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Abstract. We generalize Bonahon’s characterization of geometrically infinite torsion-
free discrete subgroups of PSL(2,C) to geometrically infinite discrete isometry subgroups
in the case of rank 1 symmetric spaces, and, under the assumption of bounded torsion,
to the case of negatively pinched Hadamard manifolds. Every such geometrically infinite
isometry subgroup Γ has a set of nonconical limit points with cardinality of continuum.

1. Introduction

In [4] Francis Bonahon proved the following characterization of geometrically infinite
torsion-free discrete subgroups of the isometry group of the 3-dimensional hyperbolic space
H3:

Theorem 1.1. A discrete torsion-free subgroup Γ < Isom(H3) is geometrically infinite if
and only if there exists a sequence of closed geodesics λi in the manifold M = H3/Γ which
“escapes every compact subset of M ,” i.e., for every compact subset K ⊂M ,

card ({i : λi ∩K 6= ∅}) <∞.

In [12, Theorem 1.4] we generalized Bonahon’s theorem to discrete torsion-free groups
of isometries of negatively pinched Hadamard manifolds. Torsion-free discrete isometry
subgroups only contain parabolic, loxodromic and identity isometries. In this paper, we also
consider discrete isometry subgroups containing elliptic isometries. For rank 1 symmetric
spaces X, we prove that Bonahon’s theorem holds for any discrete isometry subgroup with
torsion. For general negatively pinched Hadamard manifolds X, we generalize Bonahon’s
theorem to discrete isometry subgroups where the order of elliptic elements is bounded,
i.e. discrete isometry subgroups with bounded torsion. Furthermore, we use an argument
similar to the one in [12] to generalize a theorem of Chris Bishop and prove that the
set of nonconical limit points of such geometrically infinite subgroups has cardinality of
continuum. Our main result is:

Theorem 1.2. Suppose that either X is a negatively curved symmetric space and Γ <
Isom(X) is a discrete subgroup or X is a negatively pinched Hadamard manifold and Γ <
Isom(X) is a discrete group with bounded torsion. Then the following are equivalent:

(1) Γ is geometrically infinite.
(2) There exists a sequence of closed geodesics λi ⊂ M = X/Γ which escapes every

compact subset of M .
(3) The set of nonconical limit points of Γ has cardinality of continuum.

As in [12], we then obtain the following form of the Beardon–Maskit criterion for geo-
metric finiteness of discrete isometry groups of negatively pinched Hadamard manifolds:

Corollary 1.3. If Γ < Isom(X) is a discrete isometry subgroup with bounded torsion (resp.
with torsion) of a negatively pinched Hadamard manifold X (resp. a rank 1 symmetric
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space), then Γ is geometrically finite if and only if every limit point of Γ is either a conical
limit point or a parabolic fixed point.

For the 3-dimensional hyperbolic space H3, Bonahon proved that the product of two para-
bolic isometries which generate a nonelementary discrete isometry subgroup is loxodromic,
and use this result to prove Theorem 1.1. We generalized this result to n-dimensional
Hadamard manifolds with sectional curvatures pinched between −κ2 and −1 , showing that
there exists a number l(n, κ) such that for any pair of parabolic isometries generating a
nonelementary discrete subgroup, a certain word w = w(g, h) of length ≤ l(n, κ) is loxo-
dromic [12, Theorem 8.5]. In this paper, we prove a similar result for nonelementary discrete
isometry subgroups generated by elliptic isometries. For rank 1 symmetric spaces, we use
the following theorem proved by Emmanuel Breuillard in [9].

Theorem 1.4. Let X be an n-dimensional symmetric space. Then there exists a constant
C(n) such that for every discrete non-amenable subgroup Γ < Isom(X) generated by two
elements g, h, there exists a word w = w(g, h) of length at most C(n), which represents an
infinite order element of Γ.

Remark 1.5. While E. Breuillard proved Theorem 1.4 for arbitrary symmetric spaces (and,
more generally, for subgroups of GL(n,K), where K is a field), we apply his theorem only
to rank 1 symmetric spaces.

For general negatively pinched n-dimensional Hadamard manifolds X, our argument is
different, and we consider discrete isometry subgroups where the order of elliptic elements
is no greater than some u < ∞. We prove that there exists a number l = l(n, κ, u) such
that for any pair of elliptic isometries γ1, γ2 ∈ Isom(X) generating a nonelementary discrete
subgroup where the order of elliptic elements is no greater than u, a certain word w = w(g, h)
of length ≤ l has infinite order (i.e. is parabolic or loxodromic).

Organization of the paper. In Section 3 we discuss properties of elliptic isometries
of negatively pinched Hadamard manifolds. In Section 4 we prove the existence of loxo-
dromic elements of uniformly bounded word length in infinite elementary discrete isometry
subgroups generated by elliptic elements. Furthermore, in Subsections 4.1 and 4.2, we
prove the existence of loxodromic elements of uniformly bounded word length in discrete
nonelementary isometry subgroups generated by two elliptic isometries in the case of rank
1 symmetric spaces and negatively pinched Hadamard manifolds, respectively. In Section
5, we use the results in Section 4 to generalize Bonahon’s theorem and prove Theorem 1.2.

This paper follows our earlier work on torsion-free discrete isometry subgroups in [12].
Some arguments here are similar to the ones of our earlier paper. For detailed properties
of negatively pinched Hadamard manifolds and discrete isometry subgroups see [12].

