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A B S T R A C T 

Large-scale astrophysics data sets present an opportunity for new machine learning techniques to identify regions of interest 
that might otherwise be o v erlooked by traditional searches. To this end, we demonstrate how Classification Without Labels 
( CWOLA ), a weakly supervised anomaly detection method, can help identify cold stellar streams within the more than one 
billion Milky Way stars observed by the Gaia satellite. CWOLA operates without the use of labelled streams or knowledge of 
astrophysical principles. Instead, it uses a classifier to distinguish between mixed samples for which the proportions of signal 
and background samples are unknown. As a proof of concept, we demonstrate that this computationally lightweight strategy is 
able to detect both simulated streams and the known stream GD-1 in data. Originally designed for high-energy collider physics, 
this technique may have broad applicability within astrophysics as well as other domains interested in identifying localized 

anomalies. 

Key words: stars: kinematics and dynamics – Galaxy: stellar content – Galaxy: structure. 
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 I N T RO D U C T I O N  

.1 Moti v ation 

he history of our home Galaxy, the Milky Way, has been marked by
he ongoing aggregation of stars, gas, and dark matter from various 
ources throughout the Universe.These accumulation events include 
ergers with other galaxies as well as smaller scale gravitationally 

ound groupings of stars such as globular clusters. Though many 
uch collisions occurred in the distant past, lingering remnants 
rom more recent collisions contain crucial information revealing 
he Milky Way’s merger history (Johnston 1998 ; Helmi & White 
999 ; Belokurov et al. 2006 , 2018 ; Helmi et al. 2018 ; Malhan et al.
021 ), underlying gravitational potential (Dehnen et al. 2004 ; Eyre &
inne y 2009 ; La w & Majewski 2010 ; Kamdar, Conroy & Ting 2021 ;
eino et al. 2021 ; Nibauer et al. 2022 ), and dark matter content

Carlberg, Grillmair & Hetherington 2012 ; Purcell, Zentner & Wang 
012 ; Erkal et al. 2016 ; Sanders, Bovy & Erkal 2016 ; Banik & Bovy
019 ; Bonaca et al. 2019 , 2020 ; Necib et al. 2019 ). 
Since 1971, astronomers have observed collections of stars called 

tellar streams : thin, ribbon-like arcs orbiting the Milky Way’s 
alactic centre (Eggen 1971 ). These dynamically cold associations 
f stars are thought to be the result of gravitational tidal forces from
he Milky Way disrupting and warping nearby low-mass progenitors 

dwarf galaxies or globular clusters – until the stars are no longer 
 E-mail: mpettee@lbl.gov 
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ravitationally self-bound. Due to their shared origin, the stars tend 
o share many characteristics ranging from proper velocity to age. 

To date, around 100 stellar streams have been identified in the
ilky Way (Mateu 2023 ). They are challenging to disco v er and study

ue to their sparse densities and wide angular extents. The number
f streams has notably grown in recent years, however, thanks to
arge data releases from the Gaia mission (Prusti et al. 2016 ). The
aia mission is poised to release even more substantial data sets

urv e ying stars in the Milky Way in the coming years – a catalogue
f 66 months of data around 2026 and the full archive of all mission
ata around 2031. Lightweight computational methods designed to 
fficiently identify stellar streams will be essential for analysing these 
pcoming data releases. 
Gaining a more detailed understanding of the structure of known 

treams, as well as unco v ering additional streams, will be critical
or deepening our understanding of the Milky Way. An extensive 
atalogue of high-precision stream measurements would greatly im- 
ro v e our estimation of the particularities of Galactic large-scale and
mall-scale structures, including contributions from cold dark matter. 

.2 Related work 

raditional methods of identifying stellar streams look for groupings 
f stars that are similar along various metrics: colour and magnitude
Rockosi et al. 2002 ; Balbinot et al. 2011 ), velocity (Duffau et al.
005 ; Arifyanto & Fuchs 2006 ; Williams et al. 2011 ), or position
long great circle paths across the sky (Johnston, Hernquist & Bolte
996 ; Mateu, Read & Kawata 2017 ). More recently, an automated
echnique by Malhan & Ibata ( 2018 ) called STREAMFINDER leverages
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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oth position and kinematic information to construct volumes called
hypertubes’ in a multidimensional phase space around a stream
andidate, and then iterates to optimize a statistic similar to a log-
ikelihood to determine the best parameters for a given hypertube.

hile this algorithm has led to the disco v ery of multiple low-density
tellar streams, it makes several assumptions based on astrophysical
rinciples. For instance, it assigns the distance to a stream based on
 particular choice of isochrone and assumes a specific Milky Way
otential to calculate a stream’s orbit. Data mining and clustering
echniques such as Density-Based Spatial Clustering of Applications
ith Noise (DBSCAN) have also been applied to Gaia data for stellar

tream searches (Borsato, Martell & Simpson 2019 ). 
Machine learning techniques have also been deployed in search

f stellar streams. Recently, an unsupervised machine learning
echnique called VIA MACHINAE (Shih et al. 2021 ; Shih, Buckley &
ecib 2023 ), based on the ANODE (ANOmaly detection with Density
stimation) method (Nachman & Shih 2020 ) originally designed

or high-energy particle physics searches, was applied towards
he automated disco v ery of stellar streams within the Gaia Data
elease 2 (DR2) catalogue. VIA MACHINAE combines a normalizing
ow density estimation technique (Rezende & Mohamed 2015 ) for
nomaly detection with a line-finding algorithm to identify stellar
tream candidates without the use of detailed assumptions about
sochrones or stream orbits. 

.3 CWOLA : classification without labels 

achine learning has been widely and successfully applied in the
ontext of fundamental physics to the classification and description
f various physical phenomena ranging from subatomic to cosmolog-
cal scales. These techniques excel at identifying complex patterns
n a data set without imposing any prior assumptions about their
istributions. When dealing with real data with partially inaccurate
r incomplete labels, weakly supervised machine learning methods
an be particularly helpful. 

The fields of high-energy particle physics and astrophysics share a
ommon interest in identifying localized features, meaning o v erden-
ities of data concentrated in contained regions of phase space, within
ast and high-dimensional data sets. Model-independent forms of
nomaly detection – the process of identifying these localized
eatures that deviate from a data set’s typical characteristics – can
fficiently filter these large data sets in an unbiased manner and aid
n potential disco v eries. 

In this paper, we demonstrate the first astrophysical application
f Classification Without Labels ( CWOLA 

1 ; Metodiev, Nachman &
haler 2017 ), a weakly supervised machine learning technique
ased on a simple, lightweight neural network (NN) classifier.
WOLA was originally designed for identifying particles within
igh-energy particle physics data sets, and it has been applied
s a promising model-agnostic anomaly detection method for
earching for localized features such as the potential signatures of
ew fundamental particles at the Large Hadron Collider (Collins,
owe & Nachman 2018 , 2019 ; Aad et al. 2020 ). Until now, it has
ot been used on astrophysics data sets. 
We apply CWOLA to the search for stellar streams by look-

ng for localized anomalies in proper motion. Stellar streams are
inematically cold, meaning their constituent stars tend to have
imilar velocities. Compared with background stars, stream stars
ill therefore have narrower distributions of proper motion. 
NRAS 527, 8459–8474 (2024) 

 Note: CWOLA is pronounced ‘koala’. 
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We scan for these o v erdensities in re gions defined by one proper
otion coordinate and train NNs to assign an anomaly score to stars

sing five input variables: two angular position coordinates, one
roper motion coordinate (the one not used for the scan), magnitude,
nd colour. Once the anomaly scores are assigned, we look at the
ubsets of stars from each scanning window with the highest anomaly
cores, cluster them, and apply fiducial selections to further refine
hem. As a proof-of-concept result to moti v ate a future full-sky scan,
e apply these techniques on a known stream called GD-1 as well

s simulated stellar streams as benchmarks. 
This analysis uses the same data sets as in Shih et al. ( 2021 ) and

ollows the same general analysis structure. We have implemented
 few key methodological differences, however, with the aim of
chieving similar performance in anomaly detection with a much
ore computationally lightweight framework. A detailed compari-

on of these analyses is presented in Section 5 . 

