magnitude of the normal contact force, n is the local unit z-axis repre-

senting the six dimensional unit wrench of the normal component of the contact force,

the columns of D are direction vectors that positively span the space of possible gen-

eralized friction forces, e = [1, 1, ..., 1]T ∈ Rp where p is the number of edges of the

polyhedral approximation, and β ∈ Rp is a vector of weights. Due to the nature of the

wheel, we consider anisotropic friction models, as shown in Figure 6.3. For RoboSimian,

we take this one step further and consider a friction triangle, where friction occurs only

perpendicular to the skate’s rolling direction (i.e. like an ‘ice-skate’). For the car we will

investigate two different anisotropic friction models:

(1) |d1| = |d2| = |d4| = 0, |d3| = 1

(2) |d1| = 0.01, |d2| = |d4| = 0.3, |d3| = 1.
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Figure 6.3: Isotropic and anisotropic polyhedral (shown here as octagonal) friction
cone approximations of a contact point at the center of the wheel, when viewed from
above. The normal force is coming out of the page, and each arrow represents a
direction vector.

LCP Formulation

In the optimization, for each contact at each time step k, the following inequality

constraints are enforced to produce the correct friction forces:

γe+DTvk+1 ≥ 0, β ≥ 0 (6.21)

µFn − eTβ ≥ 0, γ ≥ 0 (6.22)

with the complementarity conditions:

(γe+DTvk+1)Tβ = 0 (6.23)

(µFn − eTβ)γ = 0 (6.24)

where γ can be interpreted as a scalar roughly equal to the magnitude of the relative

tangential velocity at a contact, and vk+1 is the global 2D planar velocity vector of the

contact point at the end of the next time step. From the above constraints the friction
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Ffric at a particular contact can then be recovered with:

Ffric =

Ffricx
Ffricy

 = Dβ (6.25)

Ffric for each contact is then mapped from global coordinates to generalized coordinates

with J(q)T and input into Equation 6.9.

6.2.5 Zero Moment Point (RoboSimian Only)

The ZMP is defined as the point on the ground where the sum of all the moments of

the active forces is equal to zero. Planning to ensure the ZMP remains in the support

polygon created by the ground contacts of the skates is crucial for stability so that the

robot will not fall over. For the simplified skating model with 5 rigid-body links, the

ZMP can be calculated as in [121]. The x and y components of the ZMP located at point

pZMP = [px, py, pz]
T are then:

px =
Mgx+ pzṖx − L̇y

Mg + Ṗz
(6.26)

py =
Mgy + pzṖy + L̇x

Mg + Ṗz
(6.27)

where M is the total mass of the system, g is gravity, (x, y) are the coordinates of the

Center of Mass (COM), pz is the height of the floor, P is the total linear momentum,

and L is the total angular momentum.

At each time step, depending on the gait and configuration of the robot’s skates

in contact with the ground, a ZMP constraint is added to the optimization to ensure

stability during that time interval. When four (or three) skates are in contact with the

ground, the ZMP is constrained to lie within the quadrilateral (or triangle) created from
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connecting the four (three) skates. If only two skates are in contact with the ground,

which in this work we assume would occur only for diagonal skates, the ZMP must lie on

the line segment connecting these two skates.

6.2.6 Gait (RoboSimian Only)

A gait can be provided as input to the optimization in the form of a 4 by N schedule

matrix of boolean values indicating which skates are in contact with the ground. This

pattern directly determines the desired height zi of each skate in the form of a spline that

depends on the duration(s) a skate should not be in contact with the ground. In turn

this pattern also directly sets the desired normal forces evenly for skates remaining on

the ground.

6.3 RoboSimian Results

6.3.1 Implementation Details

The trajectory optimization is implemented in both MATLAB and Python with

CasADi [122], using IPOPT [123] to solve the NLP. Depending on complexity and plan-

ning horizon, the computation time of the unoptimized MATLAB code can vary from a

few seconds to 1 hour, solved on a laptop. Warm-starting the optimization initial con-

ditions with a suitable guess, or with the solution of a previous run, has a significant

impact on increasing convergence speed.

In particular, solving the NLP can be computationally intensive due to the equality

constraints of the LCP, which does not allow us to formulate the problem as a single QP

even if the ZMP constraints were linearized such as in [56]. One idea to mitigate this

convergence issue is to place the equalities into the cost function as in [58]. However,
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then we no longer have the guarantee they will be exactly 0, and care must be taken to

properly weight the cost function terms to heavily penalize deviations from 0.

Since the trajectories found with the framework are for a simplified skating model

ignoring internal degrees of freedom, the solutions must be mapped back to the full sys-

tem with inverse kinematics. We verify the trajectories found on the full system using

PD control on the joint positions with inverse kinematics to track the skate (xi, yi, zi, θi)

desired positions in MuJoCo [119]. Due to the mismatching dynamics between the sim-

plified system and full system, a whole-body controller is needed to more accurately track

the full trajectory, to be implemented for future work.

6.3.2 Experiments

To show the versatility of our framework and the sorts of dynamic trajectories it can

generate, we consider the results from 3 desired tasks:

1. Skating forward from rest optimally with respect to speed and efficiency

2. A dynamic skidding parking maneuver, showing the main strengths of our approach

3. Hybrid gaits for walk-skating with 2-3 wheels remaining in contact with the ground

The reader is encouraged to watch the accompanying video1 for more clear visualiza-

tions and simulations of the trajectories discussed [120].

Efficient Skating Forwards

For the first task we consider energy optimal locomotion with all four wheels in contact

with the ground for the duration of the trajectory. The cost function is a weighted sum

of the modified COT JE from Eq. 6.15 as well as a term maximizing the final xb position

1https://youtu.be/SV7Kw3vlRQI
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of the body. We examine a horizon of 2 seconds, starting RoboSimian from rest. A

locally optimal trajectory for this scenario is shown in Figure 6.4. We note that for this

trajectory, no slipping or skidding is occurring, as the optimization finds the friction

forces and torques necessary to propel the RoboSimian model forward.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

-0.5

0
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Figure 6.4: Trajectory found for skating in a 2 second horizon from at rest, with
snapshots every 0.4 (s). The cost function includes a term minimizing energy as well
as maximizing the final body x position.

Dynamic Skidding Parking Maneuver

Next we consider a task of parallel parking in a limited time horizon of 2 seconds.

Specifically, we assume RoboSimian is moving at 4 (m/s) in the x direction, with other-

wise the same initial configuration at the origin. The “parking spot” is located at (4,-1),

and we desire RoboSimian to be parked there with body angle θb = −π [rad]. Thus

the cost function consists of weighted terms penalizing deviations from these final states

for xb, yb, and θb. Intuitively, we note that with such a small horizon to complete the

task, and with no means of braking due to the passive nature of the wheels, we should

expect skidding on purpose to slow the system down. As can be seen in Figure 6.5, the

trajectory optimization framework finds precisely such a solution exploiting the frictional

forces acting perpendicular to the skate roll directions, and is able to effectively minimize

the cost function, arriving at the desired end position. Note in particular the angle of

skate 1 (the light blue skate) in the third snapshot from the left, which is approximately

perpendicular to the direction of motion, and thus being used to skid to slow down.
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Screenshots from MuJoCo are shown in Figure 6.6, and additional viewing angles can be

seen in the aforementioned video.

As a slight variation, by changing the cost function to reward only the final body

position |θb| angle, where we now initialize ẋb to 8 (m/s), we would anticipate some sort

of spinning behavior, or at least the robot to skate around in the narrowest circle it

can. Since we do not enforce the non-slip and non-skid conditions, which would limit the

subspace of true available motions, the framework finds a trajectory that slips and skids
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Figure 6.5: Trajectory found for a 2 second horizon initialized with 4 (m/s) body ve-
locity in the x direction, with snapshots every 0.4 (s). The cost function is minimizing
squared final body orientation θb from −π, and final body x and y offsets from (4,-1).

Figure 6.6: Clockwise from top left, a dynamic parking skidding trajectory, in Mu-
JoCo [119].
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throughout the 2 (s) interval, similar to how a stunt driver might perform a “donut” in

a car, shown in Figure 6.7.
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Figure 6.7: Trajectory found for a 2 second horizon initialized with 8 (m/s) body ve-
locity in the x direction, with snapshots every 0.4 (s). The cost function is minimizing
negative squared final body orientation θb (so attempts to find large magnitudes for
θb).

