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Human body epigenome maps reveal noncanonical
DNA methylation variation
Matthew D. Schultz1,2{*, Yupeng He1,2*, John W. Whitaker3{, Manoj Hariharan2, Eran A. Mukamel4,5, Danny Leung6,
Nisha Rajagopal6, Joseph R. Nery2, Mark A. Urich2, Huaming Chen2, Shin Lin7, Yiing Lin8, Inkyung Jung6, Anthony D. Schmitt6,
Siddarth Selvaraj1, Bing Ren6,9, Terrence J. Sejnowski4,10,11, Wei Wang3,12 & Joseph R. Ecker2,11

Understanding the diversity of human tissues is fundamental to
disease and requires linking genetic information, which is identical
in most of an individual’s cells, with epigenetic mechanisms that
could have tissue-specific roles. Surveys of DNA methylation in
human tissues have established a complex landscape including
both tissue-specific and invariant methylation patterns1,2. Here
we report high coverage methylomes that catalogue cytosine
methylation in all contexts for the major human organ systems,
integrated with matched transcriptomes and genomic sequence. By
combining these diverse data types with each individuals’ phased
genome3, we identified widespread tissue-specific differential CG
methylation (mCG), partially methylated domains, allele-specific
methylation and transcription, and the unexpected presence of
non-CG methylation (mCH) in almost all human tissues. mCH
correlated with tissue-specific functions, and using this mark, we
made novel predictions of genes that escape X-chromosome inac-
tivation in specific tissues. Overall, DNA methylation in several
genomic contexts varies substantially among human tissues.

To understand the variability of DNA methylation across human
tissues better, we obtained post-mortem samples of 18 tissue types
from 4 individuals (5 singletons, 8 duplicates and 5 triplicates;
Fig. 1a, Supplementary Methods and Supplementary Table 1) and
performed deep transcriptome (36 messenger-RNA-seq samples;
120–475 million reads per sample), base-resolution methylome (36
MethylC-seq4 samples; 30–803 genome coverage per sample), and
genome sequencing (4 whole genome sequences; 20–453 genome
coverage per sample). We focused our initial analysis on cytosines in
the CG context and used a previously published method2 to identify
differential methylation (Supplementary Methods). We found that
15.4% (4,073,896 out of 26,474,560 sites tested) of CG sites in these
experiments are strongly differentially methylated (minimum methy-
lation difference $ 0.3; Extended Data Fig. 1a), which is similar to a
previous study2. To identify differentially methylated regions (DMRs),
we combined sites within 500 base pairs (bp) of one another and found
1,198,132 DMRs. Even with these stringent criteria, 719,837 (60.1%) of
the DMRs we identified were novel2,5.

As expected, hypomethylation at DMRs correlated with tissue-
specific functions2,6. For example, strongly hypomethylated DMRs in
the aorta overlap with aorta-specific super enhancers7 around MYH10,
a gene involved in blood vessel function8 (Fig. 1b). To validate our
DMRs further, we performed hierarchical clustering on their weighted
methylation levels9 (Supplementary Methods, Fig. 1c and Extended
Data Fig. 1b, c). Tissues that were part of the same organ system

clustered together (for example, heart and muscle tissues). We
compared these results to a clustering of differentially expressed genes
identified in the transcriptomes and found a similar separation of
organ systems (Supplementary Methods, Fig. 1d and Extended Data
Fig. 1d). Furthermore, Genomic Regions Enrichment of Annotations
Tool10 analysis on the most hypomethylated tissue-specific DMRs
revealed many tissue-specific functions (Extended Data Fig. 1e, f,
Supplementary Methods and Supplementary Tables 2–3).

To examine the relationship between methylation and transcrip-
tion, we correlated the methylation levels of DMRs and the expression
of the closest genes (Fig. 2a, Extended Data Fig. 2a, b and
Supplementary Methods). As expected, methylation in DMRs had
a negative correlation with expression, and this correlation grew
stronger closer to the transcription start site. The strongest negative
correlation was not in gene promoters but downstream of the pro-
moter up to 8 kilobases (kb) away (intragenic (0.3 kb to 8 kb) versus
promoter region and upstream region (22 kb to 0.3 kb) median
Spearman correlation coefficient difference 20.07; Mann–Whitney
P 5 4.2 3 10217; Fig. 2a). This analysis shows that transcription is
strongly associated with intragenic DMRs in the tissues we examined,
extending similar observations in cancer methylomes11.