.4 Outline 

his paper is organized as follows. First, in Section 2 , we describe the
aia data set and how it is processed for use in our anomaly detection

tudies. Then, in Section 3 , we explain the methodology of applying
WOLA for anomaly detection and our particular implementation
f CWOLA on Gaia data, including how we define the signal and
ideband regions as well as the NN model architecture and training
rocedure. The results of applying CWOLA to the known stellar
tream GD-1 are listed in Section 4 . Finally, in Section 5 , we conclude
ith a discussion of CWOLA’S potential usefulness in aiding future

tellar stream disco v eries and some further steps for this work that
an bring us closer to that goal. 

 Gaia DATA  SET  

he Gaia catalogues are e xtensiv e astronomical data releases map-
ing the stars populating the Milky Way (Prusti et al. 2016 ). The
aia satellite itself was launched in 2013, and its data catalogue is
eing released in discrete stages throughout its operational lifespan
hrough 2025. The data analysed for this work come from Gaia DR2,
he collection of Gaia ’s observations from 2014 July 25 to 2016

ay 23 (Brown et al. 2018 ). Gaia DR2 contains position, proper
otion, and photometric information for approximately 1.3 billion

tars, representing around 1 per cent of the total star population of
he Milky Way. While this analysis was already in process, Gaia
eleased two additional data releases: Early DR3 (eDR3) and DR3.

ere this analysis to be extended using eDR3 or DR3 data, we would
ikely see some further impro v ements due to reduced measurement
rrors. Other changes in eDR3 and DR3 include impro v ed distance
nd radial velocity measurements for a small subset of stars, but these
ariables are not considered in this analysis. 

While Gaia DR2 also contains information on parallax and mean
adial velocity, these variables are not considered as input variables
o CWOLA for this analysis. We exclude parallax because it is not
s reliable a feature as our other observables for stars as distant as
he stream members in which we are most interested. Ho we ver, we
o use parallax to apply a cut on the Gaia data to restrict stars to
 maximum parallax of 1, meaning stars at a distance of at least
 kpc. This aligns well with the catalogue in Mateu ( 2023 ), in which
ll reported streams have distances > 1 kpc, with a mean distance of
bout 15 kpc. Mean radial velocity, or motion along the axis between
he Earth and each star, is also measured for some stars in the Gaia
ata set, but Gaia DR2 contains radial velocities for only about 7
illion stars, representing less than a per cent of the o v erall star
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atalogue. We therefore omit radial velocity in order to maximize 
vailable training statistics. 

As in Shih et al. ( 2021 ), we use the stellar stream GD-1, disco v ered
n 2006 (Grillmair & Dionatos 2006 ), as the main candidate for
 v aluating the performance of CWOLA as a stream-finding technique. 
ost likely the remains of a tidally disrupted globular cluster, GD- 

 consists of primarily metal-poor stars totalling approximately 
 × 10 4 M � (Koposov, Rix & Hogg 2010 ). It lies at a distance
f approximately 10 kpc from the Sun and 15 kpc from the Galactic
entre. GD-1 is especially narrow (Grillmair & Dionatos 2006 ), 
ynamically cold (de Boer, Erkal & Gieles 2020 ), and bright (Erkal
t al. 2016 ) compared to other stellar streams in the Milky Way. It
lso contains various known physical peculiarities including gaps and 
iggles (de Boer et al. 2018 ), offshoots (‘spurs’), and o v erdensities

‘blobs’; Bonaca et al. 2019 ), and even a surrounding ‘cocoon’ of
tars (Malhan et al. 2019 ). While CWOLA is designed primarily for
tream disco v ery, not comprehensiv e stream population labelling, we 
xpect that the most stream-like stars identified by the model will 
o v er a wide range of angular positions along the stream due to the
readth of stars with similar proper motions. The reconstruction of 
ome of the density perturbations along the angular extents of GD-1 
n the CWOLA outputs can therefore serve as an additional metric 
ndicating the physical validity of the identified stream stars. 

.1 Data pr e-pr ocessing 

e use the same data set of Gaia stars as in Shih et al. ( 2021 ).
ollowing the same data processing methodology, we train our model 
n a series of 21 o v erlapping circular ‘patches’ of the Gaia data set
ith radius 15 ◦. While the natural angular position coordinates in 
R2 are right ascension ( α) and declination ( δ), we use rotated

nd centred coordinates φ and λ (as well as rotated proper motion 
oordinates μφ and μλ) such that each patch has a Euclidean distance 
etric and is centred at ( α0 , δ0 ) = (0 ◦, 0 ◦). This transformation

s performed using ASTROPY (Astropy Collaboration 2013 , 2018 , 
022 ). Each patch’s centre location is also documented in Shih et al.
 2021 ). 

Beyond these two rotated and centred angular positions, we 
onsider four additional features associated with each star in the 
ata set: two angular proper motions [ μφ∗, where μφ∗ ≡ μφcos( λ),
nd μλ], colour ( b − r , where b represents the brightness of the blue
hotometer and r represents the brightness of the red photometer), 
nd magnitude ( g ). Distributions of the six rele v ant v ariables used in
he analysis ( φ, λ, μφ∗ , μλ, b − r , and g ) are shown for one such patch
n Fig. 1 . These patches co v er an irre gularly shaped re gion stretching
etween approximately α ∈ [ −250 ◦, −100 ◦] and δ ∈ [ −10 ◦, 80 ◦]. 

The Gaia data set has inherent measurement uncertainties for 
ach observable. At the median magnitude in our data set of g ≈
7, the two proper motion coordinates have median uncertainties 
f 0.158 mas yr −1 ( μα∗) and 0.137 mas yr −1 ( μδ) (Lindegren et al.
018 ) – about 3 per cent of their respective median values in our
ata set. Since CWOLA searches for group anomalies in proper 
otion, indi vidual ef fects on star measurements are not of primary

oncern. Collectively, though, this uncertainty could slightly widen 
he apparent dispersion of the proper motion distribution of a stream, 
eakening CWOLA ’s discrimination power, particularly in sparser 

egions of the stream. The auxiliary variables also have inherent 
ncertainties. Both position coordinates have median uncertainties 
f about 0.1 mas. The uncertainty in g varies from 1 mmag for the
rightest stars to a mere 20 mmag for the faintest stars. On the other
and, the uncertainty in b − r varies from 1 mmag for the brightest
tars to 200 mmag for the faintest stars, where this uncertainty could
esult in a smeared distribution of stream stars located in the range
f b − r ∈ (0.5, 1). 
Following these selections, 1957 of the approximately 8 million 

otal stars considered for this analysis are labelled as likely belonging
o the GD-1 stream using the catalogues developed by Price- 

helan & Bonaca ( 2018a , b ). This choice of labelling is based
n selections in position, proper motion, and along an isochrone in
olour and magnitude. While these labels cannot be considered fully 
ccurate or complete, they serve as a helpful reference for e v aluating
ur model’s efficacy. 