6.3.3 Walking-Rolling Gaits

Our framework is able to generate trajectories for gaits with any pattern of three

wheels in contact with the ground, as well as patterns of any two diagonal wheels in

contact with the ground, and alternating combinations of these two types. Ensuring

the ZMP is within the support polygon of the remaining wheels in contact is crucial for

stability of the system during the trajectory. As an example, we show one trajectory

of static wheel-walking with skates 2, 1, 3, 4 lifted off the ground, in that order, as in

Figure 6.8, as well as a static trotting gait, with diagonal wheels alternating in the air,

as in Figure 6.9.

The trajectory in Fig. 6.8 is for a 1.5 second horizon and gait for which each skate is

lifted for 0.25 (s), in order for skates 2, 1, 3, 4; shown with ‘+’ symbols in the figure. The

ZMP is overlaid with the red dash-dot line, which is constrained to be within the support

polygon of skates in contact with the ground. The cost function minimizes energy use
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and maximizes xb final state, while attempting to keep final yb and θb at 0.
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Figure 6.8: Trajectory found for a 1.5 second horizon and predetermined rolling-walk-
ing gait where skates 2,1,3,4 are in order lifted off the ground each for 0.25 (s). Snap-
shots are taken every 0.3 (s). The ‘+’ symbols show the sections of the trajectory
where that skate is off the ground, and the red dash-dotted line is the location of
the ZMP throughout the trajectory. The cost function is minimizing energy and
maximizing final x offset from the origin, and minimizing final yb and θb offsets.
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Figure 6.9: Trajectory found for a 1.5 second horizon and predetermined static trotting
gait where diagonal skates are always in contact with the ground, with snapshots every
0.3 (s). The ‘+’ symbols show the sections of the trajectory where a skate is off the
ground, and the red dash-dotted line is the location of the ZMP throughout the
trajectory. The cost function is minimizing energy and maximizing final x offset from
the origin, and minimizing final yb and θb offsets.

The trajectory in Fig. 6.9 is for a 1.5 second horizon and gait where diagonal skates

2 and 4 are in the air from 0.5-0.75 (s) and diagonal skates 1 and 3 are in the air from

1.0-1.25 (s), which is shown by ‘+’ symbols. The cost function minimizes energy while

maximizing final xb position (also minimizing yb and θb offsets from 0). While a skate

pair is in the air, the ZMP must lie on the line between the other two skates still on the

ground. We note that when a skate is not in contact with the ground, it cannot produce
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any direct forces to locomote the system, and thus the final xb position is not as large as

when all four skates are on the ground throughout the trajectory.

6.4 Car Results

6.4.1 Implementation Details

The trajectory optimization is again implemented in MATLAB with CasADi [122],

using IPOPT [123] to solve the NLP. The car hardware is an Exceed RC Blaze model,

which is an All Wheel Drive (AWD) vehicle. A Raspberry Pi with a Navio2 board is used

to interface with the motor and steering servo. The forces found with the optimization

are converted to PWM signals to send to the motor and servo.

The car parameters are shown in Table 6.1. The masses and distances are measured,

and inertias are estimated from the masses and physical dimensions of the relevant com-

ponents. The COM is estimated to be at the geometric center of the vehicle, and the

coefficient of friction is estimated from the material properties.

Parameter Value
mb [kg] 1.26
m1 [kg] 0.01
m2 [kg] 0.01
LF [m] 0.09
LR [m] 0.09

Jb [kg · m2] 0.0064
J1 [kg · m2] 3.5E-6

µ 0.7

Table 6.1: Car and environment physical parameters.
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6.4.2 Dynamic Skidding Parking Maneuver

We illustrate the effectiveness of our method by considering two different dynamic

drift parking scenarios. The reader is encouraged to watch the accompanying video2 for

better visualizations.

In the first scenario, shown in Figure 6.10, the car starts from rest at (x0, y0) = (0, 0)

with body angle θ0 = 0. The cost function penalizes deviations from the goal location

of (xN , yN) = (2.5, 0) with body angle θN = π/2, under a short planning horizon of

T = 0.75 (s), where N = 15. The anisotropic friction model used is (1) from Sec. 6.2.4,

and the normal forces are as (2) in Sec. 6.2.2 (though we note (3) produces reasonable

results as well). The result is a forward sliding parking maneuver with a 90-degree turn.

In the second scenario, shown in Figure 6.11, the car starts from rest at (x0, y0) =

(0, 0) but with body angle θ0 = −π. The cost function penalizes deviations from the goal

location of (xN , yN) = (2, 0.8) with body angle θN = 0, under a short planning horizon

of T = 1 (s), where N = 20. The anisotropic friction model used is (2) from Sec. 6.2.4,

and the normal forces are as (2) in Sec. 6.2.2, (though we note (3) produces reasonable

results as well). The result is a 180-degree backward sliding parking maneuver.

For both of these scenarios under such short planning horizons, it is not physically

possible to achieve either goal without skidding. The snapshots in the figures are the

result of open-loop execution (in red) of the desired trajectory (in blue) found with the

optimization framework, and we could expect better tracking performance if using a

mixed open-loop closed-loop controller such as in [63] or [64].

2https://youtu.be/SA5w_x0fv9Y
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Figure 6.10: Forward park skidding.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Figure 6.11: Backward park skidding.
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6.4.3 Versatility of Framework

In section 6.4.2 we showed two examples of dynamic trajectories found with our

framework under short planning horizons, where we noted that skidding was required in

order to minimize the cost function. However we would also like to note the versatility of

our framework as we consider longer planning horizons for the same tasks. Figure 6.12

shows three locally optimal trajectories found by our framework for the forward skidding

parking task over planning horizons of 0.75, 1.0, and 1.5 seconds. The cost function is

still minimizing the difference between the Nth (last) knot point and the goal in all three

trajectories. As the planning horizon lengthens, skidding is no longer required to achieve

the goal, and our framework finds a longer, slower path that minimizes the cost function.

This shows that the anisotropic friction model in conjunction with our framework can

produce intuitive and realistic trajectories regardless of vehicle velocity, and can be used

as a general tool including non-drifting scenarios.

0 0.5 1 1.5 2 2.5

-0.8

-0.6

-0.4

-0.2

0

T=0.75(s)

T=1.0(s)

T=1.5(s)

Figure 6.12: Trajectories found for horizons of 0.75 (s), 1.0 (s), and 1.5 (s)
(with N = 15, 20, 30, respectively) where the cost function penalizes distance from
(xbN , ybN , θbN ) = (2.5, 0, π/2). For the shortest planning horizon, skidding is required
in order to minimize the cost function and reach the goal.
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6.5 Discussion and Conclusions

In this work we have shown the benefit of not only accounting for, but also optimiz-

ing over, frictional forces in wheeled systems to produce intuitive and dynamic motion

primitives. By modeling wheel dynamics as an anisotropic Coulomb friction cone, we

formulated the wheel/tire dynamics as a linear complementarity problem and optimized

over all states and forces, producing realistic motions that may or may not include drifting

behavior, depending on the planning horizon and cost function.

One point warranting further discussion and future work is the direction vectors

that make up the matrix D for the anisotropic Coulomb friction cone approximation.

Experimentally we found that the vectors perpendicular to the roll direction are most

important to capture the true dynamics and produce feasible trajectories, both for the

optimization and evaluation on the real systems. Future work will investigate if we can

empirically fit the magnitudes of the direction vectors D, similar in spirit to the system

identification approach often used with the Pacejka tire model [70,71].

Another point of discussion is the magnitude of the normal force. In this chapter we

did not model load transfer, but considered evenly distributing the normal force between

all wheels in contact with the ground, or leaving it as a lightly/positively-constrained

variable in the optimization. The problem with the former is that it does not model

load transfer, which may result in unnecessarily conservative or inaccurate trajectories.

The problem with the latter is that this lets the optimization choose a friction force

with essentially any magnitude, or in unrealistic ranges, which can produce unrealistic

trajectories. Future work will explore accurate normal force modeling, perhaps involving

modeling additional states.

Ongoing work includes porting the framework to C++ for computational efficiency

and speed, as well as developing a better whole-body controller for the full system to
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accurately track the desired trajectory that is not just a PD controller over the trajectory

states. In particular, due to RoboSimian’s heavy limbs, the trajectories requiring lifting

a skate off the ground inadequately simplifies the true dynamics. This mismatch in

dynamics also causes drift between the desired trajectory and actual robot states in

MuJoCo. Additionally, we would like to increase the modeled dimensions to include

pitch and roll for each body, to take advantage of RoboSimian’s overactuated limbs,

which may result in even more dynamic motions. We hypothesize these could include

motions such as banking on turns to avoid slip and maintain greater stability at high

speeds.
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Chapter 7

Training in Task Space to Speed Up

and Guide Deep Reinforcement

Learning

As discussed in Chapter 1, recent breakthroughs in the reinforcement learning (RL)

community have made significant advances towards learning and deploying policies on

real-world robotic systems. However, even with current state-of-the-art algorithms and

computational resources, these methods are still plagued with high sample complexity,

and thus long training times, especially for high degree of freedom (DOF) systems. There

are also concerns arising from lack of perceived stability or robustness from emerging

policies. This chapter aims at mitigating these drawbacks by: (1) modeling a complex,

high DOF system with a representative simple one, (2) making explicit use of forward

and inverse kinematics without forcing the RL algorithm to “learn” them on its own, and

(3) learning locomotion policies in Cartesian space instead of joint space. In this chapter,

these methods are applied to JPL’s RoboSimian, but they can be readily used on any

system with a base and end effector(s). These locomotion policies can be produced in just

111



Training in Task Space to Speed Up and Guide Deep Reinforcement Learning Chapter 7

a few minutes, trained on a single laptop. We compare the robustness of the resulting

learned policies to those of other control methods.