Acknowledgements. The first author was partly supported by the NSF grant DMS-
16-04241 as well as by KIAS (the Korea Institute for Advanced Study) through the KIAS
scholar program. Some of this work was done during his stay at KIAS and he is thankful
to KIAS for its hospitality.

2. Notation

In this paper, we use X to denote a negatively pinched Hadamard manifold of dimension
n, unless otherwise stated. We assume that the sectional curvatures of X lie between −κ2

and −1. Let ∂∞X denote the ideal boundary sphere of X, and we use the notation X̄ =
X∪∂∞X for the visual compactification. Let Isom(X) denote the isometry group of X, and
Γ < Isom(X) denote discrete isometry subgroups. Let δ denote the hyperbolicity constant of
X; hence, δ ≤ cosh−1(

√
2). We use the notation B(x, r) to denote the open r-ball centered
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at x ∈ X and Nr(A) for the open r-neighborhood of a subset A ⊂ X. Let V ol(A) denote
the volume of a measurable subset A ⊂ X.

Every isometry g of X extends to a homeomorphism (still denoted by g) of X̄. Let F (g)
denote the fixed point set of g in X̄. For a discrete isometry subgroup Γ, let F (Γ) denote
the fixed point set of the group, i.e

F (Γ) :=
⋂
g∈Γ

F (g).

Isometries of X are classifies as parabolic, elliptic and loxodromic based on their fixed
point sets, see [1, 8, 12]. Every elliptic element g in a discrete isometry subgroup has finite
order. We let o(g) to denote the order of g.

For an isometry g of X, we define the rotation of g at x ∈ X as:

rg(x) = max
v∈TxX

∠(v, Pg(x),x ◦ g∗xv).

Here g∗x : TxX → Tg(x)X is the differential and Pg(x),x : Tg(x)X → TxX is the parallel
transport along the unique geodesic from g(x) to x. Following [1], given a ≥ 8 we define
the norm of g at x as ng(x) = max(rg(x), a · dg(x)) where dg(x) = d(x, g(x)).

Define the Margulis region Mar(g, ε) of g ∈ Isom(X) as:

Mar(g, ε) = {x ∈ X | d(x, g(x)) ≤ ε}.
By the convexity of the distance function, Mar(g, ε) is convex.

Given x ∈ X and a discrete subgroup Γ < Isom(X), let Fε(x) = {γ ∈ Γ | d(x, γx) ≤ ε}
denote the set of isometries in Γ which move x a distance at most ε. Let Γε(x) denote the
subgroup generated by Fε(x). We use ε(n, κ) to denote the Margulis constant of X. Then,
the Margulis Lemma, Γε(x) is virtually nilpotent whenever 0 < ε ≤ ε(n, κ). More precisely,

Proposition 2.1. [1, Theorem 9.5] Given 0 < ε ≤ ε(n, κ) and x ∈ X, the group N
generated by the set {γ ∈ Γε(x) | nγ(x) ≤ 0.49} is a nilpotent subgroup of Γε(x) of a
uniformly bounded index (where the bound depends only on κ and n). Moreover, each coset
γN ⊂ Γε(x) can be represented by an element γ of word length ≤ m(n, κ) in the generating
set Fε(x) of Γε(x). Here m(n, κ) is a constant depending only on κ and n.

Remark 2.2. Γε(x) is always finitely generated.

We will use the following important property of nilpotent groups in Section 4:

Theorem 2.3. [10, 13] Let G be a nilpotent group. The set of all finite order elements of
G forms a characteristic subgroup of G. This subgroup is called the torsion subgroup of G
and denoted by Tor(G).

Given a set T = {g1, · · · , gk} ⊂ Isom(X), we let 〈T 〉 denote the group generated by T .
Following [12], we let Λ = Λ(Γ) ⊂ ∂∞X denote the limit set of Γ, i.e. the accumulation set
in ∂∞X of one (equivalently, any) Γ-orbit in X. Let Hull(A) denote the closed convex hull
of a subset A ⊂ X̄, and let QHull(A) denote the quasiconvex hull of A.

The group Γ acts properly discontinuously on X̄ \ Λ, [8, Proposition 3.2.6]. We obtain
an orbifold with boundary

M̄ = Mc(Γ) =
(
X̄ \ Λ

)
/Γ.

Let Core(M) denote the convex core of M which is defined as the Γ-quotient of the closed
convex hull of Λ(Γ).

Given 0 < ε ≤ ε(n, κ) and a discrete subgroup Γ < Isom(X), define the set Tε(Γ) =
{p ∈ X | Γε(p) is infinite}. It is a disjoint union of subsets of the form Tε(G), where G
ranges over all maximal infinite elementary subgroups of Γ, [8, Proposition 3.5.5]. If G < Γ
is a maximal parabolic subgroup, Tε(G) is precisely invariant and StabΓ(Tε(G)) = G, [8,
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Corollary 3.5.6]. In this case, by abuse of notation, we regard Tε(G)/G as a subset of M ,
and call it a Margulis cusp. Let cuspε(M) denote the union of all Margulis cusps of M ; it
is called the cuspidal part of M , [8].

3. Elliptic isometries

An isometry g of X is elliptic if it fixes a point in X. In particular, the identity map is
elliptic. The fixed point set F (g)∩X is a totally geodesic subspace of X invariant under g.
Note that the fixed point set F (g) of any elliptic isometry g 6= IdX has dimension at most
dimX − 1, [1, Lemma 6.3].