 M E T H O D S  

.1 Classification without labels 

WOLA is a weakly supervised machine learning technique designed 
o find anomalous features in a data set that are localized along at least
ne dimension. It was originally designed for applications within 
igh-energy particle physics, where mixtures of particle classes 
ith unknown proportions of signal and background are common. 

t detects anomalies by scanning along a localized dimension and 
earning to distinguish between mixtures of data classes where the 
recise class proportions within each mixture need not be known. In
he original particle physics context, the localized dimension could 
e a property of a particle in the final state of a collision such as the
nvariant mass, while in this result, the localized dimension is the
roper motion of a star. Simply by learning to differentiate regions
ith higher versus lower proportions of signal, i.e. ‘signal’ versus 

sideband’ regions, CWOLA can be a powerful indicator of patterns 
f anomalous events. 
Consider a signal-enriched mixture M 1 and a signal-depleted 
ixture M 2 , as shown in Fig. 2 (a). ‘Signal’ refers to an object class of

nterest – here, a member of a localized anomalous feature, such as
 stellar stream, that one would like to detect – while ‘background’
efers to objects not part of the anomaly. Both mixtures contain
ignal and background events, but the signal-enriched mixture 
as significantly more signal e vents relati ve to the signal-depleted
ixture (i.e. f 1 > f 2 , where f i indicates the fraction of signal events

n each mixture). We exploit the fact (see proof of theorem 1 in
etodiev et al. 2017 ) that an optimal classifier trained to distinguish

vents between M 1 and M 2 is the same as an optimal classifier
rained in a fully supervised manner to distinguish signal from 

ackground events. Importantly, the exact proportions of signal in 
ach mixture ( f 1 and f 2 ) need not be known for this to hold. This
heorem relies on the Neyman–Pearson lemma (Neyman & Pearson 
933 ) that states that an optimal classifier h ( x ) is any function
onotonic to the likelihood ratio constructed from the probability 

istributions of signal and background p S ( x ) and p B ( x ) for input
ariables x . 

We can apply CWOLA as a model-agnostic, data-driven anomaly 
etection technique (Collins et al. 2018 , 2019 ) by identifying a certain
eature of our data set that might contain a localized anomaly, as
llustrated in Fig. 2 (b). We then train a fully supervised classifier to
istinguish between events from a ‘signal region’ and a surrounding 
sideband region’, as defined by ranges of this feature. The inputs
o this classifier are auxiliary variables that should be decorrelated 
rom the characteristic used to define the signal and sideband regions
f no anomaly is present. If an anomaly is present and contained
rimarily in the signal region, then we expect the anomalous events
o be ranked more highly by the classifier. We can then repeat this
rocess by sliding the signal and sideband windows across a range of
alues. For each choice of signal and sideband, we apply a threshold
MNRAS 527, 8459–8474 (2024) 
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M

Figure 1. Two-dimensional histograms of the six features used in this analysis are illustrated for a single patch in the sky containing some GD-1 stars. This 
patch is centred at Galactic longitude l = 207.0 and latitude b = 50.2. The top row shows the full patch with no selections applied. The second row shows the 
patch with fiducial selections applied: g < 20.2 to reduce streaking; | μλ| > 2 mas yr −1 or | μ∗

φ | > 2 mas yr −1 to remo v e too-distant stars; and 0.5 ≤ b − r ≤ 1 
to focus on identifying cold stellar streams. The third row indicates the six features for the GD-1 stream following the fiducial selections. 
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n the classifier output score (i.e. the top N events or a top percentile
f the test set) such that only the highest score events remain. When
n anomaly is present, these highest score events will contain an
nhanced signal-to-noise ratio of events. 

The CWOLA anomaly search makes two key assumptions during
ts procedure. First, it requires that the anomaly is localized in
he dimension o v er which we search. Because stellar streams are
inematically cold, they are relatively localized in both coordinates
f proper motion. We select μλ as the primary coordinate used to
efine the signal and sideband regions for each patch of DR2. A
istogram demonstrating the highly localized nature of μλ within
n example patch of GD-1 is shown in Fig. 3 . Secondly, it expects
NRAS 527, 8459–8474 (2024) 
hat background and signal events are indistinguishable between the
ignal and sideband regions. This is a reasonable assumption, as
hown for an example patch of data in Fig. 4 . 

.2 Defining signal and sideband regions 

or each of the 21 patches of DR2 considered in this study,
e construct a signal region to contain the bulk of the stream

tars available and neighbouring sideband regions such that the
ackground stars in both signal and sideband regions are as close
o indistinguishable as possible. Ideally, the stars in both regions
hould have similar characteristics: background stars in the signal



Weakly supervised anomaly detection 8463 

Figure 2. Signal-enriched and signal-depleted groups are pictured abo v e. The data points labelled ‘S’ represent signal events, while the data points labelled ‘B’ 
represent background events. The signal and sideband regions are chosen such that more signal e vents (sho wn as a triangular peak) are located in the central 
signal region than the surrounding sideband region. 

Figure 3. Stars associated with the stellar stream GD-1 are highly localized in μλ space in comparison with background stars for the same patch of Gaia data 
seen in Fig. 1 . The signal region, shown in the darkest regions in each plot, is defined by taking ±1 σ from the median μλ value for the stream stars, which in 
this case is [ −13.6, −11.4]. The sideband region is defined by taking ±3 σ from the stream’s median μλ value, excluding the signal region: [ −15.8, −13.6) and 
( −11.4, −9.3]. 
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egion should closely resemble background stars in the sideband 
egion, and same logic applies for the stream stars. Stars belonging 
o a stellar stream make up a small fraction of total stars within each
atch, so in our case, each signal region will still be dominated by
ackground stars not labelled as belonging to the stream. Ho we ver,
ach signal region should have a higher signal-to-background ratio 
han the sideband region. 

Signal regions are ideally defined by a range of μλ values that 
ncompass the bulk of the stream stars. There are many valid ways to
efine these regions in general, and in some cases, the best definitions
ay be model-dependent. 
For this proof-of-concept result, we opted for idealized signal 
nd sideband limits based on where we know the stream to be
oncentrated in proper motion. Ho we ver, it is crucial to note that
or a full-scale anomaly search, one could scan across a range of μλ

alues, meaning that one should still be sensitive to streams even if
ifferent signal and sideband regions were selected. 
In this case, we define the signal region in each patch as the region

ithin one standard deviation of the median μλ of the GD-1 stars in
he patch. The sideband region within each patch is then defined as
he stars falling within [ −3 σ , −σ ] or [ σ , 3 σ ] of the median. Given
hat the signal region encompasses a bulk of the stream, the sideband
MNRAS 527, 8459–8474 (2024) 
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M

Figure 4. Distributions for the five NN inputs are compared for both GD-1 stars (in red) and background stars (in grey) across signal and sideband regions. 
The patch shown here is the same example patch from Fig. 1 . For both stream and background stars, the distributions for these five variables across the signal 
and sideband regions are approximately indistinguishable. 
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egions will have significantly fewer stream stars and will be signal-
epleted, as desired. In practice, the average width along μλ across
he 21 patches was 2.34 ± 0.36 mas yr −1 for the signal regions and
.02 ± 1.09 mas yr −1 for the sideband regions. 

