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Generalized Lorentz-Lorenz homogenization formulas for binary lattice metamaterials
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Generalized Lorentz-Lorenz formulas are developed for the effective parameters of binary lattice metamaterials
composed of a periodic arrangement of electric and/or magnetic inclusions. The proposed homogenization
approach is based on a dual dipole approximation for the induced currents. The obtained formulas for
the metamaterial effective electric and magnetic characteristics duly consider both electric and magnetic
polarizabilities of the inclusions and completely describe the effects of frequency and spatial dispersion. Several
numerical examples are provided to demonstrate the general applicability of the proposed formulas to different
types of binary lattices and inclusions. It is shown that the proposed effective parameters have the capability of
providing a physically sound and accurate description of wave propagation in the metamaterials in an extended
range of frequencies in contrast to the equivalent parameters that can be defined in the absence of impressed
sources and assuming a local anisotropic constitutive model, which hides inherent spatial dispersion effects and
nonphysical features. To gain further insight into the metamaterial response and the physical meaningfulness of
calculated effective parameters, the power flow of metamaterial supported modes is analyzed and its homogenized
representation is compared to the complete description. A correspondence between the power flow due to the
microscopic field and the effect of spatial dispersion in the homogenized parameters is established.

DOI: 10.1103/PhysRevB.91.205127 PACS number(s): 42.70.Qs, 78.20.−e, 42.25.Bs

I. INTRODUCTION

Metamaterials and plasmonics based on micro- and nanos-
tructured metallic-dielectric composites are bringing an im-
portant revolution to the microwave and optics fields. In fact,
metamaterials enable the realization of novel physical prop-
erties that are unattainable from natural materials. Examples
of unconventional electromagnetic (EM) behaviors in such
advanced materials include isotropic negative refraction, slow
light, near-field enhancement with controlled polarization,
as well as EM focusing and energy transfer that beats the
diffraction limit. Such exotic artificial composite structures
owe their peculiar properties both to the constituent materials,
which comprise their elementary building blocks, and to their
specific spatial arrangement.

Microwave and optical metamaterials rely on our under-
standing of EM-radiation-matter interaction, and the use of
homogenization methods can provide a convenient character-
ization of such an interaction by describing metamaterials as
bulk homogeneous materials with effective parameters that
take into account their inherent qualities and complex nature,
similarly to what is commonly done for natural materials
and artificial composites with subwavelength granularity [1].
While the concept of homogenization theory easily applies
to the asymptotic long-wavelength limit, e.g., the microwave
regime where true subwavelength structures may be fabricated
with ease, the optical regime challenges the underlying hypoth-
esis of a true subwavelength unit cell. Indeed, for artificial
materials the size of the lattice constant is typically only
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moderately smaller than the wavelength of light, in contrast
to natural materials where the wavelength-to-lattice ratio is
several orders of magnitude larger, even at optical frequencies.
As a consequence, metamaterials can be characterized by
non-negligible spatial dispersion effects [2].

A general approach to homogenize nonmagnetic periodic
metamaterials has been recently introduced [3] that is capable
of providing a comprehensive description of both spatial
and frequency dispersion phenomena. This homogenization
method is based on the Floquet representation of the field in
periodic arrays and the introduction of a single generalized per-
mittivity tensor that takes into account all the polarization ef-
fects, including artificial magnetism, bianisotropy, and higher-
order spatial dispersion effects. Then, such a homogenization
formalism has been applied to derive a generalization of the
classical Lorentz-Lorenz formulas [4] for a dielectric crystal
comprising of one particle per unit cell, in the hypothesis that
particle interaction can be described by the dipolar terms only
[5]. The Floquet-based homogenization approach developed
in [3,5] has been subsequently generalized to the presence
of electric and magnetic materials and arbitrary sources in
the homogenization theory presented in [6], which explicitly
takes into account weak spatial dispersion effects in the form
of magnetoelectric coupling at the lattice level, thus ensuring
the convergence to a local model in the long-wavelength limit.
In [6] the unit cell is assumed to be sufficiently smaller than the
operating wavelength to ensure that the induced microscopic
polarization and magnetization vectors slowly vary within
each unit cell. Upon this assumption, a Taylor expansion of
the polarization and magnetization currents to derive a self-
consistent definition of averaged fields is introduced, which is
able to extract weak spatial dispersion effects and allows an
averaged local description in the long-wavelength limit.

The aim of this paper is to extend the rigorous Floquet-based
approach developed in [3,5,6] to the homogenization of binary
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lattice metamaterials composed of a periodic arrangement
of electric and magnetic inclusions following the averaging
scheme proposed in [6] that takes into account the complex
wave interaction among inclusions, is independent of the
form of excitation, and converges to a local model in the
long-wavelength limit.

Indeed, the common approach to design a negative index
metamaterial (NIM) is to combine a magnetic sublattice, ex-
hibiting negative permeability, with an electric one, exhibiting
negative permittivity [7]. At microwaves each sublattice con-
sists of resonant metallic elements with different geometries,
like for example split rings and wires, providing the magnetic
and electric response, respectively. However, an alternative
design route has been recently suggested that consists of
exploiting the Mie resonances of individual scattering particles
of less elaborate geometry, such as cylinders or spheres,
made of electric or magnetic materials. This approach can be
conveniently applied to generate a negative permittivity and/or
permeability effect at infrared and optical frequencies, where
such simpler structures can be realized and assembled by
modern nanochemistry techniques [8], avoiding the use of the
more expensive and complicated electron-beam lithography
and focused ion-beam milling technique. Particularly, to ad-
dress a three-dimensional (3D) isotropic NIM design, the use
of spherical inclusions represents the most effective approach
and provides the additional benefit of wide bandwidth at the
electric and magnetic resonances due to the larger fraction
of unit-cell volume that they can occupy [9]. This approach,
based on the Mie resonances of spherical inclusions, has
been recently applied by several authors to realize a NIM
by combining two arrays composed of different types of
spheres. The spheres can be either of the same dielectric
material but of different size [10–12], or of different dielectric
materials but of the same size [9]. In these designs, the relative
permittivity and size of the two different spheres are chosen
to have the first electric dipole resonant frequency of the
larger spheres, or the spheres with the larger permittivity,
coinciding with the first magnetic dipole resonant frequency
of the smaller spheres, or the spheres with the smaller
permittivity. As a result, the two sets of different dielectric
spheres could together provide the electric and magnetic dipole
moments of a single set of magnetodielectric spheres [13]
with appreciable relative permittivity and permeability close
to each other, and so enable the realization of an isotropic
NIM inexpensively fabricated from purely dielectric spheres.
A negative-index composite made of two interpenetrating
lattices of polaritonic and metallic spheres has been also
reported [14].

In the materials made up of a collection of such resonant
particles, their combined scattering responses have been
originally characterized by using the effective medium model
formulated in [15], and considering the spheres resonate either
in the first or second resonant modes of the Mie series, thus
neglecting the electric polarizability of spheres in the magnetic
resonant mode. Then, this formulation has been improved in
[12] by taking into account also the electric polarizabilities of
spheres operating in the magnetic resonant modes through a
generalized form of the Clausius-Mossotti relation valid for a
material with two types of inclusions having different electric
polarizabilities [16].

