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| nfor mation-T heor etic Approaches for Sensor Selection
and Placement in Sensor Networksfor Target L ocalization
and Tracking

Hanbiao Wang, Kung Yao, and Deborah Estrin

Abstract: In this paper, we describes the infor mation-theoretic ap-
proaches to sensor selection and sensor placement in sensor net-
works for target localization and tracking. We have developed a
sensor selection heuristic to activate the most informative candi-
date sensor for collaborative target localization and tracking. The
fusion of the observation by the selected sensor with the prior tar-
get location distribution yields nearly the greatest reduction of the
entropy of the expected posterior target location distribution. Our
sensor selection heuristic is computationally less complex and thus
mor e suitable to sensor networ ks with moder ate computing power
than the mutual infor mation sensor selection criteria. We have also
developed a method to computethe posterior target location distri-
bution with the minimum entropy that could be achieved by the
fusion of observations of the sensor network with a given deploy-
ment geometry. We have found that the covariance matrix of the
posterior target location distribution with the minimum entropy
is consistent with the Cramer-Rao lower bound (CRB) of the tar-
get location estimate. Using the minimum entropy of the posterior
target location distribution, we have char acterized the effect of the
sensor placement geometry on the localization accuracy.

Index Terms. Information theory, sensor networks, sensor place-
ment, sensor selection, target localization and tracking.

. INTRODUCTION

selection in the sense that the selected sensor observation
sults in the maximum average information gain. Our sensor
selection heuristic is computationally much less compled a
thus more suitable to sensor networks with moderate comput-
ing power than the mutual information sensor selectioredt
Much of the existing work on the information-theoretic sems
configuration is mostly about adaptive control of advanead s
sors such as radars and cameras [11]-[12]. In this paper, we
describe an information-theoretic method to analyze tfecef

of the sensor placement geometry on the posterior targal-loc
ization distribution that is produced by multi-sensor dataon.

An earlier version of our sensor selection heuristic hasapgd

in [9]. An earlier version of our sensor placement strategy h
apeared in [10]. In this paper, we will discuss these two re-
lated problems in a coherent and unified framework based on
Bayesian information fusion and information theory.

The rest of this paper is organized as follows. Section Il
reviews the recursive Bayesian estimation for target Ipaal
tion and tracking and discusses different measures of tlie es
mation error of a target location distribution. Section di-
scribes our sensor selection heuristic and compares ietoth
tual information based sensor selection. Section IV dbseri
our information-theoretic approach to analyze the efféthe
sensor placement geometry on localization accuracy. @e¥vti
concludes this paper.

The emerging sensor networks could revolutionize a wide

range of applications including target localization aratking
[1]. Multi-sensor data fusion is one of the key technolodi®s
exploit the huge potential of sensor networks [2]. Inforiomt

1. DATA FUSION FOR LOCALIZATION
In this section, we review the recursive Bayesian estimatio

theoretic concepts not only provide guidance to minimize tiior target localization and tracking and discuss diffenerta-
consumption of sensor resources for a given information gaiures of the target location estimation error.

requirement through selective sensor activation but aiseige

In the recursive Bayesian estimation for target localorati

guidance to maximize the information gain of a given set @nd tracking [13]-[14], both the sought target location &l
sensors through intelligent sensor configuration. Infdioma sensor observations are modeled as stochastic procesdéisea
theoretic sensor management has been shown to be abl@asterior target location distribution conditioned ons&mob-

greatly improve the cost-effectiveness of multi-sensda da-
sion [3]-[10].

servations is computed recursively from additional sermdnr
servations step by step. Lat andx denote the target location

The existing information-theoretic sensor selection apandom variable and its realization value, respectivelgt Z;
proaches are not optimized for computational complexity réndz; denote the sensor observation random variable and its re-
quired by the moderate/low computational powers of sensbr nalization value that are incorporated into the data fusiostép
works. In this paper, we describe a sensor select heurisic tj. The posterior target location distribution is increméwyitap-
is nearly as effective as the mutual information based sengtted by one sensor observation at a time,
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p($|Zl =21, aZj = Z])
=Cp(zilz, Zy =21, , Zj—1 = zj—1)
xp(x|Zy =21, Zj—1 = zj_1)

whereC' is a normalization constant. For simplicity, from now
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o . . ,
10 variableX in stepj
RMSE(X) = \/ E(||z — 1) (1)
“" wherez! is the true target locationfy(-) is expectation w.r.t.
the posterior target location distributigfiz|z1, - - - , z;), || - || is
the L, norm. In stepj, 21, - - , 2; are all already known as the

specific realization values of the random variablgs- - - , Z;.
In practice, the true target locatiard is usually unknown. In
this paper, we assume the target location estimation isagedi

ol = E(x)

whereE(-) is expectation w.r.tp(z|z1,- - - ,z;). Another esti-
mation error measure is the covariance matrix of the tacgeat-|
tion random variableX in step;