7.1 Introduction

Impressive recent results applying reinforcement learning algorithms such as Proximal

Policy Optimization (PPO) [21] [22], Trust Region Policy Optimization (TRPO) [94],

Actor Critic using Kronecker-Factored Trust Region (ACKTR) [124], Deep Deterministic

Policy Gradients (DDPG) [23], and Asynchronous Advantage Actor-Critic (A3C) [98] to

continuous control tasks in robotics suggests the possibility of using (deep) reinforcement

learning as a way to increase skating stability and robustness, to improve on Chapters 4

and 6 . However, as powerful and promising as these recent results have been, the sample

complexity and training time of these methods remains a major issue when seeking to

deploy solutions in real time in the real world. Even for state-of-the-art algorithms and

implementations, and especially for high degree of freedom (DOF) complex systems such

as RoboSimian, a policy can take millions of iterations to train for a solution that may

or may not be stable. It must also be noted that there are no robustness, stability, or

performance guarantees on the policies learned, or at least no way to readily quantify

these metrics.

One prominent example is shown in the video associated with Heess et al.’s Emergence

of Locomotion Behaviours in Rich Environments [21], where for the higher DOF system

humanoid, we see the emergence of (probably) non-optimal and non-intuitive arm-flailing

to “help” locomote the system, as a probable local optimum. The video1 accompanying

this chapter shows an example of the emergence of similar non-intuitive behavior when

learning a locomotion policy with PPO [22] for RoboSimian in joint space. We seek to

1https://youtu.be/xDxxSw5ahnc
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avoid such local optima for locomotion policies in our system, and propose intuitively

limiting the action space for reinforcement learning algorithms towards quickly generating

robust and stable motions.

Most of this recent work in applying reinforcement learning to robotic systems seeks

to learn a policy that, given an observation of the current state, outputs raw motor

torques to the available actuators in joint space to maximize rewards for the task at

hand. However, for an overactuated system such as RoboSimian, which has 28 actuators

with high (160:1) gear ratios as well as velocity limits of 1 rad/sec at each joint [32],

applying a torque from a learned distribution at each time step is not an intuitively

practical approach. For our work, we instead model each motor as a position actuator,

to be supplied with a reference position at each time step. This naturally extends to,

instead of selecting a torque at each time step, incrementing each motor’s current desired

position by ∆ ∈ {−ε, 0,+ε }.

We also note that these recent learning algorithms (proudly) incorporate no prior

knowledge of the system during training, and thus the agent must essentially “learn” for-

ward and inverse kinematics through interacting with its environment, early termination

conditions specified by a human, and hand-crafted reward shaping functions. Work in

imitation learning, transfer learning, and warm-starting the policy network, either with

existing trajectories or using more traditional controllers, has been done to try to reduce

the high sample complexity of the vanilla reinforcement learning methods. In this chap-

ter we propose a much simpler idea of incorporating control techniques readily available

for most systems such as forward and inverse kinematics, in the spirit that we should use

the domain knowledge of the problem that we possess, rather than requiring the system

to learn it on its own.

The reinforcement learning framework has already been discussed in Section 3.6,

where we consider an environment modeled as an MDP 4-tuple (S,A,P ,R) of states,
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actions, transition function, and reward function. In this chapter, the states consist of a

subset of the robot’s (RoboSimian’s) positions and velocities, the actions are motor posi-

tions or Cartesian coordinate end effector offsets, the transition function is modeled by a

physics engine (MuJoCo [119]), and the reward changes based on the task (for example

forward velocity or distance to a goal). Although we expect any of the aforementioned

reinforcement learning algorithms to learn effective skating maneuvers for locomotion

(especially when we change the action space from continuous to discrete), we will use

the current state-of-the-art, Proximal Policy Optimization (PPO) [22], discussed in Sec-

tion 3.6.

The rest of this chapter is organized as follows. Sections 7.2 and 7.3 describe modeling

and training environment details, respectively. Section 7.4 presents results for tasks such

as skating with maximum velocity or to a goal location over noisy terrain, and a brief

conclusion is given in Section 7.5.

7.2 Modeling

As outlined in Chapter 4, planning effective, feasible skating motions for RoboSimian

involves two complementary problems. The motions of the skates must enable generation

of required ground reaction forces without excessive slipping, to move the robot as desired,

and solutions for inverse kinematics must be tractable, smooth, and within the dynamic

velocity and acceleration limits of the joint actuators of the robot.

7.2.1 Simple “Representative” System

The first of the complementary problems is primarily focused on the skate locations,

contact forces, and directions of motion. In fact, when designing the skating motions by

hand, reasoning about the skate (x, y, z) and yaw (φ) positions over time are the first
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Figure 7.1: Simple Cartesian space model and full RoboSimian model, in MuJoCo [119].

things accounted for, and inverse kinematics are computed along this desired trajectory

afterwards to ensure smoothness.

This gives rise to developing a more simple model to “represent” the full RoboSimian

model. As shown in Figures 7.1 and 7.2, the model consists of the same torso/body, but

without legs, which are replaced by floating bases above the skates. The top rectangular

link of the floating bases is moved with slide (prismatic) joints in MuJoCo [119], meaning

motion is allowed along a single axis. Depending on the desired task, these can be

actuated in the x, y, and/or z directions in the floating base local frame. The bottom

rectangular link is actuated by a hinge joint about the z axis, allowing yaw rotation only,

which sets (φ) for the skate. The total mass of one of RoboSimian’s limbs (excluding

the skate) is distributed evenly between these two links. Although this simple system

does not exactly model the true dynamics of the full RoboSimian system, we hypothesize

that it will be “close enough”, making it faster to train a locomotion policy with deep

reinforcement learning algorithms in Cartesian space. We hope to transfer this learned

policy on the simple system onto the full system.

7.2.2 Inverse Kinematics

To use learned policies from the simple model, at run time (or for transfer learning

and additional training on the full model), inverse kinematics (IK) must be used to map
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the desired skate motion back to the full model.

The IK to set the 6-DOF pose of the skate require choosing from among one of

eight IK families, each analogous to a choice of “elbow bending direction” for each of

three elbows on a limb [31]. Providing guarantees of smoothness requires precalculation

of IK solutions across a region as well as compromises between ideal theoretical contact

locations and achievable solutions for our particular robot. In particular, for many desired

skate configurations, achieving exact symmetry in end effector locations is either non-

trivial or not achievable.

Algorithmic solutions for computing IK tables that satisfy the above conditions are

detailed in [31]. However, as calculating such an IK table can be computationally ex-

pensive, there is a trade-off for training on the full model in joint space (without IK) vs.

training in Cartesian space (making use of an IK table, or computing IK at each time

step).

Depending on the implementation, a function calculating IK can add significant over-

head to training time in Cartesian space, as each time step requires 4 calls to this function

(once for each limb). However, if the range of (x,y,z,φ) of each skate in the simple model

is limited to a subspace for which IK solutions of the full model both exist and are

smooth, either through intuition or some pre-calculation, we can learn a policy on the

simple model in Cartesian space, and then map the solution back at test time to the

full system, computing IK at each time step for each limb. This eliminates the need to

compute IK during training altogether.

7.3 Training Environment

This section describes the environment set up and MDP details of our implementa-

tions to learn a locomotion policy for either the simple system or full RoboSimian.
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7.3.1 Observation Space

In order to use the policy trained on the simple model for the full model, the obser-

vation space (input to the network) must be the same, or similar. As there is no sensing

available at the passive wheel in the real model, it is not fair to include any related ob-

servations to learn a policy in simulation. So neither the rotational position nor velocity

of each skate wheel about its axis are included in the observation space.

