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A Bayesian Nonparametric Markovian Model for

Nonstationary Time Series

Maria DeYoreo and Athanasios Kottas ∗

Abstract

Stationary time series models built from parametric distributions are, in general, limited

in scope due to the assumptions imposed on the residual distribution and autoregression

relationship. We present a modeling approach for univariate time series data, which

makes no assumptions of stationarity, and can accommodate complex dynamics and

capture nonstandard distributions. The model arises from a Bayesian nonparametric

mixture of normals specification for the joint distribution of successive observations in

time. This implies a flexible autoregressive form for the conditional transition density,

defining a time-homogeneous, nonstationary, Markovian model for real-valued data

indexed in discrete-time. To obtain a more computationally tractable algorithm for

posterior inference, we utilize a square-root-free Cholesky decomposition of the mixture

kernel covariance matrix. Results from simulated data suggest the model is able to

recover challenging transition and predictive densities. We also illustrate the model on

time intervals between eruptions of the Old Faithful geyser. Extensions to accommodate

higher order structure and to develop a state-space model are also discussed.

KEY WORDS: Autoregressive models; Bayesian nonparametrics; Dirichlet process mix-

tures; Markov chain Monte Carlo; nonstationarity; time series.
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1 Introduction

Consider a time series of continuous random variables (Z1, . . . , Zn) observed at equally

spaced time points t = 1, . . . , n. It is common to assume dependence on lagged terms, or

that Zt depends on (Zt−1, . . . , Zt−p), for some p ≥ 1. The relationship between Zt and

(Zt−1, . . . , Zt−p) is generally assumed to be linear, with error terms arising from a given

parametric distribution. The simplest scenario involves p = 1 and normally distributed

errors, referred to as a first-order Gaussian autoregression.

Stationary time series models built from parametric distributions are not appropriate

for many applications. Stochastic systems may go through structural changes, and as a

consequence, the data they produce may require models which change across time. While

stationarity is a convenient property, stationary models are often restrictive in terms of the

transition and marginal densities they imply. Time series may exhibit marginal distributions

which are asymmetric, and predictive distributions which are nonlinear in the effects of

past observations on the mean, and heteroskedasticity. Economic time series are generally

believed to be nonstationary, often exhibiting distinct periods of high and low volatility,

motivating the development of stochastic volatility and autoregressive (AR) conditional

heteroskedasticity models, among others (Früwirth-Schnatter, 2006).

Various parametric models have been developed to capture nonlinear AR behavior

and/or relax the stationarity assumption. Time-varying autoregressions (TVAR) naturally

extend AR models, by allowing the parameters to evolve in time, and thus can be used

to describe nonstationary time series. TVAR models have a dynamic linear model (DLM)

representation and belong to the larger class of Markovian state-space models. Such models

require specification of an observation density and a state evolution density, which need not

rely on normality or linearity, though these are common assumptions.

The DLM framework can be made more flexible by combining multiple DLMs, referred

to as multiprocess models (West and Harrison, 1999). Mixture models of various forms

have been used to move away from parametric assumptions, and capture changes over time

in a series which may not be described well by a single model. The threshold autoregres-

2



sive (TAR) model (Tong, 1987; Geweke and Terui, 1993) describes an AR process whose

parameters switch according to the value of a previous observation, and is a special case of

the Markov switching autoregressive model. We refer to Tong (1990) for a review of non-

linear time series, and Früwirth-Schnatter (2006) for a thorough review of mixture models

for time series. Mixture autoregressive models (Juang and Rabiner, 1985; Wong and Li,

2000) are also special cases of Markov switching AR models, in which the parameters of

the autoregression change according to a hidden Markov process.

The models discussed above generally achieve nonstationarity or nonlinearity by al-

lowing parameters to switch or evolve in time. These models are naturally suited to

problems in which a single parametric model holds in a given interval of time. For in-

stance, the TAR structure assumes only one linear submodel applies at any particular

time, with abrupt changes at the thresholds. In contrast, mixture models can be ob-

tained by introducing hierarchical priors on model parameters, to yield a set of parametric

models which are favored with different probabilities across time. These models possess

the ability to capture features which could not be accommodated under the assumption

of a single parametric distribution at a particular point in time. To this end, a mix-

ture modeling approach involving Bayesian nonparametric techniques was first proposed by

Müller et al. (1997). More recently, Di Lucca et al. (2013) have utilized dependent Dirich-

let process priors to build countable mixtures of AR models as well as variations of this

model. Antoniano-Villalobos and Walker (2015) developed stationary time series models

which contain flexible transition and invariant densities. Existing mixture models for time

series are discussed further in Section 2.4, relative to our proposed model.

The restrictions commonly imposed on the residual distribution and autoregression re-

lationship limit the scope of parametric AR models. Here, we present a general framework

for modeling univariate time series data, which makes no assumptions of stationarity, and

can accommodate complex dynamics and capture non-standard distributions. The model

arises from a Bayesian nonparametric mixture of normals specification for the joint dis-

tribution of successive observations in time. This implies a flexible AR model structure

for the conditional transition density. In particular, the transition density takes the form
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of a location-scale mixture of normal densities, with means and mixture weights which

depend on the previous state(s). Key to the posterior simulation method is a square-root-

free Cholesky decomposition of the mixture kernel covariance matrix. As demonstrated

with synthetic and real data, the model enables general inference for time-homogeneous,

nonstationary, Markovian processes indexed in discrete time.