These intragenic methylation differences have previously been sug-
gested to mark intragenic CG islands (CGIs) or CGI shores5,12–14.
However, only a small fraction of intragenic DMRs fell in these features
(19%; Extended Data Fig. 2c). In addition, predicted enhancers and
putative promoters only accounted for 23% and 22% of intragenic
DMRs, respectively, suggesting that the remaining DMRs, which we
call undefined intragenic DMRs (uiDMRs), represent an unrecognized
set of functional elements (35%; Extended Data Fig. 2c and Supple-
mentary Methods). The methylation level of these uiDMRs correlated
strongly with the expression of the genes containing them. To examine
their regulatory potential, we plotted their histone modification profiles
(histone 3 Lys 4 methylation (H3K4me1), H3K4me3, H3K27ac,
H3K9me3, H3k27me3 and H3K36me3) derived from the same tissue
samples15 and found five classes: weak enhancer, promoter-proximal,
transcribed, poised enhancer and unmarked (Extended Data Figs 2d–h,
3a, b and Supplementary Methods). Classes with strong, active histone
modifications were moderately negatively correlated with expression
(weak enhancer and proximal promoter uiDMRs; median Spearman
correlation coefficient 20.32 and 20.16, respectively); whereas,
uiDMRs with less active histone modifications exhibited a weak negative
correlation (transcribed and poised enhancer uiDMRs). Notably, the
correlation between expression and methylation at promoter-proximal
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uiDMRs was as strong as the correlation with intragenic DMRs that
overlapped strong promoters (Extended Data Fig. 4 and Supple-
mentary Methods), indicating that intragenic promoter and promoter-
proximal sequences are more predictive of changes in methylation than
those enriched for enhancer-like chromatin modifications.

By contrast, unmarked uiDMRs showed a weakly positive correla-
tion with expression (Extended Data Fig. 4d). Notably, we found many
of the motifs enriched in tissue-specific uiDMRs were present in tissue-
specific enhancers (for example, HNF4a (ref. 16) in liver-specific
uiDMRs), suggesting that these DMRs are tissue-specific regulatory
elements (Supplementary Methods and Supplementary Tables 4
and 5). Recently, hypomethylated regions that appear inactive in adult
tissues but active during fetal development were identified in mice6.
We examined the DNase I hypersensitivity profiles of unmarked
uiDMRs in matched fetal tissues17 and found an enrichment of hyper-
sensitivity (Extended Data Fig. 5 and Supplementary Table 6),
suggesting that hypomethylation of inactive DMRs can be maintained
at regions active earlier in development.

We next examined whether variation in methylation is associated
with genetic variation across individuals, which has not been widely
characterized in healthy primary tissues or using whole-genome bisul-
phite sequencing18,19.To identify individual-specific DMRs, we used
a method20 that is sensitive to these differences unlike the metho-
dology used above (Supplementary Methods). We first restricted our
analysis to triplicated samples and ranked DMRs by a tissue-specific
methylation outlier score that is largest when the methylation level
in one individual differs from the other two. We found an ,1.6-fold
enrichment of single nucleotide polymorphisms (SNPs) associating
with methylation changes in the top 2,500 methylation-outlier-
score-ranked DMRs in all tissues (Supplementary Methods). We then
used the Epigram pipeline21 to predict tissue-specific methylation from
DNA motifs in these DMRs and found them highly predictive (average
area under the curve (AUC) 0.79; Supplementary Methods). These full
models used an average of 156 motifs; however, an average AUC of
0.74 was achieved using only 20 core transcription factor motifs
per tissue.