Any elliptic element in a discrete isometry subgroup Γ < Isom(X) has finite order.

Lemma 3.1. [1, 12.2] Let g be an elliptic isometry of a Hadamard manifold X with o(g) =
m. If x ∈ X and d(x, F (g)) = a, then d(x, gx) ≥ 2a sin(π/m).

Proposition 3.2. Suppose that T = {g1, · · · , gb} ⊂ Isom(X) is a subset consisting of b
nontrivial elliptic elements. Then for any x ∈ X and ε > 0, there exists y ∈ B(x, ε/4) such
that for each i,

d(y, Fi) ≥ ε/2b+2,

where Fi is the fixed point set of gi.

Proof. Since F1 is a totally-geodesic lower dimensional submanifold, there is a point y1 ∈
B(x, ε/4) such that

d(y1, F1) ≥ ε/8.
Next, consider the ball B(y1, ε/8); there is a point y2 ∈ B(y1, ε/8) ⊂ B(x, ε/4) such that

d(y2, F2) ≥ ε/16

by the same reason as above. Inductively, there exists a point y ∈ B(x, ε/4) such that

d(y, Fi) ≥ ε/2b+2

for all i.
�

Given an elliptic isometry g, let x ∈ X denote a fixed point of g. Consider the differential
g∗x : TxX → TxX. It is linear and preserves the inner product in Rn = TxX. Hence
g∗x ∈ O(n).

Lemma 3.3. [11, Proposition 7] Assume that A ∈ O(n) has finite order which is bounded
(from above) by u; then

‖ A− Id ‖≥ 2 sin(π/u),

where ‖ · ‖ denotes the operator norm.

Next, we discuss finite discrete elementary groups of X.
A group G < Isom(X) is elementary either if the fixed point set F (G) in nonempty, or if

G preserves setwise some bi-infinite geodesic in X̄.

Lemma 3.4. Assume that two elements g1, g2 ∈ Isom(X) generate a nonelementary dis-
crete subgroup. Then Mar(g1, ε) and Mar(g2, ε) are disjoint for every ε ≤ ε(n, κ).

Proof. Suppose there exists a point x ∈Mar(g1, ε) ∩Mar(g2, ε). By the Margulis Lemma,
〈g1, g2〉 is elementary which is a contradiction. Thus, Mar(g1, ε) and Mar(g2, ε) are disjoint.

�

Based on the fixed point set, elementary groups are divided into the following three
classes [8]:
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(1) F (G) is a nonempty subspace of X̄.
(2) F (G) consists of a single point of ∂∞X.
(3) G has no fixed point in X, and G preserves setwise a unique bi-infinite geodesic in

X.

Remark 3.5. If G < Isom(X) is discrete and in the first class, then G is finite by discrete-
ness and consists of elliptic isometries. If G is discrete and in the second class, it is called
parabolic, and it contains a parabolic isometry [8, Proposition]. Discrete groups G in the
third class will be called elementary loxodromic groups.

Lemma 3.6. Suppose that G < Isom(X) is a discrete elementary subgroup, and every
element in G is elliptic. Then G is finite.

Proof. By Remark 3.5, G is either finite or loxodromic. Suppose that G is loxodromic and
preserves a geodesic l ⊂ X setwise. Let ρ : G → Isom(l) denote the restriction homomor-
phism. Since G is loxodromic, the subgroup ρ(G) has no fixed point in l. Hence, there exist
two elements g, h ∈ G such that ρ(g), ρ(h) are distinct involutions. Their product ρ(g)ρ(h)
is a nontrivial translation of l. Hence, gh is a loxodromic isometry of X, contradicting our
assumption. Hence, G is finite. �

Corollary 3.7. Every discrete elementary loxodromic group contains a loxodromic isome-
try.

Proposition 3.8. There exists a constant A(n, u, ε) with the following property. Suppose
that G < Isom(X) is a finite elementary subgroup where the order of all elements is ≤ u,
and ε > 0. Then for any x ∈ X, there exists y ∈ B(x, ε/4) such that d(y, F (g)) ≥ A(n, u, ε)
for all g ∈ 〈T 〉 − {Id}.

Proof. We will prove that the order of G is bounded by some b = b(n, u). Let z ∈ X be a
fixed point of G. We will identify the group of linear isometries of TzX with O(n). Then
for each g ∈ G, the differential g∗z : TzX → TzX is in O(n). Consider two elliptic elements
g, h ∈ 〈T 〉. By the assumption on the orders of elements of G, o(g−1h) ≤ u. Then the order
of (g−1h)∗z is also bounded by u. By Lemma 3.3,

‖(g)∗z − (h)∗z‖ = ‖(g−1h)∗z − Id‖ ≥ 2 sin(π/u).

Since O(n) is compact, the above inequality implies that the order of G is at most b(n, u).
Now, the statement follows from Proposition 3.2 applied to the subset G ⊂ Isom(X). �

4. Loxodromic products

In [12, Proposition 8.4], we proved that given two parabolic isometries g1, g2 of X, if the
distance of their Margulis regions is sufficiently large, then g2g1 is loxodromic. Below, we
extend this result to elliptic isometries g1, g2.

Proposition 4.1. There exists a constant L = L(ε) such that given two elliptic isometries
g1, g2 in a subgroup Γ < Isom(X), if d(Mar(g1, ε),Mar(g2, ε)) > L then h = g2g1 is
loxodromic.

