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a b s t r a c t

In laser-driven, plasma wakefield acceleration regimes (LWFA), when relevant scale lengths of the laser
envelope and of the driven plasma waves are well separated from the wavelength and frequency of the
laser fast oscillating component, a reduced physical model (usually referred to as the envelope model),
has been introduced, allowing to formulate the laser–plasma equations in terms of laser cycle-averaged
dynamical variables. As a main consequence, physical regimes where this reduced model applies, can
be investigated with significant savings of computational resources still assuring comparable accuracy,
with respect to standard Particle-In-Cell (PIC) models where all relevant space–time scales have to be
resolved.

Here we propose a computational framework characterized by two previously unexplored numer-
ical implementations of the envelope model. The first one is based on explicit second order leapfrog
integration of the exact wave equation for laser pulse propagation in a laboratory coordinate system in
3D cartesian geometry, replacing the usually quoted representation in an Eulerian frame moving at the
speed of light. Since the laser and driven wakefield wave equations in a laboratory frame are advection
dominated, we introduce a proper modification of finite differences approximating longitudinal space
derivatives, to minimize dispersive numerical errors coming from the discretized advection operators.
The proposed implementation, avoiding semi-implicit procedures otherwise required when dealing
with a comoving frame, assures significant saving in computational time and ease of implementation
for parallel platforms. The associated equation of motion for plasma particles has been integrated, as
in standard PIC codes, using the Boris pusher, properly extended to take into account the specific form
of the Lorentz force in the envelope model.

As a second contribution, a novel numerical implementation of the plasma dynamics equations in
the cold-fluid approximation, is presented. The scheme is based on the second-order one-step Adams–
Bashforth time integrator coupled to upwind non-oscillatory WENO reconstruction for discretized
space derivatives. The proposed integration scheme for the Eulerian fluid equations is equivalent to
a leapfrog scheme with an added higher order dissipative truncation errors. It can be used either as
a much faster, yet of comparable accuracy, alternative to the PIC representation of plasma particle
motion, or even in a hybrid fluid–particle combination when kinetic effects and particle injection and
acceleration in a wakefield have to be investigated.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The general formal setting describing laser–plasma interac-
tion in LWFA, usually referred to as Vlasov–Maxwell system, is
represented by the relativistic equation of motion of Np discrete
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plasma particles (electron or positrons) with (pα(t), xα(t)) α =

1, 2, . . . ,Np phase space coordinates and (q,m) charge and mass,
respectively, coupled to the Maxwell equation evolving the self-
consistent (E,B) fields under the mean-field approximation. The
Klimontovitch formalism based on delta functions δ[x−xα(t)], or,
as more appropriate when dealing with numerical PIC implemen-
tation, using delta-like smoothing shape functions Ŝ[x − xα(t)],
is then applied to connect discrete point particles to continu-
ous fields. In this formalism, particle density n(x, t) and current
density J(x, t) are defined, respectively, by

n(x, t) =

∑
α

Ŝ[x − xα(t)], J(x, t) = q
∑

α

vα(t)Ŝ[x − xα(t)], (1)
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and, by converse, the field assignment to each particle position is
expressed by:

E(xα, t) =

∫
dxŜ[x − xα(t)]E(x, t),

B(xα, t) =

∫
dxŜ[x − xα(t)]B(x, t). (2)

The particle equations of motion in dimensionless variables are
given by:
dpα

dt
=

qωp

m

[
E(xα, t) +

vα

c
× B(xα, t)

]
,

dxα

dt
= vα =

cpα

γα

, γα =

√
1 + |pα|

2,

(3)

while the evolutionary pair of field Maxwell equation is given
by:

∂tB = −c∇ × E, ∂tE = c∇ × B − ωpJ. (4)

Here all variables are expressed in dimensionless form, so that
charge and mass are normalized respectively to electron charge
and mass e, me (e.g. the coupling constant in the equations of
motion for an electron is q/m = −1), particles momenta are
normalized to mc , plasma density is normalized to the back-
ground electron density n0, current is normalized to ecn0, electric
and magnetic fields are normalized to E0 = B0 = A0kp, where
A0 = mec2/e is the normalization unit for the associated A(x, t)
vector potential and ωp = ckp =

√
4πe2n0/me is the electron

plasma frequency.
To introduce the envelope model for the Vlasov–Maxwell

equation, one considers that in typical Laser Plasma Accelerator
(LPA) configurations, a polarized laser field propagating along the
z coordinate, when represented in terms of the normalized vector
potential a(x, t) = A(x, t)/A0, under the Coulomb gauge ∇ ·a = 0,
can be modeled by an envelope shape function modulated by a
fast oscillating monochromatic component

a(x, t) = Re
[
â(x, t)eik0(z−ct)] , (5)

where k0 = 2π/λ0, ω0 = ck0 is the carrier laser space–time
frequency. In this representation, the complex envelope function
â(x, t) depends on slower space–time scales, that is the spectral
modes of â(k, ω) have sizes ω/ω0 ∼ k/k0 = O(ε) where ε

is a small number. In numerical investigation of LPA regimes,
the â(x, t) field is initialized in vacuum in the form â(x, t) =

f (z − ct)g(x) where g has a Gaussian shape along the transverse
r =

√
x2 + y2 coordinate, characterized by a waist w0 ≫ λ0 at the

z = zf focal point and f (z − ct) is a Gaussian-like shape function
with scale Lz ≫ λ0 along the comoving ξ = z − ct longitudinal
coordinate. In this configuration, the small parameter measuring
scale separation is defined by ε = 1/(k0w0) ≃ 1/(k0Lz) ≪ 1. To
the lowest order approximation, a Gaussian field has a O(1)
field component a⊥ = (ax, ay), where |ay| = |ax| for circular
polarization, or ay = O(ε2) for linear polarization along the x
coordinate, whereas the longitudinal component has size az =

O(ε) . On the assumption that scale separation set by initial con-
ditions is preserved in time during laser propagation, that is scale
lengths lp of the plasma density variations satisfy 1/k0lp = O(ε),
a two-scale perturbative analysis can then be applied [1–3] to
reformulate the Vlasov–Maxwell system in terms of laser cycle-
averaged dynamical variables depending only on slow space–time
coordinates.

By referring to the cited works for a detailed derivation of
the envelope model, in Section 2 the resulting set of plasma and
field equations of motion, are first shortly reported. Section 3 is
devoted to the field solvers, where we present and discuss the
details of the implementation of numerical schemes for the laser

envelope and wake fields propagation. In Section 4, the numerical
integration of Lagrangian equation of motion for PIC particles,
by extending the classical Boris pusher to the envelope model,
is then presented and discussed, whereas Section 5 contains the
presentation of a numerical integration of the plasma equations
in Eulerian fluid variables. Finally, Section 6 contains validations
and benchmarks of our schemes.

