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EPIGRAPH 

 
 
 
 
 
 
 
 
 
 
 

In darkness, cold. 
In light, cold. 

The old sun brings no heat. 
But there is heat in breath and life. 

In life, there is the Force. 
In the Force, there is life. 
And the Force is eternal. 

 
 

—Sunset Prayer of the Guardians of the Whills 
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A brain-computer interface (BCI) allows humans to communicate with a 

computer by thoughts. Recent advances in brain decoding have shown the capability of 

BCIs in monitoring physiological and cognitive states of the brain, including drowsiness. 

Since drowsy driving has been an urgent issue in vehicle safety that causes numerous 

deaths and injuries, BCIs based on non-invasive electroencephalogram (EEG) are 

developed to monitor drivers’ drowsiness continuously and instantaneously. Nonetheless, 

on the pathway of transitioning laboratory-oriented BCI into real-world applications, 

there are major challenges that limit the usability and convenience for drowsiness 

detection (DD). 
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To completely understand the association between human EEG and drowsiness, 

this study employed a large-scale dataset collected from simulated driving experiments 

with a lane-keeping task and EEG recordings. A drowsiness index based on response 

time data was proposed to capture the fluctuations in drowsiness level during driving 

sessions. Multi-channel EEG spectral powers were extracted and related to the 

drowsiness index within sessions for multiple subjects. Hierarchical clustering analysis 

was applied to the EEG-drowsiness correlations across sessions and across features, 

providing the following insights: 1) Similar EEG-drowsiness correlations are found 

among different subjects. 2) EEG features are reducible in the channel (spatial) domain. 

Current DD-BCIs are facilitated with wet or dry electrodes deployed across the 

whole scalp. The usage of wet electrodes involves head washing due to the use of 

conductance gel, and the pin-shaped dry electrodes for hair-cover areas result in erythema 

after sustained use. A DD-BCI that acquires EEG from only non-hair-bearing (NHB) 

areas was proposed to maximize comfort and convenience. The performance of the NHB 

DD-BCI was validated and compared with that using whole-scalp EEG, showing no 

significant difference in the accuracy of alert/drowsy classification. 

In addition, the issue of human variability in brain dynamics was addressed. Inter- 

and intra-subject variabilities limit the reproducibility of brain responses across time and 

across individuals, resulting in a time-consuming calibration before each use of a BCI. In 

particular, drowsiness-related EEG data are difficult to obtain, since drowsiness is not 

immediately inducible for a new user. Therefore, a subject-transfer framework that 

leverages large-scale existing data from other subjects was proposed to reduce the 

calibration time of a DD-BCI. Alert baseline data were involved to enhance the efficiency 
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of subject-to-subject model transfer. Data size positively impacted the performance of the 

proposed subject-transfer approach, and the alert baseline data were shown effective in 

estimating subject similarity in drowsiness-related brain responses. The subject-transfer 

approach significantly reduced the calibration time of the DD-BCI, exhibiting the 

potential in facilitating plug-and-play brain decoding for real-world BCI applications. 

Overall, this thesis presents the contributions to developing a DD-BCI for real-

world use with maximal usability and convenience. The methodologies and findings 

could further catalyze the exploration of real-world BCIs in more applications. 

 

  



	
   	
  

	
   1 

CHAPTER 1 
 
INTRODUCTION 

 
 

Reading minds has been a fascinating topic in science and engineering. To 

translate brain activities into messages to an external device or a computer, a brain-

computer interface (BCI) that senses brain activity and recognizes the underlying patterns 

is required to facilitate the brain-computer interactions [1][2][3]. Brain activities can be 

obtained by numerous neuromonitoring modalities that vary in temporal resolution, 

spatial resolution, invasiveness, and cost [4][5][6]. Among those modalities, 

electroencephalogram (EEG) is the most common in developing real-world BCI 

applications, as EEG is non-invasive, affordable, and with high temporal resolution. A 

BCI that is capable of real-world use is supposed to have the following characteristics: 

(A) Robustness.  

The accuracy of pattern recognition is maintained at an acceptable level across 

long-term use regardless of the user. 

(B) Convenience.  

The wearable device needs to be wireless, portable, easy to setup, and comfortable 

for sustained use. The initiation of the BCI system should be rapid without time-

consuming calibration. 

(C) Affordability.  
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The cost of hardware and software included in the BCI system is supposed to be 

affordable or at least lower than the benefit produced. 

BCIs based on EEG have been used for a number of purposes including sending 

text messages and controlling moving objects by thoughts. BCI spellers have been 

designed using an event-related potential, P300, to generate commands for typing letters, 

number, and symbols [7]. Another type of BCI spellers based on steady-state evoked 

potential (SSVEP) can achieve a higher information transfer rate using flickering visual 

stimuli coded in a range of frequencies and phases [8]. On the other hand, motor-imagery 

brain responses are used in BCIs for controlling moving objects intuitively. Motor-

imagery BCIs have been applied to controlling computer cursors [9], wheelchairs [10], 

and quadcopter drones [11]. Lower extremity prostheses controlled by a motor-imagery 

BCI were demonstrated to allow a patient with spinal cord injury (SCI) to walk [12]. The 

integrated framework that combines prostheses with BCI control has been shown to 

improve the walking performance of SCI patients through neurological recovery 

triggered by BCI usage [13]. Furthermore, recent advances in brain decoding based on 

EEG have shown potential in monitoring brain states associated with physiological or 

cognitive status. In clinical applications, EEG has been used to monitor the depth of coma, 

anaesthesia, sleep, and the occurrence of epilepsy [14]. Lately, EEG-based BCI is 

proposed to detect drivers’ drowsiness in order to prevent drowsy driving, an urgent issue 

in vehicle safety. According to the statistics, drowsy driving caused 37,000 injury crashes, 

resulting in 886 fatal crashes at the year of 2014 [15]. A BCI system for drowsiness 

detection (DD) usually consists of the following components, 

(A) Signal acquisition.  
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A non-invasive EEG device is applied to record EEG signals continuously from 

the scalp regions of interest and convert the analog signals into digital samples. 

(B) Signal processing.  

Raw digital signals from multi-channel EEG recording are further processed with 

a series of procedures including down-sampling, referencing, filtering, and data cleaning. 

(C) Feature extraction.  

Informative features related to drowsiness are extracted from the clean data. 

(D) Pattern recognition.  

The drowsiness-related patterns within the EEG features are recognized by a 

pattern recognition model. The model inputs EEG features and outputs a predicted 

drowsiness level. Machine learning techniques might be needed for training the model to 

detect drowsiness. 

(E) Feedback.  

The output of the DD model can be used to manage drowsiness in various forms 

of intervention such as arousal feedbacks. 

The associations between EEG and drowsiness have been explored in numerous 

studies for more than two decades. EEG spectral powers were first investigated in the 

experiments where sustained attention tasks were performed [16][17][18], where positive 

correlations were found at the theta (4-8 Hz)/alpha (8-13 Hz) band at multiple brain 

regions. Exploiting the EEG-drowsiness associations, Lin et al. [19] proposed a 

drowsiness-estimation system that predicts driving error using 32-channel EEG spectral 

powers with a linear regression model. The model was trained using a pilot session and 

tested on the next session of the same individual. Later on, Davidson et al. [20] 
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demonstrated a subject-independent approach to detect drowsiness with 16-channel EEG 

band powers. Although these works did not validate the online performance of their DD-

BCIs, their results suggest the potential of EEG-based DD in monitoring the emergence 

of drowsiness continuously and instantaneously. 

Despite these advances that show the feasibility of a DD-BCI, more 

implementation considerations emerge in the transition from a well-controlled laboratory 

to a variable real-world environment. One grand challenge in real-world DD-BCI is the 

lack of convenience of EEG-based brain monitoring, the current modality. In most of the 

current BCIs, EEG signals are acquired from wet or dry electrodes deployed on the scalp. 

To establish a stable contact between electrodes and skin, wet electrodes require 

conductive gel to minimize the electrode-skin impedance. The preparation could be time-

consuming depending on the density of electrodes. Also, hair washing after use causes 

severe inconvenience. Meanwhile, EEG devices based on dry electrodes without 

conductive gel can be set up easily and quickly with satisfactory signal quality 

[21][22][23]. However, the pin-shaped design of dry electrodes for penetrating the hair 

layer could cause erythema after long-term use [24]. Another problem within the current 

DD-BCI modality is the whole-scalp EEG recording that results in a bulky wearable 

device on top of the scalp, regardless of the usage of wet or dry electrodes. All of the 

above-mentioned issues motivate us to design a novel EEG recording montage that is 

applied only to non-hair-bearing (NHB) areas, including frontal and mastoid areas. One 

advantage of the NHB montage is the reduction of the recording area that could minimize 

the size and weight of an EEG device. In addition, without the interference of the hair 

layer, gel-based wet electrodes and pin-shaped dry electrodes are no longer needed. In the 
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NHB areas, newly developed deformable patch sensors or tattoo sensors are available 

with maximal comfort for long-term use [25][26]. The major concern of using NHB 

EEG-based BCI is the difficulty of accessing the signal of interest, since NHB areas 

cover limited peripheral areas. Therefore, it is imperative to explore the efficacy of NHB 

EEG in the associations with drowsiness and in the decoding performance compared with 

whole-scalp EEG. 

Another challenge in applying DD-BCI in the real world comes from the 

pervasive and elusive human variability in brain dynamics. Each person has a unique 

brain [27], and the variance among individuals is termed inter-subject variability. Within 

the same individual the brain, as a dynamic system, could work differently across time 

[28][29], causing session-to-session or intra-subject variability. The inter- and intra-

subject variabilities jointly limit the reproducibility of specific brain responses, and thus 

constrain the generalizability of brain decoding algorithms. To deal with inter- and intra-

subject variabilities, conventional BCI design incorporates a calibration session to collect 

sufficient training data for building a brain-decoding model for a single user, and the 

model is usually used specifically for the immediately upcoming executing session to 

minimize intra-subject variability [1][3]. This self-decoding approach that utilizes the 

calibration data within the same subject has been the standard for constructing a BCI 

decoding model. However, the conventional calibration could be time-consuming 

depending on the amount of data required that supports the robustness of the brain 

decoding model. In practical applications of BCIs, laborious calibration becomes an 

inevitable obstruction in terms of convenience and usability. Particularly for a DD-BCI, 

EEG data in the drowsy state is much more difficult to obtain than in the alert state. 
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Subject-independent approaches have been proposed to exploit robust feature-

extraction methods that are insensitive to inter-subject variability [30][31][32][33]. 

Nonetheless, loss in decoding performance of using subject-independent approaches is 

inevitable, compared to using subject-dependent approaches that include individualized 

data [30][31]. On the other hand, there are subject-dependent approaches that utilize data 

from other subjects and from the new user as well. Those approaches use a small amount 

of individualized data from the new user to facilitate the subject-to-subject transfer of 

decoding models with less loss in performance. Since these subject-transfer schemes 

might be comparable to conventional self-decoding approach in decoding performance, 

these methods are applied to reduce calibration time for a new BCI user. Either subject-

independent or subject-dependent approaches rely on data from other subjects, and data 

sufficiency is critical to their performances [34]. Nonetheless, as mentioned earlier, data 

collection in the drowsy or certain other brain states is arduous due to the uncertainty of 

inducing the brain state. Even a small amount of drowsiness-related EEG data might not 

be instantly available from a new user. 