Proof. The argument is exactly the same as the proof in [12, Proposition 8.4]. The infinite
piecewise geodesic path γ in Figure 1 is a uniform quasigeodesic if L is sufficiently large
[12], and Bi = Mar(gi, ε) for i = 1, 2. By the Morse Lemma, g2g1 preserves the unique
geodesic γ∗ in X which is Hausdorff close to γ, and acts on γ∗ as a nontrivial translation.
Thus g2g1 is loxodromic. For details, see [12, Proposition 8.4]. �
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Figure 1.

Consider an infinite elementary discrete subgroup of Isom(X) generated by elliptic isome-
tries. It is either a parabolic elementary subgroup or a loxodromic elementary subgroup.
Lemma 4.2 and Proposition 4.3 below prove the existence of infinite order elements of
uniformly bounded word length in such groups.

Lemma 4.2. Suppose that the set T = {g1, g2, · · · , gm} ⊂ Isom(X) consists of elliptic
elements, and the group 〈T 〉 is an elementary loxodromic group. Then there is a pair of
indices 1 ≤ i, j ≤ m such that gigj is loxodromic.

Proof. Let l denote the geodesic preserved setwise by 〈T 〉. We claim that there exists gi
such that it swaps the endpoints of l. Otherwise, l is fixed pointwise by 〈T 〉, and 〈T 〉 is a
finite elementary subgroup of Isom(X) which is a contradiction. Since gi(l) = l, there exists
x ∈ l such that gi(x) = x. By the same argument as in Lemma 3.6, there exists gj such
that gj(x) 6= x, and gigj is loxodromic. �

For discrete parabolic elementary subgroups generated by elliptic isometries, we have the
following result.

Proposition 4.3. Given x ∈ X, 0 < ε ≤ ε(n, κ) and a discrete subgroup Γ < Isom(X),
suppose that the set Fε(x) ⊂ Γ consists of elliptic elements and the group Γε(x) < Γ
generated by this set is a parabolic elementary subgroup. Then there is a parabolic element
g ∈ Γε(x) of word length in Fε(x) uniformly bounded by a constant C(n, κ).

Proof. Let N be the subgroup of Γε(x) generated by the set {γ ∈ Γε(x) | nγ(x) ≤ 0.49}.
By Proposition 2.1, N is a nilpotent subgroup of Γε(x) = s1N ∪ s2N · · · ∪ sIN where the
index I is uniformly bounded and each si has uniformly bounded word length ≤ m(n, κ)
with respect to the generating set Fε(x) of Γε(x).

Let F = FS denote the free group on S = Fε(x). Consider the projection map π : F →
Γε(x), and the preimage π−1(N) < F . Let T denote a left Schreier transversal for π−1(N)
in F (i.e a transverse for π−1(N) in F so that every initial segment of an element of T itself
belongs to T ). By the construction, every element t ∈ T in the Schreier transversal has the
minimal word length among all the elements in tπ−1(N). Then the word length of t is also
bounded by m(n, κ) since tπ−1(N) = siπ

−1(N) for some i. By the Reidemeister-Schreier
Theorem, π−1(N) is generated by the set

Y = {tγis | t, s ∈ T, γi ∈ Fε(x), and sπ−1(N) = tγiπ
−1(N)}.

Since the word length of elements in a Schreier transversal is not greater than m(n, κ), then
the word length of elements in the generating set Y is not greater than 2m(n, κ) + 1.

Next, we claim that there exists a parabolic element in π(Y). If not, then all the elements
in π(Y) are elliptic. By Theorem 2.3, all the torsion elements in N form a subgroup of N .
Hence all elements in N = 〈π(Y)〉 are elliptic. By Lemma 3.6, N is finite, which contradicts



GEOMETRIC INFINITENESS IN NEGATIVELY PINCHED HADAMARD MANIFOLDS 7

our assumption that Γε(x) is infinite. Therefore, there exists a parabolic element in π(Y )
whose word length is ≤ 2m(n, κ) + 1. We let C(n, κ) = 2m(n, κ) + 1.

�

Remark 4.4. The virtually nilpotent group Γε(x) is uniformly finitely generated by at
most S(n, κ) isometries α satisfying d(x, α(x)) ≤ ε, [1, Lemma 9.4]. Let F be the free
group on the set A consisting of such elements α. Since the number of subgroups of F with
a given finite index is uniformly bounded, and each subgroup has a finite free generating
set it follows that π−1(N) has a generating set where each element has word length (with
respect to A) uniformly bounded by some constant C(n, κ). Hence there is a generating set
of N where the word length of each element is uniformly bounded by C(n, κ). Similarly,
there exists a parabolic element g in this generating set of word length bounded by C(n, κ)
in elements α. This argument provides an alternative proof of the existence of a parabolic
isometry of uniformly bounded word length in Γε(x).

In the rest of the section, we will prove the existence of a loxodromic isometry of uni-
formly bounded word length in a nonelementary discrete subgroup generated by two elliptic
isometries. The arguments for rank 1 symmetric spaces and general negatively pinched
Hadamard manifolds are different. For the latter case, we assume that the elliptic elements
in the nonelementary isometry subgroup have order no greater than some u <∞.

4.1. Rank 1 symmetric spaces. In this subsection, X denotes a rank 1 symmetric space.
We use Theorem 1.4 proved by E. Breuillard in [9] to construct a loxodromic isometry of
uniformly bounded word length.