COV(X) = E((x - E())*) ()

where E(-) is expectation w.r.tp(z|z1,--- , z;). Yet, another
estimation error measure is the Shannon entropy [15] that me
sures the uncertainty of the posterior target locatiomridigion

in stepj

Fig. 1. Incremental update of the target location distribution by a DOA H(X|Zy =21, Z;j = zj) = —E(lnp(z]z1,- -, 7)) (3)

sensor denoted by the square through the recursive Bayesian esti-

mation. whereE(-) is expectation w.r.tp(x|z1, - - - , z;). Again, in step
J,» #1,--+, 2; are all already known as the specific realization
) values of the random variablés, - - - , Z;. A large entropy of
on, we will usep(z|z1, - - - , z;) as the shorthand fQi(z|Z1 = the posterior target location distribution indicates géagstima-
z1,--+,Z; = zj). The above update equation is applied to thgyn error of the target location.
target location random variable in step;. By then,zy, - -, z; To sort posterior target location distributions in the ordé
are all already known as the specific realization values ef thhe estimation error, we need a scalar measure of the estimat
random variables,, - - - , Z;. WhenZ,, - - , Z; are condition- error. Since the covariance matrix of the posterior tamgeition
ally independent with one another conditionedXnthe above gistribution is a matrix and not a scalar, it is not a propeasuee
equation is simplified to to sort the target location distributions. Both the RMSE #red
Shannon entropy are scalar and thus can be used to sortiposter
p(alz1, -+, 25) = Op(zle)p(zlzr, - z5-1). target location distributions. Because the Shannon eyiop

core component of the well-established information themsy

The incremental update of the target location distributiathoose to use the Shannon entropy to quantify the uncertaint
by a direction-of-arrival (DOA) sensor through the recegsi reduction (or information gain) of the target location disition
Bayesian estimation is illustrated in Fig. 1. The upper suBlue to the additional sensor observation. To be brief, wiesé
figure of Fig. 1 shows the prior target location distributiofhe term entropy to denote the Shannon entropy from now on.
p(z|z1,- -+ ,2j-1) denoted by the oval image. The beam image
originating from the DOA sensor is the target location dhstr
bution based only on this sensor’s observatije(x|z;), which 1. SENSOR SELECTION HEURISTIC
represents the new information provided by this sensor. &Ve h  |n this section, we describes our sensor selection heuiiisti
assume a Gaussian DOA observation model with a standard detail. Section I1I-A formulates the sensor selection peob
viation of 2 degrees. The lower sub-figure of Fig. 1 shows the the sensor networks for target localization and tracking
posterior target location distributigrfz|z1, - - - , z;) denoted by reviews the mutual information based sensor selection.- Sec
the round image. The true target location is denoted by mark@n 11I-B defines our sensor selection heuristic. Sectid+Cl
+. The posterior target location distribution has much senalldescribes the relation between the entropy difference ursed
estimation error than the prior target location distribati our sensor selection heuristic and the mutual informat®ec-

One of the advantages of the recursive Bayesian estimatiotion IlI-D validates our sensor selection heuristic usiigs
that we can stop updating the posterior target location am sdations. Section IlI-E compares the computational comipfex
as the estimation error is no larger than allowed. Thereare sof our sensor selection heuristic to that of the mutual imfar
eral different measures of the estimation error of the pmste tion based sensor selection. Section llI-F discusses ttential
target location distribution. One estimation error meassithe discrepancy in selection decision between our sensortssiec
root-mean-square error (RMSE) of the target location randdeuristic and the mutual information based sensor sefectio
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A. Sensor Selection Problem If Z(X) has fewer dimensions thax, thenl(Z(X); Z;) is less

A greedy strategy has been used for sensor selection in s‘é‘?ﬂ‘p'ex to compute thah(X’; Z;). In the above special sce-
sor networks for target localization and tracking [7]-[8]his nario, I(Z(X); Z;) h_as been proposed to replab@(; Zi) t_o .
strategy selects the currently unused sensor whose oliserv. educe the complexity of cpmputmg the r_nutual information i
is expected to result in the maximum entropy reduction of t é] In thls. paper, we describe an alternative entropy based
posterior target location distribution. The observatiéthe se- sor_selecnon he‘%“s“c- In ge_neral, the entrppy basedoseses
lected sensor is incorporated into the target locatiomitdigion lection heuristic is computationally much simpler than the-

using recursive Bayesian estimation [13]—-[14]. The gressty :Eal mformatloln t:a;ek;i "’:Eprﬁ ach_ets_. Howltzvetr_,”th_e IC()ijGI’\/afI
sor selection and the recursive information fusion repedt u € Sensor selected by the heunistc would st yield orrage

the entropy of the posterior target location distributisndss the greatest or nearly the greatest entropy reduction aatget

than or equal to the desired level. Thus, the entropy of the ttlalocat'on distribution as will be shown in Section III-D.
get location distribution is incrementally reduced to tlesided
level without consumption of more sensor resources thaesie
sary. The core problem of the greedy sensor selection apiproa In our studies of sensor selection for localization, we have
is how to efficiently evaluate the expected entropy reducii® observed that the reduction of the localization unceryait
tributable to each candidate sensor without actuallyeeitiy tributable to a sensor largely depends on the differencevof t
sensor data. quantities, namely, the entropy of the noise-free senseersb
The sensor selection problem is formulated as follows. Giveyation, and the entropy of that sensor observation mode¢eor
the prior target location distributiop{x); sponding to the true target location. The noise-free sevtsmer-
the set of candidate sensors for selecti®n: vation assumes that no error is introduced into the sensmrob
the locations of candidate sensars;Vi € S; vation. The sensor observation model corresponding tartiee t
the observation models of candidate sensp(s;|x),Vi € target location is the probability distribution of the sensbser-
S, R vation conditioned on the true target location. Looselyaspay,
the objective is to find the sensoiwhose observatio; min-  our sensor selection heuristic selects the candidate iswitso
imizes the expected conditional entropy of the posterigyeia the maximum entropy difference described above.
location distribution Let ZY denote the noise-free observation of serisBecause
zY assumes no randomness in the process of observation
garding the target Iocatioﬂ,}’ is a function of the target location
X and the sensor locatior
Equivalently, the observation of sensomaximizes the ex-
pected reduction of the target location entropy sz =

CB. Sensor Selection Heuristic

PLODPE

*
P

1 = arg %1§1H(X|Zl)

J(X, zi). (6)

i = argmax(H (X) — H(X|Z;)).