While collecting drowsiness-related data could be time-consuming and expensive, 

non-drowsy data such as baseline EEG activity in the alert state might be useful in 

tackling inter-subject variability. The alert baseline EEG activity can be easily obtained 

from an alert resting state when subject is not engaged in a specific task. Studies have 

shown the associations between task-relevant and task-free brain activity in terms of the 

patterns of functional connectivity [35][36]. The alert baseline EEG activity of multiple 

subjects might carry information of how similar these subjects’ drowsiness-related brain 

responses are. If this assumption holds, the alert baseline data can be utilized to identify 
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the similarity among subjects, and thus enhance the efficiency of a subject-transfer 

framework. In this framework, large-scale existing data from multiple subjects with 

diversity might be important for supporting positive data/model transfer. 

This thesis summarizes the effort that has been made for facilitating the use of a 

DD-BCI in a real-world application. The contributions comprise three main significances: 

1) analysis on EEG-Drowsiness associations using a large-scale datasets 2) NHB 

montage for light and comfort EEG monitoring and 3) a subject-transfer framework for a 

plug-and-play DD-BCI. The constitutive principle and rationale of the methodologies are 

addressed in detail, and the results are exhibited with discussions on the impact of the 

findings. The main text of this thesis is organized along the following thematic lines. 

Chapter 2 describes a series of data analyses performed on a large-scale EEG 

dataset of drowsiness. A drowsiness index was proposed to estimate the drowsiness level 

during driving and investigate its association with EEG features. Based on the individual 

pattern of EEG-drowsiness correlations, hierarchical clustering was applied to visualize 

the data similarity and variability among sessions/subjects and among EEG features. The 

insights gained from these analyses elicited essential traits of drowsiness-related brain 

dynamics and fertilized solving strategies for the real-world problems. 

Chapter 3 addresses an important issue on the convenience of BCIs in real-world 

environment in terms of EEG acquisition. A DD-BCI was proposed featuring the 

application of NHB EEG signals. The drowsiness-related brain response observed from 

hair-cover areas and NHB areas were quantitatively investigated, and a comparison was 

made between the performances obtained using the NHB DD-BCI and the conventional 

whole-scalp montage. 
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Chapter 4 exhibits a study that aimed to minimize calibration time of a DD-BCI 

using large-scale data and baseline calibration. A comprehensive review of subject-

transfer approaches for calibration time reduction in BCI studies is provided. A subject-

transfer framework was proposed to obviate conventional individualized task-relevant 

calibration. A large-scale dataset was exploited to ensure the size and diversity of a 

source data pool, and baseline calibration was employed to estimate the subject similarity 

in drowsiness-related brain dynamics. 

Chapter 6 summarizes the contributions of this dissertation and discusses possible 

future research directions. 
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CHAPTER 2 
 
ASSOCIATIONS BETWEEN EEG 
DYNAMICS AND DROWSINESS AND THEIR 
VARIABILITY ACROSS SUBJECTS AND 
SESSIONS 
 
 

This chapter describes the study for completely understanding the association 

between human EEG and drowsiness based on a large-scale dataset collected from 

simulated driving experiments with a lane-keeping task and EEG recordings. A 

drowsiness index based on response time data was proposed to capture the fluctuation of 

drowsiness level across a driving session. Multi-channel EEG spectral powers were 

extracted and related to the drowsiness index within a session for multiple subjects. 

Hierarchical cluster analysis was applied to the EEG-drowsiness correlations across 

sessions and across features, providing the following insights: 1) Similar EEG-drowsiness 

correlations are found among different subjects, and 2) EEG features are reducible in 

channel (spatial) domain. 

2.1 Background 

Drowsiness is one of the major causes of fatal accidents in vehicle driving. 

According to the statistics assessed by the U.S. Department of Transportation National 
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highway Traffic Safety Administration, drowsy driving caused 37,000 injury crashes 

resulting 886 fatal crashes at the year of 2014 [15]. It is a high-priority issue in life safety, 

and requires development in science and technology that enables real-time drowsiness 

detection. For the past two decades, non-invasive brain-sensing technology such as 

electroencephalogram (EEG) has shown promising capability in tracking human 

cognitive state as it features high temporal resolution, excellent portability, and affordable 

cost among current brain monitoring modalities [4][5][6].  

The association between EEG and drowsiness has been revealed by investigating 

the change of EEG features in a sustained-attention task that requires a human subject to 

focus on specific stimuli and make response instantaneously. The most commonly used 

EEG features related to drowsiness are the spectral powers at different frequency bands 

[17][18][19][37]. Jung et al. [17] extracted the fluctuation in EEG spectra in an auditory 

monitoring task and EEG spectra and found high positive correlation between the powers 

around theta (4-8 Hz) band present and the task error. Parikh et al. [18] and Lin et al. [19] 

show positive correlation between EEG alpha (8-13 Hz) power and task performance in 

simulated driving experiments. The discrepancy might be resulted from the pervasive and 

elusive variability in human brain dynamics. 

In this study, we employed a large-scale dataset including human behavior and 

EEG data from a driving experiment with a lane-keeping task. We aimed to analyze and 

summarize the spatio-temporal relationship between EEG spectral powers and drowsiness 

level. Furthermore, we applied hierarchical cluster analysis to the EEG-drowsiness 

correlations to investigate the data similarity among EEG features and the variability 

among sessions and individuals. 
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2.2 Materials and Methods 

A lane-keep driving experiment was employed in this study to investigate the 

brain dynamics associated with human performance in a sustained-attention driving task 

[38]. The driving experiment was performed in a realistic virtual-reality (VR) driving 

simulator that utilized a real car cabin mounted on a 6-degree-of-freedom motion 

platform with surrounding projector screens displaying the driving scene [21][39]. The 

driving scene was on a nighttime straight highway with a constant cruising speed of 100 

km/h (computer controlled), and only wheel-steering control was required from the 

subject. In this lane-keeping task (LKT), lane-departure events were randomly introduced 

during cruising, which made the car drifted toward left or right. The participants were 

instructed to steer the car back to the original cruising lane as quickly as possible, and the 

initiation of participants’ movements terminated the voluntary drifting of the car. After 

the car was back to the course and continued cruising, the next lane-departure event 

occurred within an inter-trial interval of 6-10 seconds. The paradigm of the lane-keeping 

driving task is illustrated in Figure 2.1 Time points corresponding to the occurrences of 

lane-departure events, subject’s movements responding to the lane-departure events, and 

completions of wheel steering were logged as deviation onsets, response onsets, and 

response offsets, respectively. For each trial, response time (RT) was measured from the 

deviation onset to the response onset, which served as a behavioral assessment of 

drowsiness in the lane-keeping task. The experiment was performed after lunch, and 

lasted for ~90 minutes to maximize the chance of drowsy driving and to accumulate 

sufficient trials within a session. 
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Thirty-seven healthy volunteer subjects with normal or corrected-to-normal vision 

participated in the experiment, and in total performed 79 sessions of the lane-keeping 

driving task. Part of the dataset has been exploited to conduct several previous studies 

[19][40][41][42]. Of all the subjects, thirteen of them contributed a single session, and 24 

of them performed multiple sessions (2 - 5) on different days. Each subject was in normal 

circadian rhythm and had sufficient sleep before performing the experiment. The 

Institutional Review Board of the Veterans General Hospital, Taipei, Taiwan approved 

this experimental protocol. All the subjects were asked to read and sign an informed 

consent form before performing the experiments. 

2.2.1 Behavioral Analysis 

In this study, the level of drowsiness in the lane-keeping task refers to momentary 

unresponsiveness to the lane-departure event, and was quantitatively assessed based on 

the RT following each deviation onset. To build a predictive model for decoding 

alert/drowsy state, it is required to have sufficient fluctuations in the RTs within a session 

for accumulating an adequate amount of data from the alert/drowsy state. A session with 

the desired driving behaviors was defined with the following criteria: 1) accumulation of 

at least 100 trials, 2) a baseline in the alert state, i.e., accumulation of at least 10 alert 

trials at the beginning of the session, and 3) accumulation of at least 10 drowsy trials. The 

trials with RTs less than 1.5×τo were categorized as ‘alert’ trials, where τo denotes the 

alert RT estimated by the median of the RTs of the first 10 trials (all alert trials) in a 

driving session [43]. On the other hand, the drowsy trials were those with RTs larger than 

2.5×τo. Because τo was obtained by session-wise estimation, it could account for the 

variation of the RTs to lane-departure events in the alert state across different sessions 



	
   	
  

	
   13 

and subjects. If a subject has a longer alert RT, then the threshold of drowsy RT is 

inherently higher for the subject. Based on the requirements, fifty-four sessions from 25 

subjects that showed desired driving behaviors were selected for further analysis in this 

study. Among the 25 selected subjects, eight subjects performed a single session, and 17 

subjects performed multiple (2-5) sessions.  

We have formerly proposed a normalized index for mapping the semi-infinite RT 

distribution to a bounded measurement, named drowsiness index (DI), ranging from 0 to 

1, which takes the individual difference in the RT of the alert state (alert RT) into account 

(Wei et al., 2016) [43]. The following formula was utilized to convert the RT into the DI 

at the moment of a given lane-departure event: 

𝐷𝐼 = max  (0, (1− 𝑒!! !!!! )/(1+ 𝑒!! !!!! )) 

where τ is the RT of the given lane-departure event, and a is a constant set as 1 s-1. 

In practice, the DI requires further smoothing using a causal 90-s uniform moving-

average filter to eliminate short-term variation that might not be attributed by drowsiness 

(Jung et al., 1997). Finally, we employed the smoothed DI as the response variable in the 

regression analysis. 
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Figure. 2.1: (a) The experimental paradigm of the lane-keeping driving task. Lane-departure events were 
introduced once per trial every 6-10 s in the sustained driving. For each trial, the occurrences of lane-

departure events, the initiation of subject’s movements responding to the lane-departure events, and the 
completions of wheel steering were logged as the deviation onsets, response onsets, and response offsets. 

The RT of a given trial was measured according to the duration between the deviation onset and the 
response onset; (b) Change of the RT and the RT-based DI across a sample session (S41-4). The RTs 

across the session are marked by the orange stems. The DI is illustrated as the blue curve. 

2.2.2 EEG Recording and Processing 

The EEG data were recorded by a 32-channel Quik-Cap electrode system 

(Compumedics Neuroscan, Inc.). Thirty Ag/AgCl electrodes were deployed according to 

a modified International 10-20 system, referencing to two reference electrodes located 

upon left and right mastoid areas. The impedance of Ag/AgCl electrodes was maintained 

below 5k Ohm, and the skins under the reference electrodes were cleaned and abraded. 

The EEG signals were sampled with 16-bit quantization and 500-Hz sampling rate. The 

raw EEG data were then processed with a band-pass finite impulse response filter (2 to 30 
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Hz) to eliminate DC drift and high-frequency noise including 60 Hz power-line noise. 