The rest of the paper is organized as follows. The methodology is presented in Section

2, including the model formulation for the transition density, and methods for posterior

simulation and prior specification. To place our contribution within the relevant literature,

we also discuss certain classes of mixture models for discrete-time Markovian processes.

In Section 3, the modeling approach is illustrated with simulated data examples, and it

is also applied to a standard data set on waiting times between successive eruptions of

the Old Faithful geyser. While the model presented and all data illustrations are focused

on univariate time series data with first-order dependence, we discuss possible extensions

to accommodate higher order structure, and to develop a state-space model in Section 4.

Finally, Section 5 concludes with a summary.

2 Methodology

2.1 Model Formulation

Here, we present the model for nonstationary time series. We focus on the case with first-

order Markovian dependence, discussing the extension to modeling higher order time series

in Section 4. Hence, the observed time series, (z1, . . . , zn), is assumed to be a realization

from a time-homogeneous, real-valued, first-order Markov chain, and thus the likelihood,

conditional on z1, is given by
∏n

t=2 f(zt | zt−1). The model for the transition density,

f(zt | zt−1), is induced by a nonparametric mixture of bivariate normal distributions for

f(zt−1, zt), which can accommodate a wide range of density shapes and complex dependen-

cies between Zt and Zt−1.

More specifically, let f(zt−1, zt) ≡ f(zt−1, zt;G) =
∫

N(zt−1, zt;µ,Σ)dG(µ,Σ), with a

Dirichlet process (DP) prior (Ferguson, 1973) placed on the random mixing distribution G.
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Thus, any two successive observations in time are distributed as a DP mixture of bivariate

normals. In the ensuing model expressions, we work with a truncated version ofGmotivated

by the DP constructive definition (Sethuraman, 1994), which is also the approach we follow

for posterior simulation (Ishwaran and James, 2001). Under a truncated DP at level L, the

joint density can be expressed as

f(zt−1, zt;G) ≈
L
∑

l=1

plN(zt−1, zt;µl,Σl). (1)

The weights (p1, . . . , pL) are determined through stick-breaking from latent beta(1, α) ran-

dom variables (where pL = 1−
∑L−1

l=1 pl), and the (µl,Σl) are independent and identically

distributed (i.i.d.) from some base distribution G0. Partitioning µl and Σl with superscripts

x and y corresponding to zt−1 and zt, respectively, the conditional transition density implied

by (1) can be written as

f(zt | zt−1;G) =

L
∑

l=1

ql(zt−1)N
(

zt;µ
y
l +Σyx

l (Σxx
l )−1(zt−1 − µxl ),Σ

yy
l − (Σyx

l )2(Σxx
l )−1

)

(2)

with

ql(zt−1) = plN(zt−1;µ
x
l ,Σ

xx
l )/

{

∑L

m=1
pmN(zt−1;µ

x
m,Σ

xx
m )

}

. (3)

This transition density is therefore a location-scale mixture of normal transition densities,

with means which depend on the previous state in a linear fashion, and weights which favor

mixture component l if zt−1 is near µ
x
l . This defines a general time-homogeneous Markovian

model which can handle nonstationary time series.

As discussed above, the transition density in (2) arises from the flexible and well-studied

DP mixture of normals model for two successive observations in time. Conditional on an

initial value z1, the likelihood
∏n

t=2 f(zt | zt−1;G) is a product of conditional densities, each

being a mixture of normals. The associated mixture weights, given by (3), contain {µxl }

and {Σxx
l } in the denominator, and each mixture component variance in (2) contains a

complex function of the elements of Σl. Hence, with respect to posterior simulation, there

does not exist a choice of G0 which allows the full conditional distributions for µxl , Σ
xx
l ,
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Σyy
l , or Σyx

l to be recognizable as standard distributions.

These difficulties are alleviated to some extent by employing a square-root-free Cholesky

decomposition of the covariance matrix Σ (Daniels and Pourahmadi, 2002; Webb and Forster,

2008), which expresses Σ in terms of a unit lower triangular matrix β and a diagonal matrix

∆ with positive elements, such that Σ = β−1∆(β−1)T . The utility of this parametrization

lies in the following property. If (Y1, . . . , Ym) ∼ N(µ, β−1∆(β−1)T ), with (δ1, . . . , δm) on

the diagonal of ∆, then the joint distribution of Y can be expressed in a recursive form:

Y1 ∼ N(µ1, δ1), and (Yk | Y1, . . . , Yk−1) ∼ N(µk −
∑k−1

j=1 βk,j(yj − µj), δk), for k = 2, . . . ,m.

With this parameterization of the mixture kernel covariance matrix, the mixture transition

density (2) admits the form

f(zt | zt−1;G) =

L
∑

l=1

ql(zt−1)N(zt;µ
y
l − βl(zt−1 − µxl ), δ

y
l ) (4)

with

ql(zt−1) = plN(zt−1;µ
x
l , δ

x
l )/

{

∑L

m=1
pmN(zt−1;µ

x
m, δ

x
m)

}

(5)

where, in the case of the 2 × 2 covariance matrix Σ, β represents the only free element of

the lower triangular matrix, and ∆ has diagonal elements (δx, δy).