2 In (6), because the target location is a random variable, the
i€

noise-free sensor observatigi is a random variable although
H(X)— H(X|Z;) is one expression df X; Z;), the mutual in- the sensor location; is a deterministic quantity. Since the

formation between the target locatioh and the predicted sen-noise-free sensor observatiaf)’ usually has less dimensions
sor observatiory;, than the target locatioX’, the distribution of the noise-free sen-

sor observatiorZ}’ is usually the geometric projection of the

o A p(x, 2;) ‘ target location distributiom(x) onto the observation perspec-
I(X;Z;) = /p(a:,zl)ln pi(x)p(zi)dxdzl 4) tive of Sensor
Wherep(x,zi). = p(zi|x)pgm) andp(zz) = fp(x,zl)dx Thu§, pzY <Yy = //p(ac)dm @)
the observation of sensermaximizes the mutual information v
1(X; Z;), FICEDES
T B RAX [(X; 2s). ©®) where the observation perspective of serisargely depends on

Sensor selection based on (5) is the maximum mutual #7€ Sensor location;.

formation criterion described in [7]-[8]. The target ldcat X In practice, the subset of the state space of the targeidocat
could be three-dimensional. The sensor observafipmould X and the noise-free sensor observatithwith the non-trivial
be two-dimensional (e.g., the direction to a target in aehreProbability density can be discretized into a grid for nuier
dimensional space is two-dimensional). Thii&X; Z;) could analysis. Any probability density function value largearha
be a complex integral in the joint state spat¥,Z;) of given threshold is considered as non-trivial. The discrepee-

. : . ; VN _ i v

five dimensions. The computational complexity of evalugtinséntation op(z;") can be computed as follows.

I(X; Z;) could be more than that of the capability of the lowl.
end sensor nodes. If the observatignis related to the target
location X only through the sufficient statisti¢s(X), then 2.

I(X;Z) = 1(Z(X); Zi). 3.

Let X be the set of the target location grid values with the
non-trivial probability density.

Let Z be the set of the noise-free sensor observation grid
values of the non-trivial probability density.

For each grid point! € Z, initialize p(z) to zero.
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x4 timated target location to approximate the true targettionan

12 order to determine the sensor observation model. For aesingl
modal target location distributiop(x) that has a single peak,

! we can use the maximum likelihood estimatef the target lo-

0.8 cation to approximate the true target location, and theopgitof
the approximate sensor observation model is

0.6

04 H(Z|X = &) = — / p(zli) np(zili)dz. (8

0.2

For a multi-modal target location distributigi{«) with more

20 than one peaks, namelg("™, m = 1,---, M, the entropy
012 ‘ ‘ ‘ ‘ ‘ ‘ of the observation model of sensbican be approximated as
a weighted average as follows.

0

0.1t

M
> p(@™)H (Z;| X = &™)

e
o
o

H(Zi|X = &) = "=—p, 9)
;;OAOG* x Z p(j(m,))
E m=1
0.04
where H(Z;|X = &™) = — [ p(z]2(™) Inp(z;]2™)dz;.

For simplicity, from now on, we will uséf(Z;|) as the short-
et ‘ ‘ R hand forH (Z;| X = z).
o2 3 4 30 60 70 8 We have repeatedly observed that the incorporation of the
DOA (degree) R ] .
sensor observation with a larger entropy d|fferenH:eZZV ) —

Fig. 2. A DOA sensor’'s noise-free observation about the target location.  H(Z;|#) yields on average a larger reduction in the uncer-
tainty of the posterior target location distribution. Ththe en-
tropy differenceH (Z) — H(Z;|#) can sort candidate sensors

4. For each gnd point: € X, determine the correspondinginto nearly the same order as the mutual informafioi’; Z;).

grid pointzY € Z using (6), and update its probability asspecifically, the sensor with the maximum entropy differenc
p(z) = p(z) ) + p(z). H(ZY) — H(Z;|%) also has nearly the maximum mutual infor-

5. Normallzep( V') to make the total probability of to bel.  mation(X; Z;). Hence we propose to use the entropy differ-

After the noise-free sensor observation distributjgz¥) is enceH(ZY) — H(Z;|) as an alternative to the mutual infor-

computed, the noise-free sensor observation enttb@@’) can mation/(X; Z;) for selecting the most informative sensor. For-

be computed using (3). mally, the entropy based sensor selection heuristic isls\v&
The numerical computation of the noise-free observatien dil. Compute the entropy differend&(2Y) — H(Z;|z) for the
tribution p(zYY) for a DOA sensor is illustrated in Fig. 2. Inthe  set of candidate sensafs

upper sub- f|gure of Fig. 2, the target location distribuiede- 2. Select sensarsuch that

noted by the image color, and the DOA sensor location is de- . v .

noted by the square. The subset of the target location giates i = arg I?Eag((H(Zi ) — H(Zi|2)).