2. The envelope model equations

The envelope model has been derived using multi-scale per-
turbative procedures on the equation of motion either in La-
grangian form equation (3), (see [3,4] and references therein)
or in Eulerian form for plasma momenta p(x, t) derived from
the Vlasov equation in the cold-fluid approximation, see [1].
We shortly report here the main results derived in the Eulerian
approach, where the formulation appears more convincing and
self-contained. These results can then be applied for a system of
discrete Lagrangian particles by projection of fluid variables onto
the particle phase space coordinates.

In the Eulerian approach, fluid momentum p(x, t) (and all
related dynamical variables) is split into two components: p =

p + δp, where the cycle-averaged part p(x1, t1) depends only
on the slow space–time coordinates t1 = εω0t, x1 = εk0x
and the residual part δp(t1, x1; t0, z0) depends both on the slow
and fast t0 = ω0t, z0 = k0z coordinates. Correspondingly, the
plasma current density induced by the plasma fluid motion is
split into components J = J + δJ. The averaged component acts
as a source term of the Maxwell equation expressed by Eq. (4),
now evolving the driven wakefield (E,B) on the slow space–time
scales, whereas the oscillatory part δJ acts as a source term of a
separate Maxwell equation evolving the laser field, represented
by the dominant vector potential components[
∂t,t − c2∇2] a⊥ = ω2

pδJ⊥. (6)

In the two-scale perturbative analysis [1] of the momentum equa-
tion, the leading order solution for the oscillatory momentum
component is given by δp⊥ = −qa⊥/m, whereas the longitudinal
δpz component has size O(ε) smaller. As a first consequence, the
particle γ function is approximated by γ = γ + O(ε2), where

the cycle-averaged part is γ =

(
1 + |p|

2
+ q2|â|2/2m2

)1/2
. The

oscillatory and averaged current density components can now be
expressed, respectively, by

δJ⊥ = qn
δp⊥

γ
, J = qn

p
γ

(7)

where n is the cycle-averaged plasma density satisfying the con-
tinuity equation

∂tn + ∇ · (nv) = 0, v =
cp
γ

. (8)

By inserting the δJ⊥ relation of Eq. (7) in (6), the fast oscillating
phase part of the a⊥ field is factored out, leading to a closed
equation for the envelope function â in complex form:[
∂t,t − 2iω0(∂t + c∂z) − c2∇2] â(x, t) = −ω2

pχ (x, t, |â|)â(x, t),

(9)

where χ (x, t, |â|) = q2n/γ and all dynamical variables depend
only on slow space–time coordinates (here denoted as (x, t)).

The second main achievement of the envelope modelization
is the relation expressing the cycle-averaged laser Lorentz force
acting on the plasma fluid (here specialized to linear polariza-
tion)

FL = −
1
2γ

∇Φ, Φ =
q2|â|2

2m2 . (10)
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The equation of motion for the averaged plasma momentum
p(x, t), can now be expressed in closed form by[
∂t + v · ∇

]
p =

qωp

m

[
E(x, t) +

p
γ

× B(x, t)
]

+ FL(x, t), (11)

where the total Lorentz force is split into a contribution due
to the wake fields and a contribution coming from the laser
ponderomotive force FL.

In the Lagrangian framework, a two-scale perturbative anal-
ysis of the equation of motion for particle [xα(t), pα(t)] phase-
space coordinates has been formulated in [3,4], often denoted as
ponderomotive guiding center (PGC) modeling, where the cycle-
averaged [xα(t1), pα(t1)] coordinates evolving on slow time scales
describe the guiding center motion and the residual components
[δxα, δpα] describe the oscillatory motion around the guiding
center. Using averaged momentum in the Eulerian variables of
Eq. (11) and by defining the momentum of the particle guiding
center by

pα(t) =

∫
dxŜ[x − xα(t)]p(x, t), (12)

Eq. (11) can be formulated in a PGC Lagrangian framework as
dpα(t)
dt

=
qωp

m

[
E(xα, t) +

vα

c
× B(xα, t)

]
+ FL(xα, t),

FL = −
1

2γα

∇Φα, γ 2
α = 1 + |pα|

2
+ Φα,

dxα(t)
dt

= vα =
cpα

γα

,

(13)

where all field variables have been projected on the particle
guiding center following Eq. (12). In this framework, the averaged
current density J(x, t) evolving on slow space–time scales, can be
evaluated by:

J(x, t) =
q

n0c

∑
α

vα(t)Ŝ[x − xα(t)], vα =
cpα

γα

, (14)

where the shape function Ŝ[x − xα(t)] now acts as distribution
function for particle guiding centers. In the envelope equation (9),
the χ (x, t) function on the r.h.s is expressed by

χ (x, t) =
q2

n0

∑
α

Ŝ[x − xα(t)]
γα

. (15)

Recasting the oscillatory current component in the PGC for-
malism appears still an open problem, requiring elaborate per-
turbative analysis [4].

3. Implementing leapfrog integration scheme for envelope
and wake field equations

The dispersion relation in Fourier modes (k, ω) of Eq. (9) in
linear approximation (χ ≃ 1), is expressed by

ω2
+ 2ω0ω = c2

(
2k0kz + k2 + k2p

)
, (16)

where kp is related to the plasma frequency as ωp = ckp. Since
in the envelope model ω − ckz = O(ε2), relation (16) can be
approximated by

ω = ckz +
c
2

k2
⊥

+ k2p
k0 + kz

+ O
(
k0ε4) , (17)

giving a group velocity vg = c+O(ε2) for right propagating modes
kz > 0

vg =
∂ω

∂kz
= c

[
1 −

1
2

k̃2
⊥

+ k̃2p
(1 + k̃z)2

]
, (18)

where k̃ = k/k0 are the normalized wavenumbers.

In a Galilean frame moving at the speed of light (a comoving
system), using coordinate transformations (t, z) → (τ , ξ )

ξ = z − ct, τ = t, ∂t = ∂τ − c∂ξ , ∂z = ∂ξ , (19)

the laser envelope equation (9), in the time ordering ∂τ =

O(ω0ε
2) with neglected second derivative ∂τ ,τ , reduces to[

ik0 + ∂ξ

]
∂τ â = −

1
2

[
∇

2
⊥

− ω2
pχ

]
â (20)

which is the usually quoted form considered in analytical and
numerical investigations, (see [3,5–8] and references therein). A
main reason underlying this formulation is that a Galilean coordi-
nate transformation induces a frequency shift ω → ω̃ = ω − ckz ,
thus removing the highest frequency ω = ckz in Eq. (17). The
numerical integration of Eq. (20) is then expected to be free of
dispersive effects related to the laser pulse advection.

