
UCSF
UC San Francisco Previously Published Works

Title
Tracing Sub-Structure in the European American Population with PCA-Informative Markers

Permalink
https://escholarship.org/uc/item/6zs03373

Journal
PLOS Genetics, 4(7)

ISSN
1553-7390

Authors
Paschou, Peristera
Drineas, Petros
Lewis, Jamey
et al.

Publication Date
2008

DOI
10.1371/journal.pgen.1000114

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6zs03373
https://escholarship.org/uc/item/6zs03373#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Tracing Sub-Structure in the European American
Population with PCA-Informative Markers
Peristera Paschou1.*, Petros Drineas2., Jamey Lewis2, Caroline M. Nievergelt3,4, Deborah A. Nickerson5,

Joshua D. Smith5, Paul M. Ridker6, Daniel I. Chasman7, Ronald M. Krauss8, Elad Ziv9,10

1 Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece, 2 Department of Computer Science, Rensselaer Polytechnic

Institute, Troy, New York, United States of America, 3 Department of Molecular and Experimental Medicine, Scripps Genomic Medicine, The Scripps Research Institute, La

Jolla, California, United States of America, 4 Department of Psychiatry, University of California at San Diego, La Jolla, California, United States of America, 5 Department of

Genome Sciences, University of Washington, Seattle, Washington, United States of America, 6 Center for Cardiovascular Disease Prevention, Divisions of Cardiovascular

Diseases and Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America, 7 Division of Preventive Medicine, Brigham and

Women’s Hospital, Boston, Massachusetts, United States of America, 8 Children’s Hospital Oakland Research Institute, Oakland, California, United States of America,

9 Division of General Internal Medicine, Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America,

10 Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America

Abstract

Genetic structure in the European American population reflects waves of migration and recent gene flow among different
populations. This complex structure can introduce bias in genetic association studies. Using Principal Components Analysis
(PCA), we analyze the structure of two independent European American datasets (1,521 individuals–307,315 autosomal
SNPs). Individual variation lies across a continuum with some individuals showing high degrees of admixture with non-
European populations, as demonstrated through joint analysis with HapMap data. The CEPH Europeans only represent a
small fraction of the variation encountered in the larger European American datasets we studied. We interpret the first
eigenvector of this data as correlated with ancestry, and we apply an algorithm that we have previously described to select
PCA-informative markers (PCAIMs) that can reproduce this structure. Importantly, we develop a novel method that can
remove redundancy from the selected SNP panels and show that we can effectively remove correlated markers, thus
increasing genotyping savings. Only 150–200 PCAIMs suffice to accurately predict fine structure in European American
datasets, as identified by PCA. Simulating association studies, we couple our method with a PCA-based stratification
correction tool and demonstrate that a small number of PCAIMs can efficiently remove false correlations with almost no loss
in power. The structure informative SNPs that we propose are an important resource for genetic association studies of
European Americans. Furthermore, our redundancy removal algorithm can be applied on sets of ancestry informative
markers selected with any method in order to select the most uncorrelated SNPs, and significantly decreases genotyping
costs.
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Introduction

The first Europeans from the Old World to land in what is now

US territory were Columbus’ men in 1493. The initial

colonization of the region by the Spanish, English, Scots and

Irish, French, Dutch, Swedes, Germans, Italians and Portuguese

during the 16th and 17th centuries was followed in the 19th and

early 20th century by waves of millions of newcomers originating

from the northwestern to the southeastern corners of Europe [1].

Thus, the present day European American population is a mosaic

of people that represent different levels of admixture between

diverse European populations and, to some degree, also with

Native American and African American populations.

The identification of population genetic structure has been

discussed at length in recent literature, due to the potential bias it

can introduce in association studies, searching for susceptibility

genes for common complex disorders [2–5]. Population stratifica-

tion is a source of confounding in case-control studies, when allele-

frequency heterogeneity that is unrelated with the studied

phenotype is coupled with disease-risk heterogeneity and biased

sampling in cases and controls. Although European populations

were initially considered genetically quite homogeneous, it has

recently been shown that significant patterns of structure within

Europe along a north to south axis do exist and that unidentified

population stratification in European derived populations (Europe-

an Americans) can lead to spurious associations with disease [5–8].

As genotyping of thousands of individuals for hundreds of

thousands of markers becomes feasible [9–14], and genome wide

association studies in large samples of European American

populations become increasingly common [15], identifying and
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correcting for population stratification will undoubtedly play a

central part in the quest to unravel the genetic basis of complex

traits. The uniform adjustment proposed by the method of

genomic control could be too conservative [16,17], while

structured association testing is computationally impractical for

very large datasets [18]. Price et al. [19] have shown that Principal

Components Analysis (PCA), a powerful linear dimensionality

reduction technique can be used as a computationally efficient tool

to correct for stratification in the setting of genome wide

association studies without loss in power.

Identifying a small set of markers that could be used for

inference of population structure and adjustment for stratification

is of particular importance in order to reduce genotyping costs in

studies seeking to replicate the findings of large-scale genome-wide

projects or when pursuing specific loci as candidate susceptibility

genes. Most existing metrics to select ancestry informative markers

(AIMs) are allele frequency based and demand prior knowledge of

the ancestry of the studied individuals. Consequently, measures

like Fst, d and informativeness for assignment [20–25], require

prior assumptions about individual ancestry and cannot be directly

applied to admixed populations, like European Americans, in

order to identify a panel of genetic markers that can reproduce the

structure of the dataset. European American AIMs had so far been

proposed in two recent large studies targeting distinct European

populations, used as proxies for European American ancestry

[7,8]. Our work here as well as two studies parallel to ours

described in [26,27] are the first to attempt the identification of

structure informative SNPs through the direct analysis of

genomewide datasets of European Americans. All three of these

studies are PCA-based. However, here, we directly leverage the

power of PCA for the selection of AIMs [28], without the need for

any intermediate steps, such as assigning individuals to clusters, in

order to use allele frequency based metrics.

We have recently introduced an unsupervised method for the

selection of ancestry and structure informative SNPs (PCA-

correlated SNPs or PCA-informative SNPs-PCAIMs) [28]. Our

method does not require prior hypotheses or knowledge of

individual ancestry and thus is well-suited for selecting AIMs in

admixed populations. In this paper, we employ it to analyze a

dense, genome-wide dataset (approx. 307,000 SNPs) of more than

1,500 European Americans from two different studies [29,30].