with the non-trivial probability density is discretizedana grid

of 400 x 400. The true target location is denoted by markéife will see that our sensor selection heuristic is comparati

+. The lower sub-figure of Fig. 2 shows the discrete probab#ly much simpler than the mutual information based sensor s

ity distribution of the DOA sensor’s noise-free observatia lection in Section llI-E

the granularity of2°. Marker x denotes the probability of the

noise-free DOA observation in the interval[86°, 38°], which C. Relation to Mutual Information

is the summation of the probability of all target locationside In this subsection, mathematical analysis reveals thagithe

the sector delimited by th#6° line and the3&° line in the upper tropy d|fferenceH(ZV) (Z |i») can reasonab|y approximate

sub-figure of Fig. 2. the mutual informatiod (X ; Z;). As aresult, it is reasonably ef-
The observatlon model of sensois p(zl|x ) when the tar- fective to use the entropy dlfferenéé(ZV) H(Z;|z) to select
get is actually at!. The sensor observation model incorporatdbe sensor with the maximum mutual informatib ; Z;). The
observation error from all sources, including the noiseugmr mutual information/(X; Z;) has another expression, namely,
tion to the signal used to observe the target, the signal fimgde H(Z;) — H(Z;|X). We will show thatH (ZY) and H(Z;|1)
error in the estimation algorithm used by the sensor, thecima can reasonably approximak&(Z;) and H (Z;| X ), respectively.
racy of the sensor hardware, and so on. The amount of uncerH (Z;) is the entropy of the predicted sensor observation dis-
tainty in the sensor observation model may depend on thettargibution, p(z;) = [ p(z;|z)p(x)dz. The predicted sensor ob-
location. Since the true target location is unknown durimg t servation distributiorp(z;) becomes the noise-free sensor ob-
process of target localization and tracking, we have to nssa servation distributiorp(z}’) when the sensor observation model
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Flg-eiclfésgfmo of sensor selection for localization using DOA Sensors 4 scenario of sensor selection for localization using range sensors
Y. exclusively.

p(z;]x) is deterministic without any uncertainty. The uncerz e very close whei (Z; ) is small relative taf (2Y) and
A . ' ) f p
0 o o, 1 he enfoy of e Sensorchserlon Motk ) changes
free sensor observation entroiy 2V 1Whegn the sensor obser_sIowa with the target location:. Thus the entropy difference
; vatl ofy(Z;). i H(ZY)— H(Z;%) sorts sensors into approximately the order of
vation modep(z;|z) has onlyasmall amount of uncertalnty,.th?he mutual information/ (X; Z;). As a result, the sensor with
noise-free sensor observation entrd;ﬂ(Z}’ ) closely approxi- -~ $

i : the maximum entropy differencH (Z)) — H(Z;|#) probably
mit{es,ZFh; pried|ctted lfe?ﬁor or?tfervau??hentﬁr(l)yi)r. bservati also has the maximum mutual informatid(X; Z;). Thus the

(Zi|X) is actually the entropy of the sensor observa 0Qntropy differenced (ZY) — H(Z;|#) is a reasonable alternative
model averaged over all possible target locations, !

to the mutual informatior/ (X; Z;) for sensor selection. The
correlation between the entropy differentié zY) — H(Z;|z)
H(Zi|X) = - /P(l’v zi) Inp(zi|z)dedz; and mutual informatiod (X ; Z;) will be further explored using

simulations in Section I1I-D.
=/f@ﬂ—/?@MﬂmM%wMaMw

D. Validation of Sensor Selection Heuristic

= /P(fE)H(Zi|$)dff~ This subsection evaluates our sensor selection heuriséie r
tive to the mutual information based sensor selection usimg
Whenp(z) is a single-modal distributionf (Z;|%) is defined ulations. The Gaussian noise model has been widely assumed
in (8), which is the entropy of the sensor observation modkgr sensor observations in many localization and trackigg-a
for the most likely target location estimate Whenp(x) is a rithms, e.g., the Kalman filter [16]. As a starting point, we a
multi-modal distribution,H (Z;|%) is defined in (9), which is sume the Gaussian sensor observation models in the evaluati
the entropy of the sensor observation model averaged oversitnulations for simplicity. The simple Gaussian sensoreobs
target locations with local maximum likelihood. When the enation models assumed here are not accurate especially when
tropy of the sensor observation modé(Z;|x) changes slowly sensors are very close to the target. To avoid the probletmeof t
with the target location,, H (Z;|%) can reasonably approximateover-simplified sensor observation models in the simutatio
H(Z;|X). we only analyze sensors with some middle distance range to
Since H(ZY) and H(Z;|#) can reasonably approximatethe target. The heuristic will be evaluated further underemo
H(Z;) and H(Z;|X), respectively, the entropy differencerealistic sensor observation models in the future.
H(ZY) — H(Z;|#) can reasonably approximate the mutual in- Four scenarios of sensor selection for localization haesbe
formationI(X; Z;) = H(Z;) — H(Z;|X). Such approxima- studied. Three of them involve DOA sensors, range sensuis, a
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Fig. 5. Scenario of sensor selection for localization using TDOA sensors  Fig. 6. Scenario of sensor selection for localization using DOA sensors,
exclusively. range sensors, and TDOA sensors together.