However, to solve Eq. (20) for time derivative, the M̂ ≡ [ik0 +

∂ξ ] operator on the left has to be inverted and this poses severe
limitations on implementation based on finite differences. In fact,
the inverse operator

M̂−1
= −

ik0 − ∂ξ

k20 + ∂ξ,ξ

(21)

once discretized on a grid with cell size ∆ξ , is singular at the
Nyquist frequency kmax = π/∆ξ ≃ k0, ∆ξ ≃ λ0/2. As a conse-
quence, in explicit integration, grid resolution and Courant num-
ber must be severely bounded to assure stability. To overcome
these limitations, in published works so far (see for example [9]),
a semi-implicit integration scheme, typically a Crank–Nicolson
integrator for the linear part, has been applied. This procedure re-
quires inverting a fully 3D Laplacian discretized operator at each
time step, with significant increase of computational complexity,
also limiting an efficient parallel implementation.

In the cited works, differences arise on the way the envelope
field solver relates to the wake field solver and to the plasma
dynamical equations. In [3], envelope equation (20) is first inte-
grated in a comoving (τ , ξ ) coordinates and then advected back to
the laboratory (t, z) coordinates, using ∂t+∂z = ∂τ . This approach,
once implemented by standard finite differences, reintroduces
significant dispersive effects coming from the discretized advec-
tion operator. In work [6], laser and wakefield equations are all
integrated on the comoving (τ , ξ ) coordinate system. This entails,
in particular, that the wakefield Maxwell equations have to be
modified by a backward advection term and a streaming velocity
vs = −c has to be added to the plasma particle motion. As a main
consequence, strong anomalous Cherenkov effects are artificially
produced, and additional computational costs are then required
to control or reduce unphysical current driven instabilities.

3.1. Envelope field solver in the laboratory coordinate system

These arguments suggest that implementing the envelope
wave equation directly on a laboratory coordinate system, as
expressed in Eq. (9) with second time derivative operator re-
tained, has to be preferred. In fact, Maxwell equation for the laser
envelope can be integrated by stable explicit leapfrog schemes
with no artificial restriction on CFL condition and on the grid
resolution, thus allowing significant improvements in efficiency
and simplicity of the implementation procedures. Also consis-
tency arguments favoring this choice have to be considered,
since Eq. (9) retains the basic (hyperbolic) structure of the wave
equation for scalar fields and of the associated Maxwell equa-
tions for the laser driven wakefields. This entails, in particular,
that the composite system of envelope, wakefields and particle
equation of motion can be integrated on a same unitary numerical
framework, as in fully kinetic PIC codes, using a second-order
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leapfrog explicit integrator both for particles and fields, under the
standard Courant number condition. To integrate Eq. (9) on a grid
we use centered first and second finite differences to approximate
time derivatives

Dt â =
ân+1

− ân−1

2∆t
,

Dt,t â =
ân+1

− 2ân + ân−1

∆t2
,

(22)

where index n denotes the time grid point tn = n∆t and ∆t
denotes the time step. Likewise, centered first and second finite
differences on a (non staggered) grid xg = (xi, yj, zk) with cell
sizes (∆x, ∆y, ∆z) approximate space derivatives of the field
â(xi, yj, zk) discretized at integer index grid points:

Dz â =
âk+1 − âk−1

2∆z
, Dz,z â =

âk+1 − 2âk + âk−1

∆z2
,

Dy,yâ =
âj+1 − 2âj + âj−1

∆y2
, Dx,x =

âi+1 − 2âi + âi−1

∆x2
.

(23)

The Courant number σ ≤ 1, relating ∆t to the grid cell sizes is
defined, as usual in numerical Maxwell equations, by

σ =
c∆t

h∆z
, h =

r
√
2 + r2

(24)

where r = ∆x/∆z = ∆y/∆z is the ratio of the transverse to the
longitudinal cell sizes (h = 1/

√
3 for a uniform 3D grid).

In a laser-wakefield wave system, the discretized Dt + cDz
operator entails dominant dispersive numerical errors with size
O(∆t2) − O(∆z2) given by the difference of second order trun-
cation error in time and space, respectively. In long time integra-
tion of LWFA configurations, these errors shorten the dephasing
length and affect then electron acceleration efficiency. A simple
way to reduce these numerical effects is to modify finite differ-
ence operators along the z coordinate using a two-point enlarged
stencils of grid points. In this way, still second-order, optimized
numerical derivatives can be obtained, related to the standard
two-point finite differences (23), by:

D(o)
z = Dz

[
1 + δ1∆z2Dz,z

]
,

D(o)
z,z = Dz,z

[
1 + δ2∆z2Dz,z

]
,

(25)

where the free parameters (δ1, δ2) are chosen in a way to cancel
out second order truncation errors of the space–time discretized
advection operator. Using the dispersion relation expressed by
numerical Fourier components, one obtains δ1 = (ν2

− 1)/6 < 0,
and δ2 = (ν2

− 1)/12 < 0, where ν = hσ = c∆t/∆z < 1, (see
Appendix A for a short derivation).

Modified finite differences is a standard issue in numerical
analysis and has been widely used to reduce dispersive effects
in FDTD for Maxwell wave equation (see [10]). In particular, a
procedure similar to Eq. (25) has been introduced in [11], and,
by more elaborate algorithm involving modified stencils also
in transverse coordinates [12,13], especially designed to control
anomalous Cherenkov effects of relativistic accelerated electron
bunches. We point out, that the recipe here proposed involving
only the longitudinal coordinate, takes fully advantage of the
dominance of the advection operator in the envelope model, as
documented in the numerical tests of Section 6.

In terms of finite difference operators, Eq. (9) is then expressed
by[
Dt,t − 2iω0(Dt + cDz) − c2D2] ân(xg )
= −ω2

pχ (xg , tn,
⏐⏐ân⏐⏐)ân(xg ), (26)

where D2
= Dz,z + D2

⊥
denotes the 3D numerical Laplacian

operator and D2
⊥

=
∑

s=x,y Ds,s. In code implementation, either

standard (i.e. Eq. (23)) or optimized (i.e. Eq. (25)) finite differences
along the z−coordinate can be activated.