Our main goal is the identification of a small panel of structure

informative SNPs in the European American population. The

contributions of this paper are three-fold. First, from a statistical

perspective, we propose a methodology to remove redundancy

from any set of genetic markers, an issue that arises with all

existing methods (supervised or unsupervised) for the selection of

ancestry or structure informative markers, since the ‘‘scoring’’ of

the SNPs in all of these methods does not take into account any

correlation between them. We reduce the redundancy removal

problem to a well-known problem in numerical linear algebra, the

so-called Column Subset Selection Problem [31] and we propose

an efficient and accurate algorithm that filters out redundant

SNPs. Second, we demonstrate that as few as 200 SNPs selected

with our methodology can be used to very accurately predict the

fine structure of European Americans as identified by PCA, and

we employ cross-validation experiments to verify the accuracy of

our approach. Third, we show that our method can be coupled

with PCA-based stratification correction tools (such as EIGEN-

STRAT [19]) for accurate stratification correction with significant

genotyping savings. Using simulated data we experimentally

demonstrate that 100–200 PCAIMs can be used to correct for

stratification while maintaining power in association studies.

Methods

Datasets
We studied two independent European American datasets. The

first dataset (CHORI dataset-Children’s Hospital Oakland Re-

search Institute), consists of 980 individuals, that were collected as

part of two community-based clinical trials evaluating the anti-

inflammatory effects of statins. 305 of these samples (part of the CAP

study [32]) were collected from the San Francisco Bay Area and Los

Angeles. These individuals all had to report at least 3 grandparents

of European or Caucasian background. Another 675 individuals

were part of a clinical trial that included a large number of sites

across the U.S. (PRINCE study [33]). These individuals were self-

reported white or Caucasian but no additional information was

collected about their parents. All 980 individuals were genotyped

using the Illumina Infinium 310K array in one laboratory under the

same conditions. The second dataset that we studied here

(CORIELL dataset), is a publicly available dataset that has been

previously described [29], and consists of the same SNPs genotyped

for 541 samples (data available from the SNP Resource at the

NINDS Human Genetics Resource Center DNA and Cell Line

Repository (http://ccr.coriell.org/ninds/). These are samples from

patients with Parkinson’s disease and neurologically normal

controls, curated at the Coriell institute. Again, genotyping was

performed using the Illumina platform (in the laboratory of Drs.

Singleton and Hardy (NIA, LNG), Bethesda, MD USA). For all

datasets we only considered genotypes for SNPs on autosomal

chromosomes in our analysis. Finally, as a third dataset, we also

studied the same SNPs using data available from the HapMap

database on the HapMap Yoruba (YRI), CEPH European (CEU),

Chinese (CHB), and Japanese (JPT) samples [34,35].

Preprocessing and Encoding the Data
The proportion of missing entries in the above datasets was very

small (on average less than 0.1%). As a quality control step, we

excluded all SNPs with more than 5% missing entries (separately

on each of the three datasets). This step further reduced the

number of missing entries to less that 0.07% on average. We also

excluded from the analysis a small number of SNPs that were not

Author Summary

Genetic association studies search to identify disease
susceptibility genes through the analysis of genetic
markers such as single nucleotide polymorphisms (SNPs)
in large numbers of cases and controls. In such settings,
the existence of sub-structure in the population under
study (i.e. differences in ancestry among cases and
controls) may lead to spurious results. It is therefore
imperative to control for this possible bias. Such biases
may arise for example when studying the European
American population, which consists of individuals of
diverse ancestry proportions from different European
countries and to some degree also from African and
Native American populations. Here, we study the genetic
sub-structure of the European American population,
analyzing 1,521 individuals for over 300,000 SNPs across
the entire genome. Applying a powerful method that is
based on dimensionality reduction (Principal Components
Analysis), we are able to identify 200 SNPs that successfully
represent the complete dataset. Importantly, we introduce
a novel method that effectively removes redundancy from
any set of genetic markers, and may prove extremely
useful in a variety of different research scenarios, in order
to significantly reduce the cost of a study.

European American PCAIMs
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in Hardy-Weinberg equilibrium (HWE). After these preprocessing

steps we were left with a total of 307,315 autosomal SNPs that all

three datasets had in common.

In order to simplify and speed up our computations, we filled in

the (very small) number of missing entries randomly so that HWE

is satisfied for each SNP. The probabilistic filling in was performed

separately for each dataset, and separately in each population of

the HapMap data. We then transformed the raw data to numeric

values, without any loss of information, in order to apply our linear

algebraic methods. Consider a dataset of a population X consisting

of m subjects and assume that for each subject n biallelic SNPs

have been assayed. Thus, we are given a table Tx, consisting of m

rows and n columns. Each entry in the table is a pair of bases,

ordered alphabetically. We transform this initial data table to an

integer matrix Ax which consists of m rows (one for each subject),

and n columns (one for each SNP). Each entry of Ax will be 21, 0,

+1, or empty. Let B1 and B2 be the bases that appear in the j-th

SNP (in alphabetical order). If the genotypic information for the j-

th SNP of the i-th individual is B1B1 the (i,j) -th entry of Ax is set to

+1; else if it is B1B2 the (i,j)-th entry of Ax is set to 0; else if it is B2B2

the (i,j)-th entry of Ax is set to 21 [28,36].

The Singular Value Decomposition and Outlier Removal
We carefully studied the two European American datasets for

outlier individuals. In the CHORI dataset, we identified five pairs

of individuals that showed a very high degree of allele sharing and

removed these ten subjects from all further analysis. In particular,

we determined the proportion of allele sharing between all pairs of

individuals for 1000 randomly selected markers, approximately

equally spaced throughout the genome, and subtracted it from the

proportion of allele sharing expected under a randomly mating

population with the same allele frequencies. These five pairs

included one pair that had 100% sharing for all 1000 markers

(indicating either an identical twin or a duplicate sample) and four

others that had significantly higher than expected excess allele

sharing, suggesting that they were related.

We subsequently used Principal Components Analysis and the

Singular Value Decomposition to detect outliers. In particular,

given m subjects and n SNPs, let the m6n matrix A denote the

subject-SNP matrix encoded as described above. After mean-

centering the columns (SNP genotypes) of A, the SVD of the

matrix returns m pairwise orthonormal vectors ui, n pairwise

orthonormal vectors vi, and m non-negative singular values si such

that s1$s2$…$sm$0. The matrix A may be written as a sum of

outer products as

A~
Xm

i~1

siu
iviT

: ð1Þ

Each triplet (si,u
i,ni) may be used to form a principal component

of A. Formally, the i-th most significant principal component of a

matrix A is the rank-one matrix that is equal to siu
iviT

. In our

setting, the left singular vectors (the ui ’s) are linear combinations of

the columns (SNPs) of A and will be called eigenSNPs [37]. Notice

that a principal component is a matrix, whereas an eigenSNP is

just a column vector. PCA is a well-known dimensionality

reduction technique that, in this case, represents all subjects with

respect to a small number of eigenSNPs, corresponding to the top

few principal components. All further analysis is then performed

on this low-dimensional representation.