These homogenization approaches do not properly take
into account wave interaction among the inclusions and
completely neglect the effect of spatial dispersion, thereby
being sufficiently accurate only when the array period and the
volume fraction of the inclusions are small, which is not the
case for most metamaterials.

In [17,18] the dispersion diagrams for 3D arrays of
two sets of dielectric and magnetodielectric spheres with
certain specific unit cell configurations have been theoretically
determined through the spherical modal analysis originally
developed in [19], and the equivalent permittivity and perme-
ability of the arrays have been deduced from the solution of the
dispersion equation. However, this procedure, besides being
restricted to two specific binary lattice configurations, still
suffers from significant drawbacks because magnetoelectric
coupling effects are embedded into the equivalent permittivity
and permeability parameters as a form of weak spatial
dispersion, such that the frequency dispersion of the equivalent
parameters may contain nonphysical artifacts and not satisfy
passivity, reciprocity, or other causality constraints typical of
local parameters, as explained in detail in [6,20].

In this work we extend the generalized Lorentz-Lorenz
(GLL) method proposed in [5] to the case when the unit cell
of the periodic array contains more than one inclusion, for
application to the homogenization of the class of binary lattice
metamaterials, to which all the aforementioned NIM designs
[9–14] belong. Based on the Floquet representation of the
field in a periodic array used in optical crystals and further
developed in [5,6] to describe the peculiar effects arising in
periodic metamaterials, we develop a homogenization model
for binary metamaterial arrays formed by spherical electric
and magnetic particles that within a dipolar approximations
for the induced current takes into account the complex wave
interaction among inclusions. The proposed model provides a
physically meaningful description of a wide class of binary
metamaterials, valid even when the density of inclusions
is not very small and classic homogenization models, like
Clausius-Mossotti relations, lose their accuracy. Furthermore,
this model properly takes into account weak forms of spatial
dispersion in binary metamaterials and determines effective
parameters that have local properties in the long-wavelength
limit, differently from the equivalent parameters that, consis-
tently with the terminology introduced in [6], can be defined
in the absence of impressed sources upon the assumption
of a local anisotropic constitutive model, and can only be
used to describe the scattering properties of a metamaterial
sample.

The paper has the following organization. In Sec. II the
Floquet-based homogenization approach is generalized to the
case when the unit cell of the periodic array contains more
than one inclusion of electric and magnetic materials. In
Sec. III closed-form expressions for the effective constitutive
parameters are derived. In Sec. IV the effective parameters are
applied to the solution of the dispersion equation. In Sec. V
we analyze the homogenization model in the long-wavelength
limit. Then, in Sec. VI, the relation between the effective
parameters and the equivalent parameters defined upon the
assumption of local anisotropic constitutive relations for the
metamaterial and in the absence of impressed sources is
provided. Section VII assesses the definition of the EM power
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flow in the homogenized approach. Finally, Sec. VIII validates
our model with numerical examples and further discussion.

II. FORMULATION

We consider a 3D periodic array consisting of a binary
nanoparticle superlattice. The primitive vectors of the array
are denoted by a1, a2, and a3, such that the unit cell volume
is Vcell = a1 · (a2 × a3). The reciprocal lattice is described
by the vectors b1,2,3 = 2π (a2,3,1 × a3,1,2)/Vcell. The binary
lattice consists of two types of inclusions that can be dielectric,
magnetic, or conducting. To calculate the effective parameters
of the array we follow the approach [6] and we assume the
presence of impressed sources with arbitrary eik·re−iωt space
and time harmonic dependence, uniformly distributed all over
the array. As in [6] the microscopic fields E(r),H(r) satisfy
Maxwell’s equations

∇ × E(r) = iωμh H(r) + iωM(r) − K exte
ik·r ,

(1)
∇ × H(r) = −iωεh E(r) − iωP(r) + J exte

ik·r ,

where J exte
ik·r and K exte

ik·r are space harmonic electric
and magnetic external current independently applied to the
material, P(r) and M(r) are local polarization (including also
conduction) and magnetization currents induced in the cell,
and εh, μh are the host medium permittivity and permeability,
respectively. In (1) the common time harmonic dependence
e−iωt is suppressed. Because of spatial 3D periodicity, all
fields can be expanded in Bragg modes, and in this work
it is assumed that the averaged fields coincide with the
corresponding fundamental harmonics providing the dominant
contributions to the local fields

Fav = 1

Vcell

∫∫∫
�

F(r)e−ik·rd3r, (2)

where F denotes any field or current quantity and � is the
metamaterial unit cell. In the Fourier domain, Maxwell’s
equations for the homogenized fields read as

ik × Eav = iωμh Hav + iωMav − K ext,
(3)

ik × Hav = −iωεh Eav − iωPav + J ext.

Generally this assumption would not provide an effective
homogenized description of a metamaterial. Indeed, a main
shortcoming of this approach could be that when the inclusions
are formed by purely magnetic or dielectric materials the
effective permittivity εeff and permeability μ

eff
would be

equal to εh and μh, respectively, implying that artificial
magnetic or electric polarization effects stemming from the
rotation of electric or magnetic polarization, respectively,
remain hidden as spatial dispersion effects in the tensors εeff or
μ

eff
. Specifically, we do not refer here to polarization currents

associated with the resonances of individual inclusions (e.g.,
the circulating electric currents that can support the magnetic
resonance of a nonmagnetic particle), which in our approach
are completely subsumed into particle polarizabilities, as
clarified in the following, but rather to other resonance effects
possibly arising from currents induced across distinct particles
in the metamaterial unit cell. In this regard, it must be noted that
in contrast to other metamaterial structures that are engineered

to force the electric field to circulate in the plane orthogonal
to the incident magnetic field, providing an overall magnetic
resonance (e.g., nanorings [21] and nanoclusters [22]), most
binary lattices possess enough symmetries that higher order
multipoles associated with polarization currents induced in
different inclusions across the unit cell exactly vanish in
the long wavelength limit. As a result, artificial magnetic
effects stemming from the rotation of electric polarization
currents across distinct particles in most binary lattices will be
negligible with respect to the effective magnetic polarization
induced at the level of each resonant inclusion. Similarly, the
total electric polarization in the unit cell is mainly due to the
electric polarizability of the inclusions.

Within the homogenization scheme above, we introduce
a dipolar approximation and assume that the microscopic
electric and magnetic current distributions in the unit cell can
be described by a superposition of electric ( pn

e , n = 1,2) and
magnetic ( pn

m, n = 1,2) dipole moments

P(r) = p1
eδ(r − r1) + p2

eδ(r − r2),
(4)

M(r) = p1
mδ(r − r1) + p2

mδ(r − r2),

where rn, n = 1,2, denotes the position vector of the inclusion
centres. Such a dual dipole approximation for the induced cur-
rents can be a good approximation when particle dimensions
are much smaller than the wavelength in the host medium,
and when the edge-to-edge spacing between spheres is larger
than the radius of the spheres. Even for smaller distances this
approximation can provide satisfactory results [22], though in
general when spacing between the spheres becomes smaller
than their radius, more accurate results may require taking
into account also multipole field contributions. Moreover, we
consider that the material is generally formed by bianisotropic
particles. In such a case, the induced dipole moments can be
related to the local fields as

pn
e = αn

eeεh · Eloc(rn) + αn
em

√
εhμh · H loc(rn)

pn
m = αn

me

√
εhμh · Eloc(rn) + αn

mmμh · H loc(rn), n = 1,2,

(5)

where αn
ee, αn

em, αn
me, αn

mm (n = 1,2) are the electric, elec-
tromagnetic, magnetoelectric, and magnetic polarizability
dyadics, respectively; all of which have dimensions of a
volume. The local field at each particle position can be
expressed as