For given [ân(xg ), ân−1(xg )] field data at time level tn = n∆t
and tn−1

= tn − ∆t , the one step update of Eq. (26) is imple-
mented by first evaluating at the current time level tn the source
term

Ŝ[â] =
[
2ik0Dz + D2

− ω2
pχ (xg , tn)

]
ân(xg ) (27)

and then by solving in explicit form for the updated field data:

ân+1
− iηân+1

= F̃ [â],

F̃ [a] = ∆t2Ŝ[â] + 2ân − ân−1
− iηân−1,

(28)

where η = ω0∆t . Finally, by separating real and imaginary
components â = (aR, aI ), the solution for the updated variables
(aR, aI )n+1 is evaluated by

an+1
R =

FR − ηFI
1 + η2 , an+1

I =
FI + ηFR
1 + η2 . (29)

where the source term components are given by

F̃R = ∆t2ŜR+2anR−an−1
R +ηan−1

I , F̃I = ∆t2ŜI+2anI −an−1
I −ηan−1

R .

(30)

3.2. Implementation of leapfrog Maxwell solver for driven wakefield

By representing the (E,B, J) fields on the standard Yee grid,
the leapfrog integrator of Maxwell equations for wakefield equa-
tion (4) is expressed by

[DtB]
n

= −cD × En,

[DtE]
n+1/2

= cD × Bn+1/2
− ωpJn+1/2 (31)

where, as usual in FDTD framework, finite differences in space
and time are evaluated at staggered grid points with respect to
the collocation of the derived variables.

Since also driven wakefields are advection dominated, dis-
persive numerical errors can be reduced following the same
procedure adopted for the envelope field solver. In the Yee stag-
gered grid, optimized finite differences along the z−coordinate
are now defined by

D(o)
z = Dz

[
1 + δ3∆z2Dz,z

]
, δ3 =

ν2
− 1
24

, (32)

and are then applied to the proper components of both the (D×E)
and (D × B) vector operators.

4. Leapfrog integration of equation of motion of PIC particles

4.1. Boris pusher for particle momentum update

In a leapfrog integration scheme of Eq. (13), the one-step
update pn−1/2

α → pn+1/2
α of particle momentum discretized on the

staggered time grid, is expressed by

pn+1/2
α = pn−1/2

α + ∆t
[
qωp

m

(
En

α +
vnα
c

× Bn
α

)
−

1
2γ n

α

∇Φn
α

]
. (33)

On the right side, grid defined fields [En(xg ), Bn(xg )] and [Φn(xg ),
∇Φn(xg )] are evaluated at the current time level tn by the pre-
vious tn−1

→ tn update expressed in Eqs. (29) and (31), and
then assigned to each particle position xnα using splines Ŝxg [xg −

xnα] of some order, as routinely defined in the PIC method. To
preserve the leapfrog scheme structure and accuracy, all time
centered variables, un

≡ [E,B, Φ, xα, vα]
n on the right hand side

are required to be at least second order approximations, un
=

u(tn) + O(∆t2). To that purpose, in the Boris scheme [14], the
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particle velocity is defined by using mid-point rule for centered
momentum,

vnα =
cpn

α

γ n
α

, pn
α =

pn+1/2
α + pn−1/2

α

2
,

γ n
α =

[
1 + |pn

α|
2
+ Φn

α

]1/2
,

(34)

but other choices have been proposed as well [15]. In terms of
the unknown variables p ≡ pn

α, and γ ≡ γ n(|p|
2) as defined in

Eq. (34), the momentum equation (33) (particle α index omitted
for brevity) can be reformulated as a fully implicit algebraic
system

p = pn−1/2
+ (̃E − F̃/γ ) + p × B̃/γ (35)

with O(∆t) coefficients given by

Ẽ ≡ ∆t
qωp

2m
En, B̃ ≡ ∆t

qωp

2m
Bn, F̃ =

∆t
4

∇Φn. (36)

The Boris procedure to solve (35) is based on the following two
main computational steps:

(i) the exact γ function is reduced to explicit form, by a Tay-
lor expansion to a O(∆t2) approximation using the same
equation (35);

(ii) the term related to the magnetic field is evaluated in ex-
act explicit form using standard vector algebra (usually
interpreted as magnetic rotation).

The main change to be applied in the envelope model refers to
task (i), of course, for the presence on the 1/γ factor in the
ponderomotive force. By replacing p → pn−1/2

+ (̃E − F̃/γ ) +

O(∆t2) in the γ definition equation (34), the approximated γ̃

variable is solution of the cubic equation

γ̃ 2
=

[
γ 2
0 + 2(̃E −

F̃
γ̃
) · pn−1/2

]
, γ 2

0 =

(
1 + Φn

+ |pn−1/2
|
2
)

,

(37)

which reduces consistently to the approximation in standard PIC
model when Φ = 0, (i.e. F̃ = 0).

By replacing γ → γ̃ , the momentum equation (35) can now
be solved in explicit form using the Boris procedure indicated in
step (ii):

p =
1

1 + |h|
2 [u + u × h + h(u · h)] ,

pn+1/2
= 2p − pn−1/2,

(38)

where u = pn−1/2
+ Ẽ − F̃/γ̃ , h = B̃/γ̃ .

4.2. Update of particle position in envelope model

The leapfrog scheme to update particle position, is given by

xn+1
α = xnα + ∆tvn+1/2

α , vn+1/2
α =

cpn+1/2
α

γ
n+1/2
α

,

γ n+1/2
α =

(
1 +

⏐⏐pn+1/2
α

⏐⏐2 + Φn+1/2
α

)1/2
,

(39)

where now the ponderomotive potential Φn+1/2
α = Φn+1/2(xn+1/2

α )
has an implicit dependence on the particle position since xn+1/2

α =

(xn+1
α + xnα)/2. To evaluate Eq. (39) in closed explicit form, still

preserving the leapfrog structure and accuracy, we follow the
approach first suggested in [16]. In the shorthand notation p ≡

pn+1/2, Φ ≡ Φn+1/2, γ ≡ γ n+1/2 the implicit Φ(xn+1/2) function

can be linearized by a first order Taylor expansion

Φ(xn+1/2) = Φ
(
xn

)
+ δx · ∇Φ

(
xn

)
,

δx = xn+1/2
− xn =

xn+1
− xn

2
,

(40)

where the gradient operator can act on the xg argument of the
shape function Ŝxg [xg − x] or of the Φ(xg ) field. The γ function
of Eq. (35) can be evaluated in explicit form by solving the cubic
equation (see [16])

γ̃ 3
= γ̃ γ 2

0 +
∆t
2

(
p · ∇Φ

(
xn

))
, γ 2

0 = 1 + |p|
2
+ Φ

(
xn

)
, (41)

or by a simpler, still second order, explicit approximation

γ̃ −1
=

1
γ0

[
1 −

∆t
4γ 3

0
(p · ∇Φ)

]
. (42)

In this way, the update of the particle position takes finally the
explicit form:

xn+1
α = xnα + ∆tvn+1/2

α , vn+1/2
α ≡ γ̃ −1cpn+1/2

α . (43)

4.3. The overall integration one-step cycle of the envelope model

At the end of the momentum update step, Eq. (38), the source
term χn

(
xg , tn,

⏐⏐ân⏐⏐) needed to update the complex envelope
field in Eq. (29), is evaluated using the particle γ̃ (xnα) function
defined in (37), by

χn(xg ) =
q2

n0

∑
α

Ŝ
(
xg − xnα

) [
γ̃

(
xnα

)]−1
. (44)

By mid-point rule, the Φn+1/2(xg ) field is then computed, to
update particle positions xn+1

α and velocities vn+1/2
α by Eq. (43).