We then identified groups of corresponding motifs by clustering the
sets of tissue-specific motifs (Supplementary Methods). The motif
groups were clustered by their tissue hypo- and hypermethylation
specificities (Fig. 2b). In total, 42 out of 95 motifs only had hypomethy-
lation specificity; for example, MEIS, which is involved in heart
development22, is hypomethylated in the left ventricle, right atrium
and right ventricle. We also identified 34 motifs enriched at both hypo-
methylated DMRs in some tissues, and in hyper-methylated DMRs in
some other tissues. Three of these motifs match transcription factor
families (FOX, HOX and GATA) and are most significantly enriched in
hypomethylated regions, suggesting that they are primarily involved in
regulating hypomethylation.

Mammalian cells have high genome-wide levels of mCG, with
the exception of a cultured human fetal fibroblast cell line (IMR90)4,
cancer cells23,24 and placenta (PLA)25. Surprisingly, large regions of the
pancreatic methylomes (PA-2 and PA-3) were significantly hypo-
methylated (Extended Data Fig. 6a). We developed a method to identify
partially methylated domains (PMDs) genome-wide (Supplementary
Tables 7–8 and Supplementary Methods) and found pancreatic PMDs
were smaller than those in IMR90 and PLA (Extended Data Fig. 6b)
and covered a smaller fraction of the genome (Fig. 2c). All pairs of
PMDs overlapped significantly, indicating that these regions are largely
shared (.40% overlap; P , 0.001; Extended Data Fig. 6c).

Genes in samples with PMDs are transcriptionally repressed25,26,
but these regions also show reduced expression in all of the tissues
we surveyed whether or not a PMD is present (Fig. 2d). In both
IMR90 and PA-2, these regions showed an enrichment in repressive
modifications (H3K27me3 and H3K9me3; median difference
0.025–0.168 reads per kilobase per million (RPKM); Mann–Whitney
P , 2.51 3 102161) and a depletion in active modifications (H3K4me1,
H3K27ac and H3K36me3; median difference 0.050–0.012 RPKM;
Mann–Whitney P , 2.03 3 10253) compared to shuffled regions
(Fig. 2e, f, Extended Data Fig. 6 d, e and Supplementary Methods),
which provides a potential mechanism for their repression. To try to
account for this global hypomethylation, we plotted the expression
levels of DNMT1, DNMT3A, DNMT3B and DNMT3L but found no
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Figure 1 | The methylomes and transcriptomes of human tissues. a, The
tissues analysed in this study. Samples are denoted by the two letter code in
parentheses followed by an individual ID. b, Browser screenshot of an example
DMR. The top track contains gene models. The following four tracks contain
green blocks indicating the location of super enhancers, enhancers and
hypomethylated DMRs in the aorta, respectively. The remaining tracks display

methylation data from each sample. Gold ticks are CG sites with heights
proportional to their methylation level. Ticks on the forward and reverse strand
are projected upward and downward from the dotted line, respectively.
c, d, Hierarchical clustering of DMR methylation levels (c) and expression
levels of differentially expressed genes (d). Colours indicate the organ systems
each sample belongs to.
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systematic expression difference between samples with and without
PMDs (Extended Data Fig. 7a–d).

Previous studies have highlighted the existence of methylation out-
side of the CG context (mCH) in human embryonic stem cells4,
brain1,20 and at the promoter of the PGC-1a gene (PPARGC1A) in
skeletal muscle27. We found evidence for appreciable amounts
of mCH in many of these tissues (Fig. 3a and Extended Data
Fig. 8a). A 5-bp motif split the samples into two groups, one with
mCH enriched in a TNCAC motif and another with mCH enriched
in an NNCAN motif (where N is any base) (Supplementary
Methods). The TNCAC motif is highly similar to the one previously
identified in purified glia (GLA) and neurons (NRN) (TACAC).
These motifs differ from those found in H1 embryonic stem cells
(H1) and induced pluripotent stem cells (TACAG)4,26 (Fig. 3b–d).
We quantified the extent of mCH across these samples by plotting
the distribution of methylation levels at mCH sites in the 25 samples
with a TNCAC motif, which revealed a methylation level similar to
that of GLA, NRN and H1 (Extended Data Fig. 8b)4,20. Most of the
tissue types were consistently enriched for the TNCAC or NNCAN
motif, but several (oesophagus, lung, pancreas and spleen) had repli-
cates that disagreed, suggesting that mCH is not homogenously
distributed across these tissues.