Eloc(rn) = Eexte
ik·rn + Es(rn),

(6)
H loc(rn) = Hexte

ik·rn + H s(rn),

where Eext, Hext denote the space harmonic field radiated by
the external sources as if the metamaterial inclusions were not
present (incident field), i.e., in the unbounded homogeneous
background material, satisfying

ik × Eext = iωμh Hext − K ext,
(7)

ik × Hext = −iωεh Eext + J ext,

and Es(rn), H s(rn) are the induced fields scattered from
the array except the inclusion at rn. Es(rn), H s(rn) can be
expressed in terms of the 3D array dyadic Green’s functions
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as

Es(rn) = Es,ave
ik·rn +

2∑
�=1

1

εh

C int(rn − r�) · p�
e

+
2∑

�=1

1√
εhμh

Ce,m(rn − r�) · p�
m,

H s(rn) = H s,ave
ik·rn −

2∑
�=1

1√
εhμh

Ce,m(rn − r�) · p�
e

+
2∑

�=1

1

μh

C int(rn − r�) · p�
m, (8)

where Es,av, H s,av represent the contribution of the field
scattered by the inclusions to the average electric and magnetic
fields, and the dyadic regularized (both in space and spectrum)
Green’s functions [3,5] are defined as

C int(r − r ′) = [
k2
h1− + ∇∇]

�reg(r − r ′),

Ce,m(r − r ′) = i

kh

∇ × C int(r − r ′) = ikh∇ × 1−�reg(r − r ′),

(9)

in which kh = ω
√

εhμh is the host medium wave number, and
�reg is the regularized scalar Green’s function

�reg(r − r ′) =
{
�p(r − r ′) − �ave

ik·(r−r ′) if r �= r ′,
�p(r − r ′) − �ave

ik·(r−r ′) − �f (r − r ′) if r = r ′, (10)

with

�av = 1

Vcell

1

k · k − k2
h

, �f (r − r ′) = eikh|r−r ′|

4π |r − r ′| , (11)

and

�p(r) =
∑

I

�f (r − r I ,ω)eik·r I = 1

Vcell

∑
I

eikI ·r

kI · kI − k2
h

. (12)

The latter is the crystal periodic scalar Green’s function, i.e., the field produced by an array of point sources located
at lattice point positions r I = p1a1 + p2a2 + p3a3 (with spatial density 1/Vcell), with I = (p1,p2,p3) a triple index of
integers, and excited with the imposed phase progression eik·r I . Such a scalar periodic Green’s function is regularized in
space when evaluated at r = r ′, by extracting the free-space component �f (r − r ′) [i.e., the I = (0,0,0) contribution], not to
include the contribution of the particle � = n at rn when evaluating the field at rn, as prescribed by the local field definition,
but only the contributions corresponding to the particles in the same position in all the other cells as in the reference one. In
addition, the scalar periodic Green’s function, which also admits a discrete spectral representation in terms of Bragg’s space
harmonic waves with wave numbers kI = q1b1 + q2b2 + q3b3 + k, with I = (q1,q2,q3) a triple index of integers, is regularized
in the spectral (wave number) domain at k · k = k2

h, by extracting the I = (0,0,0) k000 = k Bragg’s harmonic corresponding to
the homogenized average field. Such terms appear explicitly in (8) as the first terms on the right-hand side:

Es,av = 1

Vcell

1

k · k − k2
h

{
1

εh

[
k2
h1− − kk

] ·
2∑

�=1

p�
ee

−ik·r� − ωk × 1− ·
2∑

�=1

p�
me−ik·r�

}
,

(13)

H s,av = 1

Vcell

1

k · k − k2
h

{
ωk × 1− ·

2∑
�=1

p�
ee

−ik·r� + 1

μh

[
k2
h1− − kk

] ·
2∑

�=1

p�
me−ik·r�

}
.

The remaining part of the particle scattered field in (8) is therefore the fluctuation of the microscopic field in addition to its
macroscopic average.

III. EFFECTIVE PARAMETERS

Substituting (8) into (6) and expressing the local fields Eloc, H loc by means of (5) provides a linear system that can be solved
to obtain the explicit expressions of the particle dipole moments:

2∑
�=1

[
1−δn� − αn

eeC int(rn − r�) + αn
emCe,m(rn − r�)

] · p�
e +

√
εh

μh

2∑
�=1

[−αn
eeCe,m(rn − r�) − αn

emC int(rn − r�)
] · p�

m

= εh

[
αn

ee · (Eext + Es,av) +
√

μh

εh

αn
em · (Hext + H s,av)

]
eik·rn ,
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2∑
�=1

√
μh

εh

[−αn
meC int(rn − r�) + αn

mmCe,m(rn − r�)
] · p�

e +
2∑

�=1

[
1−δn� − αn

meCe,m(rn − r�) − αn
mmC int(rn − r�)

] · p�
m

= μh

[√
εh

μh

αn
me · (Eext + Es,av) + αn

mm · (Hext + H s,av)

]
eik·rn , (14)

with n = 1,2. The above linear system is recast in the following matrix block form:

[
1−δn� − αn

eeC int(rn − r�) + αn
emCe,m(rn − r�) −αn

eeCe,m(rn − r�) − αn
emC int(rn − r�)

−αn
meC int(rn − r�) + αn

mmCe,m(rn − r�) 1−δn� − αn
meCe,m(rn − r�) − αn

mmC int(rn − r�)

]
12×12

·

⎡
⎢⎢⎢⎣

p�
e

εh

p�
m√

εhμh

⎤
⎥⎥⎥⎦

12×1

=
[
αn

eee
ik·rn αn

emeik·rn

αn
mee

ik·rn αn
mmeik·rn

]
12×6

·
[

Eav

ζh Hav

]
6×1

, (15)

where indices (n,�), correspond to the 3 × 3 dyadic coefficients describing the contribution to the microscopic field at rn of the
�th electric and magnetic dipoles arranged along the rows and columns of the system matrix, respectively, and we have introduced
the vectors Eav,Hav corresponding to the total average fields

Eav = Eext + Es,av, Hav = Hext + H s,av. (16)

Then the induced electric and magnetic dipoles can be expressed as⎡
⎢⎢⎢⎣

p�
e

εh

p�
m√

εhμh

⎤
⎥⎥⎥⎦

12×1

=
[

A�n
ee A�n

em

A�n
me A�n

mm

]
12×12

·
[

αn
eee

ik·rn αn
emeik·rn

αn
mee

ik·rn αn
mmeik·rn

]
12×6

·
[

Eav

ζh Hav

]
6×1

, (17)

where[
A�n

ee A�n
em

A�n
me A�n

mm

]
12×12

=
[

1−δn� − αn
eeC int(rn − r�) + αn

emCe,m(rn − r�) −αn
eeCe,m(rn − r�) − αn

emC int(rn − r�)

−αn
meC int(rn − r�) + αn

mmCe,m(rn − r�) 1−δn� − αn
meCe,m(rn − r�) − αn

mmC int(rn − r�)

]−1

12×12

.