.3 Neural network ar chitectur e and training pr ocedur e 

e implement CWOLA with an NN built in Keras (Chollet et al.
015 ) with a TensorFlow backend (Abadi et al. 2015 ). The model
onsists of 3 hidden fully connected layers, each with a layer size
f 256 nodes and a Rectified Linear Unit (ReLU) acti v ation (Nair &
inton 2010 ). Each fully connected layer is followed by a dropout
peration with a dropout rate of 20 per cent (Sri v astav a et al. 2014 ).
hese layers are followed by a final output layer of a single node
ith a sigmoid acti v ation. Hyperparameter v alues for layer size,
atch size, and number of k -folds (described below) were chosen via
n optimization using Optuna (Akiba et al. 2019 ). 

For each of the 21 Gaia patches considered in our search for GD-1,
e train a series of classifiers to separate stars labelled as part of the

ignal region from stars labelled as part of the sideband region. This
uality defines CWOLA as being ‘weakly supervised’: it operates
ith a little more information than a fully unsupervised network, as
e expect an optimal signal region to contain a higher fraction of
D-1 stars than in the sideband region, but it does not have access to

he actual GD-1 labels. The training procedure, which closely aligns
ith other CWOLA searches (Collins et al. 2018 , 2019 ), unfolds as

ollows: 
NRAS 527, 8459–8474 (2024) 
(i) k -folding: We implement stratified k -folding ( k = 5) to ran-
omly divide all the stars in a given patch into five sections, or ‘folds’.
ach fold is chosen such that the o v erall percentage of stars labelled
s ‘signal’ versus ‘sideband’ is also maintained within each fold. The
rst fold (20 per cent of all stars) is reserved as a test set. The second
old (another 20 per cent of all stars) is used as a validation set. The
emaining 60 per cent of stars are used for training. 

(ii) Train: Next, a classifier with the architecture specified above
s trained on the training set with a batch size of 10 000 for up to
00 epochs, though early stopping with a patience of 30 typically
alts the training process well before this limit. The large batch size is
ecessary due to the low number of labelled stream stars in the o v erall
ata set – for example, one patch on the tail end of GD-1 has a stream
tar population of just 0.15 per cent. Large batch sizes therefore help
nsure that more than a handful of stream stars will be seen at a time
y the network during training. We use the binary cross-entropy loss
unction and Adam optimizer (Kingma & Ba 2014 ). The validation
et is used to monitor the validation loss for early stopping. 

(iii) Repeat: The classifier training is repeated twice more, each
ime with a random initialization of trainable parameters. Of the
hree distinct trainings, the weights are stored for the model with the
o west v alidation loss. 

(iv) Cycle through validation sets: This process is repeated using
ach of the remaining folds as a validation set with the exception of
he test set, which remains unchanged. For each configuration, the
emaining three folds besides those used for the test and validation
ets are used for training. 
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(v) Evaluate on test set: Each of the best models trained using
he four k -fold options for the validation set is evaluated on the test
et. The final CWOLA score for each star in the test set is defined as
he average across the four scores. 

(vi) Combine test sets: This entire process is repeated, cycling 
hrough each of the five possible k -folds as a test set. These test sets
re then concatenated into a single data set such that every star in the
atch ends up in the test set exactly once. 

.4 Model evaluation 

fter training the NN classifiers inherent in the CWOLA methodol- 
gy, a series of fiducial selections is applied to each patch to further
efine the results and optimize for the highest possible signal-to- 
oise ratio. The fiducial selections used are almost identical to their 
ounterparts in Shih et al. ( 2021 , 2023 ): 

(i) g < 20.2, to ensure uniform acceptance by the Gaia satellite. 
(ii) | μλ| > 2 mas yr −1 or | μ∗

φ | > 2 mas yr −1 , to remo v e v ery distant
tars that are predominantly concentrated near zero proper motion 
nd therefore not equally distributed throughout the patch. 

(iii) 0.5 ≤ b − r ≤ 1, to isolate old and low-metallicity stellar 
treams in colour space. 

Unlike in Shih et al. ( 2021 , 2023 ), ho we ver, we do not need to
pply a cut restricting the patch radius from 15 ◦ to 10 ◦ after training.
nlike CWOLA , ANODE is a density estimation technique, so this cut

emo v es areas of the phase space near the boundaries where it could
e more challenging to model the distribution of the data. 

VIA MACHINAE employs a sophisticated line-finding strategy using 
odified Hough transforms (Duda & Hart 1972 ) to search for line-

ike structures in the identified anomalous stars and then combines 
hese line segments into an overall stream candidate. We achieve 
imilar results with a relatively lighter computational load using 
 -means clustering (Lloyd 1982 ) ( k = 2) in proper motion space.
ollowing the grouping of stars into two clusters, we select the 
luster with the largest population of stars and discard the stars in
he other cluster. This is moti v ated by our expectation that the stellar
tream should be kinematically cold, therefore the velocities of its 
onstituent stars should be densely clustered in velocity space. This 
lustering strategy is likely best used as a post-disco v ery tool and
ay not perform well in contexts with high numbers of contaminant 

tars not belonging to a stream. In these cases, opting for a larger k
 2 or a line-finding technique could instead be a better choice. 
Following these fiducial selections, model performance was e v al- 

ated by applying the classifier to stars in the combined test set
qui v alent to the entire patch. The output scores were sorted from
ighest to lowest, where higher values indicated that the model 
anked those stars as more likely to belong to the signal region than
he sideband region. The top N = 250 stars, ranked by NN output
cores, are chosen for e v aluation. 

The number 250 was chosen following an optimization for both 
urity (percentage of top-ranked stars o v erlapping with labelled GD- 
 stars) and completeness (percentage of labelled GD-1 stars co v ered
y CWOLA ’s top-ranked stars). In principle, ho we ver, one could
solate a different absolute number or relative percentage of top 
tars, though it would be advisable to stay under the average of 430
abelled stream stars per patch. 

It is worth emphasizing that this method of model e v aluation
equires ground truth labels. In the absence of reliable stream labels, 
r in the case of disco v ering a new stream, we must employ different
ethods to e v aluate model performance, not to mention a modified
trategy for the model implementation itself. We discuss this further 
n Section 5 . 

 RESULTS  

efore looking at real Gaia data, we e v aluated the performance
f CWOLA when applied to 100 randomly chosen simulated stellar 
treams. Details of the simulation procedure and the results are shown
n Appendix A . With just two passes of CWOLA , 96 per cent of
treams are identified with non-zero purity, of which 69 per cent are
dentified with a purity larger than 50 per cent. 

.1 GD-1 stream identification 

he combined results of applying the CWOLA technique to each of
he 21 patches of Gaia DR2 are shown in Fig. 5 . Results for individual
atches are detailed in Appendix B . Across the 21 patches, 1498
nique GD-1 stars pass our fiducial selections. 1360 unique stars are
dentified in the combined top N = 250 stars for each CWOLA patch.
f these, 760 are part of the labelled GD-1 star set (Price-Whelan &
onaca 2018a ). Thus, across the entire stream, we achieve a purity
f 56 per cent and a completeness of 51 per cent. In our optimization
tudies, we found that stream purity plateaued at a maximum value
f 78 per cent using the top N = 25 stars in each patch, but this choice
f N only yields a completeness of 13 per cent. Conversely, choosing
 = 300 yields a reduced purity of just 30 per cent, but a higher
ompleteness of 54 per cent. 