Let ηl = (µxl , µ
y
l , βl, δ

x
l , δ

y
l ), for l = 1, . . . , L, denote the mixing parameters. The mixture

transition density can be broken by introducing latent configuration variables {U2, . . . , Un}

taking values in {1, . . . , L}, with Pr(Ut = l) = ql(zt−1), such that the augmented hierarchical

model for the data becomes:

zt | zt−1, Ut, {ηl}
ind.
∼ N(µyUt

− βUt(zt−1 − µxUt
), δyUt

), t = 2, . . . , n

Ut | zt−1, p, µ
x, δx

ind.
∼

L
∑

l=1

plN(zt−1;µ
x
l , δ

x
l )

∑L
m=1 pmN(zt−1;µxm, δ

x
m)
I(Ut = l), t = 2, . . . , n

ηl | ψ
i.i.d.
∼ G0(ηl | ψ), l = 1, . . . , L (6)

and the prior density for p = (p1, . . . pL) is given by a special case of the generalized Dirich-

let distribution: f(p | α) = αL−1pα−1
L (1 − p1)

−1(1 − (p1 + p2))
−1 × · · · × (1 −

∑L−2
l=1 pl)

−1
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(Connor and Mosimann, 1969). The base distribution G0 comprises independent compo-

nents: N(mx, vx) and N(my, vy) for µxl and µyl ; IG(νx, sx) and IG(νy, sy) for δxl and δyl ;

and N(θ, c) for βl. This choice is conjugate for {δyl }, {βl}, and {µyl }. The full Bayesian

model is completed with conditionally conjugate priors on ψ = (mx, vx,my, vy, sx, sy, θ, c),

the hyperparameters of G0:

mx ∼ N(axm, b
x
m), my ∼ N(aym, b

y
m), vx ∼ IG(axv , b

x
v), v

y ∼ IG(ayv , b
y
v),

sx ∼ Ga(axs , b
x
s ), s

y ∼ Ga(ays , b
y
s), θ ∼ N(aθ, bθ), c ∼ IG(ac, bc) (7)

and a gamma prior for the DP precision parameter, α ∼ Ga(aα, bα).

2.2 Posterior Inference

Samples from the full posterior distribution of the model are obtained using a combination

of Gibbs sampling and Metropolis-Hastings steps. Here, we describe posterior simulation

details for all model parameters, focusing particular attention on the vector (p1, . . . , pL),

which requires the most care in developing an effective updating strategy.

The full conditional distributions for α and the components of vector ψ are standard

as they are assigned conditionally conjugate priors. Each Ut, t = 2, . . . , n is sampled

from a discrete distribution on {1, . . . , L}, with probabilities (p̃1,t, . . . , p̃L,t), where p̃l,t ∝

plN(zt;µ
y
l − βl(zt−1 − µxl ), δ

y
l )N(zt−1;µ

x
l , δ

x
l ), for l = 1, . . . , L.

Next, consider the mixing parameters. Letting {U∗
j : j = 1, . . . , n∗} be the n∗ distinct

values of (U2, . . . , Un), and Ml = |{Ut : Ut = l}|, we obtain the full conditional

p(ηl | . . . ,data) ∝ G0(ηl | ψ)







n∗

∏

j=1

∏

{t:Ut=U∗

j }

N(zt;µ
y
l − βl(zt−1 − µxl ), δ

y
l )













L
∏

l=1

∏

{t:Ut=l}

ql(zt−1)







.

Therefore, if l ∈ {U∗
j }, µ

y
l is sampled from a normal distribution with variance (vy)∗ =

[(νy)−1 +Ml(δ
y
l )

−1]−1, and mean (vy)∗[(νy)−1my + (δyl )
−1
∑

{t:Ut=U∗

j }
(zt + βl(zt−1 − µxl ))].

If component l is empty, that is, l /∈ {U∗
j }, then µyl ∼ N(my, vy). The updates for δyl

and βl also require only Gibbs sampling. If l ∈ {U∗
j }, then δyl ∼ IG(νy + 0.5Ml, s

y +
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0.5
∑

{t:Ut=l}(zt − µyl + βl(zt−1 − µxl ))
2) and βl is sampled from a normal with variance

c∗ = [c−1 + (δyl )
−1
∑

{t:Ut=l}(zt−1 − µxl )
2]−1 and mean c∗[c−1θ + (δyl )

−1
∑

{t:Ut=l}(zt−1 −

µxl )(µ
y
l − zt)]. If l /∈ {U∗

j }, then we sample from G0: δ
y
l ∼ IG(νy, sy) and βl ∼ N(θ, c).

No matter the choice of G0, the full conditionals for µxl and δxl are not proportional to

any standard distribution, as these parameters are contained in the sum of L terms in the

denominator of ql(zt−1). The posterior full conditional p(µxl | . . . ,data), when l ∈ {U∗
j }, is

given by

N (µxl ;m
x, vx)

∏

{t:Ut=l}

N
(

zt;µ
y
l − βl(zt−1 − µxl ), δ

y
l

)

N(zt−1;µ
x
l , δ

x
l )

(

n
∏

t=2

L
∑

m=1

pmN(zt−1;µ
x
m, δ

x
m)

)−1

.