Next, the filtered 30-channel EEG data were down-sampled to 250 Hz to reduce 

computational load for further analysis. Next, the high-variance artifacts in the signals, 

such as eye movement, blinking, muscle activity, and environmental noise, were removed 

using artifact subspace reconstruction (ASR) [44] provided in the EEGLAB toolbox [45]. 

Hereby the threshold of ASR was set at 10 times of standard deviation. 

2.2.3 EEG Feature Extraction 

Previous studies (Jung et al., 1997; Lin et al., 2005) [17][19] have reported 

significant EEG spectral correlates of RT in stereotype frequency bands, such as delta (2-

5 Hz), theta (5-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz) band. We first applied sub-

band-pass filters to extract EEG signals in the delta, theta, alpha, and beta bands, and then 

calculated the band power (logarithmic signal variance) of each channel within a 3s 

window before the onsets of lane-deviation events and at least 3s after the offsets of 

wheel-steering movements of the previous trials (Wei et al., 2016) [43]. The 3s time 

window before the lane-deviation event refers to the inter-trial cruise-driving period, and 

was used for extracting EEG power features that were not evoked or elicited by lane-

deviation events, subject responses, or kinesthetic feedback. The cruise-driving EEG 

power of each trial was later averaged with the EEG powers of previous adjacent trials 

within 90 seconds to generate the smoothed cruise-driving EEG power (in accordance 

with the smoothed DI) that carried less irrelevant spectral perturbation compared to the 

unsmoothed power. Finally, the smoothed multi-channel EEG powers formed a 120-

dimensional (4 frequency bands × 30 channels) feature space. 
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2.2.4 Hierarchical Cluster Analysis  

Hierarchical cluster analysis (HCA) has been widely used in recent scientific 

research for extracting and visualizing characteristics in a large-scale dataset efficiently. 

Particularly in the field of bioinformatics, HCA is commonly used jointly with a heat map 

of gene expressions to explore the patterns and linkages across numbers of genes and 

experimental measurements [46]. This study extends the utility of HCA to explore the 

underlying traits of a multi-subject EEG dataset.  

Through the above-mentioned feature extraction, a heat map was then constructed 

based on the correlation coefficients between the EEG spectral features and the DI 

fluctuations. The 2-dimensional heat map has one dimension (row) across sessions from 

multiple subjects, and the other dimension (column) across the EEG spectral features 

across channels and frequency bands. The HCA was applied to both dimensions of the 

map, presenting the session-wise and feature-wise similarity/variability in the dataset. 

The clustering linkages among features (columns) present the relationship of EEG 

dynamics across channels and frequency bands in terms of their similarities across 

multiple sessions/subjects. On the other hand, the clustering linkages among sessions 

exhibit the reproducibility of the EEG dynamics with the same or across different 

subjects [17], i.e., the intra- and inter-subject variabilities of the drowsiness-related brain 

responses across spatial and spectral domain. The intra- and inter-subject variabilities 

revealed in the HCA examine the feasibility of using subject-transfer approach for 

decoding the specific brain activity. When a large intra-subject variability is shown, 

transferring brain-decoding models from other subjects might result in a comparable (or 
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even better) decoding performance than training a model with other sessions from the 

same subject. 

2.3 Results 

This section describes the results obtained from basic data analysis and 

hierarchical clustering. We first analyzed and visualized EEG correlates of drowsiness in 

terms of spatial distributions of EEG spectra and EEG-DI correlations as shown in Figure 

2.2. The EEG-DI correlations for a single session (S41-4, Figure 2.2(a)) appear to be 

positive in the delta and theta bands, and negative in the alpha and beta bands. Figure 

2.2(b) shows scatter plots of EEG power and smoothed DI at the representative channels 

along the midline using all the trials in the session. 

 

Figure. 2.2: (a) Topography of spatial distributions of EEG band powers in the alert and drowsy states; (b) 
EEG-DI correlation of a sample session (S41-4); (c) Scatter plots of EEG band powers against DI at 

representative channels along the midline, Fz, Cz, Pz, and Oz. Correlation coefficients are denoted at the 
upper-left corner, and linear fittings are shown as black lines. 

Figure 2.3 shows the topography of the EEG-DI correlations in two sessions from 

the same subject (S5) on different days. The first session exhibited strong positive EEG-

DI correlations in the theta, alpha, and beta bands, but these correlates were not 
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reproduced in the second session, where a strong positive correlation in the delta band 

and a negative correlation in the alpha powers were exhibited. 

 

Figure. 2.3: The topography of EEG-DI correlations in sessions S5-1 and S5-2. Drastic discrepancy 
appears in the EEG-DI correlations in the alpha band (a strong positive correlation across the whole scalp 

in session 1 versus a strong negative correlation in session 2 from the same subject). 

To investigate the variability of drowsiness-related EEG dynamics across multiple 

subjects, we constructed a heat map to illustrate the EEG-DI correlation across all EEG 

features (4 frequency bands × 30 channels) and all sessions from different subjects (see 

Figure 2.4). HCA was applied to both dimensions of the heat map to assess the inter- and 

intra-subject variabilities of drowsiness-related brain dynamics (along rows), and the 

similarity among EEG features (along columns) with average-linkage dendrograms. 

Along the columns, the clustering of EEG features formed several large high-level groups 

based on the frequency bands, and adjacent channel locations in the same frequency 

bands were linked within the low-level groups of frequency bands. 
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Figure. 2.4: Hierarchically clustered sessions (rows) and EEG power features (columns) with dendrograms 
across 54 sessions from 25 subjects who experienced drowsiness in the LKT experiments. Red/blue pixels 

in the heat map indicate positive/negative correlations between the logarithmic EEG band powers (4 
frequency bands × 30 channels) and the change of DI measured by the RT in the LKT. For explicitness, the 
labels of EEG power features were highlighted with different colors for different frequency bands (δ: green; 

θ: blue; α: red; β: yellow). Note that, either within- or cross-subject sessions are grouped together, 
suggesting these sessions share common brain responses of spectral change associated with drowsiness. As 

different subjects exhibited similar EEG-DI correlations, their models for drowsiness detection could be 
transferred among each other. 

Meanwhile, along the rows, the inter- and intra-subject variabilities are indicated 

by the links among sessions. For some subjects such as S44, four sessions from the 

subject were grouped together, indicating small intra-subject variability. Other subjects, 

however, had high intra-subject variability in EEI-DI correlations across sessions, as 

evidenced by the separation of their within-subject sessions in the dendrogram. In sum, 

the binding of sessions within the same subject occurred in only 6 out of 17 subjects who 

performed multiple sessions. It is worth noting that contradictory EEG-DI associations 

could be found in sessions from the same subject (e.g. S41-{1, 2, 3} vs S41-{4, 5} in the 

alpha band). This finding emphasizes that models across different subjects can be used to 
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obviate the intra-subject variability that deteriorates the performance of conventional 

brain-decoding schemes. 

The pairing between different subjects suggests the feasibility of subject-to-

subject transfer of source models, since analogous EEG-DI associations could be found in 

the data from other subjects within a group or adjacent groups. Nonetheless, the patterns 

shown in the heat map reveal the possibility of negative transferring when a source model 

is transferred to a dissimilar subject. For example, some EEG features (e.g. alpha power) 

showed positive correlations (red) with drowsiness for some subjects (e.g. Subject 12-1) 

but showed negative correlations (blue) for others (e.g. Subject 54-2). Therefore, a 

method to identify similar (supportive) sessions/subjects and to exclude dissimilar 

sessions/subjects is imperative for the subject-transfer approaches. 

2.4 Discussion 

The intra- and inter-subject variabilities in EEG have hindered the developments 

and applications of brain decoding systems. Such intra-subject variability may source 

from changes in neural processing [47], non-stationarity of EEG [48], and numerous 

neurophysiological mechanisms [49]. As shown in Figure 2.3, strong positive EEG-DI 

correlations in the theta and beta bands, which were prominent in the first session, 

diminished in the second session. This inconsistency in EEG-DI correlation across 

sessions indicates the day-to-day intra-subject variability of brain dynamics associated 

with drowsiness. To explicitly illustrate the variability in the EEG dynamics across 

multiple sessions and subjects, we applied HCA to the large-scale EEG dataset, and 

investigated the cross-session and the cross-feature relationships of the drowsiness-
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related brain activity. As shown in Figure 2.4, theta band power had the most consistent 

EEG-DI associations across subjects, which is in line with previous studies that reported 

strong drowsiness associations in the theta band [17][50]. The clustering across sessions 

and subjects resulted mostly in cross-subject pairs and groups. Meanwhile, the multiple 

sessions from the same individual were separated and grouped with sessions from other 

subjects because of noticeable intra-subject variability. These linkages of EEG-DI 

associations across different subjects validate the feasibility of subject-to-subject model 

transferring among adjacent (supportive) subjects. In addition, the HCA in the EEG-DI 

correlations along the EEG features illustrates the similarity across channels and the 

variability across frequency bands. The clustering of the features suggests a larger 

similarity across different EEG channels (spatial domain) within a frequency band than 

that across different frequency bands (spectral domain). This reveals the dimensional 

redundancy in multi-channel EEG, which is well known to be a result of low spatial 

resolution in scalp EEG recordings. For the sake of channel selection and reduction, the 

consistency across different scalp channels implies the feasibility of using data from a 

small number of EEG channels to extract drowsiness-related brain response. 

2.5 Conclusion 

A novel scheme with hierarchical cluster analysis was proposed to gain a 

thorough understanding of the EEG-drowsiness associations. The correlations between 

EEG features and a RT-based DI were visualized in the hierarchical cluster analysis, 

where similar EEG-drowsiness correlations are found among different subjects. This 

finding suggests the feasibility of transferring decoding model across subjects. 
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Meanwhile, the EEG features appear similar and redundant across channels in spatial 

domain. Therefore, it might be possible to reduce the number of channels for EEG 

recording without loss in the decoding performance. 
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CHAPTER 3 
 
DROWSINESS DETECTION USING NON-
HAIR-BEARING EEG-BASED BRAIN-
COMPUTER INTERFACES 
 
 

Drowsy driving is one of the major causes that lead to fatal accidents worldwide. 

For the past two decades, many studies have explored the feasibility and practicality of 

drowsiness detection using EEG-based BCI systems. However, on the pathway of 

transitioning laboratory-oriented BCI into real-world environments, one chief challenge 

is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, 

acquiring EEG from NHB scalp areas has been proposed as an alternative solution to 

avoid many of the technical limitations resulted from the interference of hair between 

electrodes and the skin. Furthermore, our pilot study has shown that informative 

drowsiness-related EEG features are accessible from the NHB areas. This study extends 

the previous work to quantitatively evaluate the performance of drowsiness detection 

using cross-session validation with widely studied machine-learning classifiers. The 

offline results showed no significant difference between the accuracy of drowsiness 

detection using the NHB EEG and the whole-scalp EEG across all subjects (p=0.31). The 

findings of this study demonstrate the efficacy and practicality of the NHB EEG for 
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drowsiness detection, and could catalyze further explorations and developments of many 

other real-world BCI applications. 