At minimum, the observation space for the simple model consists of the following:

• (xb, yb, zb), body global coordinates

• (w, xw, yw, zw), body orientation (from origin x-axis) in the form of a quaternion

• (xs,i, ys,i, zs,i, φs,i), skate local Cartesian positions and yaws, with respect to the

body

• (dxb/dt, dyb/dt, dzb/dt), body translational velocities

• (dθxb/dt, dθyb/dt, dθzb/dt), body rotational velocities

• (dxs,i/dt, dys,i/dt, dzs,i/dt, dφs,i/dt), skate local translational and rotational veloci-

ties with respect to the body

The above observation space is (more than) enough to locomote the system in any

given direction; for example to train for x-directed locomotion, the reward function can

be a difference in potential between the current and previous body positions in the x

direction. For tasks that involve moving to a specific (xg, yg) goal coordinate in the

environment, the above observation space is augmented with the following:

• (xg, yg, zg), global goal coordinates

• −d, negative of the absolute Euclidean distance between (xb, yb, zb) and (xg, yg, zg)
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• θgoal, signed local angle between current body heading (w, xw, yw, zw) and (xg, yg, zg)

The simple representative model and the full model using IK in Cartesian space thus

have the same observation space in their respective simulations. The observations for

which the real robot does not have direct sensing can readily be estimated with forward

kinematics or Jacobians in real time on the real system.

When training in joint space for the full system, in addition to the body positions,

orientations, and velocities, each joint’s position and velocity (28 actuated motors) is

now part of the observation space. Again, the rotational positions and velocities of the

skate wheels are not included.

Figure 7.2: Equivalent states and action spaces for the simple Cartesian space model
and full RoboSimian model using IK. Actions are translation offsets along each skate’s
local x,y,z axes, and rotational about the z axis, shown here for φ = π/4[rad].

7.3.2 Action Space

As discussed in Sections 7.1 and 7.2, it is more intuitive to model the actuators for

RoboSimian as position servos rather than torque motors. For the full system trained

in joint space, the action space is chosen to be discrete, and the policy chooses an offset

from {−ε, 0,+ε} from each motor’s current desired position as its new reference.

For the simple model and full model using IK, the action space is also discrete, but in

Cartesian coordinates. This is shown in Figure 7.2. At each time step, the policy chooses
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an offset from {−ε, 0,+ε} from each skate’s (xs,i, ys,i, zs,i, φs,i) current desired positions.

This ε is a design parameter, and can change based on the task and state. It is logical

for ys,i and φs,i to change by different offsets εy and εφ, for example, due to the difference

in units (meters vs. radians). A caveat is that the IK joint position differences of the full

model between time steps must be bounded. We note that a small difference in the end

effector location can have a large difference in the IK solution, even when using the same

IK family, if near a singularity. We seek to minimize these events by keeping the simple

model’s workspace within smooth IK solution spaces for the full model.

7.3.3 Reward Functions

We consider potential-based shaping functions of the form:

F (s, a, s′) = γΦ(s′)− Φ(s) (7.1)

to guarantee consistency with the optimal policy, as proved by Ng et al. in [125]. The

real-valued function Φ : S → R varies between tasks, with two such example tasks

consisting of:

1. maximizing forward velocity in the x direction:

Φ(s) =
xb
∆t

(7.2)

2. minimizing the distance to a target goal (xg, yg, zg):

Φ(s) = −
√

(xb − xg)2 + (yb − yg)2 + (zb − zg)2 (7.3)

This reward scheme gives dense rewards at each time step, towards ensuring the opti-
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mal policy is learned, and allows us to avoid complicated hand-crafted reward functions

with many variables that ultimately output a single number anyway.

7.3.4 Implementation Details

We use a combination of OpenAI Gym [126] to represent the MDP and MuJoCo [119]

as the physics engine for training and simulation purposes. We additionally use the

OpenAI Baselines [96] implementation of PPO (PPO2) as a basis, making some key

modifications for our system. Our neural network architecture is the default Multi-

Layer Perceptron (MLP), which consists of 2 fully connected hidden layers of 64 neurons

each, with tanh activation. The policy and value networks both have this same network

structure.

The default design parameters of these implementations are kept the same, while

perhaps not producing the most optimal or time-efficient policies for our system, to show

that intuitively reducing the action space has a large effect on training time and policy

robustness.

7.4 Results

We seek to compare the training times and robustness of learned policies for the

following systems:

• SS : Simple “representative” system

• FS in JS : Full system trained in joint space

• FS in CS : Full system trained in Cartesian space with IK (to set joints)

We also seek to evaluate how well the learned policy of the simple system transfers

to the full system with inverse kinematics. SS and FS in CS always have the same
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observation and action spaces, for fair comparisons. We consider tasks of skating at

maximum velocity in the +x direction, and of locomoting to a particular goal location

(xg, yg). All policies along with additional comparisons to other control methods are

shown in the supplementary video2 accompanying the publication for which this chapter

is based on [127].

7.4.1 Skate Straight

First we consider the task of maximizing forward velocity in the +x direction. The

observation and action spaces are as detailed in Sections 7.3.1 and 7.3.2, with ε = 0.01.

The action space for SS and FS in CS is limited to a ±0.1[m] offset of ys,i and ±0.3[rad]

offset of φs,i for each skate from its given starting position, with xs,i and zs,i fixed, to match

the constraints used in designing skating motions for forward locomotion in Chapter 4.

The action space for FS in JS is bounded only by the joint limits. Training on FS in

JS also enforces early termination of an episode if any self-collisions are detected, or if

contact occurs with the ground from any part of the robot other than the skates. The

reward at each time step is a potential-based shaping function as in Equation 7.1, with

Φ as in Equation 7.2, rewarding body velocity in the +x direction.

Training Sample Complexity Comparison

Figure 7.3 shows the episode reward mean vs. number of training time steps, with

mean and standard deviation of three training runs for each system. The episode reward

is the sum of the individual rewards at every time step, so it is the sum of all instantaneous

velocities, a maximum of 1000 values (without early termination). We see that training

in Cartesian space gives much higher total returns, with far fewer time steps. This is

likely due to both the smaller observation and action spaces for SS and FS in CS, as

2https://youtu.be/xDxxSw5ahnc
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Figure 7.3: Average episode reward over training 1 million time steps for the full
system in joint space (FS in JS ), simple system (SS ), and full system in limited
Cartesian space (FS in CS ) for a task rewarding forward velocity in the +x direction.
The pink line shows the results of transferring the learned policy on the simple system
(SS ) to the full system in Cartesian space (FS in CS ) and further training for 2e5
timesteps. As the dynamics do not match perfectly, using the SS can be a means to
accelerate training, especially if fast IK computation during training is not available.

well as to the fact that the agent for the full system is being forced to learn forward and

inverse kinematics in conjunction with trying to maximize returns. A training episode

terminates early if there are any self-collisions in the current robot configuration, or if

non-skate limbs come in contact with the ground, where the average duration of a training

episode before one of these occurrences is shown in Figure 7.4.

In addition to learning a policy that produces returns that are not nearly as high

as those for SS and FS in CS, the resulting motions for training on FS in JS also do

not look optimal, where typical behavior appears to be sinking quite low to the ground

(always on the brink of a collision) and waving one of its rear limbs around in the air

while only the other three limbs actually skate (see video). Even after training for 10

million time steps, which takes about 12 hours on a single laptop, the policy has still not

completely learned kinematics, frequently terminating episodes early, and it is still not

achieving the same returns as the policy trained in Cartesian space.
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Figure 7.4: Episode length mean vs. number of training time steps, where each episode
normally lasts 1000 training time steps unless ended prematurely. Early termination
is the result of any internal self-collisions, or any part of the robot body touching the
ground other than the skates, which is still occurring even after training for over 1e6
timesteps.

Training Wall Clock Time Comparison

Figure 7.5 shows the episode reward mean vs. wall clock time. The overhead in

training time for the FS in JS compared to the SS can be attributed to more weights

in the neural networks having to be learned due to the larger observation and action

spaces, more frequent environment resets from early terminations, and possibly also from

simulating more complex dynamics. If an IK table (implemented as a hash table, where

the keys are (x, y, z, φ) position tuples and values are the corresponding joint positions) is

available during training time, this adds a small overhead from 4 constant time look ups

per training time step. Without such a table, calculating IK 4 times at each time step has

the potential to introduce a more significant overhead, depending on the implementation.

This may suggest transferring a policy learned on the SS onto the FS in CS, calculating

IK only at run time.

An IK table can also be dynamically generated as training progresses, to avoid fre-

quently re-calculating the same position tuples as the policy learns subspaces of the

workspace that maximize rewards. We also note that the training time from slow IK
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calculations is still worth it, as the alternative of training in joint space produces less

robust policies that attain far fewer rewards.