(18)

As anticipated in Sec. II, most binary lattices, e.g.,
body and face centered cubic (bcc and fcc) lattices, and
hexagonal lattices, possess enough symmetries that higher
order multipoles associated with the polarization currents
induced in distinct inclusions exactly vanish in the long
wavelength limit when k → 0. As a result, the artificial
magnetic effect stemming from electric polarization currents in
distinct inclusions assuming a circulating pattern is generally
much weaker than the magnetic polarization induced in the
resonant electric or magnetic inclusions and described by
αn

mm, at least for moderate values of k. In other words, the
magnetic response of a binary metamaterial essentially arises
from the magnetic resonance of individual particles that within
the adopted dual dipole approximation is incorporated into a
resonant magnetic polarizability. This is the reason why a
distinction is made between magnetic resonance of individual
inclusions and other magnetic effects possibly associated
with the induced current distributions across distinct particles.
Analogously the total electric polarization in the unit cell is
mainly due to the electric polarizability of the inclusions while
the circulating magnetic polarizability contribution to it is
negligible. For similar reasons, both the electric and magnetic
quadrupole moments in the unit cell, possibly supported by
the distribution of the polarization currents across distinct
inclusions, are also usually negligible.

Upon the above considerations, the distributions of P(r)
and M(r) are described exclusively in terms of electric and
magnetic dipole moments and we write the constitutive model
relating averaged displacement vectors in the form [6]

Dav = εh Eav + Pav, Bav = μh Hav + Mav, (19)

where average polarization and magnetization are defined,
according to (2), as

Pav = 1

Vcell

∫
�

P(r)e−ik·rd3r = 1

Vcell

2∑
�=1

p�
ee

−ik·r� ,

(20)

Mav = 1

Vcell

∫
�

M(r)e−ik·rd3r = 1

Vcell

2∑
�=1

p�
me−ik·r� .

Substituting (17) into (20) yields

Pav = εh

Vcell

2∑
�,n=1

(
A�n

eeα
n
ee + A�n

emαn
me

)
eik·(rn−r�) · Eav

+
√

εhμh

Vcell

2∑
�,n=1

(
A�n

eeα
n
em + A�n

emαn
mm

)
eik·(rn−r�) · Hav,
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Mav =
√

εhμh

Vcell

2∑
�,n=1

(
A�n

meα
n
ee + A�n

mmαn
me

)
eik·(rn−r�) · Eav

+ μh

Vcell

2∑
�,n=1

(
A�n

meα
n
em + A�n

mmαn
mm

)
eik·(rn−r�) · Hav,

(21)

and comparing (19) to the constitutive relations for a bian-
isotropic material

Dav = εeff · Eav + ξ
eff

· Hav,
(22)

Bav = μ
eff

· Hav + ζ
eff

· Eav,

we obtain the following expressions for the effective parame-
ters of a binary metamaterial:

εeff = εh

[
1− + 1

Vcell

2∑
�,n=1

(
A�n

eeα
n
ee + A�n

emαn
me

)
eik·(rn−r�)

]
,

μ
eff

= μh

[
1−+

1

Vcell

2∑
�,n=1

(
A�n

meα
n
em+A�n

mmαn
mm

)
eik·(rn−r�)

]
,

ξ
eff

= √
εhμh

1

Vcell

2∑
�,n=1

(
A�n

eeα
n
em + A�n

emαn
mm

)
eik·(rn−r�),

ζ
eff

= √
εhμh

1

Vcell

2∑
�,n=1

(
A�n

meα
n
ee + A�n

mmαn
me

)
eik·(rn−r�).

(23)

The closed form expressions (23) with (18) provide the
effective constitutive parameters of a binary metamaterial valid
for any pair (ω,k) and arbitrary electric and/or magnetic exci-
tation, thereby this homogenized description does not depend
on the specific impressed field distribution in each unit cell but
instead represents the inherent response of the metamaterial
as a bulk. The first two relations in (23) represent closed form

expressions for the effective permittivity and permeability of
a binary metamaterial that generalize the Clausius-Mossotti
homogenization formulas [16] by rigorously taking into
account the coupling among the inclusions and their polar-
ization properties. It can also be observed that the presence
of magnetoelectric coupling is described by the bianisotropy
parameters ξ

eff
and ζ

eff
. Indeed these parameters comprise

two contributions: one is associated with magnetoelectric
effects at the inclusion level, which are incorporated in
the model through the electromagnetic and magnetoelectric
polarizabilities αn

me, αn
em, n = 1,2; the other one is associated

with inherent magnetoelectric coupling effects arising at the
lattice level and taken into account by Ce,m. It can be verified
that for reciprocal inclusions, such that αn

ee = [αn
ee]t and

αn
mm = [αn

mm]t are symmetric and αn
em = −[αn

me]t , due to the
different symmetries with respect to k of the regularized
dyadic Green’s functions C int(k) = [C int(−k)]t and Ce,m(k) =
−[Ce,m(−k)]t , the constitutive relations defined in (23) with
(18) satisfy the reciprocity property εeff(k) = [εeff(−k)]t ,
μ

eff
(k) = [μ

eff
(−k)]t , and ζ

eff
(k) = −[ξ

eff
(−k)]t . Besides,

for nonbianisotropic inclusions, such that αn
me = αn

em = 0−,

n = 1,2, the bianistropy of the material only stems from the
asymmetry introduced by phase propagation across the unit
cell and in this case from the corresponding simplified form
of (23), for centrosymmetric crystals it can be found that
ζ

eff
(k) = [ξ

eff
(k)]t . The latter property, in combination with

reciprocity, implies that ξ
eff

(k) = −ξ
eff

(−k) and ζ
eff

(k) =
−ζ

eff
(−k) [23].

IV. LONG WAVELENGTH LIMIT

In the long wavelength limit and far from the inclusion
resonances, i.e., under the conditions khai � 1, kai � 1, i =
1,2,3, Ce,m ∼ 0 and the bianistropic effects of the lattice are
negligible and the coupling dyad becomes diagonal C int ∼
Cint1−. Considering for simplicity the case of isotropic particles

(αn
ee = αn

ee1−, αn
mm = αn

mm1−, αn
me = αn

em = 0−), the constitutive

parameters become

εeff = εh

{
1 + 1

Vcell

α1
ee + α2

ee − 2α1
eeα

2
ee[Cint(0) − Cint(r1 − r2)]

1 − Cint(0)
(
α1

ee + α2
ee

) + α1
eeα

2
ee{[Cint(0)]2 − [Cint(r1 − r2)]2}

}
,

(24)

μeff = μh

{
1 + 1

Vcell

α1
mm + α2

mm − 2α1
mmα2

mm[Cint(0) − Cint(r1 − r2)]

1 − Cint(0)
(
α1

mm + α2
mm

) + α1
mmα2

mm{[Cint(0)]2 − [Cint(r1 − r2)]2}

}
.