Figure S1 shows the plot of the 970 CHORI individuals, the

541 CORIELL individuals, and the HapMap European, African

and Asian samples, projected on their top three eigenSNPs (as we

shall argue in Results the top eigenSNP is the most informative).

This plot illustrates how a few subjects from our European

American datasets are ‘‘pulled’’ towards the African and Asian

HapMap populations. Based on this analysis, we discarded 12

individuals from the CHORI dataset and 2 individuals from the

CORIELL dataset that were far from the vast majority of the

European American subjects and seem to have a higher degree of

non-European ancestry (Figure S1). Overall, out of the 1521

subjects in the CHORI and CORIELL datasets, we discarded a

total of 24 subjects (ten suspiciously similar subjects and 14

outliers). Thus, we were left with 1497 subjects of European

American ancestry, genotyped for 307,315 SNPs.

Selecting PCAIMs and Removing Redundancy
In order to select ancestry informative markers, we used the

procedure that we described previously [28,38–40]. This proce-

dure is based on the well-documented fact that Principal

Components Analysis reveals population structure. More specif-

ically, a number of studies have verified that retaining the top few

eigenSNPs in datasets that contain individuals from a number of

different populations, or even admixed populations, efficiently

reveals the ancestry of the individuals [19,28,41–44]. The PCAIM

selection algorithm first determines the number of significant

principal components (and thus the number of informative

eigenSNPs) in the data, and then assigns a score to each SNP.

Higher scores correspond to SNPs that correlate well with all

informative eigenSNPs. The algorithm returns the top scoring

SNPs, and we have demonstrated that these PCAIMs are very

efficient for ancestry prediction [28].

This algorithm does not take any special measures in order to

avoid redundancy in the set of identified markers. As we will also

discuss later here, redundancy may arise in sets of AIMs selected

with any of the existing methods (eg. d, Fst, informativeness,

PCAIMs). Redundancy in the case of dense sets of SNP markers is

due to tight linkage disequilibrium. Given the increased marker

density in the genomewide datasets that are becoming available

today, this may lead to significant loss in efficiency by selecting

highly correlated markers. It is therefore important to add a

redundancy removal step after the initial selection of structure

informative markers.

We propose a simple, efficient methodology to deal with this

issue. Our methodology is based on reducing the redundancy

removal problem to the so-called Column Subset Selection

Problem. The latter problem is well studied in the Numerical

Linear Algebra literature, and many algorithms, with various

accuracy vs speed tradeoffs, have been proposed [45]. More

specifically, assume that the top r%n highest scoring SNPs are

retained as PCAIMs. Thus, we are given a matrix Ã that has m rows

(one for each subject) but only r columns (one for each PCAIM).

Recall that n is the total number of SNPs, and could be in the order

of hundreds of thousands, whereas we expect r to be in the order of

thousands. Our goal is to only retain a small number (say k) of

columns of Ã that are as uncorrelated as possible. A naive way of

solving this problem would be to examine all
r

k

� �
possible choices

of sets of k SNPs and keep a set that has no pairs of highly correlated

SNPs. This is computationally infeasible even for very small values

of k (say ten) if r is even a thousand. Consider the following definition

for the COLUMN SUBSET SELECTION PROBLEM (CSSP):

Definition 1: Given an m6r matrix Ã and a positive integer k, pick k

columns (SNPs) of Ã such that the maximal Pearson correlation coefficient

between all
k

2

� �
pairs of the selected columns (SNPs) is minimized.

European American PCAIMs
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In words, recall that a large (close to one) Pearson correlation

coefficient between a pair of SNPs would imply that one of the two

SNPs in redundant. Thus, the above problem formulation seeks to

minimize the maximal correlation between any pair of selected

SNPs, and thus ensure that limited or no redundancy exists. Even

though solving the above optimization problem exactly is hard,

efficient approximation algorithms exist. For the purposes of this

paper, we chose to use an algorithm called greedy QR, that was

proposed by Golub in [31] and was subsequently analyzed by Gu

and Eisenstat in [46]. The algorithm essentially works in k

iterations; in the first iteration, the first column of Ã (the top

PCAIM) is picked; in the second iteration, a column of Ã is picked

that is as uncorrelated with the first column as possible; in the third

iteration the chosen column has to be as uncorrelated as possible

with the first two columns, etc. When expressed in linear algebraic

notation, this iterative procedure boils down to a permuted QR

decomposition of a matrix, and can be performed efficiently. In

particular, an efficient implementation of this algorithm is

available in MatLab, and runs in less than one minute when r is

in the order of thousands and any value of k less than r.

Simulated Association Studies
In order to illustrate the potential of the proposed PCAIMs for

the correction of stratification in association studies, we run a large

simulated association study that closely followed the simulated

association study in Price et al. [19]. More specifically, Price et al.

[19] demonstrated how EIGENSTRAT (a PCA-based procedure)

could efficiently identify population structure and remove

stratification from association studies on populations with similar

structural characteristics with the European American population.

To demonstrate the performance of PCAIMs to correct for

stratification in association studies on admixed populations with

similar characteristics with European American populations, we

followed the methods of [19] to generate an admixed population

of 1,000 individuals genotyped on 100,000 SNPs (see Text S1 for

details). Thus, we created a 1,0006100,000 matrix A of genotypes.

We then estimated the number of significant principal compo-

nents, both by looking at the singular values, as well as by the

permutation test of [28]. As we will discuss in the Results section,

one eigenSNP was deemed significant and was interpreted as

ancestry. We then picked panels of PCAIMs from the 100,000

SNPs in order to predict the ancestry of the 1,000 subjects.

We created large sets of random, stratified, and causal SNPs

(100,000 SNPs in each case) following the methods described by

Price et al. [19] (see Text S1). We performed ten repetitions, and

generated sets of 100,000, since we did not observe any change in

the fourth decimal digit of the reported results by increasing the set

size to 1,000,000. Affection status for individuals in the admixed

population was determined randomly according to an ‘‘ancestry

risk’’ parameter r as defined previously [19]. Results are reported

for both r = 2 and 3.

