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1 Introduction

In 1941 Kolmogorov and Obukhov [9, 12] proposed that there exists a statisti-
cal theory of turbulence that should allow the computation of all the statistical
quantities that can be computed and measured in turbulent systems. These are
quantities such as the moments, the structure functions andthe probability den-
sity functions (PDFs) of the turbulent velocity field. The Kolmogorov-Obukhov
’41 theory predicted that the structure functions of turbulence, that are the mo-
ments of the velocity differences at distances separated bya lag variablel , should
scale with the lag variable to a powerp/3 for thepth structure function, multiplied
by a universal constant. This was found to be inconsistent with observations and
in 1962 Kolomogorov and Obukhov [10, 13] presented a refined scaling hypothe-
sis, where the multiplicative constants are not universal and the scaling exponents
are modified toζp = p/3+ τp, by the intermittency correctionτp that are due to
intermittency in the turbulent velocity. It was still not clear what the values of
τp should be, because the log-normal exponents suggested by Kolmorogov turned
out again to be inconsistent with observations. Then in 1994She and Leveque
[16] found the correct (log-Poissonian) formulas forτp that are consistent with
modern simulations and experiments.

In this paper we will outline how the statistical theory of Kolmogorov and
Obukhov is derived from the Navier-Stokes equation withoutgetting into any of
the technical details. We start with the classical Reynoldsdecomposition of the
velocity into the mean (large scale) flow and the fluctuationsor small scale flow.
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Then we develop a stochastic Navier-Stokes equation [6], for the small scale flow.
If we assume that dissipation take place on all scales in the inertial range (defined
below) then it turns out that the noise in this stochastic Navier-Stokes equation
is determined by well-known theorems in probability. The additive noise in the
stochastic Navier-Stokes equation is generic noise given by the central limit theo-
rem and the large deviation principle. The multiplicative noise consists of jumps
multiplying the velocity, modeling jumps in the velocity gradient. We will explain
how this form of the noise follows from very general hypothesis.

Once the form of the noise in the stochastic Navier-Stokes equation for the
small scales is determined, we can estimate the structure functions of turbulence
and establish the Kolmogorov-Obukhov ’62 scaling hypothesis with the She-Leveque
intermittency corrections [5]. Then one can compute the invariant measure of tur-
bulence writing the stochastic Navier-Stokes equation as an infinite-dimensional
Ito process and solving the linear Kolmogorov-Hopf [8] functional differential
equation for the invariant measure. Finally the invariant measure can be projected
onto the PDF. The PDFs turn out to be the normalized inverse Gaussian (NIG)
distributions of Barndorff-Nilsen [1, 2], and compare wellwith PDFs from sim-
ulations and experiments. The details of the proofs can be found in [5] and the
background material can be found in [6].

2 The Deterministic Navier-Stokes Equations

A general incompressible fluid flow satisfies the Navier-Stokes Equation

ut +u ·∇u= ν∆u−∇p, u(x,0) = u0(x)

with the incompressibility condition∇ ·u= 0. Eliminating the pressure using the
incompressibility condition gives

ut +u ·∇u= ν∆u+∇∆−1trace(∇u)2, u(x,0) = u0(x).

The turbulence is quantified by the dimensionless Taylor-Reynolds numberReλ =
Uλ
ν [14].

2.1 Reynolds Decomposition

Following the classical Reynolds decomposition [15], we decompose the velocity
into mean flowU and the fluctuationsu. Then the velocity is written asU +u,
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whereU describes the large scale flow andu describes the small scale turbulence.
We must also decompose the pressure into mean pressureP and the fluctuations
p, then the equation for the large scale flow can be written as

Ut +U ·∇U = ν∆U −∇P−∇ · (u⊗u), (1)

where in coordinates∇ · (u⊗u) =
∂uiu j
∂x j

, that is∇ is dotted with the rows ofuiu j

andRi j = u⊗u is the Reynolds stress, see [3]. The Reynolds stress has the inter-
pretation of a turbulent momentum flux and the last term in (1)is also know as
the eddy viscosity. It describes how the small scales influence the large scales. In
addition we get divergence free conditions forU , andu

∇ ·U = 0, ∇ ·u= 0.