To examine the potential functional effect of mCH in adult tissues,
we plotted the distribution of expression levels for various quantiles of
gene body mCH as it was previously reported to be positively corre-
lated with expression in H1 (ref. 4) and negatively correlated with
expression in neurons20. This analysis revealed a negative correlation
between expression and mCH (Extended Data Fig. 8c and
Supplementary Methods). Next, we combined our replicates and clus-

tered genes by the patterns of CAS methylation (in which S is a G or C)
in and around their gene body (Fig. 3e and Supplementary Methods).
To characterize the genes assigned to each cluster, we performed
DAVID functional annotation clustering (Supplementary Table 9
and Supplementary Methods), which revealed several different classes.
Clusters 1, 2, 16 and 19 contained genes highly enriched for terms
involved in basic cellular processes and had an active methylation state
(that is, hypermethylation in embryonic samples and hypomethyla-
tion in tissue and brain samples) across all samples. Clusters 5 and 6
were dominated by terms related to neuronal function and genes in
this class were differentially methylated between neurons and glia and
have inactive methylation states in other samples (that is, hypomethy-
lation in embryonic samples and hypermethylation in tissue and brain
samples). Cluster 12 was enriched for heart- and muscle-related terms
and its genes had an active methylation state in the three heart tissues
as well as a weakly active methylation state in psoas but appeared
inactive in other samples. Lastly, cluster 14 possessed an active methy-
lation state in brain and tissue samples but was inactive in embryonic
samples. Despite being inactive in the H1 samples, this class of genes
was highly enriched for terms related to development.

To define the transition of mCH motifs over development better, we
examined the ratio of the methylation level of CAC and CAG (mCAC
and mCAG) sites in a variety of differentiated (tissues, NRN and GLA),
embryonic (H1), and embryonic-derived (neural progenitor cells
(NPC), mesendoderm (MES), trophoblast-like (TRO), mesenchymal
stem cells (MSC))28 cell samples (Fig. 3f). With the exception of brain
cells, mCH levels drop during differentiation, and the mCAC/mCAG
ratios revealed a shift in motif usage across developmental time
(Fig. 3f); although, mCAC and mCAG within the same gene remain
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tightly correlated in both early embryonic and differentiated tissues
(Extended Data Fig. 8d, e).

Methylation has previously been shown to be predictive of genes
escaping X-chromosome inactivation in neurons20. We investigated
this phenomenon in these samples by comparing the promoter mCG
and gene body mCH of genes that had previously been identified to
escape X-chromosome inactivation29 in 11 tissues with mCH (Fig. 4a).
Female-specific promoter mCG hypomethylation and gene body
mCH hypermethylation were present at escapee genes at a similar

level as in neurons20 (Extended Data Fig. 9a). Using these tissue
methylomes, gene body mCH was appreciably predictive of biallecially
expressed genes (AUC 0.89; Extended Data Fig. 9b and Supplementary
Methods). To a lesser extent, we observed female-specific promoter
mCH and gene body mCG hypermethylation at escapee genes
(Extended Data Fig. 9a, c, d). Although female-specific promoter
mCG hypomethylation, promoter mCH hypermethylation and gene
body mCG hypermethylation are predictive of X-chromosome inac-
tivation escapees, female-specific gene body mCH hypermethylation is
the most predictive feature of X-chromosome inactivation escapees
(Extended Data Fig. 9a, b–e). We detected female-specific mCH
hypermethylation in 109 out of 612 X-linked genes, including 9 genes
hypermethylated in all 11 tissues and 72 genes that were hypermethy-
lated in only one tissue (Fig. 4b). Several genes such as FUNDC1
showed female-specific hypermethylation in several tissues but not
in neurons, suggesting a tissue-dependent regulation of the escape
from X inactivation.