time-difference-of-arrival (TDOA) sensors exclusiveyshown H(Z))—H(Zi|#) correlates very well with the mutual informa-
in Figs. 3-5, respectively. In each of these scenarios, 860 ction I(X; Z;) . Thus, the entropy differencd (ZY ) — H(Z;|#)
didate sensors of different combination of location andeobs ¢an sort all candidate sensors into nearly the same order as
vation standard deviation are considered. Another sceirari the mutual information/ (X; Z;) does. The sensor with the
volves all these three types of sensors mixed together aenshénaximal entropy differencél (2)) — H(Z;|&) selected by the
in Fig. 6. In this scenario, we have considered 100 candidd@uristic always has the maximum or nearly the maximal mu-
sensors with rand0m|y assigned observation type, |0me tual infOfmatiOﬂI(X; Zz) The Iarger is the mutual information
observation standard deviation. In every sensor selesten (X;Z;), the more consistent will be the decision between these
nario, both the entropy differencl (ZY) — H(Z;|) and the two sensor selection criterion. Only when the mutual infarm
mutual informationZ(X; Z;) are evaluated and compared fofion I(X; Z;) is very small, such correlation starts to show small
all candidate sensors. dispersion as shown in Figs. 4 and 5. A sensor observatjon

In the upper sub-figures of Figs. 3-6, the image color depi(ytgth very small mutual information with the target locatidnhis
the prior target location distributiop(z). The subset of the expected to contribute very small amount of uncertaintyiced
state space of the target locatidh with the non-trivial prob- tion to the the target location distribution.
ability density is enclosed by the solid rectangle. The tanget . . o
location is denoted by marker. Sensors are uniformly ran-E- Complexity of Sensor Selection Heuristic
domly placed outside the dotted rectangle. The squaresesir  |n this subsection, we analyze the computational complex-
and triangles denote DOA sensors, range sensors, and TD@Aof our sensor selection heuristic and compare it to tHat o
sensors, respectively. All TDOA observations are relative. the mutual information based sensor selection. The compu-
common reference sensor denoted by markerThe size of tational complexity of these two sensor selection criterite-
the sensor marker in the upper sub-figure of Fig. 6 indicétes fhends on the number of dimensions of the target locatiaand
observation standard deviatienthat is randomly chosen to bethe sensor observatiori. We use the DOA sensor based three-
2, 4, 8, 16, or 32. The lower sub-figures of Figs. 3-6 showmensional target localization and tracking as an exartple
the plot of the mutual informatiod(X; Z;) vs entropy differ- compare the computational complexity of these sensortimec
enceH (Z)) — H(Z;|2) of all candidate sensors. Each markegriterion. The target locatioit is three-dimensional. Both the
denotes(H (z)') — H(Zi|#), I(X; Z;)) pair evaluated for one noise-free DOA observatio#? and the noisy DOA observa-
candidate sensoro is the standard deviation of the Gaussiafion Z; are two-dimensional. We assume that all random vari-
observation model assumed for candidate sensors. ables are discretized for numerical computation. Spedifica

In all sensor selection scenarios, the entropy differenti®e three-dimensional target location subspace with riviait
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probability density is discretized into a grid ofx n x n. The 2
scope of DOA observations with non-trivial probability dég

is also discretized into a grid of x n. We assume there are
K candidate sensors for selectidk.is usually a small number
relative ton.

Our sensor selection heuristic evaluates the entropyreiffae
H(ZY) — H(Z;|#) of all candidate sensors for selection and
then selects the sensor with the maximum entropy difference
As shown in Section I1I-Bp(zY) can be computed from(x)
with costO(n?). As shown in (3),H(ZY) can be computed
from p(zY) with costO(n?). As shown in (8) and (9)H (Z;|#) = ‘ a
can be computed from(z;|#) with costO(n?). Thus, the cost -2 15
to compute the entropy differendé(Z)) — H(Z;|#) for one
candidate sensor {8(n?). Thus, the total cost for our heuristicFig. 7. Correlation dispersion between the entropy difference H(zY) —
to select one out ok’ candidate sensors @(n3). H(Z;|#) and the mutual information /(X; Z;) modeled by a uniform

The mutual information based sensor selection evaluates th distribution bounded by a parallelogram.
mutual information/ (X; Z;) of all candidate sensors for selec-
tion and then select the one with the maximum mutual informa- . S ] )
tion. As shown in (4), the mutual informatiaf{X; Z;) can be Q|spers_|on _model_ for simplicity. As the first order_ approa’im
directly computed fronp(z) and p(z;|z) with cost of O(n?). ton, this dlfsperglon mpdel does capture the' major featafes
Thus, the total cost to select one out/fcandidate sensors isthe correlation dispersion revealed by simulations iniSedtl-
O(n?). As we mentioned early in Section IlI-A, the computa-Dv and help to reve_al some major characteristics of the inpac
tional cost of mutual informatiodi(X; Z;) could be reduced in ©f the correlation dispersion on the performance of our sens
some special scenarios. In general, however, our sensar-seelection heuristic.
tion heuristic is computationally much simpler than thewmalit  Fig. 7 shows a typical dispersion scenario where no carelidat

e

Mutual information (bit)

.
—|
e o

- 0.5 0
Entropy difference (bit)

information based approaches. sensor is very informative. The mutual informatié(X; Z;)
of the candidate sensors varies frOrbit to 1 bit. Correspond-