3.1 BACKGROUND 

Drowsy driving is one of the major factors that lead to collisions, injuries, or even 

fatalities (NHTSA) [15]. Developing reliable approaches to detect drowsiness during 

driving is one of the high priority issues for life safety. For the past two decades, many 

studies have explored the feasibility and practicality of drowsiness detection using EEG, 

the most practical non-invasive modality featuring high temporal resolution and low cost 

among various types of brain monitoring modalities [2]–[7] (Makeig1993; Jung1997; 

Parikh 2004; Lin2005; Johnson2011; Chuang2014) [16][17][18][19][41][51]. In 1993, 

Makeig and Inlow [16] have investigated and quantified the correlation between EEG 

features and task performance (the error rate of detecting above-threshold auditory target 

stimuli). Subsequent work by Jung et al. demonstrated the feasibility of estimating 

alertness based solely on the variations of EEG spectral power in an auditory monitoring 

task (Jung1997) [17]. They proposed to build a predictive model using the EEG data 

collected in a training session, and then applied the model to the EEG recorded in a 

testing session from the same participant to continuously estimate the alertness level. 

Based on the correlation between EEG spectra and drowsiness, several studies 

have contributed to developing algorithms that can estimate the performance of 

sustained-attention tasks [4]–[7] (Parikh2004; Lin2005; Joh) [18][19][51], which have 

solidified the practicality of a brain-computer interface (BCI) that tracks neurocognitive 

drowsiness continuously. Although the aforementioned studies have demonstrated the 
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detectability of drowsiness-related EEG markers, their results were obtained with whole-

scalp EEG systems in well-controlled laboratory environments. Whether or not the EEG-

based drowsiness detection method is practical in real-world environments remains 

unclear. Applying EEG measurements for monitoring changes of brain cognitive states 

has been known as one of the grand challenges because of various limitations existing in 

current EEG recording modalities [52][53]. In general, EEG acquisition for real-world 

applications requires following features [54][55]: 1) Portability, 2) Convenience and 

long-term wearing comfort, and 3) Acceptable signal quality. The conventional 

laboratory-oriented EEG recording methodology failed to meet aforementioned 

requirements because of the use of wet electrodes and conductive gels for reducing the 

impedance and tethered wires for connecting the computer systems. Furthermore, 

skin/scalp preparation and cleaning are both time-consuming and inconvenient before and 

after each EEG recording session. The recent advance in developing portable and 

wireless EEG recording devices has made significant improvements in terms of 

portability and convenience of EEG [12]–[14] (Chi 2012; Lin 2011; Grozea 2011) 

[56][57][58]. Nonetheless, dry-electrodes still face difficulty in achieving stable 

electrode-skin contact in hair-covered scalp areas without conductive gels. To reduce the 

interference from the hair between electrodes and the skin, current dry electrodes often 

used pins, either solid or flexible, to penetrate the hair layer [56][57][58]. According to a 

previous study on user experience of dry electrodes, even soft- pin-based electrodes could 

cause erythema after long-term applications [24]. Overall, in terms of portability, 

convenience, long-term wearing comfort, and acceptable signal quality, none of the 

existing EEG recording devices has met all of the requirements for real-world use. 
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However, even though the EEG recording devices might not have a satisfactory solution 

for real-world use immediately, there might be a compromise solution. Lately, a NHB 

montage that measures EEG signals from frontal, ear, mastoid, and neck areas has been 

proposed for measuring EEG signals in real-world BCI applications, because it avoids the 

interference of electrode-skin contact caused by the hair [26][59][60][61][62]. Generally 

speaking, the NHB BCI uses only easily assessable areas of the scalp, and could be 

realized with EEG recording devices featuring minimal weight and size, which are 

necessary for portability, convenience of use and long-term wearing comfort. 

Furthermore, without the interference from the hair, the relatively stable skin-electrode 

contact could improve the convenience of recording setup without the use of conductive 

gels or pin-shaped electrodes. Recently, SSVEP detection based on the NHB EEG has 

been validated and applied in a BCI speller [62]. The online performance of the NHB 

SSVEP speller could reach 30 bit/min using solely the mastoid areas. Another potential 

use of NHB EEG is drowsiness detection. In our pilot study, we have demonstrated 

accessing EEG features associated with neurocognitive drowsiness from the NHB EEG, 

and those NHB EEG features could achieve the comparable efficacy of discriminating 

trials with short- vs. long RT in response to lane-departure events to the whole-scalp EEG 

[63].  

This study aims to comprehensively investigate and validate the feasibility of 

using the NHB EEG as biomarkers for continuous tracking and detection of 

neurocognitive drowsiness. First, we assessed the drowsiness-related information 

available in the EEG by a comparison between the EEG correlates of drowsiness from the 

whole-scalp and those from the NHB channels. Next, we used the drowsiness-related 
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NHB EEG features to develop a framework for drowsiness detection, and compare the 

performance of classification using the NHB EEG with that of using the whole-scalp 

EEG. Finally, we validated the performance of the proposed NHB montage for 

drowsiness detection with cross-session validation on 10 subjects preforming lane-

keeping driving experiments. 

3.2 Materials and Methods 

3.2.1 Behavioral Data Labeling 

In the lane-departure event, the level of drowsiness in that given moment was 

quantitatively estimated based on the RT, which defined as the time between the 

deviation onset and the wheel-steering onset. For each subject, the RT in each lane-

departure event was named local RT, which represents the short-term level of drowsiness. 

On the other hand, the long-term level of drowsiness was defined by global RT, which 

was calculated by averaging the RTs across all trials within a 90-second window before 

the onset of the deviation [19]. For each driving session, the ‘alert RT’ was measured as 

the 5th percentile of local RTs across the entire session, representing the RT that the 

subject could perform during alertness. Trials with both local and global RT shorter than 

1.5 times alert RT were categorized as ‘alert’ trials, whereas those with both local and 

global RT longer than 2.5 times alert RT were labeled as ‘drowsy’ trials. The total 

numbers of alert and drowsy trials were 2,940 and 1,512, respectively, across 10 subjects. 

3.2.2 EEG Processing 

Six electrodes, Fp1, Fp2, F7, F8, A1, and A2 were placed on NHB areas (see 

Figure 3.1). All EEG data were re-referenced to the arithmetic average of Fp1 and Fp2. 
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F7, F8, A1, and A2 were noted as the NHB channels for further analysis. To be specific, 

F7 and F8 measured the brain activity in the frontal area, while A1 and A2 recorded the 

brain activity in the left and right mastoid areas, respectively. The EEG signal of each 

channel underwent a 1-50 Hz band-pass finite impulse response filter to remove low-

frequency DC drifts and power line noise at 60 Hz. The filtered EEG data were then 

down-sampled to 250 Hz to reduce computational load. The data were then cleaned by 

the procedure of artifact subspace reconstruction (ASR) [44] provided in EEGLAB [45]. 

The ASR detects high-variance signal components above a given threshold and linearly 

reconstructed by the retained uncontaminated signal subspace based on principal 

component analysis (PCA) of 1-min calibration data [64]. 

 

Figure. 3.1: (a) The partition of hair-covered areas and non-hair-bearing area divided by a brown boundary. 
(b) The layout of electrode locations of the 32-channel recording system. Brown boundary separates the 

divisions of hair-covered and non-hair-bearing area. 

3.2.3 EEG Feature Extraction 

The EEG features related to neurocognitive drowsiness have been investigated in 

numbers of previous studies [16][17][18][19][37][51][65], and have been extended into 
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BCI applications for predicting the human performance in a sustained attention task 

[17][19][37][65]. As suggested in the preliminary study [63], we employed the EEG data 

prior to the onset of the task event as features for building a predictive model that can 

continuously estimates the performance index without relying on any EEG activities 

induced by infrequent and unexpected events. In this study, theta (4-8 Hz), alpha (8-13 

Hz), and beta (13-30 Hz) logarithmic powers of 3s-long pre-event EEG before each lane-

departure event were exploited for classifying the ‘alert’ vs. ‘drowsy’ on the upcoming 

lane-departure event [63]. For each trial, the logarithmic powers of the 3-s pre-lane-

departure sub-band-passed EEG segments were estimated. Then, the sub-band 

logarithmic powers were smoothed to eliminate unrelated spectral perturbations. Finally, 

both the unsmoothed and smoothed pre-event logarithmic theta, alpha and beta powers 

for all-channel (AC)/NHB channels congregated a 180/24-dimensional feature set for 

drowsiness detection. Essentially, the AC montage represents the conventional whole-

scalp BCI setting that includes EEG data acquired from both the hair-covered and the 

NHB areas. A series of analyses and classification experiments was performed in order to 

quantitatively assess and compare the validity of drowsiness detection based on the AC 

and the NHB montages. 

3.2.4 EEG Classification 

Three classic classification methods, linear discriminant analysis (LDA), k nearest 

neighbors (kNN) and support vector machine (SVM) that have been widely used in EEG 

classification were employed in this study to discriminate the EEG activity of drowsy 

state from that of alert state. 
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(A) Linear Discriminant Analysis 

LDA aims to project data onto hyperplanes for maximizing the separation 

between data from different classes while minimizing the variance of data within the 

same class [66]. According to statistics, LDA is the most commonly used classification 

method in BCI studies [67]. Because of its low computational requirement and efficiency, 

LDA is an ideal simple tool to perform classification for online BCI systems. Nonetheless, 

the simplicity of LDA is also its drawback as it could fail in dealing with non-linear EEG 

data [68]. We applied the conventional LDA combined with maximal likelihood (ML) 

classification that has been used in the preliminary study [63]. 

(B) k Nearest Neighbors 

The kNN classifier is a non-parametric instance-based approach for classifying a 

sample in the feature space [69]. In the kNN classification, the class of a sample is 

determined by a majority vote of its k neighboring samples. However, kNN algorithms 

are known for their sensitivity to curse-of-dimensionality, and are not as widely used in 

BCI researches as LDA or SVM [70]. We included kNN in this study for the sake of 

diversity of classic classifiers, where k=5 has been pre-optimized empirically. 

(C) Support Vector Machine 

SVM is the second most used classifier in BCI studies [67]. Analogous to LDA, 

SVM also maps data upon a hyperplane, whereas it selects the hyperplane that maximizes 

the margin between different classes [71]. One advantage of SVM is the generalizability 

resulted from margin maximization that prevents over-fitting and curse of dimensionality 

[68], which is crucial for classifying EEG data. The flexibility of kernel selection allows 
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SVM to handle complex data, but optimizing the parameters could be a time-consuming 

task. In this study, we used LIBSVM [70] with a linear kernel and grid-search 

optimization on 5-fold cross validation. The SVM classifier has been used in previous 

BCI applications for real-time EEG classification [72][73][74]. 

3.4 Results 

Figure 3.2 shows the topographical distribution of Pearson correlation coefficients 

between the DI and the pre-event EEG power at different frequency bands. In particular, 

strong EEG correlates of RTs could be found in the frontal theta (negative correlation) 

and parietal-occipital alpha (positive correlation). The broad distribution of strong EEG 

correlates (red and blue on the scalp topography) suggests that the informative 

drowsiness-related EEG dynamics could be extracted from both the hair-covered and the 

NHB areas. 