This can be written as p(µxl | . . . ,data) ∝ N(µxl ; (m
x)∗, (vx)∗)(

∏n
t=2

∑L
m=1 pmN(zt−1;µ

x
m, δ

x
m))−1,

with (vx)∗ = ((vx)−1+Ml(δ
x
l )

−1+Mlβ
2
l (δ

y
l )

−1) and (mx)∗ = (vx)∗((vx)−1mx+(δxl )
−1
∑

{t:Ut=l} zt−1+

(δyl )
−1β2l

∑

{t:Ut=l}(zt−1 + (zt −µyl )/βl)). We use a random-walk Metropolis step to update

µxl . For l /∈ {U∗
j }, p(µ

x
l | . . . ,data) is proportional to N(µxl ;m

x, vx)[
∏n

t=2

∑L
m=1 pmN(zt−1;µ

x
m, δ

x
m)]−1,

and in this case we use a Metropolis-Hastings algorithm, proposing a candidate value µxl

from the base distribution N(mx, vx).

The full conditional and sampling strategy for δxl are similar to those for µxl . We have

p(δxl | . . . ,data) ∝ IG(δxl ; ν
x, sx)

∏

{t:Ut=l}

N(zt−1;µ
x
l , δ

x
l )

(

n
∏

t=2

L
∑

m=1

pmN(zt−1;µ
x
m, δ

x
m)

)−1

,

which for an active component, is written as proportional to

IG



δxl ; ν
x + 0.5Ml, s

x + 0.5
∑

{t:Ut=l}

(zt−1 − µxl )
2





(

n
∏

t=2

L
∑

m=1

pmN(zt−1;µ
x
m, δ

x
m)

)−1

.

For non-active components, the full conditional is IG(δxl ; ν
x, sx)(

∏n
t=2

∑L
m=1 pmN(zt−1;µ

x
m, δ

x
m))−1.

We use a similar strategy for sampling δxl as we did with µxl , using a random-walk Metropo-

lis algorithm for the active components of δxl , working on the log-scale and sampling log(δxl ),

and proposing the non-active components from G0(δ
x
l ) = IG(νx, sx).

We now discuss the updating scheme for the vector p = (p1, . . . , pL), which poses the
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main challenge for posterior simulation. The full conditional for p has the form

f(p | α)
L
∏

l=1

pMl

l

(

n
∏

t=2

L
∑

m=1

pmN(zt−1;µ
x
m, δ

x
m)

)−1

.

In standard DP mixture models, the implied generalized Dirichlet prior for f(p | α) com-

bines with
∏L

l=1 p
Ml

l to form another generalized Dirichlet distribution. However, in this

case there is an additional term. Metropolis–Hastings algorithms with various proposal dis-

tributions were explored to sample the vector p, resulting in very low acceptance rates. We

instead devise an alternative sampling scheme, in which we work directly with the latent

beta-distributed random variables which determine the probability vector p arising from

the DP truncation approximation.

Recall that the joint prior for p corresponds to a generalized Dirichlet distribution,

which can be constructed from latent beta random variables through stick-breaking. Let

v1, . . . , vL−1
i.i.d.
∼ beta(1, α), and define p1 = v1, pl = vl

∏l−1
r=1(1 − vr), for l = 2, . . . , L − 1,

and pL =
∏L−1

r=1 (1−vr). Equivalently, let ζ1, . . . , ζL−1
i.i.d.
∼ beta(α, 1), and define p1 = 1−ζ1,

pl = (1 − ζl)
∏l−1

r=1 ζr, and pL =
∏L−1

r=1 ζr. Rather than updating directly p, we work with

the ζl, a sample for which implies a particular probability vector p.

The full conditional for ζl, l = 1, . . . , L− 1, has the form

p(ζl | . . . ,data) ∝ beta

(

ζl;α+

L
∑

r=l+1

Mr,Ml + 1

)(

n
∏

t=2

d(zt−1)

)−1

(8)

where

d(zt−1) = N(zt−1;µ
x
1 , δ

x
1 )(1− ζ1) +

L−1
∑

l=2

N(zt−1;µ
x
l , δ

x
l )(1− ζl)

l−1
∏

s=1

ζs +N(zt−1;µ
x
L, δ

x
L)

L−1
∏

s=1

ζs.

Also, let ct,l = N(zt−1;µ
x
l , δ

x
l ), which is constant with respect to each ζl. The form of

the full conditional in (8) suggests the use of a slice sampler to update each ζl one at

a time. The slice sampler is implemented by drawing auxiliary random variables ut ∼

uniform(0, (d(zt−1))
−1), t = 2, ..., n, and then sampling ζl ∼ beta(α+

∑L
r=l+1Mr,Ml + 1),

but restricted to the set {ζl : ut < (d(zt−1))
−1, t = 2, ..., n}. The term d(zt−1) can be

9



expressed as d(zt−1) = ζlw1t + w0t, for any l = 1, ..., L − 1, where

w1t = −ct,l

l−1
∏

s=1

ζs +





L−1
∑

m=l+1

ct,m(1− ζm)

m−1
∏

s=1,s 6=l

ζs



+ ct,L

L−1
∏

s=1,s 6=l

ζs

and, if l = 1, w0t = ct,1, otherwise w0t = ct,1(1−ζ1)+
∑l−1

s=2 ct,s(1−ζs)
∏s−1

r=1 ζr+ct,l
∏l−1

s=1 ζs.