F. Dispersion of Correlation with Mutual Information ingly, the entropy diﬁerencé{(ZZV) — H(Z;)#) of the candi-
As pointed out in Section 1lI-D, there is a little dispersiorfiate sensors changes f\r/em bit to 0 bit. The disperse of the
in the correlation between the entropy differentidZY) — correlation betweerH (Z,') — H(Z,|%) and the mutual infor-

H(Z;|#) and the mutual informatiod(X; Z;) when the mu- mation! (X; Zi)'is 0.1.bit. Given the gbove.dispersion.scenario,
tual information is very small. Such dispersion can be seenWe run10, 000 simulations. In e%ch simulation, 8 candidate sen-
the convex part of the plot of the entropy differenti¢zY) — SOrs randomly assume thei (2,) — H (Z;[2), I(X; Z;)) pairs
H(Z;|2) vs the mutual informatiod (X; Z;) in Figs. 4 and 5. ywthm the specified dlsper.smn range. In each S|muI§t|oe, w
Very small mutual informatiod (X; Z;) indicates that the sen-identify both the sensor with the maximum entropy differenc
sor observatior; on average can only reduce very little uncer@d the sensor with the maximum mutual information. Fig. 7
tainty of the target locatiotk. Thus, there might be a discrep-2/S0 shows one particular realization of the simulationghx
ancy in selection decision between our sensor selectionstieu Markers are uniformly randomly distributed inside the faka
and the mutual information based sensor selection if angibnl ©9ram denote candidate sensors. Our sensor selectiorstieuri
no candidate sensor is very informative. However, our simuiSelects the rightmost sensor that is enclosed by a squakemar
tions have shown that there is very little degradation inctesn The mutual information based approaches select the upjsermo
decision made by our sensor selection heuristic even if ne c£€nsor that is enclosed by a diamond-shaped marker. Thte righ
didate sensor is very informative. most sensor happens also to be the uppermost sensor imthis si
We model the dispersion of the correlation between the efation.
tropy differencel (7)) — H(Z;|¢) and the mutual information ~ For the dispersion shown in Fig. 7, wiiT.8% chance, the
I(X; Z;) using a uniform distribution bounded by a parallelosensor selected by our sensor selection heuristic alsoheas t
gram where a candidate sensor could assume(&fyZY) — maximum mutual information. Even when our sensor selec-
H(Z;|%),I(X; Z;)) pair within the parallelogram with uniform tion heuristic fails to select the sensor of the maximum mu-
probability. As illustrated in Fig. 7, the geometry of therpatual information, the mutual information of the selecteth-se
allelogram is defined by three parameters, namelyb, and sor is on average only abo01026 bit less than the maximum
c. Parameter is the variation scope of the entropy differmutual information. On average, the mutual information of
ence H(ZY) — H(Z;|#) of the candidate sensors considerethe sensor selected by our sensor selection heuristic ist abo
in the current selection decision-making. Parametedicates 0.026(1 — 87.8%) = 0.0032 bits less than the maximum mu-
the variation scope of the mutual informatid(.X'; Z;) of the tual information when there is dispersion in the correlatie-
candidate sensors considered in the current selectiosideci tween the entropy differendd (ZY) — H(Z;|2) and the mutual
making. Parameteb describes the magnitude of dispersioformationl(X; Z;). Overall, our sensor selection heuristic in-
of the correlation between the entropy differenHegZzV) — troduces very little degradation to the quality of the sesstect
H(Z;|%) and the mutual informatiof(X; Z;). We choose this decision even when no candidate sensor is very informative.
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IV. STRATEGY FOR SENSOR PLACEMENT whereg(+) is a complex multi-variate function. Lé{,,;, be the

In Section 111, we have described a computationally efficiefinimum entropy of the posterior target location distribot
strategy to select the most informative sensor from a givenV\éF can find OutH in by ?eamh'”g throughout the joint state
sensor network deployment. In this section, we describeag stSpace of sensor observationsl <i < N,
egy of sensor placement to minimize the localization uncer- Hon = min g(z1,--- ,2n)
tainty given the region where the target needs to be lochtirel min = Teien IVEL AN (11)
tracked. Section IV-A describes a method to compute theepost
rior target location distribution with the minimum entrogiven
a sensor placement geometry. Section IV-B uses the minimwherez;, 1 < i < N is the sensor observation that minimizes
entropy of the posterior target location distribution tawdcter- entropy of the posterior target location distribution.hétpartial
ize the dependency of the localization uncertainty on these derivatives ofg(-) relative toz;,1 < i < N are well defined,
placement geometry and the sensor observation type. Such(de) implies that
pendency characteristics provide guidance to choose timaalp
sensor placement geometry to minimize the localizatioresnc 0g(21,-+ ,2n)/02;=0,1<i < N. (12)
tainty in a given region.

=g(%1,-+ , 2N)

_ . I If the noise-free observation is a critical point of the
A. Min-Entropy Location Distribution sensor observation model(z,---,zy|z) and maximizes