The majority of GD-1 is quite narrow, with an average angular
idth of approximately 0.5 ◦ (Malhan et al. 2019 ), and dense, with

pproximately 100 stars per 5 ◦ bin between α = −220 ◦ and α =
150 ◦. Within this region, CWOLA can reliably identify the stream

tars. The tail ends of GD-1 ( α ≤ −220 ◦ and α ≥ −150 ◦) are more
parsely populated, with about half the average population per bin 
f the main body of the stream, and less localized in μλ, meaning
hat stream stars in this region are harder to identify using CWOLA .
ome stars in these regions may also have been excluded from the
1 patches due to their proximity to the Galactic disc or the presence
f nearby dust. These regions also tend to include stars with small
roper motions, meaning that the stream stars are more likely to be
 v erwhelmed by distant background stars. 
We can also analyse these results in a rotated set of position coordi-

ates φ1 and φ2 (Koposov et al. 2010 ) designed to align with the main
ody of the stream, as shown in Fig. 6 . This perspective highlights
hat CWOLA has identified several of the density perturbations unique 
o GD-1: two sparsely populated ‘gaps’ near φ1 = −40 ◦ and φ1 =

20 ◦; an offshoot, or ‘spur’, near φ1 = −35 ◦; and an o v erdensity
f stars, or ‘blob’, near φ1 = −15 ◦. We can more quantitatively
emonstrate the identification of these features, as in fig. 5 of Price-
helan & Bonaca ( 2018b ), by looking at histograms of φ2 in various

anges of φ1 as shown in Fig. 7 . This study highlights the ‘spur’ and
blob’ in particular by fitting a histogram of stars near each feature,
long with a third control region, with a three-component Gaussian 
ixture model assuming a background, the GD-1 stream, and the 

eature (‘blob’ or ‘spur’). 
As mentioned abo v e, the underdense re gions, or ‘gaps’, in GD-1

re typically observed near φ1 ≈ −40 ◦ and φ1 ≈ −20 ◦. A third 
nderdense region has also been identified near φ1 ≈ −3 ◦ (de Boer 
t al. 2020 ). Our results would not be inconsistent with this third gap,
s the density in this area for the CWOLA -identified stars is indeed
ow, on par with the densities seen at the other two ‘gaps’, but since
his region is so close to the furthest extent of the CWoLa-identified
tars, it is not clear whether this underdensity is a feature from the
MNRAS 527, 8459–8474 (2024) 
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Figure 5. The full scope of stars identified by the CWOLA method in o v erlapping patches across the angular range corresponding to GD-1. Light grey dots 
indicate the ground truth labelling of GD-1 stars (Price-Whelan & Bonaca 2018a ), while the top 250 stars identified by CWOLA in each patch are indicated in 
coloured dots. The colours are chosen to correlate with each star’s α value. 
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tream or a reflection of the diminished purity of stars in the patches
n the ends of the stream. 
As for the o v erdense re gions, de Boer et al. ( 2020 ) reported that

our o v erdense re gions peaked at φ1 ≈ −48 ◦ (the highest density
egion of the stream), φ1 ≈ −27 ◦, φ1 ≈ −10 ◦, and φ1 ≈ + 2 ◦. While
he CWOLA -identified stars do not reliably co v er the re gion abo v e

1 = 0 ◦, the remaining three peaks for which φ1 < 0 ◦ are also seen
n the CWOLA -identified stars. By fitting the CWoLa-identified stars
ith a mixture model of three Gaussian distributions, we can extract

pproximate o v erdensity peaks at φ1 ≈ −51 ◦, φ1 ≈ −30 ◦, and φ1 

−11 ◦. It is interesting to note that CWOLA picks up a large φ1 ≈
51 ◦ peak, in line with the highest density peak reported in de Boer

t al. ( 2020 ), though this peak is less pronounced in the stars labelled
rom Price-Whelan & Bonaca ( 2018a ). 

Another reported feature of GD-1 is a wider ‘cocoon’ of stars
ith a width of around 1 ◦ surrounding a much denser core of the

tream (Malhan et al. 2019 ). To probe this feature, we first calculate
he median φ2 in broad 5 ◦ bins of φ1 to find a smoothed trajectory
or the stream. Then, we shift each CWOLA -identified star by its
edian φ2 location (see Fig. 8 a). Once the stream has been centred

round this path, we make a 3 σ selection, as in Malhan et al. ( 2019 ),
NRAS 527, 8459–8474 (2024) 

n  
nd then plot the histogram of shifted φ2 (see Fig. 8 b). Fitting the
istribution to a two-component Gaussian mixture model reveals a
arrow peak with a standard deviation of σ ≈ 0.3 ◦ (the core of the
tream) and an additional wider peak with σ ≈ 1.7 ◦. This appears
o support the observation of such a ‘cocoon’ of more diffuse stars
urrounding the central core of the stream. We estimate potential
ontamination by running the CWOLA procedure on parts of the sky
here GD-1 stars are not expected: signal regions outside of the ones
robed in the analysis as well as additional patches lying outside of
he considered region. We then run the remaining analysis selections
n the top-identified stars. Following this procedure, we find that
ust 1.7 per cent of stars survive our full selection, suggesting that
ontamination is minimal. 

.2 Towards an augmentation of the GD-1 stream labelling 

eyond identifying cold stellar streams without labels, the CWOLA

echnique may also be useful for improving the labelling systems
hat indicate as to which stars belong to a particular stream. For
nstance, CWoLa can identify promising stellar candidates that were
ot labelled as GD-1 members in Price-Whelan & Bonaca ( 2018a ),
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Figure 6. The CWOLA -identified stars across all patches are compared with the labelled GD-1 stars from Price-Whelan & Bonaca ( 2018a ) in stream-aligned 
coordinates φ1 and φ2 . This perspective highlights that CWOLA has identified several of the density perturbations unique to GD-1: two sparsely populated ‘gaps’ 
near φ1 = −40 ◦ and φ1 = −20 ◦; an offshoot, or ‘spur’, near φ1 = −35 ◦; and an o v erdensity of stars, or ‘blob’, near φ1 = −15 ◦. Two additional o v erdensities 
are seen near φ1 = −51 ◦ and φ1 = −30 ◦. 

Figure 7. Three subsets of the CWOLA -identified stars (the ‘blob’, ‘spur’, and a control region) are selected and fitted with a three-component Gaussian mixture 
model to highlight the kinematic qualities of the additional feature, if present. In each case, the GD-1 stream corresponds to the primary narrow peak centred 
near φ2 = 0 ◦. In the first two plots, we see clear indications of a second peak representing each feature. 
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 ut nevertheless ha ve properties closely aligned with labelled 
tars. 

As shown in Section 4 , 1360 unique stars are identified by CWOLA
cross all 21 patches, and of these, 760 (56 per cent) are part of the
abelled GD-1 star set. We can further refine the remaining 600 
nlabelled stars by identifying the subset of individual stars s that 
inimize the Euclidean distance d to their respective closest labelled 
D-1 star in the test set s ′ along the 5 dimensions used as CWOLA
nputs, individually standardized to have μ = 0 and σ = 1: [ φ, λ,
φ∗, colour ( c ≡ b − r ), and magnitude ( g )]: 

 = 

√ 

( φ − φ′ ) 2 + ( λ − λ′ ) 2 + ( μφ∗ − μ′ 
φ∗) 2 + ( c − c ′ ) 2 + ( g − g ′ ) 2 . 