It is recognized that the above expressions reduce to the gener-
alized Clausius-Mossotti relations for the effective permittivity
and permeability of binary lattices in the static case [12,16]

εeff = εh

[
1 + 1

Vcell

(
α1

ee + α2
ee

)
1 − 1

3Vcell

(
α1

ee + α2
ee

)]
μeff

= μh

[
1 + 1

Vcell

(
α1

mm + α2
mm

)
1 − 1

3Vcell

(
α1

mm + α2
mm

)]
, (25)

provided that we make use of the well-known relation

C int(ω → 0,k → 0) ∼ 1

3Vcell
1−, (26)

and we take into account that at ω = 0 Cint(0) ∼ Cint(r1 − r2).
However, neglecting the (ω,k) dependence of the interaction
dyadics and actual particle displacement can give results
significantly different from those obtained with the formulas
developed in this work.
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V. DISPERSION EQUATION AND EIGENMODAL
PROPAGATION

The eigenmodal solutions corresponding to the waves
that can propagate in the periodic array in the absence of
external sources can be found by placing Eext = Hext = 0
in (14). Alternatively, to find the eigenmodes in the binary
metamaterial we can exploit Maxwell’s equations in the
absence of sources

k × Eav = ωBav, k × Hav = −ωDav. (27)

Upon substitution of the constitutive relations (22), (27) can
be rearranged as follows:

μ−1
eff

(
k
ω

× Eav − ζ
eff

· Eav

)
= Hav,

(28)(
k
ω

× 1− + ξ
eff

)
· Hav = −εeff · Eav.

Combining the two expressions in (28) we obtain the
following dispersion equation for a generic bianisotropic
medium:[(

k
ω

× 1− + ξ
eff

)
μ−1

eff

(
k
ω

× 1− − ζ
eff

)
+ εeff

]
· Eav = 0.

(29)
The nontrivial solutions of this equation, obtained by equat-

ing to zero the determinant of the dyadic tensor multiplying
Eav, correspond to the specific pair (ω,k) satisfying the array
dispersion relation and characterizing the eigenmodes propa-
gating in the binary metamaterial. It is noted that solutions of
(29) comprise both transverse and longitudinal eigenmodes.

VI. EQUIVALENT PARAMETERS

Standard homogenization procedures usually retrieve only
two equivalent parameters, εeq and μ

eq
, to macroscopically

describe metamaterials by a local anisotropic constitutive
model. As explained in [6,20], and also pointed out in the
previous sections, these equivalent parameters embed the
magnetoelectric coupling effects as a form of weak spatial
dispersion. As a result, at frequencies where magnetoelectric
coupling is non-negligible, equivalent parameters may exhibit
nonphysical behavior, unlike the well-behaved effective pa-
rameters. This can be easily recognized by examining the re-
lation between the effective parameters derived before and the
equivalent ones. By using Maxwell’s equations in the absence
of sources and the constitutive relations (22) we can write

Eav = −ε−1
eff

(
k
ω

× 1− + ξ
eff

)
· Hav,

(30)

Hav = μ−1
eff

(
k
ω

× 1− − ζ
eff

)
· Eav.

Substituting (30) into (22) we have

Dav =
[
εeff + ξ

eff
μ−1

eff

(
k
ω

× 1− − ζ
eff

)]
· Eav = εeq · Eav,

Bav =
[
μ

eff
− ζ

eff
ε−1

eff

(
k
ω

× 1− + ξ
eff

)]
· Hav = μ

eq
· Hav.

(31)

Comparing (31) to the constitutive relations for an
anisotropic material the equivalent parameters can be ex-
pressed as

εeq = εeff + ξ
eff

μ−1
eff

(
k
ω

× 1− − ζ
eff

)
,

(32)

μ
eq

= μ
eff

− ζ
eff

ε−1
eff

(
k
ω

× 1− + ξ
eff

)
.

As evident, both the equivalent permittivity and equivalent
permeability also include the magnetoelectric coupling effects
and contain an explicit dependence on k. It can be shown
that the relations derived coincide with those developed in
[6,20]. Since derivation of (32) relies on the use of Maxwell
equation in the absence of impressed sources it is implicit that
the description with the equivalent parameters is valid only for
eigenmodal propagation.

VII. POWER AND MACROSCOPIC POYNTING VECTOR

To gain further insight into the metamaterial electromag-
netic response, it is useful to make some considerations about
power. The spatially averaged macroscopic Poynting vector is
defined as the average over the cell of the microscopic Poynting
vector, i.e.,

Sav = 1

Vcell

∫∫∫
�

1

2
Re{E(r) × H∗(r)}d3r. (33)

The expansion of the microscopic fields in terms of Floquet
space harmonics

E(r) =
∑

I

E Ie
ik·reikI ·r

= Eave
ik·r + eik·r ∑

I �=(0,0,0)

E Ie
ikI ·r ,

H(r) =
∑

I

H Ie
ik·reikI ·r

= Have
ik·r + eik·r ∑

I �=(0,0,0)

H Ie
ikI ·r (34)

is interpreted as the superposition of the I = (0,0,0) harmonic,
corresponding to the homogenized average electric Eav and
magnetic Hav fields, and all the higher order harmonics
I �= (0,0,0) providing the fluctuation of the microscopic
fields around their averages. By exploiting (34) and Floquet
harmonic power orthogonality, the spatially averaged Poynting
vector (33) can be split into the sum of two terms associated to
the macroscopic fields and to the fluctuation of the microscopic
fields, respectively,

Sav = 1

2
Re

{
Eav × H∗

av

} +
∑

I �=(0,0,0)

1

2
Re{EI × H∗

I }. (35)

Indeed because of the nonlinear nature of power definition,
the zero-average fluctuation of the microscopic fields also
contributes to the average macroscopic Poynting vector [24].

On the other hand, according to the proposed homoge-
nized model for the bulk material, described by its effective
constitutive parameters, the Poynting vector can be expressed
as that in a homogeneous material. As highlighted in [2,25],
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spatial dispersion has to be duly taken into account to exactly
determine the energy flux density. In a transparent (i.e.,
lossless) medium the spatial dispersion is in fact responsible
for the appearance of an additional term in the definition of the
Poynting vector. The formula provided in [2,25] for a spatially
dispersive medium characterized only by the permittivity, can
be easily extended to a composite structure described by a
homogenized bianisotropic model

Sh
av = S0 + S1 = 1

2
Re{Eav × H∗

av}

− 1

4
ω∇k[E∗

av · εeff (ω,k) · Eav + E∗
av · ξ

eff
(ω,k) · Hav

+ H∗
av · ζ

eff
(ω,k) · Eav + H∗

av · μ
eff

(ω,k) · Hav],(36)

where ∇k = ∑3
p=1

∂
∂kp

ûp is the nabla differential operator
with respect to k. By comparing (35) and (36) the coincidence
of the first terms is evident; also the second terms are expected
to substantially correspond as far as spatial dispersion is weak.
Indeed, the importance of the additional term appearing in
(36) involving partial derivatives of the constitutive parameters
with respect to the wave number to correctly calculate the
macroscopic Poynting vector within the framework of an
effective medium theory for either natural media or arbitrary
metamaterials has been discussed in a few previous works
[24,26–28]. Results of numerical comparisons between Sav

and Sh
av are presented in the following section dedicated to the

homogenization of sample metamaterial structures.