Figure 7.5: Episode reward mean vs. real clock time for training over 1 million time
steps. The SS is fastest to train due to the fewest number of weights to learn in
the network, limited search space (along with FS in CS ), and the simplest dynamics
to simulate in MuJoCo. Our IK table implementation incurs a small overhead from
repeated constant time lookups while training.

Policy Transfer from SS to FS in CS

To test how well the policy learned on the simple model transfers to the full system,

we initialize the weights of the policy and value networks for the FS in CS with those

learned from the SS. Since the observation and action spaces are the same for both

models, we do not run into any implementation complications. The pink line in Fig. 7.3

shows the episode reward mean for training 2e5 time steps after initializing the FS in CS

network weights with those learned with the SS.

The initial returns start much higher than 0, but not as high as the returns from

running the SS policy on its own system. This is expected since the dynamics do not

match perfectly, but it is encouraging that locomotion can be transferred in this manner.

This suggests the possibility of training on the simple system for other tasks, and then

executing the learned policy on the full system, to accelerate training.
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A noteworthy observation from our experiments is that the learned policy for the

SS could not traverse randomly varying, sinusoidally-smooth terrain, as the amplitude

increased, as defined in Section 7.4.2. This could be due to the dynamics of the system

being incapable of generating the forces to traverse this new terrain, or that this new

observation space had not been explored during training, and thus the policy had not

learned which actions to take in these slightly varying states. However, the full robot

was able to make forward progress after transferring that same SS policy onto the FS

in CS, without further training of that policy. This implies that the policy was robust

enough, but the SS version of the system itself may not have the means to produce the

forces necessary to get over the small hills. This further encourages the use of training a

policy on the SS and then transferring it to the full system for other tasks.

7.4.2 Skate To Goal Under Uncertainty

The next task we consider is locomoting the system from the origin (0,0) to a goal

location (xg, yg), in particular (5,0)[m], over randomly varying, sinusoidally-smooth ter-

rain with varying friction coefficients. For this task, the observation spaces from the

maximum velocity skating task are augmented with the global goal coordinates, negative

distance to the goal from the robot’s current location, and the angle between the robot’s

heading and the goal, as discussed in the latter part of Section 7.3.1. The action spaces

are left unchanged, as the limited spaces for SS and FS in CS should be enough to

locomote the system to the goal (it is always possible to increase ranges, or allow x and

z skate position changes if the terrain is too rough). The reward at each time step is

again a potential-based function as in Equation 7.1, with Φ as in Equation 7.3 where we

assume zg = zb, rewarding a decrease in the distance to the goal, and penalizing moving

away from the goal.

125



Training in Task Space to Speed Up and Guide Deep Reinforcement Learning Chapter 7

We train the policy to reach the goal (5,0) for 2 million time steps over smooth,

sinusoidal terrain with amplitude A = 0.1 [m], period 2π [m] in both x and y directions,

and coefficient of friction µ ∈ [0.5, 1]. The terrain is randomly generated and moved in

the xy plane by (δx, δy) ∈ [−1, 1] [m] at the start of each training episode (environment

reset), on top of random perturbations of the joints, positions, and velocities of the initial

states. An episode is considered completed when (xb, yb) is within 0.2 meters of (xg, yg),

or when the episode times out after 1000 time steps.

We then test the policy over the same family of smooth sinusoidally varying terrain

now also varying amplitude A ∈ [0, 0.2] [m] (the period 2π [m] and coefficient of fric-

tion range µ ∈ [0.5, 1] are unchanged), and compare results with runs of our previously

designed open-loop trajectory to locomote the system 5 meters forwards from Chapter 4.

Figure 7.6 shows the end (xb, yb) positions and distributions for 100 runs each for the

trained stochastic policy on the FS in CS as well as for the hand-designed trajectory.

Reaching the goal is defined as successful if (xb, yb) ends within 0.2 meters of (xg, yg),

for both methods. The large cluster of policy points in a radius of 0.2 meters around

(5,0) is due to the episode completion condition. Of the 100 trials, there are 57 successes

using the learned policy, vs. only 23 successes for the hand-designed open loop trajectory.

From the resulting end positions and observing the policy in action, we see that if the

robot has too much lateral error, due to the small action space ranges, it cannot move

laterally towards the goal and gets “stuck”. An even more robust policy might thus be

learned by increasing the action space ranges, and incorporating more knowledge into

the observation space such as sensor readings of terrain height, for future work.
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Figure 7.6: Starting from the origin and with a goal of reaching (5,0) in the en-
vironment, resulting end positions for the robot body center of mass from 100 runs
each of the learned policy on the FS in CS as well as of a hand-designed trajectory.
The terrain consists of randomly varying smooth, sinusoidal curves with amplitude
A ∈ [0, 0.2] [m], period 2π [m], and coefficient of friction µ ∈ [0.5, 1].

7.4.3 Policy and Hand-Designed Trajectory Comparison

The first 15 (s) of a sample skating trajectory from a policy trained to achieve maxi-

mum velocity in the x direction for the FS in CS are shown in Figure 7.7. The resulting

motions are quite similar to our hand-designed trajectories from Chapter 4, an example

of which is shown in Figure 7.8, with symmetric motions in both φ and y position between

the left and right limbs, as well as an approximate phase difference of π/2 between the

front and rear limbs. There are two key differences: (1) although φ is allowed to vary in

[−0.3, 0.3] radians, the policy learns trajectories that never reach those limits, and (2) as

the robot builds speed, the φ offsets chosen decay to a smaller range and oscillate more

quickly, along with y, once slip is avoided at the start of the motion. The non-smooth φ

motions could be due to the nature of executing a stochastic policy, or that the policy has

learned to make small corrections in its heading with φ, rather than with y, to maximize

forward velocity reward.
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Figure 7.7: The first 15 (s) of a sample skating trajectory from a policy learned for the
full system in Cartesian space, after training for 1 million time steps while rewarding
forward velocity in the +x direction. When viewing the robot from above, skate i = 1
is on the front right limb, i = 2 is the rear right, i = 3 is on rear left, and i = 4 is the
front left.
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Figure 7.8: Local skate end effector positions and angles φ for a simple hand-designed,
straight body trajectory with 4 skates. The front two skates are out of phase by π/2
with the back skates, and due to symmetry, are out of phase by π with each other to
ensure minimal slip and maximum propulsion forces.
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7.5 Conclusion

This chapter detailed the use of targeting state-of-the-art reinforcement learning al-

gorithms on simple, representative systems with standard control techniques, and intu-

itively limiting the action space to reduce sample complexity, increase robustness, and

accelerate training time.

We showed that using inverse kinematics and training in Cartesian space significantly

speeds up training time. Even without a fast way to compute IK, the resulting policies

are more stable and robust than training in joint space, where even after millions of

time steps, the agent is still learning kinematics, producing non-intuitive motions, and

terminating training episodes early. Such considerations are especially important for a

high DOF system such as RoboSimian.

We also provide a workaround in the case of no fast IK being available, by training

a policy on a simple representative system, and transfer learning onto the full system,

calculating IK only at run time, or for fewer time steps if further training of the policy

is needed due to mismatching dynamics.

Although it may seem intuitive to use inverse kinematics to learn on a lower dimen-

sional system, to the best of our knowledge, this is the first such work in this area. Here

this is applied to a skating system, but the ideas can be readily implemented on any sys-

tem with a base and end effector(s). A more recent work showed the benefit of training in

task space with impedance control for manipulators in contact-rich environments, such

as when wiping a board [128]. Another example application could be motion planning

for a quadruped when placing down a foot during a particular gait.
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Chapter 8

Combining Benefits from Trajectory

Optimization and Deep

Reinforcement Learning

Summarizing from Chapter 1, recent breakthroughs both in trajectory optimization and

reinforcement learning have made significant advances towards real world robotic system

deployment. Reinforcement learning (RL) can be applied to many problems without

needing any modeling or intuition about the system, at the cost of high sample complexity

and the inability to prove any metrics about the learned policies. Trajectory optimization

(TO) on the other hand allows for stability and robustness analyses on generated motions

and trajectories, but is only as good as the often over-simplified derived model, and

may have prohibitively expensive computation times for real-time control. This chapter

proposes a method to combine the benefits from these two areas while mitigating their

drawbacks by (1) decreasing RL sample complexity by using existing knowledge of the

problem with optimal control, and (2) providing an upper bound estimate on the time-

to-arrival of the combined learned-optimized policy, allowing online policy deployment at
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any point in the training process by using the TO as a worst-case scenario action. The

method is evaluated for a car model, with applicability to any mobile robotic system.