Allele-specific methylation and expression (ASM and ASE, respect-
ively) may also have a role in the regulation of autosomal genes. To
examine these phenomena in human tissues, we combined the RNA-
seq and MethylC-seq data sets with phased genotypes for each indi-
vidual in this study3,15 (Extended Data Fig. 10a and Supplementary
Methods). Using the triplicate tissue samples (fat (FT), gastric (GA),
psoas (PO), small bowel (SB) and spleen (SX)), we identified
8,464–48,560 ASM events in the CG context and 48–403 ASE genes
across these tissues (Supplementary Tables 10, 11 and Supplementary
Methods). We next looked for ASM events that varied across indivi-
duals within a tissue-type (tissue variable) and those that varied
across a tissue-type within an individual (individual variable). Of the
ASM events that varied, 4.1–7.5% and 54.5–70.0% were individual-
and tissue-variable, respectively; whereas, of the ASE events that
varied, 0.0–20.0% were individual-variable and 13.3–48.8% were
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tissue-variable (Fig. 4c and Supplementary Methods). Of the ASE
events, 38.4–87.4% had an ASM event within 100 kb, and of these
sites, 76% had an ASM and ASE event that was matched (that is, a
DMR was hypomethylated on the same haplotype as the more highly
expressed allele). Furthermore, we found that a larger fraction of
ASE genes were observed near ASM events whether or not the
events matched (Extended Data Fig. 10 b, c and Supplementary
Methods). These results demonstrate a link between ASM and ASE
in human tissues.

Here we have presented the deepest set of base resolution maps
of mCG and mCH so far along with chromatin modification states,
haplotype-resolved genome sequences and transcriptional profiles for
a large set of human tissues. These data sets allowed us to identify
cis-regulatory elements accurately. Furthermore, they revealed the
existence of mCH genome-wide in a subpopulation of cells from dif-
ferentiated human tissues, which seems to be repressive. Our analysis
of genic mCH across human tissues indicates a tissue-specific distri-
bution that is distinct from those genes that were previously identified
in embryonic stem cells and the brain. These genes are enriched for a
variety of functions, most surprisingly those involved in development.
These analyses raise the intriguing possibility that mCH is used in
adult stem cells30 and could help to repress these genes as the cells
transition into their differentiated role.
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confidence interval estimated from 1,000 bootstrap samples.
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Extended Data Figure 8 | mCH distribution and correlation. a, A browser
screenshot (see Fig. 1 for description) of an example region with non-CG
methylation (mCH). Purple and pink ticks are methylated CHG and CHH sites,
respectively (H 5 A, C or T). Ticks on the forward strand are projected upward
from the dotted line and ticks on the reverse strand are projected downward.
b, The distribution of methylation levels at mCH sites across all samples with a
discernible TNCAC motif. Only mCH sites with at least 10 reads and a
significant amount of methylation were considered. c, Boxplots of the
expression values across different quantiles of CAC gene body methylation
(gene body mCAC). d, Scatterplot of mCAG versus mCAC inside gene bodies.

e, Bar plot of the correlation of mCAG and mCAC inside gene bodies (blue) and
the theoretical maximal correlation (red) if mCAC and mCAG are perfectly
correlated. f–h, The methylation levels of C (top), CG (middle) and CH
(bottom) across the read positions for PO-2 (red line) and EG-3 (blue line).
Vertical lines indicate the position (tenth base from the beginning) where
trimming was applied. i, mCH motif from PO-2 with the first 10 bases of each
read trimmed. j, mCH motif from PO-2 without trimming. k, mCH motif
from EG-3 with the first 10 bases of each read trimmed. l, mCH motif from
EG-3 without trimming. The height of each letter represents its information
content (that is, prevalence).
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Extended Data Figure 9 | X-chromosome inactivation. a, Distributions of
promoter CG methylation (mCG) levels (mCG/CG), gene body non-CG
methylation (mCH) levels (mCH/CH), gene body mCG levels and promoter
mCH levels in genes previously reported to express from only one allele
(inactivated) or biallelically (escapee)29. Black ticks show median, and bars
indicate the twenty-fifth to seventy-fifth percentile range. Genes more prone to
escaping inactivation have lower promoter mCG, higher gene body mCH,

higher gene body mCG and higher promoter mCH in females. b–e, Discrimi-
nability analysis using gender-specific gene body mCH (b), promoter mCG
(c), gene body mCG (d) and promoter mCH (e) to predict the escapee status
of X-linked genes, respectively. Among them, gene body mCH is the most
predictive feature of X-chromosome inactivation escapees. The discrimi-
nability was measured by the area under the curve (AUC) (Supplementary
Methods).
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