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1 Introduction

In 1941 Kolmogorov and Obukhov [9, 12] proposed that theristeya statisti-
cal theory of turbulence that should allow the computatib@lbthe statistical
guantities that can be computed and measured in turbulsteérag. These are
guantities such as the moments, the structure functiongrengrobability den-
sity functions (PDFs) of the turbulent velocity field. ThelKmgorov-Obukhov
'41 theory predicted that the structure functions of tueingle, that are the mo-
ments of the velocity differences at distances separatedéy variabld, should
scale with the lag variable to a powef3 for the pth structure function, multiplied
by a universal constant. This was found to be inconsistetit @dservations and
in 1962 Kolomogorov and Obukhov [10, 13] presented a refimatireg hypothe-
sis, where the multiplicative constants are not universdltae scaling exponents
are modified tap = p/3+ Tp, by the intermittency correctiory, that are due to
intermittency in the turbulent velocity. It was still notear what the values of
Tp should be, because the log-normal exponents suggestedimpkgov turned
out again to be inconsistent with observations. Then in 1984 and Leveque
[16] found the correct (log-Poissonian) formulas fgrthat are consistent with
modern simulations and experiments.

In this paper we will outline how the statistical theory of IKmgorov and
Obukhov is derived from the Navier-Stokes equation withgetting into any of
the technical details. We start with the classical Reyndielsomposition of the
velocity into the mean (large scale) flow and the fluctuatiensmall scale flow.



Then we develop a stochastic Navier-Stokes equation [6ihtosmall scale flow.
If we assume that dissipation take place on all scales imtial range (defined
below) then it turns out that the noise in this stochasticibla8tokes equation
is determined by well-known theorems in probability. Thelitide noise in the
stochastic Navier-Stokes equation is generic noise giyeghdcentral limit theo-
rem and the large deviation principle. The multiplicativese consists of jumps
multiplying the velocity, modeling jumps in the velocityagtient. We will explain
how this form of the noise follows from very general hypoikes

Once the form of the noise in the stochastic Navier-Stokeston for the
small scales is determined, we can estimate the structoctidms of turbulence
and establish the Kolmogorov-Obukhov 62 scaling hypagwgh the She-Leveque
intermittency corrections [5]. Then one can compute thariiant measure of tur-
bulence writing the stochastic Navier-Stokes equatiomasifnite-dimensional
Ito process and solving the linear Kolmogorov-Hopf [8] ftional differential
equation for the invariant measure. Finally the invariaeasure can be projected
onto the PDF. The PDFs turn out to be the normalized inverses$an (NIG)
distributions of Barndorff-Nilsen [1, 2], and compare weith PDFs from sim-
ulations and experiments. The details of the proofs can bedan [5] and the
background material can be found in [6].

2 The Deterministic Navier-Stokes Equations
A general incompressible fluid flow satisfies the Navier-8soEquation
U +u- Ou=vAu—[Op, u(x,0) = up(x)

with the incompressibility conditiofl - u = 0. Eliminating the pressure using the
incompressibility condition gives

W+ Uu-Ou=vAu+OA racgOu)?,  u(x,0) = up(x).
The turbulence is quantified by the dimensionless TaylgmRkls numbeReg, =
S [14]
5 :

2.1 Reynolds Decomposition

Following the classical Reynolds decomposition [15], weatepose the velocity
into mean flomJ and the fluctuations. Then the velocity is written as + u,
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whereU describes the large scale flow amdescribes the small scale turbulence.
We must also decompose the pressure into mean preBsamd the fluctuations
p, then the equation for the large scale flow can be written as

U+U-0U =vAU —OP—0- (Ue ), (1)

where in coordinatell- (u®u) = %L? that isJ is dotted with the rows offitj
andR; = u®uis the Reynolds stress, see [3]. The Reynolds stress hastémne i
pretation of a turbulent momentum flux and the last term inigl3lso know as
the eddy viscosity. It describes how the small scales inflag¢he large scales. In
addition we get divergence free conditions fbrandu

U-u=0, -u=0.

Together, (1) and the divergence free conditionlbmgyive Reynolds Averaged
Navier-Stokes (RANS) that forms the basis for most contammycsimulations of
turbulent flow.

Finding a constitutive law for the Reynolds stress u is the famous closure
problem in turbulence and we will solve that by writing dowstachastic equation
for the small scale velocity. The hypothesis is that the large scale influence the
small scales directly, through the fluid instabilities ainel hoise in fully developed
turbulence. An example of this mechanics, how the instaslimagnify the tiny
ambient noise to produce large noise, in given in [4], see @lsapter 1 in [6].