 

Figure. 3.2: The scalp topography of correlation distributions that exhibits the correlation coefficients (ρ) 
between normalized RT and pre-event EEG power features of theta, alpha, and beta band at different 

channel locations across subjects. Strong drowsiness-correlated EEG dynamics, particularly at frontal theta 
and parietal-occipital alpha, disperse across whole scalp, including both hair-cover and NHB areas. 
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Figure. 3.3: EEG spectral changes from alertness to drowsiness at different representative channels and 
frequency bands. Bar plots illustrate the average increments across subjects of band power from the alert 
state to the drowsy state, and error bars mark standard deviations. The spectral increment for each band is 
calculated by averaging the logarithmic band powers of the 3-s pre-lane-departure EEG across all trials 
from the drowsy state, and subtracted by the mean logarithmic band power of alert trials. The gray scale 
filled in each bar indicates the p-value of two-sample t-test for the significance of the difference between 

the average log-powers of alert and drowsy states. In the left column, Fz, Cz, Pz, and Oz are four 
representative channels selected from the hair-covered areas, while in the right column, F7, F8, A1, and A2 

are four NHB channels utilized for drowsiness detection. Although the increments of powers are more 
evident at the hair-covered channels than those at the NHB channels, both hair-covered and NHB channels 

exhibited highly significant power increases in the alpha band. 

To validate the significance of drowsiness-related EEG features in the NHB areas, 

the spectral changes of pre-event EEG between short-RT and long-RT trials at the NHB 

channels were compared with those at the selected hair-covered channels in Figure 3.3 

The statistical analysis indicates strong discriminative features, in particular at the alpha 

band in both the hair-covered and NHB areas. Table 3.1 summarizes the spectral 
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differences in pre-event EEG between alert and drowsy state. Though the spectral 

differences of the NHB EEG between short- and long-RT trials were slightly weaker than 

those of hair-covered EEG (at Oz), the NHB EEG features are comparable to hair-cover 

EEG features in the statistical strength of discriminating drowsy state from alert state, 

which supports the feasibility of using NHB EEG to detect drowsiness. 	
  

Figure 3.4 shows the performance of drowsiness detection for a sample session 

(second session of subject 9, S9-2). Figure 3.4(a) illustrates the fluctuations of global RTs 

during the entire driving session, where red crosses mark drowsy trials. The driving 

performance of S9 in the session gradually declined and entered a drowsy state ~70 

minutes on the task. Figure 3.4(b) exhibits the prediction of alert/drowsy trials of this 

session. In the first half of the session, NHB-SVM and AC-SVM have successful 

classified the EEG spectra without any false alarm, whereas LDA and kNN classifiers 

both made some erroneous classifications. From ~70 minute onwards, all approaches 

detected drowsiness at the transition point of the subject’s neurocognitive state. In the 

later part of the session, as the subject’s state shifted back and forth between drowsiness 

and alertness, all these classifiers predicted drowsy trials correctly, and erroneous 

predictions tend to occur during the transitions between states. The ROC curves of 

drowsiness detection of the sample session (S9-2) using the LDA and the SVM were 

compared in Figure 3.5. 
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Table 3.1 Power Difference of EEG Features between Alert and Drowsy State 

 

Table 3.2 Overall Accuracy of Drowsiness Detection using Within-Subject Cross-Session Validation 

 

Table 3.3 Overall AUC of Drowsiness Detection using Within-Subject Cross-Session Validation 

 

 
  ΔPower (dB) 
 Channel Theta Alpha Beta 

Hair-
covered 

Fz 0.82±2.30 7.33±3.61 1.54±1.37 
Cz -0.74±1.45 6.60±3.67 1.08±1.03 
Pz -0.01±1.78 9.71±4.82 2.05±1.51 
Oz 0.87±1.88 12.88±5.56 2.50±1.48 

NHB 

F7 2.79±2.36 4.47±1.77 1.33±1.77 
F8 1.59±1.66 4.24±2.21 1.33±2.21 
A1 1.19±1.68 6.87±3.88 1.87±0.82 
A2 0.73±3.88 8.98±4.07 2.10±1.29 

Bold: p<0.001, two-sample t test. 
 

	
  

 

Montage Accuracy (%) 
SVM LDA kNN 

NHB 80.0±8.6 79.4±8.7 77.3±10.7 
AC 83.3±7.4 78.1±11.9 75.3±12.6 

	
  

 

Montage AUC 
SVM LDA 

NHB 0.8576±0.0753 0.7312±0.1412 
AC 0.8759±0.0757 0.7758±0.1041 
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Figure. 3.4: (a) The change of global RT across an entire session of subject 9. Gray line shows the 
interpolated global RT using the global RT of neighboring trials. Red cross indicates the events that are 
labeled as ‘drowsy’. (b) The classification results of drowsiness detection using three types of classifier 

(SVM, LDA, and kNN) with NHB and AC EEG for the same session as in (a). Hit, false alarm, and miss 
were marked as red, blue, and green dots, respectively. Note that drowsiness detection was performed only 

at the time right before a lane-departure event presents. The non-drowsy outcome was denoted as a gray 
belt, which includes the ‘alert’ predictions and other non-drowsy intervals, such as cruise driving and 

wheel-steering. 
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Figure. 3.5: ROC curves describing the relation between true positive rate (sensitivity) and false positive 
rate (specificity) using NHB EEG and AC EEG with different classifiers on subject 9. Note that positive 

refers to drowsiness. 

Finally, the performances of alert/drowsy classification obtained by three types of 

classifier using the NHB EEG and the AC EEG were tested by within-subject cross-

session validation. Figure 3.6 and Table 3.2 compare the averaged accuracies across all 

subjects using different montages combined with different classifiers. Two-way ANOVA 

was applied for analyzing 1) the difference among classifiers and 2) the difference 

between using the NHB and the AC EEG. The test results show no significant difference 

in the accuracy between using the NHB and the AC EEG, nor among the three classifiers 

(Two-way ANOVA, p=(0.31, 0.16)). Furthermore, the area under the ROC curve (AUC) 

is jointly employed to evaluate the classification performance and summarized as in 
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Table 3.3. Tested by two-way ANOVA, the overall AUC across subjects presents 

significant difference between the classifiers (p<0.01) but no significant difference across 

between the NHB and AC montages (p=0.34). 

 

Figure. 3.6: The bar plot compares the average accuracy of drowsiness detection with standard deviation 
using different metrics across subjects. No significant difference was found between the NHB and the AC 

montages, nor among the three classifiers (Two-way ANOVA, p=(0.31, 0.16)). 

 

3.5 Discussion  

In this study, we proposed using a novel EEG recording montage in NHB areas 

for future BCI applications featuring convenience, economy, and long-term sustainability. 

Although the concept of drowsiness-related EEG features in the NHB areas has been 

proposed in our preliminary study on a small group of subjects, the efficacy of using the 

NHB EEG for BCI applications remains unclear. We hereby comprehensively validated 

the performance of drowsiness detection based on the NHB EEG across sessions (days). 
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Furthermore, several widely studied BCI classifiers were employed and compared 

quantitatively in their performances of drowsiness detection between using the NHB and 

the whole-scalp montage. Study results suggested that the NHB EEG could provide 

comparable performance in drowsiness detection to that of the AC EEG regardless of the 

classifier being used. 

It has been shown that drowsiness-related EEG activities could be assessed from 

various areas over the scalp [17][18][19][75]. For instances, EEG correlates of 

drowsiness have been identified and validated in frontal theta [75] and parietal-occipital 

alpha [17][18][19]. The experimental results of this study confirmed the topographical 

distribution of drowsiness-related EEG features (Figure 3.2), which plays a key role in 

facilitating the design and use of the NHB EEG-based drowsiness detection. According to 

the study results shown in Figure 3.3 and Table 3.1, both the NHB and the AC EEG 

exhibited highly significant spectral differences between alertness and drowsiness. To 

make a fair comparison on the efficacy of the EEG-based drowsiness detection, we used 

the same types of electrodes to acquire the AC and NHB EEG simultaneously. This study 

provides an objective evidence of the feasibility of current and future implications of the 

NHB EEG. 

Although drowsiness-related features of the NHB EEG showed slightly weaker 

significances in the spectral differences between alertness and drowsiness compared with 

those of the hair-cover areas (Figure 3.3 and Table 3.1), the classification accuracy of 

drowsiness detection obtained from the NHB EEG is still comparable to that obtained 

from the AC EEG (Figure 3.6, Table 3.2, and Table 3.3). This could be explained by the 
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intrinsically low spatial specificity of EEG recording, which leads to high signal 

similarity among different channels [76]. As mentioned above, drowsiness-related brain 

activity is widely spread across a large scalp area, and thus could be assessable from 

either the hair-covered areas or the NHB areas. The promising findings could encourage 

further explorations of BCIs based on the NHB EEG. For instance, based on these 

experimental results, one could develop an NHB BCI that continuously monitors a 

driver’s cognitive state, and mitigates the driver’s drowsiness by delivering arousing 

feedback or other stimulations during the transitioning from alertness to drowsiness 

[39][77]. This study exploited only the pre-event EEG spectra to discriminate alertness vs. 

drowsiness of the participants, because drowsiness is most likely to occur during 

monotonous, uneventful driving in real life. It is impractical to use and rely on EEG 

spectra following lane-departure events, as they might not present frequently in real 

driving. Therefore the data processing and analysis for validating the performance of 

drowsiness detection in this study was designed within a real-world scenario with online 

applicability. Meanwhile, it is intriguing to investigate how early the drowsiness can be 

detected in the future work. This could be examined by inserting a varying gap between 

the data being used for classification and the lane-departure event. As the first attempt 

made for monitoring human cognitive state related to driving performance using the NHB 

BCI, the extensions of this study could emerge for other tasks that require maintenance of 

continuous attention [78]. 

As the recording area is smaller than using the whole scalp, the wearable device 

for NHB BCIs is expected to be lighter, more portable, and easier to wear. In addition, 

the cost of small number of electrodes required for an NHB BCI could is lower than that 
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of a high-density montage. In fact, consumer wearable devices that acquire EEG signals 

from NHB areas, such as Neurosky XWave [79]and InteraXon Muse [80], have been 

commercially available, and their prices are considerably lower than that of the 

commercial products featuring whole-scalp recording such as [81]. Another advantage of 

using NHB EEG is that the NHB areas are favorable for most dry or semi-dry EEG 

electrodes since it has low impedance of skin-electrode contact. For instances, dry 

Ag/AgCl electrodes, disposable paste ECG electrodes, or patch sensors all prefer or 

require hairless surfaces. In particular, the recent advance of epidermal sensor patches has 

made long-term biometric measurements possible in the real world with their softness 

and deformability [25][26]. The epidermal sensor patches could facilitate maximal 

comfort in long-term signal acquisition, but are not applicable in the hair-covered areas. 