8.1 Introduction

Deep reinforcement learning (DRL) methods have shown recent success on continuous

control tasks in robotics systems in simulation [21–23]. Such methods are applied using

no prior knowledge of the systems, leading to problematic sample complexity and thus

long training times. Unfortunately, little can be said about the stability or robustness

of these resulting control policies, even if more traditional model-based optimal control

solutions exist for these same systems.

Additionally, DRL has been almost exclusively applied in simulation, where a failed

trial has no repercussions. In the real world a failure can have catastrophic consequences,

including damaging the robot or causing injury to humans in the area. Some recent works

have successfully learned a policy for a real robot [25] [26], or transferred policies learned

in simulation to the real system [27] [28]. Of particular note in [28] is that the learned

policies outperform the authors’ previous model-based methods with respect to both

energy-efficiency and speed. However, instead of training from scratch, it would seem

intuitive to use the model-based methods as an initial starting point for DRL, with the

reasoning that at any given moment, our learned policy should do at worst as well as

existing control solutions.

One might be tempted to perform imitation learning updates on trajectories taken

from running a model-based optimal control policy, for example using DAgger [129].

However, due to often mismatching dynamics between the simplified system on which

this model-based control policy is based on, and the real physical system, this may lead

to overfitting a suboptimal policy. There is also the additional concern of deviating too

131



Combining Benefits from Trajectory Optimization and Deep Reinforcement Learning Chapter 8

much from the expert trajectories into regions of the state space not previously visited,

in which the policy learned only from expert data may perform poorly.

Instead, we propose interweaving optimal control samples during the policy rollouts

of model-free DRL methods in the following manner: at each timestep we can evaluate

our policy network to get action aRL, as well as query our trajectory optimization to

get action aTO. We then simulate the execution of each of these actions individually,

and select the one which gave the larger reward as our true action to use in the real

world. Such a scheme, shown in Figure 8.1, should ensure that at worst the agent will

always do as well as the model-based optimal control policy, and can only do better.

At the beginning of training, we expect this approach to almost exclusively pick aTO;

due to the network weights being randomly initialized, it is very unlikely to consistently

outperform a model-based method. However as training progresses, and from added

policy exploration/exploitation, the number of selected on-policy samples will increase.

Related work on using trajectory optimization to help learn or guide a control policy

include [130], [131], and [132]. These works differ from the proposed method in this

chapter as they focus more on incorporating offline demonstrations or trajectories into

training to guide the policy search, whereas in this work the trajectory optimization is

run online at each timestep and compared with the current policy action, ensuring a

worst-case scenario.

A related work combining prior knowledge of the system with learning is [133], where

the policy chooses between actions computed with a simple PID controller and from

evaluating the current actor network. Although the authors observe this controller helps

achieve faster and more stable learning performance, it is not optimal and much can still

be improved in terms of sample complexity. Additionally, there are no guarantees on the

policy at any given time, and no minimum time to goal estimates or worst-case scenarios.

Another related work that combines learning with MPC is POLO [134]. POLO
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Figure 8.1: Agent picking between actions from trajectory optimization or from re-
inforcement learning, simulating taking each respectively, and then selecting the one
leading to greater reward to execute in the real world.

133



Combining Benefits from Trajectory Optimization and Deep Reinforcement Learning Chapter 8

seeks to improve MPC by learning a global value function, of which it has only a local

estimate when initialized. As a result, it cannot be run online and provides no policy

guarantees, as it cannot achieve a desired result without first learning an estimate of the

global value function. This chapter in contrast seeks to improve on policy learning by

using a trajectory optimization framework to guide the learning process, and provides a

worst-case scenario action that can be run online.

The rest of this chapter is organized as follows: Section 8.2 will review details on

reinforcement learning, imitation learning as behavioral cloning, and robot dynamics in

the context of a car model. Section 8.3 describes the trajectory optimization framework

used to calculate optimal trajectories for the car, and our algorithm combining this

trajectory optimization with deep reinforcement learning (in this case PPO) is presented

in Section 8.4. Section 8.5 shows results on the benefits of using our algorithm, and a

brief conclusion is given in Section 8.6.

8.2 Preliminaries

8.2.1 Reinforcement Learning and Proximal Policy Optimiza-

tion

The reinforcement learning framework has already been discussed in Section 3.6,

where we consider an environment modeled as an MDP 4-tuple (S,A,P ,R) of states,

actions, transition function, and reward function. In this chapter, the states consist of a

subset of the robot’s positions and velocities, the actions are motor torques or positions,

the transition function is modeled by a physics engine [135], and the reward is a potential-

based function to minimize distance to a target goal.

Although we expect to see benefits from combining trajectory optimization with any
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deep reinforcement learning algorithm, in this chapter we will also use the previously

discussed Proximal Policy Optimization (PPO). As the objective functions are relevant

to our algorithm, we remind the reader of the surrogate objective with clipped probability

ratio:

LCLIP (θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
(8.1)

where Ât is an estimator of the advantage function at time step t as in [95], and rt(θ)

denotes the probability ratio

rt(θ) =
πθ(at|st)
πθold(at|st)

(8.2)

where πθ is a stochastic policy, and θold is the vector of policy parameters before the

update. This objective seeks to penalize too large of a policy update, which means

penalizing deviations of rt(θ) from 1.

As PPO is an actor-critic algorithm, the full objective function combines terms for

this policy surrogate with a value function error term, as well as an entropy bonus to

ensure sufficient exploration [22,98], which we more succinctly define as LPPO(θ) as

LPPO(θ) := LCLIP+V F+S
t (θ) = Êt

[
LCLIPt (θ)− c1LV Ft (θ) + c2S[πθ](st)

]
(8.3)

where c1, c2 are hyperparameters, S denotes an entropy bonus, and LV Ft (θ) is a squared-

error loss:

LV Ft (θ) =
(
Vθ(st)− V targ

t

)2
(8.4)
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8.2.2 Learning from Demonstration

In this work we use the classical behavioral cloning (BC) approach to imitation learn-

ing where we seek to minimize the error between an expert action and the maximum

likelihood estimate action from the current policy:

LBC(θ) =
1

N

N∑
i=1

(
a∗i − arg max

ai

πθ(ai|si)
)2

(8.5)

for expert demonstration state-action pairs {si, a∗i }Ni=1, where arg max
ai

πθ(ai|si) is the

maximum likelihood estimate action ai for state si using policy πθ.

8.2.3 Robot Dynamics

The equations of motion for a robotic system can be written as:

D(q)q̈ + C(q, q̇)q̇ +G(q) + A(q)Tλ = B(q)u+ F (8.6)

where q are the generalized coordinates, D(q) is the inertial matrix, C(q, q̇)q̇ denotes

centrifugal and Coriolis forces, G(q) captures potentials (gravity), A(q)Tλ are constraint

forces (where λ are unknown multipliers a priori), B(q) maps control inputs u into gen-

eralized forces, and F contains non-conservative forces such as friction.

In this work, we specifically consider a simple car model, shown in Figure 8.2, with

q = [xb, yb, θb, θf ]
T , where (xb, yb) are the center of mass coordinates in the world frame,

θb is the yaw of the body with respect to the global x-axis, and θf is the steering angle

of the front wheels.

As discussed in Section 3.2, for general wheeled mobile robots, A(q)Tλ typically con-

tains constraints ensuring no slip (free rolling in the direction the wheel is pointing) and

no skid (no velocity along the wheel’s rotation axis perpendicular to the free rolling di-
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Figure 8.2: Car model used for trajectory optimization.

rection), which come from writing these constraints in Pfaffian form A(q)q̇ = 0. λ can be

explicitly solved for by differentiating A(q)q̇ = 0 and substituting in q̈ from Equation 8.6.

Remark

Because this constraint is in place, the trajectory optimization will not find solutions

where skidding is a viable option allowing for greater reward (such as skidding into a

parking space instead of parallel parking, or an aggressive turning maneuver to more

quickly change directions). The alternative to this constraint would be to add friction

approximations such as in [77], for which the optimization must then solve a Linear

Complementarity Problem at each contact point, as in Chapter 6. As this can be a very

expensive computation, we avoid this consideration here and instead entrust the DRL

algorithm to use the conservative real-time trajectory optimization as a guide towards

learning a better policy, in which slip may or may not be optimal.
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8.3 Trajectory Optimization

This section provides details for formulating the locomotion problem for the car model

as a trajectory optimization. This optimization can be solved in real-time due to the

simplified dynamics model with nonholonomic constraints. As before, the full nonlinear

system is discretized, and direct collocation along with backward Euler integration is used

to generate motion as in [75] [120] and Chapters 3.4, 5, 6. More precisely, the problem

is formulated as

find q, q̇, u at discrete timesteps k = 1...N (8.7)

subject to minimize cost J

State Constraints

φ(q, q̇, u) = 0 (8.8)

ψ(q, q̇, u) ≥ 0 (8.9)

Dynamics Constraints

D(q)q̈ + C(q, q̇)q̇ +G(q) + A(q)Tλ = B(q)u+ F (8.10)

where each of the above constraints are detailed below, along with cost function consid-

erations.