Theorem 4.5. Let Γ < Isom(X) be a discrete subgroup. Suppose that g, h ∈ Γ generate
a nonelementary subgroup of Γ. Then there exists a loxodromic element w ∈ 〈g, h〉 of
uniformly bounded word length. The bound only depends on the symmetric space.

Proof. By Theorem 1.4, there exists an infinite order element w′ ∈ 〈g, h〉 of uniformly
bounded word length. If w′ is loxodromic, we let w = w′. Now we assume that w′ is
parabolic with the fixed point p. Then hw′h−1 and gw′g−1 are both parabolic elements
with fixed points h(p) and g(p) respectively. We claim that at least one of h(p) and g(p) is
different from p. Otherwise, 〈g, h〉 is an elementary subgroup (fixing p) which contradicts
to our assumption. Without loss of generality, assume that h(p) 6= p. Then w′ and hw′h−1

are parabolic elements with different fixed points. Hence, there exists a loxodromic element
w ∈ 〈w′, hw′h−1〉 of uniformly bounded word length [12, Theorem 8.5]. Thus in both cases,
w ∈ 〈g, h〉 is a loxodromic element of uniformly bounded word length and the bound only
depends on the symmetric space X.

�

4.2. Negatively pinched Hadamard manifolds. In this subsection, X denotes a neg-
atively pinched Hadamard manifold. Given a discrete isometry subgroup Γ < Isom(X)
generated by a finite set S, the entropy of Γ with respect to S is defined as follows:

EntS(Γ) = lim
m→∞

1

m
(log card {γ ∈ Γ | lS(γ) ≤ m})

where lS(γ) denotes the word length of γ in terms of the generating set S. One also define
the entropy of Γ by:

Ent(Γ) = inf
S
{EntS(Γ) | S is a finite generating set of Γ}.

Theorem 4.6. [2, Theorem 1.1] There exists a positive constant D(n, κ) such that for any
finitely generated discrete group Γ of isometries of X, either Γ is virtually nilpotent or
Ent(Γ) ≥ D(n, κ).
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Let Γ < Isom(X) be a discrete subgroup generated by a finite set S which is not virtually
nilpotent. By Theorem 4.6,

EntS(Γ) = lim
m→∞

1

m
(log card {γ ∈ Γ | lS(γ) ≤ m}) ≥ D(n, κ).

Consider the sequence of non-negative real numbers (am)∞m=1 where

am = log card {γ ∈ Γ | lS(γ) ≤ m}.
The sequence is subadditive. Then, by Fekete’s Lemma [6], the limit

lim
m→∞

am
m

exists and equals

inf
m≥1

(am
m

)
.

Hence,

card {γ ∈ Γ | lS(γ) ≤ m} ≥ eD(n,κ)m,

for all m ≥ 1.

Proposition 4.7. There exists a constant N(n, κ, u) such that given elliptic isometries
g1, g2 generating a discrete nonelementary subgroup 〈g1, g2〉 < Isom(X), if all elliptic ele-
ments in this subgroup have order no greater than u, then there exists a loxodromic element
in 〈g1, g2〉 of word length bounded by N(n, κ, u).

Proof. Let ε = ε(n, κ) denote the Margulis constant, V (r, n) be the volume of the r-ball in
Hn, A(n, u, ε) be the constant in Proposition 3.8, η = max{A(n, u, ε), ε/4} and

R = R(n, κ, ε, u) =
1

D(n, κ)
ln

(
V (κ(C(L)), n)

V (ρ/2, n)κn

)
+ 1

where D(n, κ) is the constant in Theorem 4.6, L = L(ε) is as in Proposition 4.1, ρ =
2η sin(π/u) and C(L) = L+ 2nδ + 2ε+ ρ/2.

Let B(R) denote the set of all elements in 〈g1, g2〉 of word length at most R. If there
exists a loxodromic element in B(R), then its word length is bounded by R(n, κ, ε, u). If
there exists a parabolic element g ∈ B(R) with the fixed point p, then at least one of the
parabolic elements g1gg

−1
1 and g2gg

−1
2 has fixed point different from p. Otherwise, 〈g1, g2〉

is an elementary group (fixing p) which is a contradiction. Assume that g1gg
−1
1 (p) 6= p.

Then there is a loxodromic element of uniformly bounded word length in 〈g, g1gg
−1
1 〉, [12,

Theorem 8.5]. Now we assume that all the elements in B(R) are elliptic. Let B(R) = {g0 =
e, g1, g2, · · · gN} and T = {g−1

i gj | 0 ≤ i, j ≤ N, i 6= j}. Similarly, we assume that all the
elements in T are elliptic.

If there exists a pair of indices 1 ≤ i, j ≤ N such that d(Mar(gi, ε),Mar(gj , ε)) > L,
then by Proposition 4.1 gigj is a loxodromic element of word length ≤ 2R. Otherwise,
consider the L/2-neighborhood of Mar(gi, ε) and denote it by Bi. Then Bi ∩ Bj 6= ∅ for
any 1 ≤ i, j ≤ N . Similarly to the proof of [12, Proposition 8.2], there exists a point x ∈ X
such that d(x,Bi) ≤ nδ for all 0 ≤ i ≤ N where δ ≤ cosh−1

√
2 is the hyperbolicity constant

of X. Then
d(x,Mar(gi, ε)) ≤ L/2 + nδ.