Together, (1) and the divergence free condition onU give Reynolds Averaged
Navier-Stokes (RANS) that forms the basis for most contemporary simulations of
turbulent flow.

Finding a constitutive law for the Reynolds stressu⊗u is the famous closure
problem in turbulence and we will solve that by writing down astochastic equation
for the small scale velocityu. The hypothesis is that the large scale influence the
small scales directly, through the fluid instabilities and the noise in fully developed
turbulence. An example of this mechanics, how the instabilities magnify the tiny
ambient noise to produce large noise, in given in [4], see also Chapter 1 in [6].

Now consider the inertial range in turbulence. In Fourier space this is the
range of wave numbersk: 1

L ≤ |k| ≤ 1
η , whereη = (ν3/ε)1/4 is the Kolmogorov

length scale,ε is the energy dissipation andL the size of the largest eddies, see
[6]. If we assume that dissipation takes place on all length scale in the inertial
range then the form of the dissipation processes are determined by the fundamen-
tal theorems of probability. Namely, if we impose periodic boundary conditions
(different boundary conditions correspond to different basis vectores), then the
central limit theorem and the large deviation principle stipulate that the additive
noise in the Navier-Stokes equation for the small scale mustbe of the form:

∑
k6=0

c
1
2
k dbk

t ek(x)+ ∑
k6=0

dk|k|1/3dt ek(x),

whereek(x) = e2πik·x are the Fourier coefficient andc
1
2
k anddk are coefficients that

ensure the series converge in 3 dimensions. The first term describes the mean of
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weakly coupled dissipation processes given by the central limit theorem and the
second term describes the large deviations of that mean, given by the large devia-
tion principle, see [6]. Thus together the two terms give a complete description of
the mean of the dissipation process similar to the mean of many processes in prob-
ability. The factor|k|1/3 implies that the mean dissipation has only one scaling.
The Fourier coefficients of the first series contain independent Brownian motions
bk

t and thus the noise is white in time in the infinitely many directions in function

space. The noise cannot be white in space, hence the decayingcoefficientsc1/2
k

anddk, because if it was the small scale velocityu would be discontinuous in 3
dimension, see [5]. This is contrary to what is observed in nature.

The other part of the noise, in fully developed turbulence, is multiplicative and
models the excursion (jumps) in the velocity gradient or vorticity concentrations.
If we let Nk

t denote the integer number of velocity excursion, associated with kth
wavenumber, that have occurred at timet, so that the differentialdNk(t) = Nk(t+
dt)−Nk(t) denotes the number of excursions in the time interval(t, t+dt], then
the processd f3

t = ∑M
k6=0

∫
R

hk(t,z)N̄k(dt,dz), gives the multiplicative noise term.
One can show that any noise corresponding to jumps in the velocity gradients
must have this multiplicative noise to leading order, see [5]. A detailed derivation
of both the noise terms can be found in [5] and [6].

Adding the additive noise and the multiplicative noise we get the stochastic
Navier-Stokes equations describing the small scales in fully developed turbulence

du= (ν∆u−u ·∇u + ∇∆−1tr(∇u)2)dt+ ∑
k6=0

c
1
2
k dbk

t ek(x)+ ∑
k6=0

dk|k|1/3dt ek(x)

+ u(
M

∑
k6=0

∫
R

hkN̄
k(dt,dz)), u(x,0) = u0(x),(2)

where we have used the divergence free condition∇ ·u= 0 to eliminate the small
scale pressurep. Each Fourier componentek comes with its own Brownian motion
bk

t and a deterministic bound|k|1/3dt.