Now consider the inertial range in turbulence. In Fourieacgpthis is the
range of wave numbels { < [k| < 7, wheren = (v3/e)!/* is the Kolmogorov
length scaleg is the energy dissipation aridthe size of the largest eddies, see
[6]. If we assume that dissipation takes place on all leng#iesin the inertial
range then the form of the dissipation processes are detedly the fundamen-
tal theorems of probability. Namely, if we impose periodaubdary conditions
(different boundary conditions correspond to differensibavectores), then the
central limit theorem and the large deviation principlegkate that the additive
noise in the Navier-Stokes equation for the small scale imeistf the form:

1
; c2dbex(x) + ; di /KM 3dt &(x),
k£0 k#£0

. 1
whereg(x) = e are the Fourier coefficient argd andd are coefficients that
ensure the series converge in 3 dimensions. The first terorides the mean of
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weakly coupled dissipation processes given by the cenitnal theorem and the
second term describes the large deviations of that meaen gy the large devia-
tion principle, see [6]. Thus together the two terms give mplete description of
the mean of the dissipation process similar to the mean of/iiatesses in prob-
ability. The factor|k|*/3 implies that the mean dissipation has only one scaling.
The Fourier coefficients of the first series contain indepah&rownian motions
b{‘ and thus the noise is white in time in the infinitely many dii@es in function
space. The noise cannot be white in space, hence the decr.a;e'n‘f'g:ientsci/2
anddg, because if it was the small scale veloaityvould be discontinuous in 3
dimension, see [5]. This is contrary to what is observed mnea

The other part of the noise, in fully developed turbulenseultiplicative and
models the excursion (jumps) in the velocity gradient otiedy concentrations.
If we let N¥ denote the integer number of velocity excursion, assatiatth kth
wavenumber, that have occurred at timso that the differential N¥(t) = NX(t +
dt) — NX(t) denotes the number of excursions in the time intefaH- dt], then
the processl f2 = z{l"#o Ir h(t,z)NK(dt, d2), gives the multiplicative noise term.
One can show that any noise corresponding to jumps in thecitglgradients
must have this multiplicative noise to leading order, sg¢eAxetailed derivation
of both the noise terms can be found in [5] and [6].

Adding the additive noise and the multiplicative noise we the stochastic
Navier-Stokes equations describing the small scales indieiveloped turbulence

1
du= (vAu—u-Ou + DA tr(Ou)?)dt+ ; c2dbfex(x) + ; di k| 3dt g(x)
k£0 k%0

M
@) + u(k;o /R heNK(dt, d2)), u(x,0) = Uo(X),

where we have used the divergence free condifien = 0 to eliminate the small
scale pressurp. Each Fourier componegt comes with its own Brownian motion
bk and a deterministic bour|é|Y/3dt.

2.2 Solution of the Stochastic Navier-Stokes

The next step is to figure out how the generic noise interadts tive Navier-
Stokes evolution. This is determined by the integral forrthefequation (2),

. t .
B) u = eKteféqutuo-l—; / K-Sl dap, (c/2dBE + dids)ad(x),
KZ0”0
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whereK is the operatoK = vA -+ 0A~tr(0Oull), and we have omitted the terms
—U -Ou—u-0U in (2), to simplify the exposition. We solve (2) using the
Feynmann-Kac formula, and the Cameron-Martin formula (os&ov’s The-
orem) from probability theory, see [6], to get (3). The CaomeMartin for-
mula gives the Martingalt; = exp{— [gu(Bs,S) - dBs— 1 [§ |u(Bs,s)|?ds}. The
Feynmann-Kac formula gives the exponential of a sum of teofthe form
Jidd< = [§ frIn(1+h)N¥(dt,d2) — [3 [ hm¥(dt,d2), see [5] or [6] Chapter 2
for details. The form of the processes

(4) @0 fr IN(1+h)NK(dt.d2)— fo [ hemf(dt.d2) _ NEINB+yin|k| _ |k|yBNtk

was found by She and Leveque [16], fpr= 3 — 1. It was pointed out by She and
Waymire [17] and by Dubrulle [7] that they are log-Poissongasses. The upshot
of this computation is that we see the Navier-Stokes ewaiudicting on the ad-
ditive noise to give the Kolmogorov-Obukhov 41 scalingdahe Navier-Stokes
evolution acting on the multiplicative noise to produce itmermittency correc-
tions through the Feynmann-Kac formula. Together thesestating combine to
give the scaling of the structure functions in turbulence,

3 The Kolmogorov-Obukhov-She-Leveque Scaling

3.1 Computation of the structure functions
Lemma 3.1 (The Kolmogorov-Obukhov-She-Leveque scalingYhe scaling of
the structure functions is

SpNCp|X—y|Zp, Zp:g-i‘Tp:F—g)—i-Z(l_(Z/S)p/S)‘

%’ being the Kolmogorov scaling arg the intermittency corrections. The scaling
of the structure functions is consistent with Kolmogorey’s law, S = —j—.)‘e|x—
y|, to leading order, were = —%—f is the energy dissipation.