Correlation with affection status was determined by taking the

Armitage trend statistic of each SNP with the affection status, with

the significance threshold set to 1024. For comparison purposes we

chose the same threshold as in [19]. Correction for ancestry was

first performed using the algorithm of EIGENSTRAT and looking

at the top ten eigenSNPs of the full SNP-subject matrix (mean

centering was performed). We then performed correction for

stratification by looking at the first eigenSNP of the matrix

consisting of the panel of selected PCAIMs. Adjustment of

genotypes essentially corresponds to ‘‘projecting out’’ the compo-

nent of each SNP that lies in the subspace spanned by the ancestry

prediction. After performing this simple linear algebraic operation

on every SNP, the Armitage trend statistic was re-run on the

residual of each SNP.

Results

Population Substructure and Ancestry in European
Americans

We first examined the number of significant principal

components in the two European American datasets that we

studied (CHORI and CORIELL). Figure 1 (panel A) shows the

top few singular values of the CORIELL subject-SNP matrix, and

Figure 1 (panel D) shows the top few singular values of the

CHORI subject-SNP matrix. Clearly, there is a significant gap

between the first singular value and the remaining ones in both

cases. This is a strong indication that the top principal component

is the most informative in both datasets and suggests that

subsequent principal components may not be of interest. To

further validate this finding, we ran the permutation test that we

have recently described [28]. This permutation test essentially

measures the ratio of ‘‘information’’ that the i-th principal

component contains when compared to the amount of structure

in a random matrix. When this ratio is sufficiently high, the

principal component is deemed as informative. Again, Figure 1

(panels B and E), shows that, for both datasets, the first principal

component has significantly more structure than a random matrix,

whereas the remaining principal components are much less

informative and contain less than 20% more information than a

purely random matrix.

The analysis described above suggests that both in the

CORIELL and CHORI datasets, individuals of European

American ancestry lie along a line, and all the variation is

concentrated across the first eigenSNP, which corresponds to the

first principal component. Although no information about self-

reported ancestry was available for the individuals we studied, we

can speculate that this axis of variation corresponds to the well-

documented axis of northern to southeastern genetic variation in

Europe [7,8,26,27,41,47–50]. Hence we only retained the top

principal component for our European American datasets for all

further analysis and we interpreted this principal component as the

European American ancestry axis. Figure 1 (panels C and F),

shows the histogram of the top eigenSNP for individuals in the

CORIELL and the CHORI datasets respectively. We would also

like to add here a note on the computational efficiency of our

methods: our computations are quite efficient and, for example,

running PCA on the joint CHORI and CORIELL datasets takes

21 minutes on a standard laptop computer.

We then compared the structure of the two European American

datasets to the structure of the HapMap Yoruba from Ibadan

(YRI), CEPH European (CEU), and East Asian populations (CHB

and JPT) of the HapMap project. To this end we extracted from

the HapMap database genotypes for all SNPs that were also

genotyped on our European American samples and computed the

top few eigenSNPs of all five populations. Figure 2 shows all 1767

individuals (1497 CHORI and CORIELL plus 270 from

HapMap) projected on the first, second, and third eigenSNP of

the overall subject-SNP matrix. Adding the HapMap data adds

two more axes of variation, one for the African subjects, and one

for the Asian subjects. The two large European American samples

have similar structure with most individual variation lying across

one axis. As expected, they overlap with the CEPH European

data. Since outliers were removed as part of a preprocessing step

(see Methods), no individuals seem to demonstrate high levels of

admixture with non-Europeans. CEPH Europeans form a very

tight cluster, which does not seem to encompass the full range of

European American PCAIMs
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variation observed in European Americans. This also becomes

apparent in Figure S2, which focuses on the CHORI, the

CORIELL, and the CEPH European datasets only. The fact that

the CEPH European samples essentially represent US residents

from Utah with Northern European ancestry, corroborates with

this picture. Thus, the position of the CEPH European samples in

this analysis seems to mark the end of the axis of variation in our

European American datasets, which corresponds to Northern

European ancestry.

Using PCAIMs to Capture European American Population
Structure

We next tested the feasibility of identifying a small subset of

SNPs that could be used to reproduce the structure of the

European Americans that we analyzed. Using our algorithm [28]

with the number of significant principal components set to one, we

selected 100 to 3000 PCAIMs in each dataset in order to predict

the ancestry of the European American subjects. As described

earlier here, in both European American datasets that we studied,

variation lies almost exclusively along the first eigenSNP, which

was interpreted as ancestry of the studied individuals.

In order to evaluate the performance of the PCAIMs that we

select, and show that they can be used to preserve the properties of

the complete dataset, we computed the first eigenSNP using all

available 307,315 SNPs, and compared it to the first eigenSNP

using only the selected subset of SNPs. Thus, we essentially

predicted the ancestry of each individual by looking at a small subset

of SNPs and computing the first eigenSNP of the resulting subject-

SNP matrix. Figure 3 shows the Pearson correlation coefficients

between ‘‘true’’ and predicted ancestry. In the CHORI dataset,

about 1,200 PCAIMs are needed in order to reach a correlation

coefficient of above 0.9 and 700 are needed in the CORIELL.

Random SNPs perform much worse in the CORIELL and as many

as 3,000 random SNPs are needed for the correlation coefficient

between true and predicted coordinates of the individuals to reach

0.9. On the other hand, in the CHORI dataset, random SNPs

perform worse but overall have comparable performance to

PCAIMs (correlation coefficient between ‘‘true’’ and predicted

ancestry of individuals is approximately 0.9 with 2,000 SNPs). As we

will show in the following section this is due to the redundancy in the

markers selected as informative and great savings are indeed

possible, after application of our redundancy removal algorithm.

Figure 1. Singular values and test of significance of principal components in the CHORI and CORIELL datasets. (A) Histogram of the
first eigenSNP of the CORIELL dataset. (B) The singular values corresponding to the first up to the tenth eigenSNP of the CORIELL dataset. (C) The
results of the permutation test to determine the significance of the principal components of the CORIELL dataset. Higher values on the y-axis
correspond to principal components containing significantly more structure than a random component would. (D) Histogram of the first eigenSNP of
the CHORI dataset. (E) The singular values corresponding to the first up to the tenth eigenSNP of the CHORI dataset. (F) The results of the
permutation test to determine the significance of the principal components of the CHORI dataset.
doi:10.1371/journal.pgen.1000114.g001

European American PCAIMs
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Removing Redundant PCAIMs
Even though less than 1% (approx. 1,500–2,000) of the total

SNPs suffice to predict ancestry in the studied European American

datasets with very high accuracy, we still considered this number

to be unnecessarily high. This is reinforced by the fact that 2,000–

3,000 random SNPs start performing quite well in predicting

ancestry. This led us to suspect that the sets of PCAIMs that we

were selecting included significant amounts of redundancy.