Then, the set {ζl : d(zt−1) < u−1
t } is {ζl : ζlw1t < u−1

t − w0t}. This takes the form of {ζl :

ζl < (utw1t)
−1 − w0t(w1t)

−1} when w1t is positive, and has the form {ζl : ζl > (utw1t)
−1 −

w0t(w1t)
−1} otherwise. Therefore, the truncated–beta random draw for ζl must lie in the

interval (max{t:w1t<0}[(utw1t)
−1 − w0t(w1t)

−1],min{t:w1t>0}[(utw1t)
−1 − w0t(w1t)

−1]). The

inverse CDF random variate generation method can be used to sample from these truncated

beta random variables. This strategy results in direct draws for the ζl, which implies a

corresponding probability vector p.

At any time point t, an entire distribution can be obtained for f(zt+1 | Zt = zt;G), for

any zt, providing full inference for the transition density. This conditional distribution can

be evaluated at the last time point, conditional on Zn, to give a forecasting distribution,

f(zn+1 | Zn = zn;G) =
∑L

l=1 ql(zn)N(zn+1;µ
y
l − βl(zn − µxl ), δ

y
l ). Full inference is readily

available for any zn+1, yielding an entire forecasting distribution. The point estimate of

this distribution is the posterior predictive density for the next observation, since it can be

shown that p(zn+1 | Zn = zn; data) = E(f(zn+1|Zn = zn;G) | data). Point estimates for

forecasts further than one step ahead may be obtained fairly easily, and entire distributions

are also available, albeit at somewhat greater computational expense.

2.3 Prior Specification

We now discuss prior specification for the hyperparameters ψ of G0, aiming to specify

appropriately diffuse priors which use only a small amount of prior information. Recall

that the model for the transition density f(zt | zt−1) was motivated by a DP mixture

of bivariate normals, that is f(zt−1, zt;G) =
∫

N(zt−1, zt;µ,Σ)dG(µ,Σ), with G having a

DP prior. In the limit, as α → 0+, this model consists of a single mixture component,

N(zt−1, zt;µ,Σ). An approximate center d and range r of the data are used to center and

10



scale the mixture kernel appropriately.

Based on the form of G0, we obtain E(zt−1) = E(µx) = axm and E(zt) = E(µy) = aym,

and therefore set axm = aym = d. We find Cov(zt−1, zt) = E(Σ) + Cov(µ), and use this

expression to scale the prior for µ. The marginal prior variances for the components of µ

are var(µx) = bxm + (axv − 1)−1bxv and var(µy) = bym + (ayv − 1)−1byv . Fixing small values

for axv and ayv to ensure large variance for vx and vy, and assuming var(µx) ≈ (r/4)2 and

var(µy) ≈ (r/4)2, one can then obtain reasonable values for bxm, bxv , b
y
m, and byv. This

completes specification of the parameters associated with µx and µy.

We now discuss two approaches to prior specification for the hyperparameters associated

with Σ. One approach involves obtaining the prior expectation of the diagonal elements

of Σ, and setting each of these equal (r/4)2, while also ensuring that the implied prior

on the correlation −βδx((β2δx + δy)δx)−1/2 is approximately uniform on (−1, 1). We find

that E(Σxx) = E(δx) = (bxs (ν
x − 1))−1axs , and fixing axs and νx, determine bxs so that

E(Σxx) = (r/4)2. The prior on β should be centered around 0, supporting independence

in the normal kernel, that is, aθ = 0. Then, again taking prior expectations, E(Σyy) =

(bθ + bc(ac − 1)−1)E(δx) + (bys(νy − 1))−1ays . Fixing νy, ac, and ays , this sum can be set

equal to (r/4)2, where the particular values of bθ, bc, and bys are determined so that the

induced prior on the correlation is approximately uniform on (−1, 1), as verified through

prior simulation.

An alternative, more automatic, strategy arises from considering the distributions im-

plied on β, δx, and δy if Σ is inverse-Wishart distributed, a setting under which we are ac-

customed to specifying priors for covariance matrices. A common noninformative IW(a,B)

specification for Σ involves fixing a small value for the degrees of freedom parameter a,

and assuming B to be a diagonal matrix with diagonal (B1, B2). We can, for instance, fix

a = 4, the smallest possible integer value such that Σ has finite expectation, and assume

E(Σ) = diag{(r/4)2, (r/4)2}, that is, (B1, B2) = ((r/4)2, (r/4)2). If Σ ∼ IW(a,B), then as

a consequence, δx ∼ IG(0.5(a − 1), 0.5B1), δ
y ∼ IG(0.5a, 0.5B2), and β | δy ∼ N(0, δyB−1

1 )

(DeYoreo and Kottas, 2015). Therefore, we set νx = 0.5(a − 1) and νy = 0.5a, and let

E(sx) = E(sy) = 0.5(r/4)2. Exponential priors for sy and sx yield bxs = bys = 2(r/4)−2.
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After marginalizing out θ, the G0 component for β becomes N(aθ, bθ + c), so we let aθ = 0,

and bθ + E(c) = B−1
1 E(δy) = 0.5(νy − 1)−1. Assuming bθ = E(c), and fixing ac, bθ and bc

can be determined accordingly.