Given the deployment oV sensors to localize a target at loP(z1,- 2N |2)
cation z!, the estimation error in the posterior target location .
distributionp(z|Z; = #;,1 < i < N) depends on the sensor ob- {0p(21,-- - onl2)/0zi}], _ v =0, 1<i< N (13)
servation values;, 1 < i < N as shown in (1), (2), and (3). In ) o )
other words, given the same senor network deployment and t&N the noise-free sensor observation is the min-entrepsos
same true target locatiart, all three estimation error measuresoPservation v
namely the RMSE, the covariance, and the entropy of the poste Zi=2z, 1<1<N. (14)

rior target location, can vary greatly with different realiion of Detail of the proof is in Appendix. Condition in (13) can bé-sa
the sensor observation. One way to remove the randomnesg i« in most of the currently used sensor observation nsodel
the error measures of the posterior target location estimat Given the sensor network deployment geometry and the true
to use the lower bound of the posterior localization erracm- target locationzt. the noise-free sensor observatigh1 < i <

pare the localization capability of two sensor networkswidif- - 1 pe computed according to (6). After the noise-free sen-

ferent deployment geometry. The CRB is widely used in anals, gnservation is computed, we can compute the min-entropy
ysis of the lower bound of unbiased estimators [17]-[19]e Trbosterior target location distribution as

minimum covariance matrix of the posterior target locatiis:

tribution is the CRB if the target location estimation is iaged p(x|Z; = Zz\/7 1<i<N)
COV(X|Z; = 2,1 <i < N) x p(z,1 <i < N|z)p(x)
\Vj .
> —{E(0*[Inp(z;,1 <i < Nlz)]/ox?)} ! xp(z;,1<i< Nlz)

where E(.) is expectation w.r.t. the sensor observation modeiiere we assume a uniform prior target location distributio
p(z,1 < i < N|z). As we pointed out in Section II, only p(z) to represent lack of prior knowledge about the target lo-
scalar measures of the estimation error can be directhedorgation. The minimum entropf..;, is simply the entropy of
into an order. Because the CRB is a matrix and not a scalar, t&|z), -+ , ). We can also compute the covariance matrix
CRB can not be directly sorted into any order. The CRB of tHif the min-entropy posterior target location distribution
target location estimation was converted into the RMSE ef th v _
target location estimation to compare the localizatioratéjy COV(X|Z; =z, 1 <i < N)
of multiple sensor networks of different deployment geamet T v )
in [20]. Because the covariance matrix does not fully desca (v = B(@)( - E(2))"p(e|Z; = 27,1 <1 < N)dz
distribution, the conversion from the CRB to the RMSE can not
be accurate when the distribution itself is unknown. We sieoowhereT’ is the transpose operatdty(-) is expectation with re-
the minimum entropy of the posterior target location distri SPect to the min-entropy posterior target location distrin.
tion over the lower bound of the RMSE of the posterior targé¥e name such covariance matrix the Bayesian lower bound
location distribution to compare the localization capiapibf —(BB) of the target location estimation.
different sensor network deployment because the entropy ha\We compare the BB to the CRB through two simulations of
deep roots in the well-established information theory. two-dimensional localization using TDOA sensors and range
As shown in (3), the entropy of the posterior target locaticsensors as shown in Figs. 8 and 9, respectively. For simplici
distribution H(X|Z; = z;,1 < i < N) is a function of sensor We assume the Gaussian distribution for all TDOA and range ob
observations;, 1 < i < N. Formally, servations. The standard deviati@n= 6 time units is assumed
for TDOA observations. The standard deviatioa- 4 distance
H(X|Z;=2,1<i<N)=g(z1,-"* ,2N) (10) unitsis assumed for range observations. In the upper sukefig
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Fig. 8. Comparison of the BB with the CRB in localization using TDOA Fig. 9. Comparison of the BB with the CRB in localization using range
sensors. sensors

of Figs. 8 and 9, the image color depicts 9 posterior target-lo the posterior target location distribution. The spatiafiaigon
tion distributions of the minimum entropy. Both TDOA sersorof the localization error lower bound indicates where |@zal
and range sensors are denoted by squares. The lower sudsfigtion is more accurate and where not. The upper sub-figures of
of Figs. 8 and 9 plot the elements of the BB matrix vs the cofigs. 10, 12, and 13, and both sub-figures of Fig. 11, are the
responding element of the CRB matrix. In both simulatiohs, t map views of the spatial variation of the localization etoover
BB equals the CRB element to element. The consistency wund. Sensors are denoted by square markers. The lower sub-
tween the BB and the CRB indicates that our method to compfigures of Figs. 10, 12, and 13 show the spatial variation ef th
the min-entropy posterior target location distributionwadid. localization error lower bound in detail along profild$3 and
CD that are defined in the corresponding upper sub-figure.

As shown in Fig. 10, if localization is essentially based o t

In this subsection, we use the minimum entropy of the po§DOA information among all sensors, the coverage is the re-
terior target location distribution to characterize thpetedency gion inside the convex hull of all sensors used. In the lower
of the localization uncertainty on the sensor network dgplosub-figure of Fig. 10, marke# denotes the relatively small
ment geometry and the sensor observation type through sirfawer bound of localization error inside the convex hull eov
lations. We define the coverage of a sensor network for locage. The convex hull coverage is true no matter whether TDOA
ization as the region where the target can be relatively -ac@gnsors are evenly placed or not as shown in the upper sule-figu
rately located by the sensor network. The localization uncef Fig. 11. The near-field AML algorithm only indirectly and
tainty characteristics obtained in this section providgisignce partially relies on the time difference information betwesen-
to identify the coverage of sensor networks and to deploga@ensors for localization [21]. However, the convex hull covgega
networks for the optimal localization accuracy in a givegioa. still holds even for the AML based localization as shown ia th
We have considered three types of information provided hy sdower sub-figure of Fig. 11. The minimum entropy values in
sor observations, including TDOA, the range to the targad, athe lower sub-figure of Fig. 11 are converted from the CRB of
DOA of the target signal. the AML algorithm[22]. Assuming the AML based posterior