Finally, the current density Jn+1/2(xg ) in the Maxwell equation
for wakefield, (31), is then constructed using particle positions
and velocity by

Jn+1/2(xg ) =
q
cn0

∑
α

Ŝxg [xg − xn+1/2
α ]vn+1/2

α (45)

where shape function Ŝ[x − xα] has to be designed in a way
to enforce the discretized continuity equation for local charge
conservation [17].

In the following, the overall numerical procedure encoding
one-step cycle to update particle coordinates, as detailed above,
the laser envelope field, Eq. (29) and wakefield solver, (31), will be
denoted as ENV/PIC. In the following Section 6, we present a nu-
merical documentation to support error analysis of the proposed
schemes.

We have presented in some details the ENV/PIC implementa-
tion also because only few works are available on the subject. In
work [5], the γ n function used to implement the Boris algorithm
is evaluated by an independent first order integration scheme.
In work [3], the Boris procedure to update particle momentum
is never explicitly documented, whereas the update of particle
position is implemented using a sequence of first order Euler
integrations, like a predictor-correction scheme. Moreover, since
no error analysis nor convergence test for particle motion has
been presented, it is quite difficult to make useful comparisons
and cross-checking.

5. Eulerian integration of laser–plasma dynamics in envelope
model

Even if the ENV/PIC implementation assures significant saving
of computational resources with respect to standard fully kinetic
PIC codes (but a precise estimate of speed-up depends crucially
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on the chosen number of particle per cell), long time integration
of plasma dynamics using particles is still challenging and time
consuming. A direct numerical integration of plasma momentum-
density equations in Eulerian variables equation (11), coupled to
Eqs. (29) and (31), can offer a promising and faster alternative
to the ENV/PIC schemes, applicable for several LWFA regimes. In
fact, the computational complexity of a discretized fluid model
can be evaluated to be roughly equivalent to the corresponding
PIC model containing just one particle per cell.

The momentum-density system of Eqs. (11) has the form of a
relativistic, pressureless Euler equation with a non-linear forcing
coupling momentum advection to the Maxwell field equations. It
is clearly challenging since no rigorous numerical analysis results
are available. However, accurate and stable integration schemes
can still be constructed by taking into account the computational
experience in the ordinary Eulerian system for collisional gas
dynamics.

A straightforward application of a leapfrog scheme to system
(11) using centered numerical derivatives in space and time fails
to preserve monotonicity in wave profile (Gibbs pathology) even
for modest non-linear steepening, finally leading to numerical
instabilities. To prevent or limit this pathology, non-oscillatory
(or monotonicity preserving) upwind scheme has been designed
and widely applied to simulate compressible fluid dynamics [18].
The implementation we propose here is based on the second
order, one-step Adams–Bashforth (AB) scheme for time integra-
tion and on second-order Weighted Essentially Non-Oscillatory
WENO2 upwind scheme [19] to evaluate space derivatives. We
have chosen AB scheme essentially because it is one step and it
works as a ‘‘modified’’ leapfrog scheme, and so can be naturally
associated to the Maxwell field solvers, thus assuring a unitary
computational frame-work for the overall system.

By representing the plasma fluid-dynamics equation (11) in
terms of the four-dimensional arrays of fluid variables u ≡ [p, n]T
(overbar symbols omitted for brevity), one has

∂tu(x, t) = F [u, x, t], (46)

where the vector F ≡ [Fp, Fn] has components

Fp = −(v · ∇p) + Ftot ,
Fn = −∇ · (nv),

(47)

in which v = cp/γ and the total Lorentz force acting on a fluid
element is given by

Ftot [x, p, t] =
qωp

m

[
E +

p
γ

× B
]

−
1
2γ

∇Φ, Φ =
q2|â|2

2m2 , (48)

with γ (p, x, t) =
[
1 + |p|

2
+ Φ

]1/2. Here we choose to integrate
momentum equation using a non-conservative advection opera-
tor Fadv = (v · ∇)p, because, in this form, Eq. (46) decouples from
the density equation and implementation turns out to be simpler
than using the [np] momentum variable. We have also imple-
mented momentum equation using a conservative advection flux,
but no significant differences between the two implementations
have been noticed. On the other hand, there are no general
reasons to use conservative advection, since plasma momentum
equation has not a general conservation form.

Once discretized on a space–time
[
xg , tn

]
grid, the AB update

of momentum-density variable un(xg ) is expressed by

un+1
= un

+
∆t
2

[
3F n

− F n−1] , (49)

where F n
≡ F

[
un, xg , tn

]
. We notice that the update in Eq. (49)

is in fact one-step, since F n−1 can be evaluated only once at a
previous tn−1

→ tn integration step and then stored. For linear

system, the resulting approximation for time derivative results to
be

Dtu =
un+1

− un

∆t
=

du
dt

+ c1∆t2
[
d3u
dt3

]
+ c2∆t3

[
d4u
dt4

]
(50)

showing that the leading order approximation has a dispersive
character, as in the associated leapfrog integrator for the envelope
and wake field equations, plus a higher order O(∆t3) dissipative
error to balance dissipative numerical errors coming from upwind
numerical space derivatives.

Upwind schemes based on the WENO reconstruction proce-
dures offer the following advantages: (i) they assure uniform
second (or even higher) order approximation even of steep gra-
dients, and (ii) they provide a robust and accurate numerical
approximation of space derivatives, even for non conservative
fluid-dynamics systems [20,21].

The numerical procedure encoding the composite [AB −

WENO2] scheme for Eq. (46), coupled to field solvers in Eqs. (29)
and (31) is here denoted as ENV/Fluid. It turns out to be stable
and accurate even for modest grid resolution, for a wide class
of problems, covering linear and non-linear conditions, as docu-
mented below in the preliminary tests we have considered. For
strongly non-linear regimes, when a high intensity laser gener-
ates a bubble in the plasma density, a cold-fluid approximation
is no longer appropriate.