2.2 Solution of the Stochastic Navier-Stokes

The next step is to figure out how the generic noise interacts with the Navier-
Stokes evolution. This is determined by the integral form ofthe equation (2),

u = eKte
∫ t

0 dqMtu
0+ ∑

k6=0

∫ t

0
eK(t−s)e

∫ t
s dqMt−s(c

1/2
k dβk

s+dkµkds)ek(x),(3)
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whereK is the operatorK = ν∆+∇∆−1tr(∇u∇), and we have omitted the terms
−U · ∇u− u · ∇U in (2), to simplify the exposition. We solve (2) using the
Feynmann-Kac formula, and the Cameron-Martin formula (or Girsanov’s The-
orem) from probability theory, see [6], to get (3). The Cameron-Martin for-
mula gives the MartingaleMt = exp{−∫ t

0 u(Bs,s) ·dBs− 1
2

∫ t
0 |u(Bs,s)|2ds}. The

Feynmann-Kac formula gives the exponential of a sum of termsof the form∫ t
s dqk =

∫ t
0
∫
R

ln(1+hk)Nk(dt,dz)− ∫ t
0
∫
R

hkmk(dt,dz), see [5] or [6] Chapter 2
for details. The form of the processes

e
∫ t

0
∫
R

ln(1+hk)Nk(dt,dz)−∫ t
0
∫
R

hkmk(dt,dz) = eNk
t lnβ+γ ln |k| = |k|γβNk

t(4)

was found by She and Leveque [16], forhk = β−1. It was pointed out by She and
Waymire [17] and by Dubrulle [7] that they are log-Poisson processes. The upshot
of this computation is that we see the Navier-Stokes evolution acting on the ad-
ditive noise to give the Kolmogorov-Obukhov ’41 scaling, and the Navier-Stokes
evolution acting on the multiplicative noise to produce theintermittency correc-
tions through the Feynmann-Kac formula. Together these twoscaling combine to
give the scaling of the structure functions in turbulence,

3 The Kolmogorov-Obukhov-She-Leveque Scaling

3.1 Computation of the structure functions

Lemma 3.1 (The Kolmogorov-Obukhov-She-Leveque scaling)The scaling of
the structure functions is

Sp ∼Cp|x−y|ζp, ζp =
p
3
+ τp =

p
9
+2(1− (2/3)p/3).

p
3 being the Kolmogorov scaling andτp the intermittency corrections. The scaling
of the structure functions is consistent with Kolmogorov’s4/5 law, S3 = −4

5ε|x−
y|, to leading order, wereε =−dE

dt is the energy dissipation.

3.2 The first few structure functions

The first structure functions is estimated by

S1(x,y,∞)≤ 2
C ∑

k∈Z3\{0}

|dk|(1−e−λkt)

|k|ζ1
|sin(πk · (x−y))|.
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We get a stationary state ast →∞, and for|x−y| small,S1(x,y,∞)∼ 2πζ1

C ∑k∈Z3\{0}
|dk||x−y|ζ1,whereζ1=1/3+τ1≈0.37. Similarly,S2(x,y,∞)∼ 4πζ2

C2 ∑k∈Z3\{0}[dk
2+

(C
2)ck]|x−y|ζ2, when|x−y| is small, whereζ2=2/3+τ2≈0.696, andS3(x,y,∞)∼

23π
C3 ∑k∈Z3\{0}[|dk|3+3(C/2)ck|dk|]|x−y|. For thepth structure functions, we get
thatSp is estimated by

Sp ≤
2p

Cp ∑
k∈Z3\{0}

σp · (−i
√

2sgnM)p U
(

−1
2 p, 1

2,−1
2(M/σ)2

)

|k|ζp
|sinp(πk · (x−y))|.

whereU is the confluent hypergeometric function,M = |dk|(1−e−λkt) andσ =
√

(C/2)ck(1−e−2λkt). The details of these estimates are given in [5].
The integral equation can be considered to be an infinite-dimensional Ito pro-

cess, see [6]. This means that we can find the associated Kolmogorov backward
equation for the Ito diffusion associated with the equation(3) and this equations
that determines the invariant measure of turbulence, see [5], is linear. This was
first attempted by Hopf [8] wrote down a functional differential equation for the
characteristic function of the invariant measure of the deterministic Navier-Stokes
equation. The Kolmogorov-Hopf (backward) equation for (2)is

∂φ
∂t

=
1
2

tr[PtCP∗
t ∆φ]+ tr[PtD̄∇φ]+< K(z)Pt,∇φ >, (5)

see [5] and [6] Chapter 3, wherēD = (|k|1/3Dk), φ(z) is a bounded function ofz,
Pt = e−