2.4 Related Mixture Models for Time Series

Carvalho and Tanner (2005, 2006) model nonlinear time series through finite mixtures of

generalized linear models, or experts, resulting in time series models with transition den-

sities similar to (2). However, they approach the problem from a maximum likelihood

perspective, and require the use of model selection criteria to determine the optimal size of

the mixture. Wood et al. (2011) consider parametric mixture modeling for time series in

which the weights are time-dependent and the lag is unknown.

While Bayesian nonparametric techniques have become extremely popular in density

estimation, regression, and other applications, they have been used to a lesser extent in

the context of time series. Müller et al. (1997) first made use of the DP to build a model

for nonstationary time series. They propose a finite mixture of AR models with local

weights, where the parameters of the autoregressions and the parameters of the mixture

weights are assumed to be i.i.d from some random distribution which is assigned a DP prior.

Tang and Ghosal (2007b) establish posterior consistency for transition densities which can

be expressed as DP mixtures of normal kernels, with means given by functions of previous

observations. Tang and Ghosal (2007a) consider a particular version of this class of models,

involving a hyperbolic tangent transformation of lagged terms, which can approximate any

linear autoregressive model arbitrarily closely. Di Lucca et al. (2013) apply a dependent

DP (DDP) mixture (MacEachern, 2000) for the transition densities, focusing mainly on the

common weights version of the DDP. The DP atoms arise from a normal distribution with

means linear on the previous observation. Their primary model is then a countable location

mixture of AR models, with mixing taking place on the AR parameters. Mena and Walker

(2005) construct transition densities nonparametrically, but restrict the transition densities

further to obtain strongly stationary AR models. Lau and So (2008) also considered DP

mixtures of AR processes. Caron et al. (2008) and Fox et al. (2011) assume DP mixture
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errors within a DLM framework.

Stationarity arises as a special case of (2), occurring when the two marginal densities are

identical. To preserve stationarity, one can set µxl = µyl and Σxx
l = Σyy

l . This is the version

of the model studied by Antoniano-Villalobos and Walker (2015), who focus on building

flexible stationary models, as stationarity is desirable in some settings, but achieving both

stationarity and flexibility in the transition and invariant densities is a challenge. Their

modeling framework begins much like ours, in that a transition mechanism is obtained as

the conditional density from a bivariate distribution. The authors do not apply a truncation

approximation to G, thus inference under this model requires the introduction of multiple

sets of latent variables and a trans-dimensional MCMC algorithm for posterior simulation.

The model developed by Antoniano-Villalobos and Walker (2015) was previously proposed

by Martinez-Ovando and Walker (2011), however it was then thought to be intractable

due to the infinite sum appearing in the denominator of the transition density mixture

weights. Note that under our parameterization, constraints to stationary yield a transition

density
∑L

l=1 ql(zt−1)N(zt;µl − βl(zt−1 − µl), σ
2
l (1 − β2l )) with ql(zt−1) ∝ plN(zt−1;µl, σ

2
l ),

and βl ∈ (−1, 1).

Although we utilize a truncation approximation to the DP from the outset, the sum

in the denominator of the weights in (3) still presents challenges in terms of posterior

simulation. We developed a tractable MCMC algorithm by reparameterizing the covariance

matrices in (1) and, rather than working directly with the probability vector p which is

difficult to update efficiently, working with the stick-breaking weights to develop a slice

sampler which indirectly provides samples for p.

3 Data Illustrations

We now illustrate the proposed model on two simulated data sets (Section 3.1) and apply it

to the waiting times between eruptions of the Old Faithful geyser (Section 3.2). In all cases,

MCMC inference was implemented in R, saving every 20-th iteration after burn-in, and a

Monte Carlo sample size of 5, 000 was used for inference. We follow the approach to prior
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specification described in Section 2.3, using the second method for fixing hyperparameters

associated with β, δx, and δy, which follows from considering the distributions implied

under an inverse-Wishart specification for Σ.

The DP truncation level L was chosen using standard DP properties: under a gamma(0.5, 0.5)

prior on α, the expectation of the partial sum of the original DP weights, E(
∑L

l=1 pl), is

0.9997 with L = 30 and 0.99999 with L = 50. We used a value of L in this range for all data

examples, and monitored the number of effective components to ensure it never reached

the upper bound.

3.1 Simulated Data

3.1.1 Skew-normal Transition Densities

To generate a time series that exhibits challenging transition densities which evolve over

time in a plausible fashion, we assume each observation is generated from a skew-normal

distribution (Azzalini, 1985), with scale and skewness parameters which are functions of

the previous observation. In particular, we generate zt | zt−1 ∼ SN(zt; 0, 1 + 0.7|zt−1|, 0.1 +

4 sin(zt−1)), for t = 2, . . . , n. Here, SN(y; ξ, ω, α) denotes a skew-normal distribution with

density (ωπ)−1 exp(−(y−ξ)2/(2ω2))Φ(α(x−ξ)/ω), where Φ(·) denotes the standard normal

cumulative distribution function. The sinusoidal or periodic trend in skewness parameter

α yields conditional distributions with various directions and degrees of skewness, and the

decreasing followed by increasing linear trend in scale parameter ω leads to distributions

which are more peaked when zt−1 is near 0.