VIII. NUMERICAL RESULTS AND DISCUSSION

The formulation developed in this paper is general and
can be applied to lossy, bianisotropic and magnetodielectric
inclusions, and arbitrary source distribution. However, nu-
merical results presented in this section are obtained by the
application of the proposed GLL formulas for the effective
parameters of binary metamaterials limitedly to the case of
superlattices whose unit cell consists of two different types
of lossless dielectric inclusions and eigenmodal propagation.
In particular, we consider certain metamaterial configurations
that have been proposed or examined in the previous literature
with the twofold aim of validating these GLL formulas and
showing the difference between this homogenization theory
and techniques based on the extraction of effective material
parameters from eigenmodal solutions. In all the following
examples, metamaterial inclusions are spherical and their
electric and magnetic polarizabilities are obtained from the
exact Mie solution for the scattering from an isolated sphere
[29]. It is noteworthy that for close packed arrays more accurate
estimations of the polarizabilities, including the additional
capacitive effects from neighboring spheres, could be obtained
by the method outlined in [30].

As the first example, we examine the properties of the
binary metamaterial structure proposed in [10,11] and then
further analyzed in [12,17], that consists of a fcc arrangement
of spherical inclusions of the same dielectric material but
of different sizes, as depicted in Fig. 1. The superposition
of the Mie electric and magnetic resonances of these two
sets of spheres can excite both electric and magnetic dipole
resonance modes in the structure, and lead to the creation of

FIG. 1. (Color online) Geometry of a binary metamaterial crystal
with a fcc lattice comprising two dielectric inclusions of the same
dielectric material with εr,1 = εr,2 = 400 but with different radii a1 =
0.748 mm and a2 = 1.069 mm [10–12,17]. (a) The unit cell and (b)
an illustrative portion of the metamaterial lattice.

a 3D isotropic medium with simultaneous negative effective
permittivity and permeability. We refer in particular to the
results presented in Figs. 2–4 of [17] for the dispersion diagram
and the effective parameters of a binary metamaterial of
lossless dielectric spheres characterized by the same relative
permittivity εr,1 = εr,2 = 400, and with radii a1 = 0.748 mm
and a2 = 1.069 mm. The period of the lattice is d = 4 mm.
The propagation vector is assumed along the z direction,
namely k = k ẑ, and the host medium is free space. The
dispersion diagram for the transverse mode calculated by (29)
is plotted in Fig. 2 and compared with the corresponding
results obtained by Shore and Yaghjian (SY) (cf. Fig. 2 in
[17]) and with full wave (FW) simulations. As apparent, the
dispersion curves calculated by the GLL approach are in
perfect agreement with those determined in [17] through a
spherical modal analysis. The agreement is very good also
with the FW analysis performed with Ansys HFSS, except for
the presence of the additional mode plotted in green dots that
is practically superimposed with the backward wave branch
existing for 0.825 � (ω/c)d � 0.85. The FW simulation of

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

k d

cd

GLL
S-Y
FW
FW

FIG. 2. (Color online) Dispersion diagram for the binary fcc
lattice of dielectric spheres from Fig. 1. Curves calculated by the
extended GLL method (solid blue lines) are compared with the plots
provided in Fig. 2 of [17] (dashed red lines) and results of FW
simulations performed with Ansys HFSS (black and green dots, for
dipolar and multipolar resonance modes, respectively).
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FIG. 3. (Color online) (a) Effective and (b) equivalent relative
permittivity and permeability for the binary fcc lattice of dielectric
spheres from Fig. 1. GLL method results for the equivalent parameters
are compared with those from Shore and Yaghjian (SY) [17] (gray
shaded regions denote band gaps).

the corresponding field pattern has revealed that the mode
is supported by a higher order multipole resonance of the
spherical inclusions. It is therefore not surprising that this
mode is not discovered by the proposed GLL method due to
the underlying dual dipole approximation for the current distri-
bution induced in the inclusions, which implies that the method
cannot predict propagating modes associated with high order
multipole distribution of the field in the constituent particles.

In Fig. 3(a) is plotted the frequency dispersion of the ef-
fective parameters calculated by means of (23) for the specific
pairs (ω,k) corresponding to the high frequency portion of the
dispersion diagram in Fig. 2 centered around the backward
wave branch 0.825 � (ω/c)d � 0.85. Moreover, in Fig. 3(b)
the equivalent parameters calculated through the GLL method
and (32) are compared with the equivalent permittivity εeq and
permeability μ

eq
obtained in [17] from the eigenmodal analysis

and by writing the constitutive relations as in a local isotropic
material [6]. As apparent, the effective parameters derived in
[17] practically coincide with the equivalent parameters εeq,
μ

eq
obtained by the GLL approach. However, as highlighted in

[6], the equivalent parameters inherently contain a hidden form
of weak spatial dispersion associated with magnetoelectric
coupling, and this may translate into inconsistencies and lack
of physical meaning in their dispersion. This can be easily

0.825 0.83 0.835 0.84 0.845 0.85
-1.5

-1
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0
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1

1.5
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h
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S
, S

,
S

, S
av

avh
0

1

FIG. 4. (Color online) Average macroscopic Poynting vector for
the transverse mode (normalized to unit power density) calculated in
terms of Floquet space harmonics (Sav), or by formula (36) for the
Poynting vector of a homogenized spatial dispersive medium (Sh

av),
compared with the contributions of the macroscopic fields to the
average Poynting vector (S0) and that related to spatial dispersion
effects (S1) for the binary lattice from Fig. 1 (gray shaded regions
denote band gaps).

discerned by comparing Figs. 3(a) and 3(b). It can be observed
that in the low-frequency regime, well below the first band
gap, equivalent and effective parameters coincide: they are
both positive and practically constant with frequency. In this
limit, classic homogenization techniques apply very well, and
the metamaterial behaves as a regular mixture. Approaching
the band gap, the effective permittivity maintains its physical
meaning and exhibits a typical Lorentzian dispersion and
positive slope. On the contrary, the equivalent permittivity
experiences an anomalous antiresonant response. This is a
typical behavior of the permittivity obtained by standard
retrieval techniques, due to the fact that it includes the effect of
magnetoelectric coupling, i.e., the contribution of the average
magnetic field to the average electric polarization.

In Fig. 4 is plotted the average macroscopic Poynting
vector, calculated by using both expressions (35) and (36),
for the above investigated transverse mode, whose amplitude
is normalized to have unit power density |Sav| = 1 at any
frequency. Not unexpectedly, these two curves practically
coincide, and their sign, which represents the direction of
the group velocity and total energy of the propagating modal
wave with respect to the phase velocity, i.e., the wave vector,
which is assumed to be oriented along the positive z axis,
is consistent with the slope of the various branches of the
dispersion diagram in Fig. 2, as well as with the sign of
the equivalent parameters. It can also be observed that the
macroscopic field provides the dominant contribution S0 to
the average Poynting vector, whereas the additional term S1

appearing in (36), which is related to spatial dispersion effects,
is practically negligible everywhere except for the region
where the mode is backward and close to the preceding band
gap. By the low frequency edge of such band gap, S1 flows
in the opposite direction with respect to S0 and the direction
of propagation, and its amplitude progressively increases to
determine the vanishing of the total power flow in the band gap.
Instead, in the backward region S1 is predominantly parallel
to S0 and counterdirected the wave vector, with the exclusion
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FIG. 5. (Color online) Geometry of a binary lattice metamaterial
composed of two sets of dielectric spheres of the same dielectric
material εr,1 = εr,2 = 40 but of different size a1 = 0.5 and a2 =
0.356 cm [18]. (a) The unit cell and (b) an illustrative portion of
the metamaterial lattice.

of a small range near the high-frequency mode-gap edge. It
is further noted that S0 making the prevailing contribution to
Sav and being parallel to it over all the examined frequency
range ensures the accordance between the trend of equivalent
parameters and the dispersion curves.