∫ t
0 ∇u drMt ∏m

k |k|2/3(2/3)Nk
t . The variance and drift are defined to be

Qt =
∫ t

0
eK(s)PsCP∗

s eK∗(s)ds, Et =
∫ t

0
eK(s)PsD̄ds. (6)

3.3 The invariant measure of the stochastic Navier-Stokes

In distinction to the nonlinear Navier-Stokes equation (2)that cannot be solved
explicitly, the linear equation (5) can be solved. The solution of the Kolmogorov-
Hopf equation (5) is

Rtφ(z) =
∫

H
φ(eKtPtz+EI+y)N (0,Qt ) ∗PNt(dy),

PNt being the law of the log-Poisson process (4). The invariant measure of turbu-
lence that appears in the last equation can now be expressed explicitly,
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Theorem 3.1 The invariant measure of the Navier-Stokes equation on Hc=H3/2+(T3)
is,

µ(dx) = e<Q−1/2EI, Q−1/2x>− 1
2 |Q−1/2EI|2

N (0,Q)(dx)∑
k

δk,l

∞

∑
j=0

p j
ml

δ(Nl− j)

where Q= Q∞, E = E∞, mk = ln |k|2/3 is the mean of the log-Poisson processes

(4) and pj
mk =

(mk)
je−mk

j ! is the the probability of Nk∞ = Nk having exactly j jumps,
δk,l is the Kroncker delta function.

This shows that the invariant measure of turbulence is simply a product of two
measure, one an infinite-dimensional Gaussian that gives the Kolmogorov-Obukhov
scaling and the other a discrete Poisson measure that gives the She-Leveque inter-
mittency corrections. Together they produce the scaling ofthe structure functions
in Lemma 1.

3.4 The differential equation for the PDF

The quantity that can be compared directly to experiments isthe probability den-
sity function (PDF). We take the trace of the Kolmogorov-Hopf equation (5), see
[6] Chapter 3, to compute the differential equation satisfied by the PDE. The sta-
tionary equation satisfied by the PDF is

1
2

φrr +
1+ |c|

r
φr =

1
2

φ. (7)

4 The Normalized Inverse Gaussian (NIG) distribu-
tions

4.1 The Probability Density Function (PDF)

Lemma 4.1 The PDF is a Normalized Inverse Gaussian distribution NIG ofBarndorff-
Nilsen [1]:

f (x) =
(δ/γ)√

2πK1(δγ)

K1

(

α
√

δ2+(x−µ)2
)

eβ(x−µ)

(

√

δ2+(x−µ)2/α
) (8)

where K1 is modified Bessel’s function of the second kind,γ =
√

α2−β2.
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(8) is the solution of (7) and the PDF that can be compared a large class of exper-
imental data.

We finally explain how we get around the famous non-uniqueness problem of
the Navier-Stokes equation. It is well known that the fluid velocity u solving the
(stochastic) Navier-Stokes equation may not be unique in 3 dimensions. However,
the invariant measure in Theorem 3.1 exists by Leray’s ’34 [11] theory, see The-
orem 4.1 below. If the velocity is not unique different velocities give equivalent
statistics. Thus the statistical theory is unique althoughthe velocityu may not be.

Theorem 4.1 The solution of the stochastic Navier-Stokes equation (2) satisfies
the estimates

E(|u|22)(t)≤ |u|22(0)e−at +
1
a
(
2|T|

ε ∑
k6=0

dk|k|
1
3 + ∑

k6=0

ck)+
|T|
a

ln(
m

∏
k=1

|k|2) 1
9 ,

and

(1− εD)sup
[0,t]

E(|u|22)(t)+2ν
∫ t

0
E(|∇u|)(s)ds≤ |u|22(0)+(

|T|
ε ∑

k6=0

dk|k|
1
3 + ∑

k6=0

ck)t

+|T| ln(
m

∏
k=1

|k|2) 1
9 ,

where D= ∑k6=0dk|k|1/3, E denotes the expectation, a= 2νλ1−D, λ1 is the first
eigenvalue of−∆, with vanishing boundary conditions,ε is a small number and
|T| is the volume of the torus (box with periodic boundary conditions).

The proof of the theorem is similar to the proof of the Leray theory in Chapter 4,
in [6].
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