A time series (z2, . . . , z500) was simulated from this model assuming an initial value

z1 = 0. Figure 1 (left panel) shows the simulated data {(zt−1, zt), t = 2, . . . , 500}. Notice

the oscillating trend in location, and the larger variation in zt for zt−1 far from 0. We

estimate E(Zt | Zt−1 = zt−1) by evaluating
∑L

l=1 ql(zt−1){µ
y
l − βl(zt−1 − µxl )} over a grid

in zt−1, providing point estimates and uncertainty quantification for the expectation of

the next observation in a series given that the previous observation was zt−1. Figure 1

(right panel) displays these results along with the data-generating expectation trend. The

estimates generally match fairly closely and the 95% credible intervals contain the truth
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Figure 1: Skew-normal simulation. The left panel plots the simulated data as pairs of
points (zt−1, zt). The right panel shows the posterior mean (solid line) and 95% credible
intervals (gray shaded region) for E(Zt | Zt−1 = zt−1) plotted over a grid in zt−1; the true
expectation is shown as a dotted line.

everywhere except for a small region around zt−1 = 10, where there is very little data.

We also compute posterior predictive densities p(zt | zt−1;G), for t = 2, . . . , n. These

densities are displayed in Figure 2 (top panel). We plot each index t on the horizontal axis,

and the corresponding predictive density for zt on the vertical axis, using darker colors to

represent larger values. The true predictive densities are given also in Figure 2 (bottom

panel) and the data is shown in each plot. While these inferences are based on only a

posterior point estimate for f(zt | zt−1), we also have available full inference which we

display in the form of point estimates and 95% uncertainty bands for f(zt | Zt−1 = zt−1) at

four particular values of zt−1 in Figure 3. Notice the wide uncertainty bands for the density

at zt−1 = 8.85 (bottom right panel) and the narrow uncertainty bands when zt−1 = −0.5

(top right panel), which reflects the lack of data above 5 or 6 and the large amount of data

in the region near 0.
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Figure 2: Skew-normal simulation. Predictive densities p(zt | zt−1) for each t = 2, . . . , n.
The top panel displays the estimates from the model and the bottom panel shows the true
densities. Darker colors indicate larger values. The data is also included in each plot.

3.1.2 Brownian Motion

Standard Brownian motion is a nonstationary process defined by the transition density

f(zt | zt−1) = N(zt−1, 1). A standard Brownian motion path is generated assuming n = 500.

Trivially, E(Zt | Zt−1 = zt−1) = zt−1 in this model. The inference from the model indicates

it is detecting this trend with little uncertainty (Figure 4, left panel). The value of the

last observation is approximately −14.2, one of the smallest values in the entire series. The
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Figure 3: Skew-normal simulation. Posterior mean (solid line) and 95% credible intervals
(gray shaded region) for transition densities f(zt | zt−1), for zt−1 = −2.85 (top left),
zt−1 = −0.5 (top right), zt−1 = 4.2 (bottom left), and zt−1 = 8.85 (bottom right). The
corresponding true densities are plotted as dotted lines.

forecast distribution for the next observation is displayed in Figure 4 (right panel). While

the 95% posterior credible intervals contain the true density, the mode of the point estimate

favors slightly larger values, likely due to the fact that −14.2 is an extreme value in this

series.

Posterior predictive densities p(zt | zt−1;G), for t = 2, . . . , n, are displayed in Figure 5

(top panel). For each index t on the horizontal axis, the corresponding predictive density

for zt is plotted on the vertical axis, where darker colors represent larger values. The true

predictive densities are also plotted in Figure 5 (bottom panel). In summary, all visual

displays indicate that the estimation from the model is of very good quality, capturing the

dynamics in the data exceedingly well.
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Figure 4: Brownian motion simulation. The left panel plots the posterior mean estimate
(solid line) and 95% credible intervals (gray shaded region) for E(Zt | Zt−1 = zt−1) plotted
over a grid in zt−1. The true expectation is indistinguishable from the model’s estimate. The
right panel shows the posterior mean (solid line) and 95% credible intervals (gray shaded
region) for the forecast density, f(zn+1 | zn = −14.2), compared to the truth (dotted line).

3.2 Waiting Times Between Eruptions of the Old Faithful Geyser

We illustrate the proposed model on the time intervals between successive eruptions of the

Old Faithful geyser, which are available through R under the dataset faithful. The data

set consists of 272 measurements {zt, t = 1, . . . , 272}, where zt represents the waiting time

in minutes before eruption t. The data are displayed in Figure 6 in the form of a plot of

yt versus yt−1, for t = 2, . . . , 272. Also plotted in Figure 6 are the posterior mean estimate

and 95% credible intervals for E(Zt | Zt−1 = zt−1).

The model required an average of 8 mixture components. Standard MCMC diagnostics

suggest convergence has been reached. For instance, trace plots corresponding to 5, 000

posterior samples are shown for two quantities in Figure 7. The plot on the right panel of

Figure 7 monitors the average of the standard deviations of the conditional densities f(zt |

zt−1;G), that is,
∑n

t=2(δ
y
Ut
)0.5/(n− 1), while the left panel plot monitors

∑n
t=2 βUt/(n− 1),

which refers to an important quantity since the βl control the strength and direction of the

autoregressions. While each βl was centered at 0 in the prior, the posterior favors slightly
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Figure 5: Brownian motion simulation. Predictive densities p(zt | zt−1) for each t = 2, . . . , n.
The top panel displays the estimates from the model and the bottom panel shows the true
densities. Darker colors indicate larger values. The data is also included in each plot.

positive values.