Indeed, we computed all r2 values between all pairs of selected

PCAIMs for the CHORI dataset, the CORIELL dataset, as well

as the joint CHORI-CORIELL dataset. The results are shown in

Table 1. Obviously, a large number of pairs are in high LD, and

thus a lot of the selected SNPs are redundant.

In an effort to further reduce the number of SNPs that are

necessary for ancestry prediction in European Americans and

increase genotyping savings, we developed an algorithm that

minimizes redundancy from the panels of SNPs that are selected

with our scoring algorithm. Applying the redundancy removal

procedure described in Methods, we extracted panels of non-

redundant SNPs from the top 3,000 PCA-correlated SNPs. We

varied the size of these panels from 100 to 500 PCA-correlated

non-redundant SNPs. As is shown in Figures 3 and 4, removing

redundancy from the selected PCAIMs results in significant

savings with as few as 200 SNPs sufficing to accurately predict

individual ancestry (with a correlation coefficient above 0.9).

Additionally, when we computed all pairwise r2 values in the top

500 non-redundant PCA-correlated SNPs for the CORIELL

dataset, the CHORI dataset, and the joint dataset, we observed

that there was not a single pair of SNPs with an r2 value above 0.2

and only three pairs in the CORIELL dataset with an r2 value

between 0.1 and 0.2. Thus, our algorithm effectively removed

redundant SNPs.

In order to generate a potentially more comprehensive list of

structure informative SNPs for European Americans, we also

analyzed the two datasets jointly (Figure 4 and Figure S3) and

tested the efficiency of selected subsets of PCAIMs. Again

PCAIMs, after redundancy removal, prove to be quite powerful

and as few as 200 can be used to accurately predict the structure of

1497 individuals. Figure S4 shows the scores of selected PCAIMs

plotted along each autosome.

Cross-Validation Experiments
In order to further evaluate our results, we split the CHORI

dataset in 50% training set and 50% test set, selected PCAIMs in

the training set (with and without redundancy removal) and used

these SNPs to predict the ancestry of the individuals in the test set

(Figure 5). The PCAIMs selected in the training set achieve

comparable performance in the test set. We repeated the same

experiment in the Coriell dataset, as well as with different split

sizes for both datasets (e.g., 80% training, 20% testing) and

obtained similar results (data not shown).

We then cross-validated our results by using the PCAIMs

selected in one European American dataset for prediction of

structure in the other European American dataset (Figure 5). We

Figure 2. Projection of 958 CHORI, 539 CORIELL, and 270 HapMap individuals on their first, second, and third eigenSNPs. Notice that
the individuals of European American ancestry lie along a line with very little deviations toward the Asian and African populations (14 outliers have
been removed from this analysis, as described in Methods).
doi:10.1371/journal.pgen.1000114.g002
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found that as few as 500 of the top PCAIMs selected in each

dataset suffice for the accurate prediction of structure in the other

dataset. The actual overlap between the top 500 PCAIMs selected

in each sample is relatively small (6.8% or 34 SNPs). Of course this

is still highly significant compared to the overlap between two

random sets of 500 SNPs selected from approximately 307,315

SNPs, which is 0.16% with a standard deviation of 0.07%.

Additionally, some amount of linkage disequilibrium can be

observed between the top 500 PCAIMs selected in each of the two

datasets. We computed r2 values for all possible pairs and found 44

pairs of SNPs that had r2 of at least 0.1, with an average value of

0.43. These pairs are in addition to the 34 pairs of overlapping

SNPs between the two sets. So, it seems that there exist different

sets of SNPs that are mildly correlated and yet provide similar

information about the structure of the European American

population.

Correcting for Stratification using PCAIMs
Finally, we examined the extent to which small subsets of

PCAIMs can be used for correction of stratification in the setting

of an association study. Following the model and parameters used

by Price et al. [19], we first simulated an admixed population with

1000 members genotyped on 100,000 SNPs, originating from two

ancestral populations that are relatively closely related. In

Figure 3. Non-redundant PCAIMs are very good predictors of ancestry. (A) Pearson correlation coefficient between predicted ancestry and
‘‘true’’ ancestry for the 539 subjects in the CORIELL dataset. (B) Pearson correlation coefficient between predicted ancestry and ‘‘true’’ ancestry for the
958 subjects in the CHORI dataset. (For random SNPs, the average over 20 experiments is reported).
doi:10.1371/journal.pgen.1000114.g003

Table 1. Number of pairs of the top 3000 PCAIMs with r2

values above 0.1 in the CORIELL dataset, the CHORI dataset,
and the joint CORIELL and CHORI dataset.

# pairs with CORIELL CHORI All European Americans

.1#r2,.2 1598 2246 2238

.2#r2,.3 1095 1007 1060

.3#r2,.4 666 708 699

.4#r2,.5 552 612 622

.5#r2,.6 521 457 490

.6#r2,.7 526 496 452

.7#r2,.8 432 304 309

.8#r2,.9 350 194 181

.9#r2,1 589 449 460

exactly 1 115 67 72

There are numerous highly correlated pairs. However, after our redundancy
removal step, in the retained 500 PCAIMs there was no pair (in any of the three
datasets) with an r2 value above 0.2 and only three pairs in the CORIELL dataset
with an r2 value between 0.1 and 0.2.
doi:10.1371/journal.pgen.1000114.t001
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particular, the average Fst between SNPs in the ancestral

populations was set to 1022 (see Methods and Text S1 for details).

This gave us the advantage of knowing the ‘‘true’’ ancestry of each

simulated individual, while at the same time constructing a

simulated population whose structure is quite similar to the

structure of our European American datasets. By looking at the

singular values associated with the top eigenSNPs of the subject-

SNP matrix, as well as by applying our permutation test, one

principal component was deemed significant. Thus, in this

simulated dataset, again individual variation lies across the first

eigenSNP (Figure S5). In fact, if this eigenSNP is used as a

predictor for ancestry, the Pearson correlation coefficient between

true and predicted ancestry coefficient over all individuals is

0.9967. As expected, PCAIMs work extremely well for the

prediction of ancestry in the simulated data and as few as 100 to

400 PCAIMs are enough to accurately predict the ancestry of each

individual (Table 2). In fact the Pearson correlation coefficient

between true (recall that in this case we know the actual ancestry)

and predicted ancestry, calculated by looking at the first eigenSNP

of a matrix containing 100, 200, and 400 PCAIMs is 0.9102,

0.9478, and 0.9690 respectively. Using this particular method of

constructing simulated SNPs results in mostly uncorrelated SNPs.

Consequently, in this synthetic dataset, our redundancy removal

algorithm did not improve our results.