In simulations as shown in Figs. 10-13, we consider twé#arget location estimation is Gaussian, the conversiolovil
dimensional localization using a small number of sensotB WiHmin = 1 + In(270,0,), wheres, andoy, are the square roots
Gaussian observation uncertainty for simplicity. Givereasor of the two eigenvalues of the CRB matrix. This result is censi
network deployment geometry, we consider the localizagien tent with the early findings of the convex hull charactecsbf
ror lower bound at many different locations. The localiaati TDOA based localization in [23].
error lower bound is quantified using the minimum entropy of As shown in Fig. 12, in contrast to the coverage of the TDOA

B. Effects of Sensor Placement Geometry
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Fig. 11. Spatial variation of localization uncertainty lower bound of an
unevenly placed TDOA sensors (upper) and the AML based local-
ization (lower).

Fig. 10. Spatial variation of localization uncertainty lower bound of a
TDOA sensor network.

V. CONCLUSION

sensor networks, the coverage of the range sensor netwotrks n _ _
only includes the area inside the convex hull of sensorsalset  In this paper, we have treated two related problems in sen-
extends outward to the area enclosed by the arcs. These afgsnetworks for target localization and tracking, nametg
have the convex hull edges as diameters. In the lower sukefiggensor selection p_r(_)blem and the sensor pIacemer_1t pr_Oblem [
of Fig. 12, marker+ denotes the relatively small lower bound coherent and unified framework based on Bayesian informa-
of localization error inside the coverage of the range seeor tion fusion and information theory. We have described asens
works. This result is consistent with the localization exbar- selection heuristic that approaches the quality of the@eses-
acteristics of range sensors through the CRB analysis ih [24ction deCISIO.I’l of the mutua}l information criteria but magqh
When four range sensors are unevenly placed, our simulatl@ﬁ_s computational complexny than_ th_e mutual |r_1formattun
indicates that the sensor network coverage is still endldse teria. Our sensor selection heuristic is more suitable te@e
the arcs associated with the convex hull of sensors. networks with moderate computing powers than the mutual in-

- o . . formation based sensor selections. We have also described a

As shown in Fig. 13, the localization uncertainty charaster . . S
. : . o . . method to compute the posterior target location distrdsutvith
tics using DOA information is very different from those ugin - . -~
; . o the minimum entropy. Using the minimum entropy of the poste-
TDOA or range information. Although a target inside the con- : T :
o rior target location estimation, we have characterizeddbal-

vex hull of DOA sensors is still more accurately located than

a target far from any sensor, the coverage of the DOA sené%a}tlon uncertainty of sensor networks with different platent

networks is better described as the vicinity of individuad® geometry. a’.‘d obse.rvat|on types. Such challzauon unodyta
sensors. In the lower sub-figure of Fig. 13, the DOA sensor Iéfjaractenstlcs pI’OVIde.a strategy to optlmlze the s€ otk .
cations are denoted by vertical bars. We can clearly sedhbat eployment geometry in order to achieve the optimal loealiz

relatively small lower bound of localization error is neadi tion accuracy in a given region.

vidual DOA sensors. In the simulation as shown in Fig. 13, the

standard deviation = 180/r + 0.2r degrees is assumed for APPENDIX: PROOF OF (14)

all DOA observations, whereis the distance between the tar-  according to (3) and (10), the entropy of the posterior targe
get and the DOA sensor. Whenchanges with- differently, ocation distribution is

simulations indicate that the coverage of a DOA sensor rmtwo

is still the vicinity of individual sensors, and is similas that 9(z1,-+ ,2n) =H(X|Z; = 2;,1 <i < N)

shown in Fig. 13.
—— [ plalar,en)
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Fig. 12. Spatial variation of localization uncertainty lower bound of a  Fig. 13. Spatial variation of localization uncertainty lower bound of a
range sensor network. DOA sensor network.

x Inp(z|z, -, 2y)de. whereC' is a normalization constant, then
Therefore, Op(z|z1,- -+ ,2n)/0z; = Cp(x)dp(z1, -+, zn|x)/D2;.
dg(z1, -, 2n)/0%i If the noise-free observatiozj’, 1 < i < N is acritical point of
T the sensor observation modglzy, - - - , zy|z) and maximizes
=— 8[/p(m|21, < szy)Inp(z)|zr, -0, 2N )d] /07 p(z1,- -+, zn|z) as described by (13)
{0p(z1,--- ,2n|@) [0z} _v=0,1<i<N
=— /8[p(m|z1, <o vzn)Inp(x|z, -, 2N)]/0zidx B
then
S /8p(m|z1, <o, zN)/0zilnp(x|z, -+, 2N )de {Op(x|21, - - aZN)/aZini:zV =0,1<i<N.
— /ap(xm’ <, zN)/0zidz. As aresult, the right side of (15) @5 and the entropy of the pos-
terior target location distributiog(z1, - - - , zn) is minimized
Since {09(z1,++ ,2n) [0z}, _v =0,1<i < N.
/8p(x|z1, <oy 2zN)/0zidx Thus, under the condition as described by (13), the noee-fr
observation is the observation value that results in thémuim
= 8[/p(m|z1, o zy)dx] 9z entropy of the posterior target location distribution
= 9[1]0z =2, 1<i<N.
=0 This is (14). The proof is complete.

dg(z1,-++ ,2n) /0% ACKNOWLEDGMENT
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