There are some interesting features present in the data. When zt−1 is below 60, there

is a large cluster of points around zt = 80, and a small number of points extending down

below zt = 50, indicating a distribution with a mode near 80 but with a heavy left tail or

a small additional mode near 50. Moving to larger values of zt−1, there are two clusters

of points, one centered around 55 and one around 80. These features are captured by the

estimated transition densities at f(zt | zt−1 = 50) and f(zt | zt−1 = 80), which are displayed

in Figure 8. One may be interested in predicting the next value zn+1 in the series. It is
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Figure 6: Old Faithful data. Posterior mean (solid line) and 95% credible intervals (gray
shaded region) for E(Zt | Zt−1 = zt−1) plotted over a grid in zt−1, and overlaid on the data
shown as pairs of points (zt−1, zt), for t = 2, . . . , 272.
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Figure 7: Old Faithful data. Trace plots of averages of {βUt , t = 2, . . . , 272} (left panel)
and {(δyUt

)0.5, t = 2, . . . , 272} (right panel) over 5, 000 MCMC iterations.

important to provide estimates of uncertainty in this context. The posterior mean estimate

and 95% credible intervals for the forecast density are given in Figure 9. This density is

bimodal with the larger mode near 50 and another mode near 80, which is reasonable given

the cross-section of data around zn = 74.
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Figure 8: Old Faithful data. Posterior mean (solid line) and 95% credible intervals (gray
shaded region) for transition densities f(zt | zt−1), for zt−1 = 50 (left panel) and zt−1 = 80
(right panel).
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Figure 9: Old Faithful data. Posterior mean (solid line) and 95% credible intervals (gray
shaded region) for the forecast density, f(zn+1 | zn = 74).

4 Extensions

The data illustrations suggest the ability of the first-order model to uncover a variety of

conditional density shapes, and approximate well the truth contained in simulated data.

However, some applications may require additional features in the model formulation.

Although the flexibility which is induced by the joint DP mixture modeling frame-
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work allows the first-order Markovian model to capture more complex features than many

parametric models, there are scenarios in which a higher-order structure is required. The

first-order model can be extended to incorporate higher order Markovian processes, by as-

suming f(zt−r, . . . , zt−1, zt;G) ∼
∫

N(µ,Σ)dG(µ,Σ). Then f(zt | zt−1;G) is replaced by

the transition density of order r, f(zt | zt−1, . . . , zt−r ;G). This transition density has a

similar form to (2), but now the means of the normal mixture components and the mix-

ture weights depend on the previous r states. Let superscript y correspond to Zt and x to

(Zt−r, . . . , Zt−1) in the vector µ of length r + 1 and the (r + 1)× (r + 1) matrix Σ. Under

the reparameterization of Σ used in the first-order case, the normal kernels have the form

N(zt;µ
y
l −

∑r
j=1 βl,(r+1,j)(zt+j−r−1 − µxl,j), δ

y
l ), for l = 1, . . . , L. Gibbs sampling steps are

thus preserved for µyl and δyl , as well as the last row of the matrix β. However, more care

is needed in devising an MCMC algorithm to sample δxl , µ
x
l (each vectors of length r) and

the first r rows of β, particularly when r is of order larger than 2 or 3.

Turning to an application oriented extension, in population biology, the size of a wild

population is often monitored over time. Yearly estimated biomass may be recorded for a

specific species, and the trend in population size indicates how the species is faring, and

is indicative of greater environmental conditions. A state-space modeling framework is

suitable for such applications, since the observed biomass is not an exact measurement of

population size. Rather, biomass is viewed as a noisy version of the underlying population

size, and a key goal is to forecast population size in the future.

The proposed model can be incorporated into a state-space framework, with the addi-

tion of an observation equation. The observations are now viewed as arising from latent

unobserved states, which evolve in time according to the flexible Markovian model. Denote

the observed data by (y1, . . . , yn), and the underlying latent states by (z1, . . . , zn). Assume

yt | zt, θ ∼ f(yt | zt; θ), for some parametric distribution f(yt | zt; θ), and assume the

latent states evolve according to the nonparametric Markovian model for f(zt | zt−1;G) in

(4). In the population dynamics example, environmental covariates may also be available.

These can be treated as random, and modeled jointly with yt at the observation level, or

incorporated at the state level.
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The introduction of latent states is also useful in modeling ordinal time series data, as it

is often assumed that Yt = j if and only if Zt ∈ (γj−1, γj), for j = 1, . . . , C. However, rather

than working with a restrictive parametric distribution for the latent continuous responses,

they can be modeled with the proposed nonparametric Markovian model.

5 Summary

We have proposed a modeling approach for nonstationary time series which allows for

nonstandard transition densities and nonlinear autoregressions. The conditional transi-

tion density of the Markovian model admits a representation as a location-scale mixture

of normal densities, with means and mixture weights that depend on observations from

previous time points. This structure is induced from a Dirichlet process mixture of nor-

mals specification for the joint distribution of successive observations in time. We have

discussed methods for posterior inference and prior specification, and illustrated the model

with synthetic and real data. Although the methodology has been developed and applied

for directly observable time series with first-order dependence, we have discussed possible

extensions to model higher order Markov chains, and to expand the model structure to a

state-space setting.
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