For each i pick yi ∈Mar(gi, ε) such that d(x, yi) ≤ L/2 + nδ. Hence

d(x, gi(x)) ≤ d(x, yi) + d(yi, gi(yi)) + d(gi(yi), gi(x)) ≤ L+ 2nδ + ε.

Consider the ball B(x, ε/2). Let

T ′ = {g−1
i gj | 0 ≤ i, j ≤ N, i 6= j and F (g−1

i gj) ∩B(x, ε/2) 6= ∅}.
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Then d(x, g−1
i gj(x)) ≤ ε for any g−1

i gj ∈ T ′. By the Margulis Lemma, the subgroup 〈T ′〉 is
elementary.

Assume that the subgroup 〈T ′〉 is finite. By Proposition 3.8, there exists y ∈ B(x, ε/4)
such that d(y, F (g−1

i gj)) ≥ A(n, u, ε) for all g−1
i gj ∈ T ′. For other elements g−1

i gj in T \T ′,
F (g−1

i gj) ∩ B(x, ε/2) = ∅. Then d(y, F (g−1
i gj)) ≥ ε/4. Thus, for any element g−1

i gj ∈ T ,

d(y, F (g−1
i gj)) ≥ η := max{A(n, u, ε), ε/4}. By Lemma 3.1, we have d(y, g−1

i gj(y)) ≥ ρ :=
2η sin(π/u). Thus,

d(y, gi(y)) ≥ ρ and d(gi(y), gj(y)) ≥ ρ, 1 ≤ i 6= j ≤ N.
Observe that

d(y, gi(y)) ≤ d(y, x) + d(x, gi(x)) + d(gi(x), gi(y)) ≤ L+ 2nδ + 2ε.

Let C(L) = L+2nδ+2ε+ρ/2. Consider the balls B(y, C(L)) and B(gi(y), ρ/2) for 0 ≤ i ≤ N .
The volume of B(y, C(L)) is at most V (κC(L), n)/κn and the volume of B(y, ρ/2) is at least
V (ρ/2, n), [8, Proposition 1.1.12]. The balls B(gi(y), ρ/2), i = 0, · · · , N are pairwise disjoint
and contained in B(y, C(L)). By Theorem 4.6,

V (κC(L), n)/κn ≥ V (ρ/2, n)(N + 1) ≥ V (ρ/2, n)eD(n,κ)R

which contradicts the definition of R.
Thus, 〈T ′〉 is either parabolic or loxodromic. If 〈T ′〉 is loxodromic, by Lemma 4.2, there

exist elements γ1 and γ2 in T ′ such that γ1γ2 is loxodromic. If 〈T ′〉 is parabolic, by Proposi-
tion 4.3, there exists a parabolic element in 〈T ′〉 of uniformly bounded word length. By an
argument similar to the proof of Theorem 4.5, there is a loxodromic element of uniformly
bounded word length in 〈g1, g2〉. Thus in all cases, there exists a loxodromic element in
〈g1, g2〉 of word length bounded by a constant N(n, κ, u).

�

Remark 4.8. The Cayley graph of the finitely generated group 〈g1, g2〉 is an infinite con-
nected locally finite graph, and contains a ray [5]. Hence,

card {γ ∈ Γ | lS(γ) ≤ m} ≥ m,
for all m ≥ 1. Instead of using Theorem 4.6, we use the inequality

V (κC(L), n)/κn ≥ V (ρ/2, n)(N + 1) ≥ V (ρ/2, n)R.

Hence, alternatively, we can use

R =
V (κ(C(L)), n)

V (ρ/2, n)κn
+ 1

in the proof of the proposition.

5. Generalized Bonahon’s theorem

In [12, Theorem 1.5], we generalized Bonahon’s theorem to discrete geometrically infinite
torsion-free subgroups Γ < Isom(X). In this section, we use Theorem 4.5 and Proposition
4.7 to generalize Bonahon’s theorem to discrete geometrically infinite isometry subgroups
with torsion. Let X denote a rank 1 symmetric space or a negatively pinched Hadamard
manifold. Correspondingly, let Γ < Isom(X) denote a discrete geometrically infinite sub-
group or a geometrically infinite subgroup with bounded torsion. The proofs in these two
cases are the same, and the main idea is similar to the one in [12].

Proof of the implication (1)⇒ (2) in Theorem 1.2: If there exists a sequence of closed
geodesics βi ⊆ M whose lengths go to 0 as i → ∞, then the sequence (βi) escapes every
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compact subset of M . From now on, we assume that there exists a constant ε > 0 such
that the length l(β) ≥ ε for any closed geodesic β in M .

Set ε = ε(n, κ). Recall that Margulis cusps in M are isometric to Tε(G)/G where G < Γ is
a maximal parabolic subgroup [8, 12]. There exists a universal constant r ∈ [0,∞) such that
Hull(Tε(G)) ⊆ Nr(Tε(G)) for any maximal parabolic subgroup G, [12, Corollary 6.5]. We
let B(G) := N2+4δ(Hull(Tε(G))) and let Mo be the union of subsets B(G)/Γ where G ranges
over all maximal parabolic subgroups of Γ. Let M c denote the closure of Core(M) \Mo.
Since Γ is geometrically infinite, the noncuspidal part of the convex core Core(M)\cuspε(M)
is unbounded [8]. Then M c is also unbounded since Mo ⊆ Nr+2+4δ(cuspε(M)).