8.3.1 Objectives

The cost function J is defined as the weighted squared error between a set of goal

coordinates (xg, yg, θg) and the body coordinates (xN , yN , θN), where N is the number of
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sample points for the trajectory:

J = αx(xg − xN)2 + αy(yg − yN)2 + αθ(θg − θN)2 (8.11)

where weights αx, αy, αθ can vary based on the desired task, i.e. if final body orientation

is important.

8.3.2 State constraints

The initial states q0 and q̇0 are constrained exactly based on the robot’s current state.

For the rest of the N time points, q and q̇ are bounded by joint position and velocity

limits. The input torques u are also bounded explicitly by the physical constraints of the

robot, as well as implicitly by q̇ ranges.

8.3.3 Dynamics constraints

At each time step k, with h = ∆t the time step interval, the dynamics are constrained:

qk+1 = qk + hq̇k+1 (8.12)

q̇k+1 = q̇k + hq̈k+1 (8.13)

with

q̈k+1 = D−1k+1(Bk+1uk+1 + Fk+1 − Ck+1q̇k+1

−Gk+1 − ATk+1λk+1) (8.14)

where we write D(qk+1) as Dk+1, and similar for other terms.
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8.4 Cooperative Trajectory Optimization and Deep

Reinforcement Learning

In this section we detail our algorithm, Cooperative Trajectory Optimization and

PPO (CoTO-PPO), shown in Algorithm 1. The main idea is that for each new obser-

vation st at time step t, the current PPO actor network is queried for action aRL, and

a trajectory optimization is solved for action aTO. Each of these actions is simulated

individually to get rewards raRLk+1 and raTOk+1. The action that produces the larger

simulated reward is the one that is selected as the true best action and used in the

real world (or to step the actual simulation). Necessary transition information is then

appended to either the PPO dataset DPPO or Supervised Learning (SL) dataset DSL,

depending on which action was selected. After T time steps corresponding to the current

policy/trajectory optimization roll out, the actor-critic PPO networks are updated by

optimizing LPPO(θ) on dataset DPPO, and the actor network is additionally updated

with supervised learning by optimizing LBC(θ) on dataset DSL.

8.5 Results

8.5.1 Implementation Details

We use a combination of OpenAi Gym [126] to represent the MDP and PyBullet [135]

as the physics engine for training and simulation purposes.

We additionally use the OpenAI Baselines [96] implementation of PPO (which op-

timizes LPPO(θ) as discussed in Sec. 8.2) with the default hyperparameters, but with

the Beta distribution to select continuous actions as suggested in [136] to avoid the bias

introduced with limited control ranges when using the standard Gaussian distribution.
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Algorithm 1: Cooperative Trajectory Optimization and PPO (CoTO-PPO)

Initialize function approximation parameters θ
Initialize PPO and Supervised Learning datasets DPPO, DSL

for training epoch=1,2,... do
for timestep=1,2,...T do

Solve trajectory optimization for action aTO
Evaluate PPO policy network for aRL ∼ πθ(at|st)
Simulate taking each action separately and select action maximizing next
step reward:

aBest = arg max
(aTO,aRL)

(raRLk+1, raTOk+1)

Step environment with aBest: st+1 ∼ p(st+1|st, aBest)
if aBest == aRL then

Dk ∼ partial trajectory, transition information
DPPO = DPPO ∪Dk

else if aBest == aTO then
DSL = DSL ∪ {(st, aTO)}

end

end
for K epochs on DPPO do

normal PPO updates by optimizing LPPO(θ)
end
for K epochs on DSL do

supervised learning LfD updates by optimizing LBC(θ)
end

end
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The Beta distribution parameters α and β are TensorFlow variables and are therefore

updated during each SGD minibatch, so the action variance will decrease as the policy

converges. The Gym environment we use is similar to the standard HumanoidFlagRun

environments, but the humanoid is replaced with the Bullet MIT racecar. Example snap-

shots from the environment are shown in Figure 8.3. The goal destination/flag is updated

only when the car center of mass lies within 0.2 [m] of the current goal location, and then

placed randomly in a 10 by 10 [m] grid. The agent has 10 seconds to maximize rewards

each trial, which will typically consist of reaching several goal locations consecutively.

Figure 8.3: Environment snapshots of Bullet racecar with desired goal denoted by
the red ‘X’.

Our neural network architecture is the default Multi-Layer Perceptron, consisting of

2 fully connected hidden layers of 64 neurons each, with tanh activation. The policy and

value networks each have this same structure.

The observation space is:

[ ||(xg, yg)− (xb, yb)||, θg − θb, θf , ẋb, ẏb, θ̇b, θ̇f ] (8.15)

which is the distance from the center of mass to the goal location, the angle from the

current body heading to the goal, the steering angle of the front wheels, the body velocity

in the global x and y directions, the body yaw rate, and the yaw rate of the steering

wheels.
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The action space is [ v, θf ], which is a desired body velocity to be set with velocity

control mapped to a differential drive, and desired steering angle to be set with position

control.

We consider potential-based shaping reward functions of the form:

F (s, a, s′) = γΦ(s′)− Φ(s) (8.16)

to guarantee consistency with the optimal policy, as proved by Ng et al. in [125]. The

real valued function Φ : S → R seeks to minimize the distance to a target goal (xg, yg):

Φ(s) = −
√

(xb − xg)2 + (yb − yg)2 (8.17)

This reward scheme gives dense rewards at each time step, towards ensuring the

optimal policy is learned, rewarding incremental motion in the direction of the current

goal. Having dense rewards is important in this framework as we are choosing between

actions based on the simulated instantaneous reward, which would likely be 0 at most

time steps under sparse reward scenarios.

The trajectory optimization is implemented in Python with CasADi [122], using

IPOPT [123] to solve the NLP. Due to the imposed torque and velocity limits as well

as the nonholonomic constraints added to the dynamics, the trajectory optimization will

find solutions that are suboptimal to the true best policy. We will see in the following

subsection that even this suboptimal trajectory optimization has a large benefit when

combined with policies either learned from scratch or with our method, both during

training and testing.
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8.5.2 Experiments

We seek to compare and evaluate the following methods:

1. pure PPO

2. pure trajectory optimization

3. CoTO-PPO - (our method)

4. CoTO-PPO, policy only - how well does the policy learned from CoTO-PPO per-

form on its own, without the fail-safe action of the trajectory optimization?

5. CoTO-(pure PPO) - how well does combining trajectory optimization with an en-

tirely separately trained agent with PPO perform?

The reader is encouraged to watch the accompanying video1 for simulations of the dis-

cussed policies.

Figure 8.4 shows the episode reward mean vs. number of training time steps for

running pure PPO as well as CoTO-PPO on the CarFlagRun environment. The episode

reward mean indicates how well the agent was able to continue to progress in the direction

of the goal location(s) during each trial. Due to doing at worst as well as the trajectory

optimization, CoTO-PPO begins with very high reward mean, and only improves from

there as the networks are updated with both DRL and supervised learning updates.

Pure PPO on the other hand is forced to learn from scratch, and even after training for 1

million time steps, is only able to do as well as the trajectory optimization combined with

essentially uniformly distributed random noise of the uninitialized policy from CoTO-

PPO.

Figure 8.5 shows the percentage of samples picked by the policy network of PPO in

CoTO-PPO that outperform the actions from the trajectory optimization over training.

1https://youtu.be/mv2xw83NyWU
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Figure 8.4: Episode reward mean for pure PPO, and cooperative trajectory optimiza-
tion and PPO (CoTO-PPO). The episode reward mean from using only the trajectory
optimization is plotted as a dashed line.
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Figure 8.5: At the beginning of training, about 20% of the random actions selected
by PPO produce larger rewards than the optimal actions found with the trajectory
optimization. Over time the policy is guided towards better regions and roughly 75%
of the samples selected from PPO result in maximal reward. As a fail safe, the TO
action is taken to keep our bounds on time to goal.
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As expected, when the policies are randomly initialized, few samples from PPO will

outperform even a suboptimal trajectory optimization. Eventually as training progresses,

the percentage of maximal reward samples picked with PPO converges to around 75%

of the time. This shows there is still a benefit to using the trajectory optimization as

a worst-case scenario, as it is still being picked 25% of the time after 1 million training

time steps.