In order to test if small subsets of PCAIMs could be used for

correction for stratification, we simulated association studies with

sets of 100,000 random, extremely stratified, and truly causal

SNPs (see Methods for details) for 10 different datasets. We first

replicated the results of Price et al. [19] in order to correct for

stratification using the top 10 principal components computed on

all 100,000 SNPs without significant loss in power (Table 2). We

then selected subsets of 100 to 400 PCAIMs in order to predict the

ancestry of all 1,000 individuals. We proceeded to correct for

stratification by removing (projecting out) our ancestry prediction

from each SNP and then ran the Armitage trend test to the

resulting SNPs. (This is essentially the algorithm implemented in

EIGENSTRAT.) We measured the percentage of correlations

found using the Armitage-trend test in each scenario and report

the results before and after stratification correction in Table 2.

According to our findings, as few as 100 PCAIMs (instead of

100,000 SNPs) efficiently remove false correlations with disease,

while largely maintaining the power of the study.

Figure 4. PCA extracts meaningful information from genotype data. (A) Raster plot of the top 500 PCAIMs for all 1497 subjects in the CHORI
and CORIELL datasets, after removing redundant SNPs from the top 3000 PCAIMs using the greedy QR method. Red and green denotes
heterozygotes while homozygotes are black. Individuals are sorted according to their coordinates in the first eigenSNP. (B) The first eigenSNP of the
matrix in (A). This vector corresponds to our prediction of ancestry. (C) The first eigenSNP of the matrix of the CHORI and CORIELL subjects on all
307,315 SNPs. This vector is interpreted as ‘‘true’’ ancestry for the individuals. Notice that the two vectors are highly correlated. (D) Pearson
correlation coefficient between predicted ancestry and ‘‘true’’ ancestry for the 1497 subjects of European American ancestry using panels of PCAIMs,
non-redundant PCAIMs, and random SNPs. Clearly, non-redundant PCAIMs are very good predictors of ancestry.
doi:10.1371/journal.pgen.1000114.g004
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Discussion

We have identified small sets of structure informative markers

for the European American population through the direct

investigation of European American samples and without

depending on any assumptions about the ancestry or admixture

proportions of the studied individuals. We have analyzed two

independent datasets of European Americans, representing a total

of almost 1500 individuals genotyped for more than 300,000 SNPs

spanning the entire autosomal genome, and we have demonstrated

that as few as 200 SNPs (PCAIMs), carefully selected with our

methodology, can be used to very accurately predict the genetic

structure of European Americans as identified by PCA. The cross-

validation experiments that we have performed verify the validity

of our approach. Investigating the European American population

directly for the selection of structure informative genetic markers

results in SNP panels that provide a direct reflection of the

complex patterns of sub-structure and admixture in European

Americans.

The analysis of the admixed European American population for

the selection of structure informative markers was made possible

through the application of the unsupervised method that we have

recently introduced for the selection of PCA-correlated SNPs or

Figure 5. Cross-validation of panels of PCAIMs for ancestry prediction in European Americans. (A) Pearson correlation coefficient
between ancestry prediction of CHORI subjects using SNPs selected in the CORIELL dataset, and ‘‘true’’ ancestry of the CHORI subjects. (B) Pearson
correlation coefficient between ancestry prediction of CORIELL subjects using SNPs selected in the CHORI dataset, and ‘‘true’’ ancestry of the CORIELL
subjects. (C) Split of the CHORI dataset in 50% training and 50% test set. Pearson correlation coefficient between ancestry prediction of test set
subjects using SNPs selected in the training set, and ‘‘true’’ ancestry of the test set subjects. Results are reported over 20 splits.
doi:10.1371/journal.pgen.1000114.g005

Table 2. Using PCAIMs for stratification correction in
conjuction with EIGENSTRAT’s algorithm.

Admixed
(r = 2)

No correction 400 PCAIMs 200 PCAIMs 100 PCAIMs

Random 0.0002 0.0001 0.0001 0.0001

Stratified 0.1246 0.0001 0.0001 0.0002

Causal 0.5203 0.4735 0.4716 0.4790

Admixed
(r = 3)

No correction 400 PCAIMs 200 PCAIMs 100 PCAIMs

Random 0.0005 0.0001 0.0001 0.0001

Stratified 0.6182 0.0001 0.0001 0.0003

Causal 0.5110 0.4141 0.4189 0.4340

The first column shows the proportion of random, stratified, and causal SNPs
that are identified as causal using the Armitage’s trend test with a cut-off p-
value of 1024. The remaining columns show the respective proportions after
stratification correction using 100, 200, and 400 PCAIMs.
doi:10.1371/journal.pgen.1000114.t002
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PCAIMs [28]. As we have previously described, PCAIMs selection

can be carried out without any need for prior knowledge of

individual ancestry, and is thus feasible in admixed populations

without having to trace the origin of the studied individuals or

hypothesize about admixture proportions [28]. This is not possible

when using allele-frequency based methods for the selection of

AIMs like d, Fst or informativeness for assignment [20–25].

An additional important contribution of the present study is the

novel algorithm that we developed for the removal of redundancy

from a given set of structure informative markers. All existing

algorithms for AIM selection (e.g., d, Fst, informativeness, as well

as PCAIMs), could potentially suffer from selecting a large number

of redundant SNPs. For example, consider the simple scenario

where a SNP is assigned a high score, and many SNPs are in very

high LD with this SNP. Then, they will also be assigned very high

scores, and thus will be chosen as AIMs, even though they are

clearly redundant. Thus, if the task at hand is to select a minimal

set of AIMs (as is the case in our work), a second step is necessary

in order to remove redundant AIMs. Given the large number of

SNPs (many of which are in LD) in genome-wide scans over the

last year, this is certainly a significant concern. Notice for example

the fact that, in the datasets we studied, fewer than 10,000 such

pairs exist (Table 1), and even though this is a proportionally small

percentage out of the
3,000

2

� �
&4,500,000 possible pairs it still

significantly increases the number of PCAIMs needed to perfectly

capture the structure of the data.

In order to address this deficiency, we propose an efficient and

accurate algorithm that filters out redundant SNPs from the set of

PCA-correlated SNPs. The proposed algorithm emerges by

reducing the redundancy removal problem to a well-known

problem in the numerical linear algebra community, the so-called

Column Subset Selection Problem, as defined earlier here. As we

have shown here, applying this algorithm significantly increases

genotyping savings, reducing the number of SNPs needed for

structure identification almost by six-fold. This method for

redundancy removal can be applied to any set of SNPs in order

to select a minimally correlated subset. We should note that the

proposed algorithm does not necessarily return the absolutely

optimal solution to the Column Subset Selection problem. Formal

mathematical bounds regarding the accuracy of the algorithm do

exist, arguing that the selected subset of columns (i.e. SNPs)

provides an almost optimal solution [46]. Further discussion on

this is perhaps beyond the scope of this paper. Alternatives that

take into account LD estimation and physical distance could also

be considered. Notice however, that our method is parameter free

and achieves effective redundancy removal in a single step.