(1) 
MNRAS 527, 8459–8474 (2024) 
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Figure 8. The width of the CWOLA -identified stars is determined by first calculating the median stream position in φ2 for 10 bins of φ1 [the o v erlaid red line 
in (a)]. The φ2 coordinates are then shifted by these median values, yielding the histogram in (b). In (b), we use a two-component Gaussian mixture model to 
show two individual Gaussian components with σ ≈ 0.3 ◦ (the core of GD-1) and σ ≈ 1.7 ◦ (the ‘cocoon’). This appears to support the general trend observed in 
fig. 6 of Malhan et al. ( 2019 ). 

Figure 9. Isolating the subset of the top stars identified by CWOLA with the 10 per cent smallest five-dimensional Euclidean distances d to the nearest labelled 
star reveals 60 additional stellar candidates for GD-1 membership that may have been omitted from the GD-1 ground truth labelling. 
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Isolating the stars yielding the smallest 10 per cent of distances
 reveals 60 additional stars, shown in Fig. 9 and listed explicitly
n Appendix C , that appear to align with the labelled GD-1 stars
cross these 6 dimensions and would be interesting to investigate
s potential GD-1 member candidates. A detailed cross-checking of
hese candidate GD-1 stream stars with other, more precise GD-1
tream catalogues will be pursued in future work. 

 DISCUSSION  

t is evident that CWOLA successfully identifies significant portions
f GD-1, as measured by not only purity and completeness but also
he faithful reconstruction of physical characteristics and density
erturbation characteristic of this stream. Additionally, CWOLA is
ighly ef fecti ve at identifying simulated streams. 
While the analysis presented here shares many core strategic

omponents and the same data set with VIA MACHINAE , this analysis
iffers primarily in terms of the mechanisms for how to assign
nomaly scores to stars, how to divide the sky into subsections
or scanning, and how to cluster stars post-training. CWOLA is
mplemented via a comparatively simple, lightweight, and easy-to-
rain NN-based classifier instead of a normalizing flow model to
pproach the same problem of anomaly detection. When applied to
he same example stellar stream, GD-1, CWOLA is able to identify
tars with comparable purity with much less computational o v erhead.
NRAS 527, 8459–8474 (2024) 
e find 760 labelled stars o v erall, yielding a 56 per cent purity, while
IA MACHINAE ’s first iteration (Shih et al. 2021 ) found 738 stars,
ielding a 49 per cent purity. VIA MACHINAE ’s latest iteration (Shih
t al. 2023 ), which includes additional fiducial selections and an
ugmented scan o v er both proper motion variables, increases its star
ield to 820, or 65 per cent purity. 
It is worth emphasizing that our approach does not apply any

ind of line-finding or protoclustering algorithms as is done in VIA

ACHINAE – the anomalous stars here are simply combined and
ltered via k -means clustering. This lightweight clustering strategy

s particularly useful in a post-disco v ery conte xt in which we
re interested in refining stream membership catalogues. Another
mportant distinction between these techniques is that CWOLA uses
ignal and sideband regions of varying widths that are chosen for
ach patch based on the location of the signal, while VIA MACHINAE

earches o v er re gions of interest defined by the orthogonal proper
otion coordinate with a fixed width of 6 mas yr −1 with centres

paced 1 mas yr −1 apart. The fiducial selections also differ slightly
etween these implementations: VIA MACHINAE restricts each patch
o the innermost 10 ◦ circle in position space to a v oid edge effects,
ut CWOLA does not exhibit these effects and thus we do not impose
his selection. 

Training normalizing flows such as those in ANODE can be a time-
ntensive task, while completing the full CWOLA training paradigm
or GD-1 takes just 15 min per patch on an NVIDIA A40 GPU.
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Figure 10. A demonstration of a scan for which the anomaly location is not previously known. 
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unning o v er each patch is embarrassingly parallel and can easily be
un simultaneously based on GPU access or using multiprocessing 
n CPUs. Running all 21 patches on a single GPU takes about 5 h in
otal, making it quite feasible for researchers to optimize their signal 
nd sideband region definitions as well as to combine the results
rom scans of multiple variables. 

This training time can be even further reduced by applying the 
ducial selections to the samples before training – cutting training 

ime roughly in half and yielding an o v erall purity of 44 per cent.
or a 100 per cent improvement in training time, this technique only
educes the final purity of the identified stars by about 20 per cent,
aking this a valuable option particularly for coarse-grained scans 

cross wide areas of phase space. CWOLA and VIA MACHINAE can 
herefore be thought of as complementary tools for stream detection 
nder different circumstances or computational constraints. 
If CWOLA can be used to identify known streams, it may also be

sed to potentially find new, undisco v ered streams. Some additional 
hallenges will arise when extending CWOLA to look for new 

tellar streams within the full Gaia data set. Detected anomalies 
re not necessarily guaranteed to be stellar streams, since CWOLA 

ould identify any localized anomalous features. A lack of ground 
ruth labelling for a stream would also require a re-e v aluation of
ur performance metrics – for instance, streams would need to 
e e v aluated using the standard anomaly detection technique of
erforming a series of selections (e.g. a range of percentiles of the
N score, or hand-picked thresholds based on the background rate in 

he sideband region) on a histogram of proper motion. If no anomaly
s present, these increasingly harsh selections will reduce the sample 
tatistics without significantly altering the histogram shape, as shown 
n Fig. 10 (a). Ho we ver, if an anomaly is present and identified by
WOLA , a new shape will emerge with increasingly harsh selections 
n the distribution in question, as shown in Fig. 10 (b). Additionally,
ultiple passes of CWOLA might be needed with different choices 

f signal and sideband region widths if the approximate width of the
nomaly is not a priori known. 

Searching for new stellar streams will require scanning o v er the
ull range of proper motion values in the data set, since we will not
no w where ne w streams might be localized. By applying CWOLA

n a coarse sliding-window fashion across μλ, regions of interest 
ay be identified. These regions can be further studied through finer

cans until anomalous data points are identified. When combining 
ultiple patches together for an o v erall result, we might also need

o additionally employ a line-finding algorithm for identifying larger 
cale stream-like results, such as the modified Hough transform used 
n VIA MACHINAE (Shih et al. 2021 ). 

 C O N C L U S I O N S  

e have demonstrated a new application of ‘CWOLA hunting’, 
n anomaly detection technique based on the weakly supervised 
achine learning classifier CWOLA that is designed to detect 

ocalized anomalies in a model-agnostic manner. CWOLA is shown 
o be easy to train, highly computationally efficient, and, most 
mportantly, ef fecti ve at identifying anomalies including the stellar 
tream GD-1 and dozens of simulated streams with high purity. 
he GD-1 candidate stars identified by CWOLA exhibit the same 
ensity perturbations and physical characteristics (the ‘spur’, ‘blob’, 
cocoon’, gaps, and o v erdense re gions) noted in sev eral independent
tudies of the stream. The NN output scores also give clues as to
hich stars might have been accidentally omitted from more formal 
D-1 labelling schemes, suggesting several promising candidates. 
he successful application of CWOLA in this study shows that 
WOLA has strong potential to impro v e the signal-to-noise ratio
n the membership of known streams as well as to potentially reveal
reviously undetected streams throughout the Galactic halo. CWOLA 

as broad applicability as a weakly supervised anomaly detection 
echnique outside of high-energy physics and could be applied into 
till more areas of fundamental science. 
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eaning that they may tend to be easier to find with our methods
han a real stream such as GD-1. 