Still, there is a limitation of building a BCI based on the NHB EEG, since most of 

the EEG activities that have been studied were assessed from hair-covered areas. For 

certain brain responses that are locally distributed in the central area, the NHB EEG 

might have low signal-to-noise ratio. Furthermore, as the spatial distributions of brain 

activities vary across individuals [35][36], the NHB BCI might face severe challenges in 

maintaining robustness across individuals. The efficacy of NHB EEG requires further 

investigations on different types of brain activities. In view of these considerable 

advantages of using the NHB EEG in real-world applications, there is a need for further 

explorations on what information are available from the NHB areas and what applications 

could be facilitated using the NHB EEG. 
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3.5 Conclusion  

The current study presented the efficacy of using EEG features that are easily 

accessible from the NHB areas of the scalp for assessing driving drowsiness. To explore 

the amount of drowsiness-related information available in the NHB EEG, we 

quantitatively showed that the spectral differences between alertness and drowsiness in 

the pre-event (lane-deviation) EEG obtained from the NHB areas are slightly weaker than 

that obtained from the AC areas. Nonetheless, the drowsiness-related information from 

the NHB EEG was sufficient to provide comparable drowsiness detection accuracy to 

that of using the information from the whole-scalp EEG. In general, replacing the whole-

scalp recording with the NHB montage is an important and practical step toward real-

world BCIs, as there are considerable advantages on the efficiency of sensors, the 

flexibility of mechanical design, and the improvement of user experience. We believe this 

study will ignite many new real-world BCI applications that can benefit from the 

convenience and informativeness of the NHB EEG. 
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CHAPTER 4 
 
A SUBJECT-TRANSFER FRAMEWORK FOR 
PLUG-AND-PLAY DROWSINESS 
DETECTION 
 
 

Inter- and intra-subject variabilities pose a major challenge to decoding human 

brain activity in BCIs based on non-invasive EEG. Conventionally, a time-consuming 

and labororious training procedure is performed on each new user to collect sufficient 

individualized data, hindering the applications of BCIs in real-world settings. A subject-

transfer framework is thus developed for detecting drowsy state based on a large-scale 

model pool from other subjects and a small amount of alert baseline calibration data from 

a new user. The model pool ensures the availability of positive model transferring, 

whereas the alert baseline data serve as a selector of decoding models in the pool. 

Compared with the conventional within-subject approach, the proposed framework 

remarkably reduced the required calibration time for a new user by 90% (18.00 min to 

1.72±0.36 min) without compromising performance (p = 0.0910) when sufficient existing 

data are available. These findings suggest a practical pathway toward plug-and-play brain 

decoding for drowsiness detection and can enable numerous real-world BCI applications. 
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4.1 BACKGROUND 

A major challenge in decoding human brain activity is the pervasive and elusive 

human variability, both across different individuals and within the same individual over 

time [28][29]. Variability among different individuals, or inter-subject variability, reflects 

individual differences in brain anatomy and functionality, as each individual has a unique 

brain [27]. In fact, even monozygotic twins who are genetically identical ultimately have 

different brain developments due to the influence of varying environmental factors [47]. 

Because of inter-subject variability, conventional approaches to decoding brain 

activity in BCIs based on EEG generally require a training phase with pilot data from a 

BCI user before each execution [1][3][8]. The amount of required training data depends 

on the type of task and the number of task conditions, and it is often time-consuming and 

labor-intensive to collect sufficient amounts of data for building a model that recognizes 

specific brain activities. The tediousness resulting from the training phases amplifies 

inconvenience of use and unsatisfactory user experience, hindering the practicality of 

BCI applications in the real world [28]. Some common observable brain patterns across 

individuals, such as steady-state visual evoked potential and P300, support training-free 

BCIs [82][83][84] that achieve fairly acceptable performances, but individualized data 

are still required to further improve the information transfer rate [8][85]. Furthermore, 

individualized training data might not consistently support robust brain decoding because 

of intra-subject session-to-session variability, although the intra-subject variability is 

considered to be less than inter-subject variability [86]. The time-consuming and 
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indispensable training procedure of conventional BCIs, which often cannot guarantee 

satisfactory performance, has become the Achilles’ heel of real-world BCI applications. 

Recently, efforts have been made to reduce brain-activity decoding schemes’ 

dependence on individualized training data. Table 4.1 lists several representative studies 

that focused on reducing calibration time for BCIs. Depending on whether the 

individualized data from a new user is required for the BCIs, the schemes for reducing 

calibration time can be categorized into subject-independent (no individualized training 

data are required from a new user) and subject-dependent (individualized data are 

required from a new user) methods, as summarized in Table 4.1. 

	
  
Table 4.1 Representative studies dedicated to calibration time reduction for brain decoding 

 

A subject-independent BCI could be achieved by a robust feature-extraction 

method that reduces the inter-subject variability in the features used for decoding brain 

 

Study Task Subject-
dependent 

Task-based 
calibration 

Fazli et al., 2009 [30] Motor imagery   
Lotte and Guan, 2009 [87] P300 speller ◎ ◎ 

Lu et al., 2009 [88] P300 speller   
Reuderink et al., 2011 [31] Motor imagery   

Devlaminck et al., 2011 [89] Motor imagery ◎ ◎ 
Tu and Sun, 2012 [32] Motor imagery ◎  
Wu et al., 2013 [90] Stroop task difficulty ◎ ◎ 

Samek et al., 2014 [33] Motor imagery   
Kang and Choi, 2014 [91] Motor imagery ◎ ◎ 
Dalhoumi et al., 2014 [92] Motor imagery ◎ ◎ 
Arvaneh et al., 2014 [93] Motor imagery ◎ ◎ 

Lotte, 2015 [34] Motor imagery ◎ ◎ 

Morioka et al., 2015 [28] Visual-spatial 
attention ◎  

 

	
  



	
   	
  

	
   45 

responses [30][31][32][33]. Subject-independent approaches allow BCIs to operate 

without any calibration data from a new user, and thus enable so-called “plug-and-play” 

BCIs [94]. However, loss in performance is inevitable in those subject-independent 

approaches, compared to the individualized training-session approaches [30][31]. On the 

other hand, the subject-dependent approaches utilize a small amount of individualized 

training data to reduce subject-to-subject variations and loss in performance, in contrast 

with the individualized training-session approaches that require an entire training session. 

The calibration data can be reduced by using only a few trials from each class in the BCI 

task [34][89][91][92][93], or by using only a subset of classes with a regularized feature-

extraction method that improves the robustness of the covariance matrix estimation for 

model training [87]. However, with such a small amount of training data, it is relatively 

difficult to extract signals of interest from arbitrary noise, raising a challenge of 

maintaining decoding performance. To improve the performance of subject-dependent 

approaches with minimal individualized calibration data, one strategy is to expand the 

size of existing data from other (source) subjects, and then to leverage the large-scale data 

using subject-transfer techniques for a new (target) subject [34]. The subject-to-subject 

transfer of BCI models can be regarded as a scheme of transfer learning as it reuses the 

existing knowledge to deal with a new domain [95].  

The materials transferrable across subjects could be the neurophysiological 

measurements, the filters, and/or the classifiers [29]. Because the inter-subject variability 

might lead to deterioration in the efficiency of transferring decoding models across 

subjects, it is necessary to selectively utilize data within the existing dataset. A previous 

work suggested finding auxiliary data from other subjects that are similar to the target 
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subject’s data to train a robust decoding model [90]. Later on, ensemble approaches were 

proposed to combine the classification models from source subjects into a new model for 

the target subject [34][92][93]. Yet, the subject-transfer approaches mentioned above 

require a supervised task-based training session to collect the task-relevant individualized 

calibration data. In real-world applications, it is inconvenient to perform task-based 

training sessions repeatedly. Moreover, the task-relevant data might not even be available 

in some cases of brain state monitoring. For instance, there have been laboratory-based 

BCIs developed for alertness/drowsiness monitoring that requires data recorded in both 

alert and drowsy states [17][19][50][96], but asking an awake subject to enter the drowsy 

state successfully in a short time is essentially impractical. Therefore, it might not be 

realistic to include all state-related data from the target subject to expedite the calibration 

of a brain-state monitoring BCI with real-world settings. 

While task-based calibration is often time-consuming and expensive, task-free 

brain activity observed while the subjects are not engaged in any specific task has been 

shown to exhibit patterns of functional connectivity [35][36]. In a cognitive experiment, 

task-free brain recording is available during resting or passive stimulation conditions (e.g., 

naturalistic viewing) [97]. Several studies have explored the extent to which task-free 

activity can be used to improve the performance and the practicality of BCIs 

[28][98][99][100][101][102]. For instance, the independent components extracted from 

resting-state EEG can provide motor-related spatial filters for a motor-imagery BCI with 

high accuracy comparable to those obtained by using task-relevant calibration data [99]. 

Also, the resting-state measurements have been applied to predicting individual 

differences in BCI performances [98][99][100][101][102]. Lately, resting-state EEG was 
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involved in a subject-transfer framework proposed for reducing the calibration efforts of 

spatial attention decoding [28]. Inspired by these studies, we assumed that information 

about state-related brain dynamics could be inferred from baseline EEG traits. Thus, the 

subject similarity in EEG power spectra under an alert baseline condition could be useful 

to estimate subject similarity in drowsiness-related brain response. In that case, as the 

alert baseline can be easily collected, it enables a near-zero-calibration BCI by leveraging 

baseline similarity and decoding models from other subjects. 

In this study, with a focus on drowsiness detection, we propose leveraging data 

from other subjects to tackle intra-subject variability in building brain-state decoding 

models, and utilizing a small amount of baseline data from a new user to deal with inter-

subject variability in drowsiness-related brain response. The working hypothesis is that 

similarity in state-related brain dynamics among individuals is predictable by alert 

baseline EEG. If the hypothesis holds, such predictability can be used to ensure positive 

transferring of brain-state decoding models among subjects, thus improving the efficiency 

of the subject-transfer approach. Furthermore, if large-scale existing data are available, it 

might be feasible to identify supportive data or models from other source subjects in the 

dataset using the alert baseline EEG from the target subject. We therefore extended the 

results from our preliminary study [43], and the major contributions are threefold. First, 

we proposed using hierarchical cluster analysis to explore the associations between EEG 

features and cognitive states to assess the inter- and intra-subject variabilities of state-

related brain dynamics across subjects and sessions. This will lay the foundation for a 

subject-transfer framework with a large-scale dataset for individualized brain-state 

decoding and monitoring. Second, we investigate the effectiveness of alert baseline EEG 
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activity in predicting the similarity of EEG-state associations among subjects, which 

plays a key role in minimizing the calibration effort for a new target user. Finally, we 

proposed and validated a subject-transfer framework that leverages baseline EEG and 

large-scale existing data to facilitate individualized brain-state decoding with minimal 

calibration effort. 

4.2 Materials and Methods  

A subject-transfer framework was proposed to leverage the existing source 

models (the EEG-DI models of source sessions) in the pool to reconstruct a new decoding 

model for a new target subject, as shown in Figure 4.1. The proposed framework is based 

on two fundamental assumptions: 

A1) When sufficient existing data from other subjects are available, it is possible 

to obtain high decoding performance (i.e., the predictive performance of an EEG-DI 

model) by transferring one or multiple source models to the target session. The decoding 

performance obtained using the subject-transfer approach might be comparable to that 

using a self-decoding model that is trained by the drowsiness-related data from a pilot 

session of the same subject. 