The two independent samples of European Americans that we

studied show comparable structure, while the CEPH European

Americans represent only a small fraction of the entire breadth of

variation that we encountered in these large datasets. We are able

to faithfully reproduce this fine structure using as few as 200

PCAIMs. We found that the SNPs selected in the first European

American dataset we studied could be successfully applied in the

second dataset and vice versa; however, the absolute actual

overlap was relatively small (although significantly higher than

what expected by chance alone) suggesting the possibility that

many different such subsets of informative SNPs exist.

Several other studies have explored intra-European and European

American genetic variation. Classic gene frequency [41,47], Y-

chromosome [48] or mitochondrial variation [49,50] as well as

whole-genome studies [7,8] generally agree on a coarse separation of

European populations along a northern to southeastern axis. Seldin et

al. [7] analyzed 5705 SNPs from the ILLUMINA Linkage IV panel

to calculate informativeness for assignment, and identified 400 SNPs

that could be used in order to broadly cluster the populations they

studied to northern and southern Europeans. Bauchet et al. [8]

studied 10,000 SNPs (Affymetrix 10K panel) and about 100

individuals from 12 European populations and concluded that at

least 1,200 high Fst SNPs were needed in order to achieve a similar

clustering of northern versus southern Europeans. Our results build

on these papers, using large datasets of genomewide markers, and an

algorithm that can explicitly identify informative markers from

admixed populations without knowledge of the ancestral populations.

Finally, we demonstrate that our markers are valid across large

European American studies. We found almost no overlap between

the markers that we identify as ancestry informative and those

reported in the above mentioned studies of European populations

[7,8] (data not shown). This was to be expected since all three studies

analyze different datasets and different populations. Notice, that even

between these two previous studies, there is very little overlap

between the panels of SNPs reported as ancestry informative.

Very recently, two studies parallel to ours, used several

genomewide sets of markers in European Americans to derive

small subsets of European American AIMs [26,27] (see also Tables

S1 and S2). An important difference between these studies and

ours is the fact that we employed a previously validated algorithm

for the selection of AIMs [28], that operates directly on raw data

without the need for intermediate steps (i.e., artificial assignment of

individuals to clusters, depending on candidate genes for local

natural selection, etc.). As we have seen here, and as others have

also discussed [26,51], individual variation in the European

American population seems to lie along a continuum rather than

in distinct clusters. Thus, the method we have used here would be

easier to generalize to diverse datasets without access to ancestral

populations. Another important difference of our study, is the fact

that, as we have also discussed previously here, we have employed

a novel, linear algebra based algorithm in order to select the least

correlated SNPs as part of our structure informative panel thus

increasing the efficiency of our informative SNP sets. In

comparison, Price et al. [26] and Tian et al. [27] reduced

redundancy by applying measures based on physical distance.

Our results are consistent with the findings of Price et al. [26]

and Tian et al. [27], who also demonstrated that the vast amount

of inter-individual variation in European Americans lies across a

single axis. In concordance with what we have also described here,

Tian et al. [27] mention that the first principal component in their

study accounted for greater than five-fold the variance of the

second principal component (percentage of total variance

according to their analysis is 42.42% for the first principal

component, and 8.32% and 6.66% for the second and third

respectively [27]). Both [26,27] analyzed individuals of known

ancestry and they could distinguish a cluster comprising of

individuals of known Ashkenazi Jewish origin. Price et al. [26]

argue that an additional principal component is needed in order to

discern this line of ancestry. However, both of these studies

included large subpopulations with known Ashkenazi Jewish

ancestry. For example in Price et al. [26], in the inflammatory

bowel disease (IBD) study, 43% of included individuals self-

reported as Ashkenazi Jewish (78% among individuals of known

ancestry in this sample). In Tian et al. [27] 28% of the population

analyzed was of known Ashkenazi heritage (for comparison, 2% of

the general US population self-reports as Ashkenazi Jewish

[26,52,53]). Thus, the larger Ashkenazi Jewish population in the

Price et al. [26] study likely helped to bring out an additional

principal component for this population.

It is likely that there were Ashkenazi individuals in the datasets

that we studied; however, they probably constituted a smaller

European American PCAIMs
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fraction of the overall population. Analyzing the top two

eigenSNPs, corresponding to the top two principal components

in our datasets (data not shown), a small cluster of individuals

becomes visually apparent. (A similar figure is shown in [26] for

the PD dataset which corresponds to our CORIELL dataset.) As

we have no information on individual ancestry, we cannot infer

the origin of the individuals in this small cluster. Interestingly, this

very small cluster (which might correspond to Ashkenazi

individuals in our population), is already reasonably separated

from the remaining European Americans along the top eigenSNP,

at least in the datasets that we studied. This observation is

consistent with Tian et al.’s report [27]; in the sample they studied,

the mean score of the top eigenSNP for individuals of known

Ashkenazi Jewish ancestry, lay at one end of the distribution (0.045

for Ashkenazi Jewish individuals, followed by 0.022 for Greeks and

0.015 for Italians). This explains why our permutation test only

detects the first principal component as statistically significant: our

test removes from the data the amount of information that has

already been captured by principal components that were deemed

significant.

The SNP panels proposed by Price et al. [26] and Tian et al.

[27] perform very well when tested on our samples of European

Americans (Table S1). The Tian et al. [27] panel of ancestry

informative SNPs was selected by calculating In [25] for two

discrete clusters; Ashkenazi Jewish individuals (as representatives

of southeastern or rather mediterranean European ancestry) and

northern Europeans. The SNPs selected by this method perform

exceptionally well (comparably to our SNP panel) to recreate the

individual ancestry in our analysis (see Table S1). This suggests the

fact that most of the variation between southeastern and northern

European ancestry is captured by the difference between

Ashkenazi versus northwestern European ancestry. On the other

hand, we could not fully test the SNPs proposed in the second

study [26], since they had not all been genotyped in our datasets.

Price et al. [26] proposed 300 SNPs as informative for European

American ancestry (100 discerning the northern European versus

southeastern cluster and 200 differentiating the southeatern versus

Ashkenazi Jewish clusters). Out of these SNPs, 141 had also been

genotyped in the datasets we studied. However, using these 141

SNPs [26], results in a correlation coefficient of 0.75 between true

and predicted individual variation in our combined CORIELL

and CHORI datasets (Table S1).