Fix a point x ∈ M c. Let Ck = {y ∈ M c | d(x, y) ≤ nR} where R = r + 2 + 4δ + mε
and m = C(n, κ) is the constant in Proposition 4.3. Let x̃ be a lift of x in X. For
every Ck, there exists a sequence of geodesic loops (γi) connecting x to itself in Core(M)
such that the Hausdorff distance hd(γi ∩M c, Ck) → ∞ as i → ∞, [12, Lemma 9.1]. Let
yi ∈ γi ∩M c be such that d(yi, Ck) is maximal on γi ∩M c. We pick a component αi of
γi ∩M c containing the point yi. Let δCk denote the relative boundary ∂Ck \ ∂M c

cusp of Ck
where M c

cusp = Mo ∩ Core(M). Consider the sequence of geodesic arcs (αi).
After passing to a subsequence in (αi), one of the following three cases occurs:

Figure 2.

Case (a): Each αi has both endpoints x′i and x′′i on ∂M c
cusp as in Figure 2(a). By

construction, there exist y′i and y′′i in the cuspidal part cuspε(M) such that d(x′i, y
′
i) ≤

r1, d(y′i, y
′′
i ) ≤ r1 where r1 = 2 + 4δ+ r. Let ỹ′i be a lift of y′i such that ỹ′i ∈ Tε(G′) for some

maximal parabolic subgroup G′ < Γ. By the definition, the subgroup G′ε(ỹ
′
i) generated by

the set
Fε(ỹ′i) = {γ ∈ G′ | d(ỹ′i, γ(ỹ′i)) ≤ ε}

is infinite. We claim that there exists a parabolic element g′ ∈ G′ε(ỹ′i) such that d(ỹ′i, g
′(ỹ′i)) ≤

mε. Assume that Fε(ỹ′i) = {γ1, · · · , γb}. If γj is parabolic for some 1 ≤ j ≤ b, we have
d(ỹ′i, γj(ỹ

′
i)) ≤ ε. Now assume that γj are elliptic for all 1 ≤ j ≤ b. By Proposition 4.3,

there is a parabolic element g′ ∈ Γε(ỹ
′
i) of word length in the generating set Fε(ỹ′i) bounded

by m. By the triangle inequality, d(ỹ′i, g
′(ỹ′i)) ≤ mε.

Then we find a nontrivial geodesic loop α′i contained in the cuspidal part cuspε(M) such
that α′i connects y′i to itself and has length l(α′i) ≤ mε. Similarly, there exists a nontrivial
geodesic loop α′′i which connects y′′i to itself and has length l(α′′i ) ≤ mε. Let

w′ = x′iy
′
i ∗ α′i ∗ y′ix′i ∈ Ω(M,x′i)

and
w′′ = αi ∗ x′′i y′′i ∗ α′′i ∗ y′′i x′′i ∗ α−1

i ∈ Ω(M,x′i)
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where Ω(M,x′i) denotes the loop space of M . Observe that w′ ∩ Cn−1 = ∅, w′′ ∩ Cn−1 = ∅,
and w′, w′′ represent parabolic elements g′, g′′ ∈ Γ respectively.

We claim that g′ and g′′ have different fixed points. Otherwise, g′, g′′ ∈ G′ where G′ < Γ
is some maximal parabolic subgroup. Then y′i, y

′′
i ∈ Tε(G′)/Γ and x′i, x

′′
i ∈ B(G′)/Γ. Since

Hull(Tε(G
′)) is convex, B(G′) = N2+4δ(Hull(Tε(G

′))) is also convex by the convexity of the
distance function. Hence x′ix

′′
i ⊆ B(G′)/Γ. However, x′ix

′′
i lies outside of B(G′)/Γ by the

construction, which is a contradiction.
Hence, there exists a loxodromic element ωk ∈ 〈g′, g′′〉 < Γ = π1(M,x′i) of word length

uniformly bounded by a constant L depending only on X, [12, Theorem 8.5]. Let wk be
a concatenation of w′, w′′ and their reverses which represents ωk. Then the number of ge-
odesic arcs in wk is uniformly bounded by 5L. The piecewise geodesic loop wk is freely
homotopic to a closed geodesic w∗k in M ; hence, w∗k is contained in the D-neighborhood of

the loop wk where D = cosh−1(
√

2)dlog2 5Le+ sinh−1(2/ε) + 2δ, [12, Proposition 5.1]. Re-
call that w′∩Ck−1 = ∅ and w′′∩Ck−1 = ∅, so wk∩Ck−1 = ∅. Thus d(x,w∗k) ≥ (k−1)R−D.

Case (b): For each i, the geodesic arc αi connects x′i ∈ δCk to x′′i ∈ ∂M c
cusp, as in Figure

2(b). For each x′′i , there exists a point y′′i ∈ cuspε(M) such that d(x′′i , y
′′
i ) ≤ r1. By an ar-

gument similar to the one in Case (a), there exists a nontrivial geodesic loop α′′i contained
in the cuspidal part which connects y′′i to itself and has length l(α′′i ) ≤ mε. The rest of the
argument is exactly the same as the argument in the torsion-free case [12, Section 9].

Figure 3.