The streams were simulated using the GALA (Price-Whelan 2017 ) 
YTHON package to evolve stars in a mock globular cluster along an
rbit through the simulated Milky Way potential (McMillan 2016 ), 
ith the centre of the stream randomly placed on the sky with a
istance randomly chosen between 5 and 20 kpc from the Earth. 
tellar properties for the stream components were generated from 

 MESA Isochrones & Stellar Tracks (MIST) (Paxton et al. 2011 ,
013 , 2015 , 2018 ; Choi et al. 2016 ; Dotter 2016 ) isochrone, assuming
Fe/H] = −1.6 and an age of 10 Gyr.Observational errors compatible 
ith the Gaia DR2 data set were added to the synthetic stream stars
sing the PYGAIA (Brown 2013 ) package. 
An example simulated stream, representing just 1161 (0.13 

er cent) of the 886 677 stars in the simulated patch, is shown
n angular position space in Fig. A1 . The simulated streams are
resented as standalone patches, so CWOLA is applied to just one 
imulated patch at a time. No fiducial cuts are applied to the simulated
atches. 
As a proof of concept, we choose idealized signal and sideband 

imits with prior knowledge of the location of the stellar stream: the
ignal is defined as the window of total width σ/ 4 surrounding the
edian μλ value of the stream, while the sideband is defined as the
igure A1. Distributions in position, velocity, and colour space for a simulated patc
tars and simulated stream stars are highly concentrated in velocity space, the stream
hose of the background stars. 
dditional window of total width σ/ 2 surrounding the signal region.
hese signal and sideband regions for background and stream stars 
re plotted in Fig. A2 . 

We train CWOLA to distinguish between events from these signal 
nd sideband regions, and then select the top 250 stars as ranked
y CWOLA ’s classifier output score. As shown in Fig. A3 (a), 100
er cent of the top 250 stars selected for this patch are members of
he ground truth labelled stream population in this patch. 

When this technique is applied across 100 randomly sampled 
imulated streams, 76 per cent of streams are identified with purity
 0 per cent, of which 75 per cent are identified with high purity

defined as purity greater than 50 per cent). Ho we ver, a large
ortion of these cases with zero purity are streams with wider
istributions along μλ, so the results can be further augmented 
ith additional scans choosing different signal and sideband regions. 
hen supplemented with an additional scan with wider signal and 

ideband region definitions (signal region = ±σ and sideband region 
 ±3 σ − signal region), 96 per cent of streams are identified
ith non-zero purity, of which 69 per cent are identified with high
urity. Across the 100 streams, the median purity of the CWOLA -
dentified results is 86 per cent. Fig. A3 (b) illustrates that the clear

ajority of the simulated streams are identified with high purity 
MNRAS 527, 8459–8474 (2024) 

h as well as the simulated stream contained within it. While both background 
 stars’ peak proper motions are located further from ( μ∗

φ, μλ) = (0 , 0) than 
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M

Figure A2. Simulated streams are far more concentrated in angular velocity space than a typical stream in the Gaia data set. As a result, the signal and sideband 
regions are defined within a much narrower band around the median stream μλ. The signal region is defined within ±σ /4, or [ −6.3, −3.8], while the sideband 
region is defined as ±σ /2, excluding the signal region: [ −7 . 6 , −6 . 3) and ( −3 . 8 , 2 . 6]. The stream stars are almost e xclusiv ely contained within the signal region. 

Figure A3. CWOLA performance e v aluated as a function of purity across multiple simulated streams. 
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PPENDIX  B:  P  ATC H -BY-P  ATC H  

E R F O R M A N C E  

ig. B1 shows the patch-by-patch breakdown of CWOLA applied to
D-1. Each of the 21 patches is considered separately for individual

pplications of the CWOLA methodology, including fiducial cuts and
NRAS 527, 8459–8474 (2024) 
 -means clustering. These results are combined in Fig. 5 . CWOLA

chieves a high purity across nearly all patches, with the exception
f those patches with relatively fewer stream stars located at the
eftmost and rightmost edges of the stream (near α = −230 ◦ and α =

150 ◦). 
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Figure B1. The top 250 identified stars across each of the patches of GD-1 from the Gaia data set show that CWOLA is able to ef fecti vely identify GD-1 stars 
with high purity levels across all patches, with the exception of patches on the very furthest tails of the stream. 
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PPEN D IX  C :  POTENTIAL  GD-1  C A N D I DAT E  

E M BER S  

able C1 details the subset of unlabelled stars identified by 
WOLA that fall within the smallest 10 per cent of five-dimensional 
istances d (see equation 1 ) to stars in the labelled GD-1
et, ranked in descending order by CWOLA ’s NN classifier 
core. 
MNRAS 527, 8459–8474 (2024) 
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Table C1. Stars not part of the labelling from Price-Whelan & Bonaca ( 2018a ) that also belong to the highest ranked subset of stars identified by the CWOLA 

scan of GD-1. The stars falling in the smallest 10 per cent of five-dimensional distances d (see equation 1 ) to stars in the labelled GD-1 set are shown here, 
ranked in descending order by CWOLA ’s NN classifier score. 