The ENV/Fluid scheme, where it applies, can fully replace
ENV/PIC scheme only in the study of time evolution, structure
and propagation properties of the laser-driven wakefield system.
When kinetic effects are of interest, like injection and acceleration
of electron bunches in a wake field, the ENV/Fluid is no longer
appropriate, of course. However, taking advantage of the unitary
computational frame-work here proposed, it can still be used
in association with the ENV/PIC scheme in a composite hybrid
fluid-kinetic computational framework.

6. Numerical benchmark of the envelope approximation

In this section, we test the accuracy of the modified Boris
pusher, of the laser envelope solver and the fluid scheme we have
introduced in this work. Laser–plasma interaction is in general
a strongly nonlinear problem and analytical expressions for the
time evolved quantities are only rarely available. Thus, in order to
propose a robust benchmark, we first check the correctness of the
single particle motion and of laser evolution in-vacuum, where it
is possible to compare directly the results with the theory, then
we investigate the fully nonlinear laser–plasma interaction.

At the current time, we always initialize a laser pulse as the
product of a Gaussian transverse profile of given waist at focus w0
and a Gaussian longitudinal profile with pulse intensity duration
(Full Width at Half Maximum) τfwhm, so that â(x) = aT (x)aL(x). In
particular, the transverse profile is given by

aT (z, r) = exp
[
−

r2

w(z)2

]
, r2 = x2 + y2, (51)

where w(z) is the usual expression for the waist of a Gaussian
pulse focalized in z = zf with a Rayleigh length ZRa, w(z) =

w0
√
1 + z̃2 and z̃ = (z − zf )/ZRa, while the longitudinal one

is

aL(z, r) =
a0

√
1 + z̃2

exp(iϕ) exp
[
−

(z − zf )2

L2z

]
, (52)

where, following [2], ϕ = arctan
(
z̃
)
− z̃r2/w(z)2 and Lz is related

to the characteristic length cτfwhm via Lz = cτfwhm/
√
2 log(2).

From now on, our simulations will refer to a laser pulse of
wavelength λ0 = 0.8 µm propagating in a 3D cartesian geometry.
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Fig. 1. Relative discretization error of the transverse component of the particle
position in function of the resolution (colors online).

6.1. Particle pusher quadratic convergence

We show a grid convergence test performed on particle tra-
jectories interacting with a laser field. In Section 4, we have
presented a modified Boris pusher that takes into account the
ponderomotive force of the laser expressed in the envelope ap-
proximation. Error analysis shows that a second order conver-
gence is expected. To perform this check, we initialized some
test particles, distributed with initial zero initial velocity on a
plane perpendicular to the laser propagation axis, and four broad
laser pulses in vacuum, all of them aligned, that interact via
Eq. (13) with the particles. We have chosen a nontrivial field to
enhance the effect of the ponderomotive force on the particles.
For any test particle, the test has been performed by measuring
the final position in function of the resolution and then derived
the expected value via a Richardson extrapolation. The Relative
Discretization Error (RDE) accumulated along the trajectory scales
exactly as RDE ∼ ∆t2, as it is shown in Fig. 1, where every line
in LogLog scale has a slope p = 2.

6.2. Tests in vacuum

A propagating laser pulse diffracts due to its finite width, that
is while moving away from its focal position, i.e. defocalizing, the
amplitude decreases and the spot size increases to preserve the
total energy. In particular, in a linear medium, such as vacuum, it
is possible to obtain an analytical expression for the laser pulse
evolution by directly solving the electromagnetic wave equation
in the paraxial approximation. Rayleigh diffraction thus repre-
sents a solid numerical benchmark for any electromagnetic wave
solver. Given the amplitude at focus a0 as the initial condition, the
amplitude evolution in time is expressed as a(t) = a0

(
1 + z̃2

)
.

In Fig. 2, we study the evolution of the peak amplitude for a
τfwhm = 75 fs and w0 = 15 µm laser pulse starting at the focal
point and propagating for 3000 µm, which corresponds to 3.5
Rayleigh lengths. In black, we report the analytical peak ampli-
tude evolution in the paraxial approximation. The measured peak
amplitude of the simulated laser pulse during its propagation,
represented with the red circles, shows perfect agreement with
the theoretical expectations.

The same laser pulse can be initialized before its focal point
so that its amplitude has to increase to reach its maximum value
exactly at focus. We let the pulse propagate for twice the initial
distance from the focus, because, since the electromagnetic field
evolution is symmetric, we expect at the end to recover the
initial conditions. In a comoving reference frame, longitudinal

Fig. 2. We show (red circles) the simulated peak amplitude as a function of
the propagation distance, for a diffracting laser propagating in vacuum up to a
distance of 3000 µm.

Fig. 3. A laser pulse in vacuum focalizes and then defocalizes so it can be seen
that the error is low enough for the initial condition to be recovered.

and transverse laser profiles must therefore overlap after the
diffraction process but in numerical simulations, temporal sym-
metry can only be achieved if numerical dissipation, affecting the
total energy, and dispersion, affecting the propagation speed, are
kept very low. In particular, in a leapfrog integration scheme,
only dispersive error is expected. In Fig. 3, is shown the peak
amplitude evolution before and after focusing. In Figs. 4(a) and
4(b), the longitudinal and transverse profiles are overlapped, to
verify that the integration scheme presents very low dispersion
over long distances. Since the results agree with the expected
values, time reversibility is assured. These simulations were run
with a resolution of λ0/∆z = 12.5, with ∆y = ∆x = 8.99∆z and
a CFL σ = 0.7.

In Section 3, we presented an optimized numerical integration
scheme to reduce the dispersive effects affecting wave propa-
gation speed. In the following, we study the envelope solver
dispersive error in function of the resolution for a laser pulse
with τfwhm = 75 fs, w0 = 30 µm, a0 = 1 propagating in
vacuum, evaluating dispersive effects measured either with the
standard FDTD centered scheme or with the optimized one de-
fined in Eq. (25). Then, we compare the outcomes with the results
obtained simulating the same laser pulse with a standard PIC
code, that is when laser oscillations are retained. It is known that
to well reproduce group velocities in a PIC scheme, the highest
frequency (i.e. laser frequency) has to be well resolved.
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Fig. 4. Superposition of the longitudinal (Fig. a) and transverse (Fig. b) laser profile at the beginning and at the end of the simulation.

Fig. 5. Comparison between the phase velocities of the laser pulse centroid
when it is propagating in vacuum in various computational configurations. In
particular, in the ENV/PIC optimized case, 1−βc is lower than the measurement
error for every resolution we considered (colors online).