3.2 The first few structure functions

The first structure functions is estimated by

2 de|(1—e ™M)
Sty <8 3 MEEE S sinc ().
keZ3\{0}



We get a stationary statetas; o, and for[x—y| small,S; (X, y, ) ~ % > keZ3\ {0}
|di||x—y|%, wherel; = 1/3+411 ~0.37. Similarly,S(x,y, %) ~ 4(25_22 Skez? {0y [+
(5)cd[x—y[%2, when|x—y] is small, wher&, = 2/3+ 12 ~ 0.696, andSs(X, y, ) ~

%Tzkezs\{o}ﬁdkﬁ—l—3(C/2)ck|dk|]|x—y|. For thepth structure functions, we get
thatS; is estimated by

G P s OCIVESIMPU (i b -bM/o)
~CcP keZZ\{O} IS

|SinP(Tk- (X y)).

whereU is the confluent hypergeometric functiovl, = |dy|(1— e ™) ando =
V/(C/2)ck(1—e 2\, The details of these estimates are given in [5].

The integral equation can be considered to be an infiniteedgional Ito pro-
cess, see [6]. This means that we can find the associated §ohmobackward
equation for the Ito diffusion associated with the equati®nand this equations
that determines the invariant measure of turbulence, deés[bnear. This was
first attempted by Hopf [8] wrote down a functional differahiequation for the
characteristic function of the invariant measure of thedwinistic Navier-Stokes
equation. The Kolmogorov-Hopf (backward) equation fori€2)

g_‘tp _ %tr[PtCF{*A(p] +t[RDOG+ < K2R, Dp>, (5)

see [5] and [6] Chapter 3, whee= (|k|*/3Dy), ¢(2) is a bounded function of,
R = e~ Jolu dr\, (™ k|2/3(2/3)N. The variance and drift are defined to be

t _
Q= / IPCRe Ods Et—/eK(s)Psts (6)
0

3.3 The invariant measure of the stochastic Navier-Stokes

In distinction to the nonlinear Navier-Stokes equationt{t cannot be solved
explicitly, the linear equation (5) can be solved. The solubf the Kolmogorov-
Hopf equation (5) is

RO = [ @ERZ+EI+Y)N o) *Pr(dy),

P, being the law of the log-Poisson process (4). The invarisgasuare of turbu-
lence that appears in the last equation can now be expresskcity,
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Theorem 3.1 The invariant measure of the Navier-Stokes equationoa H3/2" (T3)
is,

_1/2 12y 11A-1/2F112 2
H(dx) = e<Q 7Bl QVAe—3|Q e N(0,g) (dX) Zém z Pin O(N— )
j=

where Q= Qu, E = Ew, M = In|k|%3 is the mean of the log-Poisson processes
(4) and g, = ("“);,‘;mk is the the probability of §§ = Ny having exactly j jumps,

O is the Kroncker delta function.

This shows that the invariant measure of turbulence is siragbroduct of two
measure, one an infinite-dimensional Gaussian that giedsaghmogorov-Obukhov
scaling and the other a discrete Poisson measure that r&he-Leveque inter-
mittency corrections. Together they produce the scaling®fstructure functions
in Lemma 1.

3.4 The differential equation for the PDF

The quantity that can be compared directly to experimerttseiprobability den-
sity function (PDF). We take the trace of the Kolmogorov-iHeguation (5), see
[6] Chapter 3, to compute the differential equation satishig the PDE. The sta-
tionary equation satisfied by the PDF is

1 1+|c| 1

SOt —— & =0 (7)

4 The Normalized Inverse Gaussian (NIG) distribu-
tions

4.1 The Probability Density Function (PDF)

Lemma 4.1 The PDFis a Normalized Inverse Gaussian distribution NIBafmdorff-
Nilsen [1]:

ey k(o) e
VK@) (Ve w?a)

where K is modified Bessel’s function of the second king, /a2 — 2.

f(x) (8)
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(8) is the solution of (7) and the PDF that can be comparedja lelass of exper-
imental data.

We finally explain how we get around the famous non-uniquepesblem of
the Navier-Stokes equation. It is well known that the fluitbegy u solving the
(stochastic) Navier-Stokes equation may not be unique im&uksions. However,
the invariant measure in Theorem 3.1 exists by Leray’s '3 {heory, see The-
orem 4.1 below. If the velocity is not unique different vatas give equivalent
statistics. Thus the statistical theory is unique althailnghvelocityu may not be.

Theorem 4.1 The solution of the stochastic Navier-Stokes equationd@3ftes
the estimates

12T
E(uB)®) < [uB©o)e *+ (AL 5 i+ 3 60+ L |'|\k\ ),
a & % Ko
and
(1- eD)supE(|u|2) —|—2v/ E(|0Ou])(s)ds< |u| | | ;d |k|3+§ck
[0,]

1

m
HTIn(] K123,

where D= .o dk/K|*/3, E denotes the expectation=a2vA; — D, Ay is the first
eigenvalue of-A, with vanishing boundary conditions,is a small number and
|T| is the volume of the torus (box with periodic boundary candg).

The proof of the theorem is similar to the proof of the Leragdty in Chapter 4,
in [6].
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