Case (c): We assume that for each i, the geodesic arc αi connects x′i ∈ δCk to x′′i ∈
δCk. Since δCk is compact, after passing to a further subsequence in (αi), there exists
i0 ∈ N such that for all i ≥ i0, d(x′i, x

′
i0

) ≤ 1, d(x′′i , x
′′
i0

) ≤ 1 and there are unique shortest
geodesics x′i0x

′
i and x′′i0x

′′
i . For each i > i0 we define a geodesic µi = x′i0x

′′
i , see Figure

3(a). Then, by δ-hyperbolicity of X, each µi is in the (δ + 1)-neighborhood of αi. Let
vi = αi0 ∗ x′′i0x

′′
i ∗ (µi)

−1 ∈ Ω(M,x′i0) for i > i0. By the construction vi ∩ Ck−1 = ∅.
Let hi denote the element in Γ = π1(M,x′i0) represented by vi. If hi is loxodromic for

some i > i0, there exists a closed geodesic w∗k contained in the D-neighborhood of vi, cf.
Case (a). In this situation, d(x,w∗k) ≥ (k − 1)R−D.

By an argument similar to the one in the torsion-free case, hi cannot be the identity
element of Γ for large i, see Figure 3(b) and [12, Section 9]. Assume, therefore, that hi are
not loxodromic and not the identity for all i > i0. Then hi could be either parabolic or
elliptic for i > i0.
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Claim. There exists a loxodromic element in 〈hi, hj〉 of uniformly bounded word length for
some i, j > i0.

Proof. If there is a subsequence in (hi)i>i0 consisting of parabolic elements, we can use
the argument in the torsion-free case to find a loxodromic element in 〈hi, hj〉 of uniformly
bounded word length for some i, j > i0, [12]. Now assume that hi are elliptic for all i > i0.

If there exist i, j > i0 such that 〈hi, hj〉 is nonelementary, by Theorem 4.5 (for rank 1
symmetric spaces) and Proposition 4.7 (for negatively pinched Hadamard manifolds), there
exists a loxodromic element ωk ∈ 〈hi, hj〉 of word length uniformly bounded by a constant
L. Now suppose that 〈hi, hj〉 is elementary for any pair of indices i, j > i0. If one of the
elementary subgroups is infinite and preserves a geodesic, by Lemma 4.2, hihj is loxodromic.

Assume that all the elementary subgroups 〈hi, hj〉 are either finite or parabolic for all
i, j > i0. Let Bi denote the closure of Mar(hi, ε) in X̄. If there exist i, j such that Bi and
Bj are disjoint, then 〈hi, hj〉 is nonelementary which contradicts our assumption. Thus for
any pair of indices i, j > i0, Bi ∩ Bj 6= ∅. There exists a uniform constant r′ such that
Nr′(Bi) ∩ Nr′(Bj) 6= ∅ in X. Hence there exists z̃ ∈ X such that for all i > i0 we have
d(z̃, Nr′(Bi)) ≤ nδ, [12, Proposition 8.2]. For any q ∈ Nr′(Bi), d(q, hi(q)) ≤ 2r′ + ε by the
triangle inequality. Thus,

d(z̃, hi(z̃)) ≤ 2nδ + 2r′ + ε

for all i > i0. Let x̃′i0 denote a lift of x′i0 in X, and l = d(z̃, x̃′i0). Then

d(x̃′i0 , hi(x̃
′
i0)) ≤ 2l + 2nδ + 2r′ + ε

for all i > i0. On the other hand, as in the argument of the torsion-free case (see [12,
Section 9]), d(x̃′i0 , hi(x̃

′
i0

))→∞ as i→∞, which is a contradiction.
�

Thus, for some pair of indices i, j > i0, there exists a loxodromic element ωk ∈ 〈hi, hj〉
represented by a word length uniformly bounded by some constant L. By an argument
similar to the one in Case (a), there exists a closed geodesic w∗k such that d(x,w∗k) ≥
(k− 1)R−D. The sequence of closed geodesics {w∗k}, therefore, escapes every compact set
of M . �

Corollary 5.1. If Γ < Isom(X) is a discrete geometrically infinite subgroup with bounded
torsion (resp. with torsion) of a negatively pinched Hadamard manifold X (resp. a rank 1
symmetric space X), then the set of nonconical limit points of Γ has cardinality of contin-
uum.

Proof. In view of the generalized Bonahon’s theorem (Theorem 1.2 (1)⇒ (2)), the proof is
exactly the same as the one in the torsion-free case, see [12, Theorem 10.1].

�

The proofs of the implication (3) ⇒ (1) in Theorem 1.2 and Corollary 1.3 follow the
proofs in the torsion-free case, see [12, Section 10].
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Birkhäuser, Boston, 1985.

[2] G. Besson, G. Courtois and S. Gallot, Uniform growth of groups acting on Cartan-Hadamard spaces,
J. Eur. Math. Soc. (JEMS) 13 (2011), no. 5, 1343–1371.

[3] C. J. Bishop, On a theorem of Beardon and Maskit, Annales Academiae Scientiarum Fennicae, Mathe-
matica 21 (1996) 383–388.

[4] F. Bonahon, Bouts des varietes hyperboliques de dimension 3, Ann. Math., 124 (1986) 71–158.
[5] J. Bondy and U. Murty, “Graph theory with applications”, Elsevier Science Publishing Co., Inc., New

York, NY, 1976.



GEOMETRIC INFINITENESS IN NEGATIVELY PINCHED HADAMARD MANIFOLDS 13
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