For a laser pulse propagating in vacuum, we define the cen-
troid position as

zc(t) =

∫
z|â(x, t)|2dx∫
|â(x, t)|2dx

=

∑
xg ziâ

n
i,j,k∑

xg â
n
i,j,k

, (53)

where the sum is extended on all the computational grids, then
we numerically derive zc(t) to get the group velocity. For the
two computational frameworks considered (PIC and ENV/PIC),
1 − βc = 1 − vg/c for both the standard centered and the
optimized differentiation schemes are represented in Fig. 5. In
this run, while varying ∆z, we fixed a uniform transverse grid
(that is ∆y = ∆x = ∆z) and σ = 0.8. To obtain comparable
errors in the PIC scheme, resolution must be increased by at
least an order of magnitude, depending on the problem, thus
assuring the strong time saving property of the envelope solver.
We point out that for optimized derivative in the ENV scheme,
discretization error is well below the measurement one, induced
by Eq. (53).

6.3. Nonlinear laser–plasma interaction

For a robust test in the nonlinear regime, we follow the ‘‘Test
3’’ reported in [6] where a comparison of the wakefield generated
by INF&RNO/Fluid (a fluid 2D cylindrical code based on the enve-
lope description, see [6,9]) and the 1D (broad pulse) analytical
nonlinear theory is presented. Performing the simulation with

Fig. 6. Wakefield generated by a 1D configuration. We compare it with the
theoretical result given by the 1D quasi-static nonlinear theory (black) and the
one obtained by INF&RNO/Fluid (colors online).

the same parameters, we obtain perfectly overlapping results
with the INF&RNO/Fluid and the analytical value, as shown in
Fig. 6, where the propagation distance has been normalized to
the plasma wavenumber. Such result shows the correctness of
the particle motion for particles self-consistently coupled to the
wakefield.

In LWFA experiments, where the acceleration distance can be
of the order of many Rayleigh lengths, guiding methods have
been proposed to avoid early laser diffractions. In particular, a
Gaussian pulse can be matched in a parabolic density plasma
channel, where the Rayleigh diffraction is balanced by the fo-
calizing effect due to the medium, and therefore no significant
changes in the longitudinal and transverse profile are present
for propagation distances z ≫ ZRay. In [7,22], a semianalytical
model is developed to compute the exact propagation velocity
of a laser pulse in a matched plasma channel of given density
profile, with a0 < 1. For accurate simulations of LWFA regimes, it
is crucial that group and phase laser velocity are well reproduced
by the laser solver even when the pulse interacts with a nonlinear
medium for long distances. To check the stability of the proposed
solver, a laser pulse with a0 = 0.1, w0 = 8.9 µm and τfwhm =

21.3 fs is shot through a matched plasma channel with a density
on axis n0 = 4.25 × 1018 cm−3, then we compare the results
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Fig. 7. Relativistic factor γc concerning the propagation of a Gaussian laser pulse
in a matched plasma channel in function of the resolution. The semianalytical
value is shown in red (colors online).

Fig. 8. We show a comparison after ct = 150 µm of propagation between an
ENV/PIC and an ENV/Fluid simulation in a mildly nonlinear regime, where we
expect the fluid model to hold.

of the measured group velocity obtained with the optimized and
standard numerical derivatives. With this choice of the laser and
plasma parameters, the expected value for the relativistic factor
associated with the laser centroid is γc = 9.63. In Fig. 7 it
can be seen that the optimized algorithm shows much faster
than quadratic convergence to the exact value even for modest
resolutions.

6.4. Benchmark of the Eulerian integrator for the plasma fluid den-
sity

It is expected the fluid model to precisely reproduces the
same fields as the PIC scheme away from the plasma bubble
regime, where wavebreaking happens and the Lorentz–Maxwell
system of equations does not provide an adequate description.
Such regime is in fact limited by the theoretical foundation of
the plasma fluid description and by the practical need to deal
with the typical discontinuities that characterize the strongly
nonlinear laser plasma interaction. In fact, one should resort to
very specific integration schemes, able to avoid instabilities and
to enforce the numerical density positivity in the continuity equa-
tion. For this reason, simulation of an extremely nonlinear regime
in a fluid framework is still a theoretical and computational open
problem, even though some comparisons have been provided
in [23,24] that show some disagreements in the wakefield gener-
ation with respect to a fully kinetic code. In Fig. 8, we report the

Fig. 9. Dissipation effects in density relative to the AB-WENO2 scheme after
ct = 200µm of laser propagation in a uniform plasma.

Fig. 10. Log density maps relative to the simulation presented in Fig. 8 obtained
in the ENV/PIC (left) and in the ENV/Fluid (right) (colors online).

comparison between an ENV/PIC and an ENV/Fluid simulations
when considering the nonlinear laser plasma interaction gener-
ated by the propagation of a nonlinear laser pulse with a0 = 2.5,
w0 = 12.7 µm and τfwhm = 20 fs in a uniform plasma of
density n0 = 4.25 × 1018 cm−3. The ENV/PIC simulation was run
with a resolution λ0/∆z = 10, while in this configuration we
needed λ0/∆z = 18.75 with σ = 0.4 in the ENV/Fluid to reach
the perfect agreement. For lower resolutions in the ENV/Fluid
configuration, the numerical diffusion induced by discretization
errors of the upwind scheme, generated high dissipation of the
density profile peak amplitude after 200 µm of propagation. The
dissipative effect is quite sensitive to the adopted resolution, as
shown in Fig. 9 where the same ENV/Fluid configuration is run
with a resolution λ0/∆z = 10. At the end, an overall compari-
son based on empirical observation, is shown in Fig. 10, where
the 2D density maps relative to the ENV/PIC and the ENV/Fluid
simulations with the same parameters as in Fig. 8 present a good
agreement also for the transverse density distribution.

7. Conclusions

We have presented in detail integration schemes and imple-
mentation procedures for numerical simulation of the envelope
model for LWFA regimes. The field solver for laser propagation
has been implemented in the laboratory coordinate system in 3D
cartesian geometry. This unconventional approach allows, in par-
ticular, to integrate the exact (to within the model) wave equation



58 D. Terzani and P. Londrillo / Computer Physics Communications 242 (2019) 49–59

for the envelope field by an explicit leapfrog scheme working
under the same CFL stability condition as in the related Maxwell
solver for wakefield and PIC particles motion. Since in the phys-
ical regimes under consideration, laser-wakefield propagation is
advection dominated, that is time evolution is slow, quasi-static
in the limit, in a comoving system, numerical space derivatives
along the propagation direction have been properly designed to
reduce dispersion errors coming from discretized wave opera-
tors. This strongly improves grid convergence to the envelope
model theoretical predictions for wave propagation speed, as
documented in Section 6.