To illustrate that the developed GLL method is appli-
cable to arbitrary binary lattice configurations, in contrast
to homogenization techniques previously reported which
are restricted to specific binary lattice geometries and/or
propagation directions [17,18], we have further analyzed the
metamaterial structure characterized in Fig. 7 of [18] by using
the same spherical modal analysis originally proposed in [19].
As in the previous example, this structure is formed by a
periodical arrangement of dielectric spheres with the same
relative permittivity but two different sizes. However, the array
is no longer a fcc lattice but is instead organized into alternating
planes of same particles which are orthogonal to the array axis,
as shown in Fig. 5. In particular, the inclusions have relative
permittivity εr,1 = εr,2 = 40 and radii equal to a1 = 0.5 and
a2 = 0.356 cm. The periods of the cell are hx = hy = 1.8 cm,
d = 1.1 cm along the x,y,z directions, respectively, and the
distance between the planes containing spheres of the different
size is h = hx/2. The background is free space and the
propagation vector k = k ẑ is assumed along the z axis.

The dispersion diagram for the x-polarized transverse
modes propagating in this composite as calculated by (29)
is plotted in Fig. 6 in comparison with the corresponding
results obtained by Ghadarghadr and Mosallaei (GM) in
Fig. 7 of [18]. GLL results have been further validated by
performing also FW calculations of the dispersion diagram
of this structure with CST Microwave Studio. While between
GLL and GM dispersion curves there is some disagreement at
higher frequencies, generally the GLL dispersion data agree
well with FW results, except for the existence of the additional
mode between 1.5 � kd � 1.58 revealed by FW simulations
and not detected by the GLL analysis. However, also for this
structure, inspection of the FW simulated pattern of the mode
field distribution has revealed that the mode is associated with
a higher order multipole resonance of the inclusions, which
cannot be discovered with the dual dipole approximation used
in the GLL technique.
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FIG. 6. (Color online) Dispersion diagram for the binary lattice
depicted in Fig. 5. Curves calculated by the extended GLL method
(solid blue lines) are compared with corresponding results in Fig. 7 of
[18] (GM, dashed red lines) and results of FW simulations with CST
Microwave Studio (black and green dots, for dipolar and multipolar
resonance modes, respectively).

The effective and equivalent parameters corresponding to
the eigenmodal solutions are plotted in Figs. 7(a) and 7(b),
respectively. As in the previous example, near the band gap
regions the equivalent parameters exhibit antiresonant and
nonphysical artifacts, which are a symptom of non-negligible
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FIG. 7. (Color online) (a) Effective and (b) equivalent relative
parameters for the binary lattice depicted in Fig. 5 (gray shaded
regions denote band gaps).
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spatial dispersion and magnetoelectric coupling in the array,
which is not unexpected in such a dense structure. Indeed,
correctly taking into account the magnetoelectric coupling
hidden in the equivalent parameters through the improved
bianisotropic constitutive model (23) and the introduction of
ξ

eff
,ζ

eff
results in a causal Lorentzian response for both the

effective permittivity and permeability near the low frequency
resonance of the inclusions, accompanied by an analogous
non-negligible resonance of ξ

eff
(ζ

eff
). The significant di-

vergence between equivalent and effective parameters for
frequencies below the first band gap evident from Figs. 7(a)
and 7(b) proves the relevance of magnetoelectric effects that
cannot be neglected even in the long-wavelength regime.
However, the introduction of ξ

eff
,ζ

eff
in the metamaterial

model does not seem to completely restore the local nature of
the permittivity and permeability for the considered structure:
at frequencies corresponding to the backward wave branch
of the dispersion diagram at 1.491 � kd � 1.538, above the
second band gap, the effective permittivity still exhibits an
apparently nonphysical negative slope. However, it must be
noticed that the effective parameters are here calculated along
the dispersion curves, i.e., as εeff(ω,k(ω)), μ

eff
(ω,k(ω)), and

not for a fixed wave number k and varying ω, which is the
condition for the validity of Kramers-Kronig relations in the
case of spatially dispersive materials [2,25,26]. Indeed, we
have repeated the calculations of the effective parameters for
variable ω at several fixed values of k without observing any
unphysical negative slope behavior. Such plots are not reported
here due to space limitation.

Moreover, in the range of frequencies corresponding to the
backward mode of the dispersion diagram, one would expect
to have both negative equivalent permittivity and permeability,
whereas by inspection of Fig. 7(b) it can be seen that this is
not the case.

To clarify this issue, it is useful to consider the power
flow into this metamaterial that can be calculated by either
using (35), which expresses the average macroscopic Poynting
vector in terms of Floquet space harmonics, or formula (36)
for the Poynting vector of a homogenized spatially dispersive
medium. These quantities are compared in Fig. 8, where
for simplicity the mode amplitude is normalized to have
unit power density |Sav| = 1. In Fig. 8 are also plotted the
contribution S0 of the macroscopic fields to the average
Poynting vector, and the additional term S1 appearing in
(36) related to spatial dispersion effects. As apparent, Sav and
Sh

av are superimposed over most of the eigenmode dispersion
range, and a small disagreement is observed only at the lower
edge of the first band gap, likely because of stronger spatial
dispersion effects; moreover, the sign of Sav and Sh

av gives
both the direction of the group velocity and total energy
of the propagating wave with respect to the phase velocity,
i.e., the wave vector, which is fixed along the positive z

direction. Comparing Fig. 8 with the dispersion diagram for
the x-polarized transverse mode plotted in Fig. 6, it can be
observed that when the eigenmode solution is forward, i.e.,
when the slope of the wave dispersion curves is positive, the
sign of Sav (and of Sh

av) is positive as well, which means that, as
expected, phase and energy velocities are in the same direction.
Instead, in the frequency region of the dispersion diagram for
1.491 � kd � 1.538, the sign of Sav is negative, which clearly
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FIG. 8. (Color online) Average macroscopic Poynting vector for
the x-polarized transverse mode (normalized to unit power density)
calculated in terms of Floquet space harmonics (Sav), or by formula
(36) for the Poynting vector of a homogenized spatial dispersive
medium (Sh

av), compared with the contributions of the macroscopic
fields to the average Poynting vector (S0) and that related to spatial
dispersion effects (S1) for the binary lattice from Fig. 5 (gray shaded
regions denote band gaps).