Table 8.1 details the reward mean and percentage of PPO actions picked (if relevant)

with various algorithms and scenarios across 100 trials, after training for 1 million time

steps. We do trials of evaluating each policy by sampling from the output Beta distri-

butions stochastically, as well as deterministically evaluating the distributions with the

maximum likelihood estimate. We see that combining the trajectory optimization with

PPO significantly increases the mean reward, with our method CoTO-PPO having the

best performance. If we evaluate only the policy trained from CoTO-PPO, it is still a sig-

nificant improvement over the policy trained from pure PPO alone. We also evaluate the

effect of combining the policy trained with pure PPO with the trajectory optimization,

labeled CoTO-(pure PPO), which makes it clear that pure PPO has learned a suboptimal

policy, as the combination with the TO leads to a larger reward mean.

In this latter case, we also track what percent of the time CoTO-(pure PPO) picks the

TO action vs. the action selected from the policy network of pure PPO. Despite training

for 1 million time steps, our algorithm finds that the trajectory optimization performs

better than the policy trained from scratch roughly half of the time. In comparison, the

policy trained from our method CoTO-PPO is picked over 75% of the time, despite far

fewer on-policy samples (due to using the TO samples for supervised updates).
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Reward Mean Percent PPO Actions
Algorithm Stochastic Deterministic Stochastic Deterministic

pure PPO 12.9 13.8 - -
Trajectory Optimization - 12.1 - -

CoTO-PPO 15.1 15.7 75 81
CoTO-PPO, policy only 14.1 14.7 - -

CoTO-(pure PPO) 14.5 14.5 44 57

Table 8.1: Episode reward mean and percent of samples chosen with PPO for different
algorithms across 100 trials, using either stochastic or deterministic (maximum like-
lihood) actions from the output distributions of the policy network. The percent of
PPO actions are only listed for algorithms which choose between both DRL and TO
actions, and the trajectory optimization action is always evaluated deterministically.

8.5.3 Maximum Instantaneous Reward Discussion

A first look at the algorithm may seem to imply that it is greedy, rather than optimal,

as the agent selects the action leading to the maximum instantaneous reward, rather

than a function of expected returns. We experimented with simulating taking multiple

actions from the TO and from RL over varying horizons, but found significantly worse

performance with this method. One plausible explanation for this result is that, when

first initialized, the PPO actor network is essentially taking random actions. As the

horizon h increases on which we simulate taking h actions from TO and RL separately,

the expected returns of taking a series of random actions regresses toward 0 under our

reward scheme, and thus the probability that RL will outperform the TO tends to 0. Said

another way, it becomes increasingly unlikely to have multiple “lucky actions” from RL in

a row during exploration as the horizon h increases. Since the agent will correspondingly

almost always choose the actions from the suboptimal TO, the policy network will almost

always be updated with supervised learning updates and will correspondingly converge,

approximately, to this same suboptimal policy.

On the other hand, by using the maximum instantaneous transition reward from a

horizon of 1, there is a much higher probability of sampling a “good” action from an unini-
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tialized random policy. This allows for more efficient exploration of the environment than

by overwhelmingly following the (suboptimal) trajectory optimization actions, leading to

a better overall policy (such as more aggressive throttle values, steering angles during

turns, etc.), while still ensuring a reasonable worst-case scenario action from the more

dynamically conservative TO solution, for cases in which we sample a worse-performing

action with RL. The short horizon also avoids overfitting to the suboptimal trajectory

optimization expert.

8.6 Conclusion

In this work we have shown the benefits of combining trajectory optimization and

deep reinforcement learning methods into one training process. Using these two meth-

ods cooperatively allows for online use of our algorithm at any point in the training

process, knowing that the worst-case scenario will be as good as a model-based trajec-

tory optimization. This additionally leads to much greater sample efficiency, and avoids

unnecessary exploration of randomly initialized policies, towards avoiding local optima.

Even if the trajectory optimization is suboptimal due to mismatching dynamics or

overly conservative constraints, there is a clear advantage to incorporating prior knowl-

edge of the system to speed up and guide learning. We also observe that trained poli-

cies, whether exclusively learned with deep reinforcement learning or from our combined

method, are likely to converge to local optima and cannot exhaustively span all observa-

tion states, showing the benefit of model-based methods as a proven fail-safe option. The

need to be able to put bounds on learned policies and guarantee some sort of behavior

is clear, and this work presents preliminary steps in this direction.

The method detailed in this chapter can be readily applied to any robotic system,

and should be an effective way to reduce sampling complexity, accelerate training, guide
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the policy search, deploy policies online at any point in the training process, and give an

upper bound estimate on time-to-goal through the trajectory optimization.
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Chapter 9

Conclusion

In this thesis, we have presented several methods for robot locomotion, ranging from

designing trajectories by hand and model-based trajectory optimization, to deep rein-

forcement learning and the intersection of each of these areas. We proposed two differ-

ent methods for combining model-based methods with deep reinforcement learning that

resulted in better sample efficiency and thus faster training, and more robust control

policies. Our algorithm CoTO-PPO, in particular, can be run online with any motion

planner potentially replacing the trajectory optimization (TO), to steadily improve the

learned control policy with more experience. We also observed that choosing the right

action space in DRL, and including simple prior knowledge such as forward and inverse

kinematics, can have a huge impact on training and performance, especially for high

degree-of-freedom systems such as RoboSimian. These ideas are a first step in incorpo-

rating well-studied model-based methods into learning, towards fast, efficient, and more

robust control policies.

In general, it is not obvious what the best method may be to fuse control theory with

learning. Deep learning methods are still brittle, and heavily dependent on data and

hyperparameters, while providing no guarantees on performance or robustness. And yet,
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there is experimental evidence that such methods can outperform human designers and

model-based methods. However, it is possible that existing or developed models may

help put deep learning ‘on the right track’ so to speak, towards guiding learning towards

the optimal policy by incorporating prior knowledge about a given problem.

Agile robots that account for their dynamic environments have the potential to better

react in the face of uncertainty. Wheel-legged systems in particular can exploit bene-

fits from two heavily studied research areas in this respect, and also enjoy the speed

and efficiency of locomotion on wheels with the versatility and agility to surmount var-

ious obstacles of legged systems. For RoboSimian, we analyzed the robustness of our

designed trajectories on varying terrain, and formulated the locomotion problem for gen-

eral wheeled systems in a versatile optimization framework for motions possibly involving

wheel slip. We showed that our proposed wheel model can be used to plan both slipping

and non-slipping motions, and a future direction to investigate is how to best fit empirical

data to this wheel model. We also noticed the emergence of non-intuitive optima, both in

our optimization framework with the Acrollbot and in DRL when training in joint space

with RoboSimian. We showed that such principles can be used to stabilize and locomote

a system in ways that human designers would not have attempted or anticipated.
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articulated suspension for a wheel-on-leg rover operating on a martian analog
surface, in 2016 IEEE International Conference on Robotics and Automation
(ICRA), pp. 5596–5602, May, 2016.

[48] P. R. Giordano, M. Fuchs, A. Albu-Schaffer, and G. Hirzinger, On the kinematic
modeling and control of a mobile platform equipped with steering wheels and
movable legs, in 2009 IEEE International Conference on Robotics and
Automation, pp. 4080–4087, May, 2009.

[49] A. Suzumura and Y. Fujimoto, Real-time motion generation and control systems
for high wheel-legged robot mobility, IEEE Transactions on Industrial Electronics
61 (July, 2014) 3648–3659.

[50] M. Giftthaler, F. Farshidian, T. Sandy, L. Stadelmann, and J. Buchli, Efficient
kinematic planning for mobile manipulators with non-holonomic constraints using
optimal control, in 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3411–3417, May, 2017.

[51] C. Grand, F. Benamar, and F. Plumet, Motion kinematics analysis of
wheeled–legged rover over 3d surface with posture adaptation, Mechanism and
Machine Theory 45 (2010), no. 3 477 – 495.

[52] B. H. Wilcox, Athlete: A limbed vehicle for solar system exploration, in 2012
IEEE Aerospace Conference, pp. 1–9, IEEE, 2012.

[53] T. Klamt and S. Behnke, Anytime hybrid driving-stepping locomotion planning, in
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 4444–4451, IEEE, 2017.

156



[54] M. Kamedula, N. Kashiri, and N. G. Tsagarakis, On the kinematics of wheeled
motion control of a hybrid wheeled-legged centauro robot, in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 2426–2433, Oct, 2018.

[55] M. Hutter, C. Gehring, A. Lauber, F. Gunther, C. D. Bellicoso, V. Tsounis,
P. Fankhauser, R. Diethelm, S. Bachmann, M. Blösch, et. al., Anymal-toward
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