Index Patch α δ μ∗
φ μλ b − r g d NN score 

0 3 153 .343 750 37 .944 386 − 3 .648 079 − 11 .087 369 0 .585 669 18 .889 666 0 .199 219 0 .760 671 
1 3 147 .407 532 34 .807 056 − 4 .174 263 − 13 .030 541 0 .632 448 18 .280 497 0 .161 793 0 .710 143 
2 3 147 .581 451 33 .771 442 − 4 .031 364 − 12 .893 708 0 .692 181 19 .217 056 0 .200 405 0 .703 576 
3 3 145 .067 444 34 .774 712 − 3 .889 829 − 11 .528 839 0 .560 968 18 .343 340 0 .208 592 0 .687 666 
4 0 144 .668 640 29 .123 871 − 3 .294 825 − 9 .761 044 0 .698 603 18 .599 613 0 .157 535 0 .628 063 
5 0 139 .284 058 27 .534 752 − 2 .474 001 − 11 .759 004 0 .678 160 18 .488 266 0 .202 521 0 .608 509 
6 0 141 .217 377 21 .388 325 − 3 .016 653 − 12 .211 497 0 .731 615 19 .056 505 0 .207 587 0 .607 377 
7 0 141 .366 760 26 .641 132 − 2 .638 692 − 12 .904 817 0 .754 404 19 .493 120 0 .169 499 0 .603 854 
8 0 137 .850 464 25 .221 642 − 2 .823 553 − 13 .327 346 0 .713 997 18 .919 308 0 .181 071 0 .600 161 
9 0 141 .072 662 28 .944 424 − 3 .398 272 − 11 .644 784 0 .810 871 19 .610 243 0 .077 491 0 .590 473 
10 10 159 .375 610 43 .155 155 − 6 .771 805 − 13 .304 443 0 .577 917 18 .163 719 0 .193 080 0 .582 036 
11 0 142 .465 027 31 .453 848 − 3 .129 723 − 10 .795 928 0 .638 067 17 .908 943 0 .162 005 0 .582 026 
12 0 137 .821 594 25 .365 973 − 2 .537 415 − 10 .836 835 0 .771 456 19 .665 091 0 .186 863 0 .547 747 
13 10 152 .977 966 43 .714 725 − 5 .651 521 − 11 .580 858 0 .640 087 18 .764 666 0 .173 924 0 .541 810 
14 14 190 .253 159 58 .102 585 − 8 .347 640 − 3 .359 662 0 .640 982 19 .427 656 0 .206 074 0 .513 133 
15 14 194 .429 871 58 .634 842 − 8 .420 991 − 7 .967 748 0 .623 426 18 .534 977 0 .183 633 0 .506 830 
16 15 182 .109 512 56 .585 564 − 6 .765 204 − 12 .116 959 0 .627 577 19 .014 071 0 .191 147 0 .505 615 
17 16 162 .275 238 49 .602 287 − 7 .460 149 − 8 .779 883 0 .658 072 19 .046 940 0 .198 527 0 .505 006 
18 16 166 .262 054 49 .207 397 − 8 .196 286 − 8 .721 247 0 .743 465 19 .535 479 0 .206 786 0 .498 103 
19 9 167 .548 462 46 .377 983 − 6 .176 190 − 11 .992 228 0 .646 498 19 .345 844 0 .088 779 0 .497 648 
20 14 179 .886 322 55 .335 400 − 8 .907 069 − 8 .033 201 0 .637 199 18 .149 529 0 .158 184 0 .492 758 
21 15 172 .536 072 52 .980 537 − 7 .740 779 − 7 .965 540 0 .740 067 19 .315 273 0 .179 650 0 .487 783 
22 15 170 .305 725 55 .276 653 − 8 .972 501 − 9 .987 629 0 .618 397 18 .751 921 0 .121 189 0 .484 890 
23 8 178 .793 396 50 .679 008 − 7 .688 651 − 4 .308 014 0 .688 902 19 .250 017 0 .209 937 0 .484 879 
24 19 179 .387 024 53 .861 988 − 7 .553 021 − 9 .258 564 0 .633 465 18 .817 064 0 .177 797 0 .484 814 
25 14 173 .568 787 54 .718 918 − 8 .506 504 − 5 .805 184 0 .657 850 19 .249 598 0 .127 450 0 .484 371 
26 9 169 .494 263 48 .418 388 − 6 .111 476 − 10 .342 608 0 .673 502 19 .317 274 0 .128 495 0 .484 024 
27 8 187 .757 996 56 .693 752 − 7 .339 619 − 4 .749 725 0 .576 080 18 .252 359 0 .151 545 0 .484 008 
28 9 165 .833 618 46 .725 655 − 5 .527 166 − 10 .702 893 0 .613 531 18 .830 116 0 .150 776 0 .483 593 
29 9 171 .009 125 45 .997 330 − 5 .812 016 − 6 .994 314 0 .617 441 18 .986 839 0 .169 053 0 .483 200 
30 9 173 .235 535 49 .141 151 − 5 .340 712 − 9 .560 485 0 .606 213 18 .940 699 0 .100 418 0 .479 875 
31 8 179 .718 201 50 .653 923 − 7 .778 558 − 6 .846 837 0 .664 310 19 .358 950 0 .182 553 0 .477 425 
32 9 159 .310 638 44 .860 550 − 6 .879 270 − 10 .555 117 0 .646 944 18 .803 308 0 .209 683 0 .477 115 
33 9 164 .777 161 44 .976 212 − 6 .129 719 − 11 .014 638 0 .603 947 18 .769 825 0 .195 550 0 .476 689 
34 9 176 .500 488 54 .726 501 − 7 .533 120 − 8 .043 803 0 .614 882 19 .896 984 0 .196 763 0 .475 622 
35 19 177 .458 374 50 .769 260 − 7 .356 768 − 5 .745 450 0 .645 157 18 .890 451 0 .145 692 0 .475 277 
36 9 172 .817 383 47 .330 818 − 6 .053 680 − 7 .922 386 0 .642 633 19 .386 862 0 .202 310 0 .474 907 
37 9 163 .159 119 48 .486 298 − 6 .168 635 − 10 .865 490 0 .666 342 18 .826 414 0 .182 255 0 .472 844 
38 15 170 .374 420 52 .475 494 − 7 .904 741 − 6 .552 203 0 .715 446 19 .745 758 0 .196 269 0 .472 336 
39 9 160 .771 454 46 .261 520 − 5 .855 455 − 7 .474 462 0 .591 482 19 .225 233 0 .171 725 0 .464 586 
40 7 186 .439 041 56 .541 378 − 10 .644 468 − 4 .102 360 0 .592 939 19 .715 214 0 .175 948 0 .463 402 
41 8 178 .696 075 52 .531 986 − 7 .652 631 − 7 .286 445 0 .669 975 18 .414 928 0 .178 466 0 .462 668 
42 7 190 .129 303 57 .698 757 − 8 .130 330 − 5 .936 471 0 .590 197 19 .154 623 0 .140 599 0 .462 299 
43 8 176 .834 106 50 .947 758 − 7 .213 428 − 7 .684 932 0 .678 570 19 .351 543 0 .182 765 0 .461 110 
44 9 173 .211 731 46 .760 998 − 6 .690 597 − 8 .577 130 0 .730 625 19 .276 901 0 .171 330 0 .460 547 
45 7 202 .413 101 58 .419 315 − 8 .423 603 − 3 .303 266 0 .626 270 19 .095 215 0 .075 321 0 .460 429 
46 7 198 .092 728 58 .096 100 − 7 .937 617 − 3 .228 269 0 .629 757 18 .509 893 0 .170 395 0 .459 476 
47 8 176 .415 344 54 .566 105 − 7 .152 437 − 5 .265 400 0 .794 621 19 .286 375 0 .115 260 0 .458 131 
48 7 192 .434 601 54 .163 914 − 9 .025 725 − 3 .314 333 0 .714 384 19 .720 222 0 .199 648 0 .457 166 
49 7 197 .343 521 60 .127 289 − 8 .470 557 − 2 .185 798 0 .705 921 19 .428 307 0 .190 847 0 .456 135 
50 8 176 .661 682 52 .064 625 − 6 .882 434 − 8 .300 988 0 .686 596 18 .789 845 0 .134 871 0 .454 971 
51 7 194 .420 959 53 .819 744 − 7 .492 790 − 1 .907 870 0 .605 728 19 .301 640 0 .188 744 0 .452 361 
52 7 195 .111 771 56 .396 278 − 8 .144 449 − 3 .451 988 0 .727 108 19 .597 523 0 .174 442 0 .452 323 
53 7 204 .361 725 57 .704 208 − 8 .309 439 − 5 .412 242 0 .568 638 19 .430 788 0 .205 758 0 .452 242 
54 7 195 .939 850 55 .778 358 − 7 .729 141 − 2 .890 564 0 .624 128 18 .510 710 0 .162 695 0 .451 727 
55 7 189 .208 954 58 .567 673 − 8 .094 695 − 1 .741 354 0 .663 921 19 .207 617 0 .192 408 0 .449 935 
56 7 186 .898 468 55 .441 170 − 8 .953 770 − 4 .824 331 0 .760 971 19 .275 148 0 .133 778 0 .448 510 
57 7 189 .780 121 56 .009 251 − 9 .288 628 − 1 .816 544 0 .769 598 19 .816 544 0 .209 066 0 .447 054 
58 7 200 .713 043 56 .548 923 − 8 .371 297 − 4 .555 718 0 .603 445 18 .767 347 0 .129 104 0 .446 953 
59 1 141 .269 653 26 .119 368 − 3 .506 178 − 13 .209 450 0 .637 341 17 .898 008 0 .194 991 0 .444 487 
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