There is generally little (although far greater than chance)

overlap between the lists of structure informative SNPs identified

by each of these three studies (see Table S2). The greatest overlap

is found between the panel we propose here and the 1,441 SNPs

proposed by Tian et al. [27] as distinguishing between northern

European and Ashkenazi Jewish ancestry; out of the 1,419 SNPs

that were also included in our analysis, 36 were among the 500 top

informative SNPs that we selected in the analysis of our combined

European American datasets. The overlap between the informa-

tive SNPs proposed by Price et al. [26] and the other two studies is

even smaller, partly due to the fact that we could only test 141 out

of the 300 proposed SNPs (see Table S2). In any case, as we have

also suggested earlier here, it is probably not surprising that there

exist more than one subsets of SNPs describing European

American population structure.

It is now clear that European derived populations are not

homogeneous and recent studies have emphasized the problem of

population stratification in genetic association studies which may

lead to false positive associations with disease or mask true

correlations [5,19]. As association studies of thousands of

individuals are starting to become increasingly common [9–14],

population stratification will undoubtedly pose a serious challenge.

Various methods have been proposed to tackle the problem

[16,18,19,54–60]. Among them, PCA-based stratification correc-

tion tools seem particularly attractive, since they are computa-

tionally efficient and are not overly conservative. Moreover, such

methods do not demand the use of discrete clusters, which as we

have discussed earlier here may be an over-simplification,

especially in the case of admixed populations.

We have replicated the analysis of simulated data in [19] and

experimentally demonstrated how our method can complement

PCA-based stratification correction methods. Using as few as 100

to 200 PCAIMs, we achieved almost perfect stratification

correction with virtually no loss in power. In comparison previous

simulation studies [19] have shown that as many as 5,000

randomly selected SNPs would be needed to reach similar

performance, while 20,000 random SNPs were needed in a real

dataset [19]. Comparing the accuracy of ancestry prediction in the

simulated and real data we have studied we can extrapolate that as

few as 200 SNPs could be enough for stratification correction in

real data (reaching a Pearson correlation coefficient above 0.9

between ‘‘true’’ and predicted ancestry across the second

eigenvector). While the selection of AIMs for stratification

correction may be unnecessary for teams of investigators that

undertake an initial genome-wide association study and can afford

genotyping of very dense maps of markers, the use of AIMs for

stratification correction becomes of critical importance in two-

stage study designs, (where replication of initial findings is sought

in large independent samples), or studies following the candidate

gene approach. In such cases, our methods can greatly facilitate

association studies in admixed populations, reducing significantly

the genotyping costs needed to ensure correction for stratification.

We would like to point out that, the sets of European American

AIMs that we and others [7,8,26,27] have identified, are

representative of the full genetic structure in the European

American population, only to the extent that the samples analyzed

in each of these studies are deemed truly representative of the

entire European American population. It will be important to

study European American population structure with even larger

datasets of carefully sampled individuals. Interestingly, in Tian et

al. [27], the effect of stratification on the case-control study of

rheumatoid arthritis was mostly due to a difference in Irish

ancestry. This suggests that different European American studies

will have to exercise caution in detecting and adjusting for

ancestry, since the components/axes that affect ancestry are likely

to vary from study to study depending on the phenotype and the

region sampled.

In summary, we are proposing a small set of SNPs that can

successfully capture the structure of the European American

population samples we studied, as identified by PCA. We identified

this minimal set of structure informative SNPs (PCAIMs) by

applying a novel redundancy removal algorithm that will

undoubtedly increase genotyping savings in many different research

scenarios. Lists of the sets of markers that we have identified as well

as an implementation of our algorithms are available online at

http://www.cs.rpi.edu/,drinep/EUROAIMs/. These panels of

SNPs will serve as useful tools in the discovery of susceptibility genes

for common complex disorders and can spark interesting questions

in population genetics regarding the possible role of natural

selection in the regions of the genome harboring these polymorphic

sites.

Supporting Information

Figure S1 Plot of 970 CHORI, 541 CORIELL, and 270

HapMap subjects on their first, second, and third eigenSNPs. Five
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CHORI pairs (ten CHORI subjects) were suspiciously similar and

were excluded prior to this plot. The red squares represent the 14

individuals (12 CHORI and two CORIELL) that were excluded

from further analysis. Notice that these individuals tend to have

atypical degrees of Asian and African ancestry.

Found at: doi:10.1371/journal.pgen.1000114.s001 (0.09 MB PDF)

Figure S2 Plot of 960 CHORI, 539 CORIELL, and 90 CEPH

European HapMap subjects on their first eigenSNP. Notice CEPH

Europeans form a tight cluster that does not seem to encompass

the full variation of European American populations.

Found at: doi:10.1371/journal.pgen.1000114.s002 (0.04 MB PDF)

Figure S3 Using non-redundant PCAIMs to predict the first

eigenSNP in European American datasets. The first eigenSNP of

1497 European Americans (CHORI and CORIELL datasets)

analyzing 307,315 SNPs, plotted against the predicted first

eigenSNP of each individual with 200 and 300 non-redundant

PCAIMs.

Found at: doi:10.1371/journal.pgen.1000114.s003 (0.18 MB PDF)

Figure S4 PCA scores of 307,315 studied SNPs in the combined

CHORI and CORIELL datasets plotted along each autosome.

The blue ‘‘x’’ marks the top 3,000 PCAIMs, while the red squares

denote the top 500 PCAIMs after redundancy removal. Notice the

different scale of the Y axis for each chromosome. (A)

Chromosomes 1–5, (B) Chromosomes 6–10, (C) Chromosomes

11–15, (D) Chromosomes 16–20, (E) Chromosomes 21 and 22.

Found at: doi:10.1371/journal.pgen.1000114.s004 (0.68 MB PDF)

Figure S5 A simulated admixed population of 1000 subjects

genotyped on 100,000 SNPs. The admixed population emerges

from two ancestral populations with an average Fst of 1022, as

described in Methods.

Found at: doi:10.1371/journal.pgen.1000114.s005 (0.03 MB PDF)

Table S1 Performance of published European American AIMs,

for population structure prediction in the datasets we studied.

Found at: doi:10.1371/journal.pgen.1000114.s006 (0.03 MB

DOC)

Table S2 Overlap between European American AIMs proposed

in studies of European American datasets.

Found at: doi:10.1371/journal.pgen.1000114.s007 (0.03 MB PDF)

Text S1 Supplementary note.

Found at: doi:10.1371/journal.pgen.1000114.s008 (0.06 MB PDF)
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