indicates an effective negative index dispersion mode (back-
ward wave) having counterpropagating phase and energy. It is
also interesting to examine the relative magnitude of S0 and
S1 and their respective contribution to Sh

av. From inspection
of (35) and (36), it appears that S1 takes into account both
the impact of spatial dispersion effects and the contribution
of spatial harmonics of higher order to the average Poynting
vector. In most of the frequency range the fundamental space
harmonic appears to provide a satisfactory approximation of
the actual Poynting vector and is the dominant contribution
from an energetic point of view. However, spatial harmonics
of higher order also carry a relevant portion of power at
certain frequencies near the edges of the band gaps, where
we can see that S1 flows in the opposite direction with respect
to the Poynting vector of the fundamental harmonic S0. In
particular, near the (low-frequency) band-gap-backward mode
edge, S1 becomes the dominant contribution to the total power
flux. At these frequencies, while S0 flows in the direction
of propagation, and indeed we have positive values of the
equivalent parameters, S1 and the total power Sh

av flow in the
opposite direction as a backward mode requires. This finally
explains the non-negative value of the equivalent parameters
associated to the fundamental harmonic for some (ω,k) pairs
of the backward eigenmode solution. Thus we can conclude
that when the contribution of S1 is non-negligible, spatial
dispersion must be duly taken into account, for example in
the calculation of the power flow associated with propagation
across the metamaterial; at the same time, such spatial
dispersion effects are inextricably connected with the onset
of higher order harmonics, whose relevance in the description
of the microscopic field might imply that homogenized
parameters are inherently nonlocal, i.e., spatially dispersive.
Indeed, only if one single space harmonic is dominating, and
the microscopic field is thus well approximated by a single
uniform plane wave, as in most natural materials, the periodic
structure behaves as a local homogenized material with the
permittivity and permeability of that space harmonic [31].
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FIG. 9. (Color online) Geometry of a binary lattice metamaterial
consisting of two sets of dielectric spheres of the same size a1 =
a2 = 0.5 cm but of materials with different permittivities εr,1 = 40
and εr,1 = 20.5. (a) The unit cell and (b) an illustrative portion of the
metamaterial lattice.

The last example we present is relevant to the analysis
of another structure considered in [18], where the spherical
inclusions have the same size but are made of different
materials. The geometric arrangement of the particles is shown
in Fig. 9. The permittivities of the two types of particles
are εr,1 = 40 and εr,2 = 20.5. The periodicity of the unit cell
along the x,y,z directions are hx = hy = 2.5 cm, d = 1.1 cm
and the distance between the planes containing spheres of
different permittivity is h = hx/2. The radius of the particles
is a1 = a2 = 0.5 cm.

Figures 10, 11(a), and 11(b) show the dispersion diagram
for the x-polarized transverse mode, and the effective and
equivalent parameters for the eigenmode solutions, respec-
tively. In Fig. 10 the dispersion curves obtained by the
GLL method are compared with corresponding results by
Ghadarghadr-Mosallaei (GM) and FW simulation data. The
GLL approach and FW analysis show a good agreement except
for the additional mode at 1.494 � kd � 1.59 associated with
higher order multipole resonance of the inclusions that can
be found only through the FW eigenmode simulation (green
dots in Fig. 10). Similarly to the previous example, it can
be observed that on the one hand the equivalent parameters
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FIG. 10. (Color online) Dispersion diagram for the binary lattice
depicted in Fig. 9. Curves calculated with the extended GLL method
(solid blue lines) are compared with corresponding results in Fig. 4
of [18] (GM, dashed red lines), and FW simulations (black and green
dots, for the dipolar and multipolar resonance modes, respectively).
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FIG. 11. (Color online) (a) Effective and (b) equivalent relative
parameters for the binary lattice depicted in Fig. 9 (gray shaded
regions denote band gaps).

contain a hidden form of weak spatial dispersion associated
with magnetoelectric coupling which results in artifacts and
nonphysical features in their behavior, and on other hand
in the frequency range 1.486 � kd � 1.531 corresponding
to the backward wave branch of the dispersion diagram,
the equivalent permittivity and permeability are not always
simultaneously negative. At the same time the effective
parameters in the backward wave frequency range still exhibits
an apparently nonphysical negative slope, but, as explained
with reference to the previous example of metamaterial
structure [cf. Fig. 7(a)], this does not impair their physical
meaningfulness because the wave vector is not fixed in the
plots shown, as required for the validity of Kramers-Kronig
relations in the case of spatially dispersive materials [2,25,26].

To explain the inconsistencies noted in the equivalent
parameters, we have again calculated the Poynting vector
according to both (35) and (36). Sav and Sh

av, normalized to
|Sav| = 1, are plotted against frequency in Fig. 12, together
with the quantities S0 and S1. As in the previous examples,
the spatially macroscopic Poynting vector Sav and the Poynting
vector of the homogenized medium Sh

av coincide everywhere
except that at the edges of the band gaps, because of the
nonweak spatial dispersion at those frequencies; the sign of Sav

and Sh
av is in agreement with the slope, i.e., the group velocity,

of the branches of the dispersion diagram in Fig. 10. As
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FIG. 12. (Color online) Average macroscopic Poynting vector of
an x-polarized transverse mode (with normalized unit power density)
calculated in terms of Floquet space harmonics (Sav), or by formula
(36) for the Poynting vector of a homogenized spatial dispersive
medium, compared with the contributions of the macroscopic fields to
the average Poynting vector (S0) and that related to spatial dispersion
effects (S1) for the metamaterial with binary lattice from Fig. 9 (gray
shaded regions denote band gaps).

apparent by comparing S0, S1, and Sh
av, the fundamental space

harmonic provides the dominant contribution to the total power
in most of the examined frequency range, while near the band
gaps a significant portion of the power is instead associated
with higher order space harmonics which flows in the opposite
direction with respect to the direction of propagation. At some
frequencies in the range corresponding to the backward mode
branch, the higher order space harmonics carry the dominant
contribution of the power, which flows in the opposite direction
with respect to the Poynting vector of the fundamental
harmonic, thus restoring the accordance of the total power flow
direction with the negative group velocity associated with the
backward mode. This explains the unexpected positive values
of the equivalent parameters for some eigenmodal solutions
in the backward mode, being these parameters associated only
with the fundamental space harmonic whose power flows is
in the direction of propagation. Being S1 connected to spatial
dispersion effects it can be underlined once more the necessity
to duly take into account spatial dispersion to provide a correct

description of the energy flux density in the homogenized
material.

IX. CONCLUSION

We have developed generalized Lorentz-Lorenz formulas
for the effective parameters of binary lattice metamaterials
composed of a periodic arrangement of electric and/or mag-
netic inclusions. The derivation is accomplished within a
Floquet-based approach and using a dual dipole approximation
for the induced currents. The obtained formulas for the
metamaterial effective electric and magnetic characteristics
extend previous formulations valid for a dielectric and/or
magnetic crystal comprising one particle per unit cell and
duly consider both electric and magnetic polarizabilities
and naturally describe the effects of frequency and spatial
dispersion. Our formulas take into account the full dynamic
coupling in dense periodic lattices and provide a physically
sounded description of a wide class of binary metamaterials
that remains valid also when the density of inclusions is
not small and classic homogenization models, like Clausius-
Mossotti relations, based on quasistatic assumptions and thus
neglecting the phase variation across the unit cell of the
periodic lattice, lose their accuracy.

Numerical example have been presented to show that the
developed GLL method is applicable to arbitrary binary lattice
configurations, in contrast to homogenization techniques
previously proposed which are restricted to specific binary
lattice geometries and/or propagation directions.

An investigation of the power associated with the fun-
damental and higher order Floquet space harmonics of the
microscopic field has been performed to clarify certain
inconsistencies appearing in the equivalent parameters. This
analysis has demonstrated that spatial dispersion must be
duly taken into account to correctly describe the power flow
associated to propagation across the metamaterial, and that
spatial dispersion effects are linked to the relevance of higher
order Floquet harmonics in the description of the microscopic
field, bringing as a consequence that when such harmonics
are non-negligible, homogenized parameters are inherently
nonlocal.
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