A2) The alert baseline EEG activity provides useful information for predicting 

inter-subject similarity in state-related brain responses. If so, one can select supportive 

sources models based on easily collected baseline data from the target subject.  

According to A1, a large-scale source model pool is required to maximize the 

chance to identify supportive source models from the pool. Otherwise, the subject-

transfer approach might be unable to compete with the conventional self-decoding 

approach. Regarding the validity of A2, the alert baseline EEG activity can be easily 
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acquired when a subject is not engaged in any task. In the LKT driving experiment, the 

alert baseline is available during cruising before a lane-departure event occurs. 

For each session in the selected dataset of 54 sessions from 25 subjects, an EEG-

DI decoding model was constructed with EEG band powers and DI labels as described 

above. Meanwhile, the alert baseline was obtained from the inter-trial cruise-driving 

period of the first 10 trials at the beginning of the driving session. As each trial provides a 

120-dimensional vector of band power features, we took the median across the first 10 

trials, and then linearly scaled into a 1×120 vector of power distribution density, F, with a 

sum equal to 1. 

4.2.1 EEG-DI Regression Models 

For each LKT session, a decoding model was trained to predict the DI for each 

upcoming lane-departure event based on the above-mentioned associations between the 

DI and EEG spectral features. To eliminate the high co-linearity and dimensional 

redundancy of multi-channel EEG data, PCA) was involved prior to the regression 

models, as PCA has been shown able to reduce noise and computational load with an 

adequate selection of principal components [17][103]. Furthermore, applying PCA could 

also alleviate curse-of-dimensionality in building such predictive models [68]. In this 

study, we retained the principal components that account for 90% of the explained 

variance in the data [17][43], and then the PCA-reduced features were used as the 

predictors in the regression model to predict the DI. Two conventional regression 

approaches, ordinary least squares linear regression (LR) and support vector regression 

(SVR) with a linear kernel, were applied and compared in this study. The SVR was 

implemented using LIBSVM [70] with grid-search optimization on leave-one-session-out 
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cross-validation. Each driving session provides one EEG-DI decoding model, including 

the PCA and the regression, and is transferrable to other subjects. In this study, the 

decoding performance of the EEG-DI model is evaluated by the Pearson’s correlation 

coefficient (ρ) between the actual and predict DI across an entire session. 

	
  
Figure 4.1: An illustration of the proposed subject-transfer framework. A source model pool is constructed 

based on the existing data collected from the source (other) subjects. This framework also includes the 
optimization mechanism for ranking and fusing source models for each of the target subjects (see main 

text). 

4.2.2 Multiple Distance Measurements 

We utilized classic distance metrics to estimate the (dis)similarity in alert baseline 

EEG among different subjects [104][105][106][107][108]. In addition to the alert 

baseline activities, as the EEG-DI models are prepared for each session in the pool, we 

also calculated model ‘transferability’ for each source model, which refers to the overall 

predictive performance of the source model on all the sessions from other subjects in the 

pool [43]. This was done by measuring the distance using the power distribution density, 
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F, across subjects. We then defined a multiple distance measurement (MDM) that 

involves the distances of alert baseline EEG and model transferability among subjects. 

Given a source session indexed by ‘a’, and a target session indexed by ‘b’, six distance 

metrics were involved to calculate and construct the MDM between their alert baseline 

power distribution, 𝑭𝒂 and 𝑭𝒃. The expressions of the distance metrics can be found in 

the following subsections. 

1) Euclidean distance 

The ordinary Euclidean distance measures the distance between the two vectors as 

between two points in the space with the formula: 

𝑫𝑬𝒖𝒄𝒍𝒊𝒅𝒆𝒂𝒏 𝒂,𝒃 = (𝑭𝒂𝒊 − 𝑭𝒃𝒊)
𝟐

𝒊
 

where 𝑭𝒂𝒊 denotes the i-th element in the vector 𝑭𝒂 

2) Correlation distance 

The correlation distance is defined as one minus the Pearson’s correlation 

coefficient between two vectors. Pearson’s correlation has been commonly used to 

measure the similarity of EEG spectral distributions [43][104]. 

𝑫𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏(𝒂,𝒃) = 𝟏−
(𝑭𝒂𝒊 − 𝑭𝒂)(𝑭𝒃𝒊 − 𝑭𝒃)𝒊

𝑭𝒂𝒊 − 𝑭𝒂
𝟐

𝒊 𝑭𝒃𝒊 − 𝑭𝒃
𝟐

𝒊

 

3) Chebyshev distance 

Chebyshev distance measures the maximal elemental distance between two 

vectors by: 

𝑫𝑪𝒉𝒆𝒃𝒚𝒄𝒉𝒆𝒗(𝒂,𝒃) =   𝒎𝒂𝒙𝒊 (|𝑭𝒂𝒊 − 𝑭𝒃𝒊|) 

4) Cosine distance 
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Cosine distance is expressed by one minus the cosine similarity between two 

vectors. 

𝑫𝒄𝒐𝒔𝒊𝒏𝒆(𝒂,𝒃) = 𝟏−
(𝑭𝒂𝒊 ∙ 𝑭𝒃𝒊)𝒊

𝑭𝒂𝒊
𝟐

𝒊 𝑭𝒃𝒊
𝟐

𝒊

 

5) Kullback–Leibler divergence 

Kullback-Leibler (KL) divergence measures the non-symmetric difference 

between two probability distributions. A previous study has applied the average of bi-

directional KL divergence on EEG power distributions to classify EEG under different 

mental states [106]. Hereby the distance measurement based on KL divergence was 

estimated using the following equation: 

𝑫𝑲𝑳(𝒂,𝒃) =
𝑲𝑳 𝑭𝒂𝒊,𝑭𝒃𝒊 +𝑲𝑳(𝑭𝒃𝒊,𝑭𝒂𝒊)

𝟐𝒊
 

where 𝑲𝑳 𝒑,𝒒 = 𝒑𝒊 𝒍𝒐𝒈(𝒑𝒊 𝒒𝒊)𝒊  

6) Transferability-based distance 

One measurement of the similarity between a source subject and a target subject 

could be estimated by overall transferability of a source model calculated by its overall 

decoding performance on other source subjects [43]. Note that the transferability-based 

distance is dependent solely on the source model pool. Given a source model pool, the 

estimated performance-based distance of the source session, a, is defined as: 

𝑫𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓𝒂𝒃𝒊𝒍𝒊𝒕𝒚(𝒂) =   𝟏−𝒎𝒆𝒅𝒊𝒂𝒏 𝑿𝑷(𝒂, 𝑱 𝒂,𝑴𝒔𝒐𝒖𝒓𝒄𝒆  

𝒂 ⊂ 𝑴𝒔𝒐𝒖𝒓𝒄𝒆 

where 𝑱 𝒂,𝑴  denotes the function that outputs the set of all session indices from other 

subjects of the session a in the session set, M, given 𝒂 ⊂ 𝑴. 𝑴𝒔𝒐𝒖𝒓𝒄𝒆 denotes the set of 
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indices of sessions form the source model pool. 𝑿𝑷 𝒂, 𝑱  outputs a vector of cross-

subject performances of the model of session, a, on all the other subjects’ sessions, J. 

The above-mentioned distance metrics encompass the MDM across sessions. In 

practice, the MDM between a target session, i, and the source sessions, 𝑴𝒔𝒐𝒖𝒓𝒄𝒆, is 

represented as a 6-dimensional matrix: 

𝑴𝑫𝑴 𝒊,𝑴𝒔𝒐𝒖𝒓𝒄𝒆 = 𝑫𝟏 𝒊,𝑴𝒔𝒐𝒖𝒓𝒄𝒆 ,𝑫𝟐 𝒊,𝑴𝒔𝒐𝒖𝒓𝒄𝒆 ,… ,𝑫𝟔 𝒊  

where D1, D2, …, and D6 denote DEucleadian, Dcorrelation, DChebyshev, Dcosine, DKL, and 

Dtransferability, respectively. 

4.2.3 Source Model Ranking 

To predict the performances of source models on a target session using the MDM, 

a linear SVR model trained within the source-model pool was employed to assess the 

relationship between the MDM and the cross-subject decoding performance, or the 

transferability of the source models. As the effectiveness of each of the above-mentioned 

distance measures for discriminating alertness and drowsiness was unknown, an SVR can 

automatically select an optimal combination of those distance measures. A brief flow of 

training and test process for the transferability predictive model is illustrated in Figure 4.2. 

To be specific, given a pool of N source models, with a set of indices denoted by 

𝐢𝟏, 𝐢𝟐,… , 𝐢𝐍 , the corresponding alert baseline MDM of the source session, in, to other 

source sessions from other subjects is expressed as: 

𝑴𝑫𝑴 𝒊𝒏, 𝑱 𝒊𝒏, 𝑰𝒔𝒐𝒖𝒓𝒄𝒆       ∀  𝒏   ∈ 𝟏,𝟐,… ,𝑵 

Meanwhile, the transferability of other source models on session 𝐢𝐧  can be 

obtained by the cross-subject model performances as a vector:  

𝑿𝑷 𝒊𝒏, 𝑱 𝒊𝒏, 𝑰𝒔𝒐𝒖𝒓𝒄𝒆     ∀  𝒏   ∈ 𝟏,𝟐,… ,𝑵 



	
   	
  

	
   54 

For all source sessions available in the pool, 𝐢𝟏, 𝐢𝟐,… , 𝐢𝐍 , their data of MDM and 

XP were collected to train a predictive regression model for predicting XP using MDM. 

Before concatenating the N MDM matrices, each MDM matrix was normalized into z-

scores vector by vector. The N XP vectors were similarly normalized and concatenated. 

Finally, the concatenated MDM and XP were applied as the predictor and the response, 

respectively, to train a linear SVR model for transferability prediction. For a new target 

session  𝐢𝐍!𝟏, we used the trained transferability predictive (SVR) model and the baseline 

distances 𝑴𝑫𝑴 𝒊𝑵!𝟏, 𝑱 𝑰𝒔𝒐𝒖𝒓𝒄𝒆, 𝒊𝑵!𝟏  to estimate the transferability of all other source 

models. Based on the estimated transferability, from high to low, we ranked each of the N 

source models by 𝐦𝟏,𝐦𝟐,… ,𝐦𝐍 ∈ 𝟏,𝟐,… ,𝐍 . 

 

Figure 4.2: The training and test flow of the transferability model for source model ranking. 

4.2.4 Model Fusion and Re-Calibration 

Given the rankings of the N source models, we proposed a selective weighting 

scheme to assign large weights to high-ranked models and small weights to low-ranked 

models. The weights were determined based on a logistic function with tuning parameters 

for the mid-point and the steepness expressed as follows. 

𝑾 𝒎,𝒌, 𝒍 =   𝟏− 𝟏/(𝟏+ 𝒆!𝒌
𝒎
𝑵!𝒍 ) 
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where m is the ranking of a source model, k ∈ {10,20, ... ,100} and l ∈ 

{0.1,0.2, ... ,1} are parameters that adjust the steepness and the mid-point, respectively, of 

the logistic function. The estimation of optimal parameters was obtained using a grid-

search mechanism with leave-one-subject-out cross-validation within the source sessions. 