The particle equation of motion has been integrated by a
leapfrog scheme using the classical Boris pusher, properly modi-
fied to take into account the ponderomotive envelope component
in the Lorentz force. Quadratic grid convergence of numerical
error in the particle motion, supporting error analysis of the
proposed scheme, has been clearly documented in Section 6.

Besides the ENV/PIC implementation, based on PIC particles, a
second integration scheme, denoted as ENV/Fluid, where plasma
equation of motion is formulated using Eulerian fluid momentum-
density variables, has been presented and tested.

The proposed implementations, ENV/PIC and ENV/Fluid, have
been designed on a unitary, self-consistent computational frame-
work. The resulting set of all numerical procedures has been
encoded in ALaDyn-v2018.3 package [25]. The code runs in par-
allel platforms using standard domain decomposition and MPI
procedures. As a preliminary estimate to evaluate the cpu com-
putational resources needed for numerical simulations of realistic
LWFA regimes, we take under consideration the ENV/PIC run
with λ0/∆z = 10 and the ENV/Fluid one with λ0/∆z = 18.75
presented in Fig. 8. We quote a value of τe ∼ 20 h/mm (run
with Np.p.c = 20 particles per cell) for ENV/PIC code and τf ∼

2.5 h/mm for ENV/Fluid, where both cases were run on 1156
cores on MARCONI (CINECA). Clearly, the comparison has to be
made between two converged (in terms of resolution) configura-
tions to correctly estimate the computational time. Anyway, from
our measurement, the ENV/Fluid scheme run at λ0/∆z = 10
takes τf ∼ τe/20, which confirms that a fluid code is faster by
a factor Np.p.c with respect to an ENV/PIC scheme.
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Appendix A. Reducing dispersive error in the envelope propa-
gation

To envisage optimal (δ1, δ2) parameter values in the modified
numerical derivatives equation (25), one first considers the nu-
merical dispersion relation of the linear (χ = 1) equation (9),
expressed by the eigenvalues of the numerical operators on a
Fourier basis ∼ exp

[
i(k · xg − ω∆t)

]
:

Ω̂2
− c2[K̂ 2

z (1 + δ2(∆z)2K̂ 2
z ) +

∑
c=x,y

K̂ 2
c ]

+ 2ω0[Ω̂ − cK̂z(1 + δ1(∆z)2K̂ 2
z )] = ω2

p (A.1)

where

Ω̂2
≡

sin2(ω∆t/2)
(∆t/2)2

, Ω̂ ≡
sin(ω∆t)

∆t

K̂ 2
c ≡

sin2(kc∆c/2)
(∆c/2)2

, K̂z ≡
sin(kz∆z)

∆z
.

(A.2)

Expanding sin(u) = u − u3/6 + O(u5), one recovers the exact
dispersion relation equation (17) to the leading second order
approximation:

ω2
+ 2ω0(ω − ckz) − c2(k2z + k2

⊥
+ k2p) = TE1 + TE2, (A.3)

where the truncation errors TE1 and TE2, defined as

TE1 = −
ω0

6
[ω(ω∆t)2 − ckz(kz∆z)2(1 + 6δ1)],

TE2 = −
1
12

[ω2(ω∆t)2 − c2k2z (kz∆z)2(1 + 12δ2)

− c2
∑
c=x,y

k2c (kc∆c)2],

(A.4)

come from the discretized first and second derivatives in time
and space, respectively. By expressing the time step size by ∆t =

σh∆z, where σ is the Courant number, and by taking into account
that ω = ckz + O(k0ε2), the dispersive numerical errors for wave
propagation along the z coordinate can be reduced to the O(ε2)
size by selecting δ1 = (ν2

− 1)/6 < 0, and δ2 = (ν2
− 1)/12 < 0,

where ν = σh.
The numerical dispersion relation for the Maxwell equation

(31) has the same form of Eq. (A.1) with ω0 = 0:

Ω̂2
− c2

[
K̂ 2
z (1 + δ3(∆z)2K̂ 2

z ) +

∑
c=x,y

K̂ 2
c

]
= ω2

p . (A.5)

Now, if D(o)
z applies only to D × E terms, δ3 = δ2 whereas if it

applies also to D × B terms, 2δ3 = δ2, as reported in the main
text.

Appendix B. Linear stability analysis for the envelope equation

To evaluate the condition for linear stability, the numerical
dispersion relation of the discretized envelope equation (26)
multiplied by ∆t2/4 is now expressed by

sin2
(

ω∆t
2

)
= c2∆t2

[
P̂2 +

k2p
4

]
+

η

2
P̂1,

P̂2 ≡

∑
c

sin2(kc∆c/2)
∆2

c
+ δ2

sin4(kz∆z)
∆z2

,

P̂1 ≡
c∆t
∆z

sin(kz∆z)[1 + δ1 sin2(kz∆z)] − sin(ω∆t),

(B.1)

where η = ck0∆t = ω0∆t .
Now, by evaluating each spatial wavenumber kc, c = x, y, z at

the Nyquist frequency [kc]max = π/∆c , one has the upper bound
estimate,∑
c

sin2(kc∆c/2)
∆2

c
+ δ1

sin4(kz∆z)
∆z2

<
1

h
2
∆z2

+
δ1

∆z2
, (B.2)

and then, by inserting the relation defining the Courant number
relation c∆t = σh∆z,

(c∆t)2[P̂2 + k2p/4] < σ 2
[1 + h

2
(∆zkp/2)2 + δ2h

2
]. (B.3)

The second term on the right hand side of Eq. (B.1) can be
bounded by

P̂1 <
c∆t
∆z

[1 + 4δ1], (B.4)
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and the linear stability condition sin2(ω∆t) < 1 entails the
estimate for the Courant number

σ ≤

[
1 + h

2
(

∆zkp
2

)2

+ δ2h
2
+ k0∆zh

2 1 + 4δ1
2

]−1/2

(B.5)

We notice, that the same procedure applied to the linearized
Maxwell equation for wake fields, gives the standard condition
for stability

σ0 ≤

[
1 + h

2
(

∆zkp
2

)2

+
δ2h

2

2

]−1/2

(B.6)

showing that the explicit integration of the envelope wave equa-
tion requires only a small correction

σ ≤ σ0

[
1 − k0∆zh

2 1 + 4δ1
4

]
, (B.7)

depending on the grid resolution k0∆z of laser wavenumber. In
Eq. (B.7), the longitudinal cell size ∆z is necessarily the same as
the one in Eq. (B.6), for consistency reasons.
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