The fused output of source models was then generated by the following equation: 

𝒚 =
𝑾(𝒎𝒏,𝒌, 𝒍)
𝑾(𝒎𝒏,𝒌, 𝒍)𝑵

𝒏!𝟏

𝑵

𝒏!𝟏

𝒚𝒏 − 𝒚𝟎 

where 𝐲𝐧 is the output of the source model n for a given trial, and 𝐲𝟎 is an offset 

estimated by the median of the initial 10 trials (i.e. the alert baseline) in the target session. 

Here the alert baseline also serves for re-calibrating on the fused model. Note that the 

brain state in the beginning of a session was supposed to be ‘alert’ according to the 

criteria of session selection described in Section 2.2.1, Chapter 2. 

4.3 Results 

As proposed in our framework, alert baseline data were used to identify 

supportive source models for a target subject. We performed an offline analysis to 

validate to what extent the similarity in alert baseline activity could predict the 

transferability of an ensemble of source models to a target subject as shown in Figure 4.3. 

Using MDM of alert baseline activity between each source session and the target session 

(S44-4), the transferability predictive model was able to predict the actual transferability 

score of each source model to the target session. The highly significant correlation (r2 = 

0.4279, p < 10-6) between actual and predicted performances poses strong evidence that 

alert baseline brain activity carries information on cross-subject similarity of state-related 
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brain dynamics. The predictability of source model transferability enables a plausible 

ranking scheme for the source models based on their alert baseline similarities to the 

target subject, facilitating positive subject-to-subject transfer in the proposed framework. 

Table 4.2 summarizes the decoding performance of DI using different approaches 

across 17 test (target) subjects in terms of the correlation coefficient (ρ) between actual 

and predicted DI. Self-decoding (SD) approach refers to conventional within-subject pilot 

session approach, where the decoding model was trained by the data from a whole pilot 

session. Subject-transfer (ST) approach utilized models from the source model pool and 

alert-baseline calibration, which required the alert baseline data from the target subject 

only. There was no significant difference between SD and ST, neither between LR and 

SVM (p = [0.3321, 0.9121], 2-way ANOVA), showing that the ST approach achieved 

comparable performance to that of the SD approach. Figure 4.4 exhibits the decoding 

results obtained using the ST and self-decoding approaches of a sample session (S54-2). 

Subject-transfer approach using SVR showed the highest performance (ρ = 0.7552) 

among all decoding approaches. For simplicity, only SVR was involved as the regression 

method in the following validation of our framework. 

Next, we systematically investigated the influence of the source data size on the 

ST decoding performance across all target subjects. To this end, we randomly 

reconstructed the source-model pool with a subset of the original source subjects, and 

redid the subject-transfer procedure with the successively reduced source-model pool. 

This procedure was repeated 20 times for each reduced size of the randomly 

reconstructed source-model pool. Figure 4.5 exhibits the relationship between the 

decoding performance and the number of source subjects in the pool. The overall ST 
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decoding performance across 17 target subjects (red curve) presents a monotonic increase 

when the number of the source subjects included in the subset grows, suggesting that 

large-scale existing data from other subjects could improve the ST decoding performance. 

The decoding performance of the proposed ST approach reached and exceeded that of the 

SD approach when the pool size was over 7 subjects, but the difference was not 

statistically significant (p>0.05). In addition, Figure 4.5 also shows the performance of 

randomized ST that fused the source models with random weights (gray curve), as 

opposed to using the ranking scheme based on alert baseline similarity. The ST decoding 

using the supportive sessions selected by alert baseline similarity significantly 

outperformed the randomized ST performance (p<0.05, paired t-test) for all the reduced 

numbers of source subjects in our test. 

 

Figure 4.3: Actual (blue bars) and predicted (red bars) transferability scores of source models based on the 
alert baseline similarity among subjects. The MDM among subjects was able to predict the model 

transferability evidenced by a highly significant correlation between actual and prediction transferability 
score (r2 = 0.4279, p < 10-6). 
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Table 4.2 Overall decoding performance using different approaches 

 

 

Figure 4.4: EEG-based DI decoding result using self-decoding (SD) and subject-transfer (ST) approaches 
with LR and SVR of a sample session (S54-2). The calibration time was 89.91 min for the SD approaches 

and 1.48 min for the ST approaches. 
 

	
    

 
Performance (mean±standard error) Linear regression Support vector regression 
Self-decoding 0.5808±0.0169 0.5871±0.0719 
Subject-transfer 0.6380±0.0095 0.6448±0.0381 
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Figure 4.5: The decoding performance of the proposed subject-transfer (ST) approach (the red curve with 
standard error) as a function of the number of source subjects available in the pool. The gray curve shows 
the randomized ST performance without source-model ranking. The difference in the overall performance 

between the ST and randomized ST was significant (p<0.05, paired t-test) across all numbers of source 
subjects. The proposed ST approach could achieve comparable performance with the SD approach (p>0.05) 

when the number of source subjects exceeded 7. 
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Figure 4.6: A comparison of decoding performance between using the proposed subject-transfer (ST) and 
the conventional self-decoding (SD) approach in terms of decoding performance (correlation coefficient, ρ), 

and calibration time across 17 target subjects who performed multiple LKT sessions. Red/blue squares 
show the overall performance against the calibration time for the ST/SD approach with SVR. When the 

calibration time of SD approach was less than 18 min, the difference in performance was observed between 
the ST and SD approaches (p < 0.05 by paired t-test). Whereas there was no significant difference in 

performance between them when the calibration time of SD approach was equal to or larger than 18 min. 
Thus, the calibration time reduction using the ST approach was estimated by 90% (1.72±0.36 min vs. 18.00 

min). 

Figure 4.6 shows the decoding performance of the ST approach against the 

required recording time for calibration data collection, compared to that using different 

size of individualized drowsiness-related training (pilot) data, as would be the case for the 

SD approach. The ST approach significantly outperformed the SD approach when the 

drowsiness-related training time was less than 18 min. This experiment validated the 

efficiency of the ST approach in calibration time reduction from 18 min to 1.72±0.36 min, 

the time required for collecting the alert baseline. 
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4.4 Discussion 

This study proposes a subject-transfer framework to minimize the calibration 

effort for brain-state decoding, particularly for EEG-based drowsiness detection. The 

experimental results validated the two assumptions underlying the proposed framework. 

First, the subject-transfer framework that leverages a large dataset from other subjects can 

achieve comparable performance to self-decoding when the existing data are sufficient. 

Second, the easily collected alert baseline activity is capable of assessing the similarity of 

state-related activity from the subjects in the pool, and thus enables a selective fusion of 

the source models to ensure the efficiency of model transferring. 

As shown in Figure 4.3, the predicted model transferability was highly correlated 

(r2 = 0.4279) with the actual transferability, suggesting that the similarity in EEG-DI 

associations across subjects is predictable by the similarity in their alert baseline brain 

activities. Our finding is in accordance with previous studies that suggest the association 

between brain functionality and task-free activity [35][36][109]. Specifically, task-free 

data could be used to select supportive task-based models to improve the efficacy of 

subject-to-subject model transferring for a BCI. Analogously, spectral power in the 

resting-state EEG was used to predict the individual differences in BCI performances in a 

previous study [98]. The associations between task-free EEG oscillations and 

hemodynamics have been investigated using simultaneous EEG/fMRI recording. For 

instance, resting EEG spectral powers were found associated with the functional 

networks [110][111], and time-frequency representation of EEG data could be used as a 

‘fingerprint’ to predict specific brain activity as measured by fMRI [112]. In line with the 
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above-mentioned studies, we demonstrate that individualized state-related brain response 

can be inferred from a rapid alert-baseline calibration, and such relationship enables the 

applicability of subject-transfer approaches with minimal calibration effort. 

As shown in Figure 4.5, we observed that at least 7 source subjects are required to 

achieve satisfactory performance. The subject-transfer performance monotonically 

increased as the number of source subjects increased, and reached a slightly better (but 

not statistically significant) overall performance than that of the conventional self-

decoding approach. Previous studies have pointed out the importance of a large-scale 

dataset (>50 sessions) for subject-transfer approaches [33][34][113], but none of them 

have quantitatively investigated the influence of the size of existing data on the subject-

transfer performance. We have shown that the availability of large-scale data is one of the 

supportive elements for positive subject-transfer performance. As auxiliary data are more 

likely obtained from subjects that are similar in EEG-DI associations, the number of 

source subjects seems to affect the chance to find supportive source subjects for a target 

subject. The sufficiency of data is also beneficial for the estimation of transferability of 

the source models, the training of transferability predictive model, and the optimization 

of fusion parameters in the proposed framework. 

The significant reduction in calibration time is the most remarkable perk drawn 

from the proposed subject-transfer framework for BCI applications. As we introduced the 

alert-baseline calibration to identify the supportive sessions for model transferring for 

each target subject for testing, the calibration time for brain-state decoding was reduced 

by 90%, from 18 min to ~100 s (see Figure 4.6) without compromising decoding 

accuracy (p = 0.0910). It is also worth mentioning that the proposed subject-transfer 
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framework, which uses alert-baseline calibration to select supportive sessions, is not 

limited to brain-state-decoding BCIs. Other types of BCI in which task-based calibration 

is costly and impractical might also benefit from the proposed approach. In fact, during 

the ~100 s of alert baseline activity collection, only 30 s (3 s × 10 trials) of data were 

actually used, indicating the room for further improvement in alert-baseline calibration 

time. Study results of the current study have demonstrated the efficacy of the subject-

transfer framework for detecting drowsiness during a driving task. The framework might 

also be applicable to other brain-state decoding if the problem domain satisfies the major 

assumptions (A1 and A2) addressed at the beginning of Section 4.2. However, further 

work is needed to test to what extent this framework can be generalized to decoding other 

brain states. 

The results of this study suggest the potential of using baseline calibration and 

large-scale data in brain decoding to deal with inter- and intra-subject variabilities, which 

is related to the concept of zero-training BCI initialization [113]. As the size of existing 

data plays an important role in supporting the efficacy of subject-transfer approach, 

constructing a massive neuroscience dataset seems to be an important prerequisite for 

translating the findings of this study into real-world applications. Fortunately, effort have 

been made by researchers in building big databases for neuroscience research [6] [114]. 

Two decades ago, Jung et al. [17] discussed the issues to be resolved for 

implementing a practical EEG-based alertness monitoring system. In particular, they 

pointed out the demand of minimizing the amount of pilot training data from individual 

subjects. In our proposed framework, we adopted current methods and technologies that 

tackled those issues and made a significant contribution to the calibration time reduction. 
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As the methodologies developed in this study are not subject to the purpose of drowsiness 

detection, further exploration of the generalizability of the proposed subject-transfer 

framework in other types of brain state decoding is required. With the findings in this 

study, we expect the subject-transfer framework to ignite further development of plug-

and-play brain decoding based on large-scale data and alert-baseline calibration. 

4.5 Conclusion 

This study presents a subject-transfer framework to minimize the calibration 

effort in the brain decoding for drowsiness detection while maintaining comparable 

performance to individualized self-decoding based on a full task-based pilot session. 

With the subject-to-subject similarity measured by subjects’ alert baseline activities and 

cross-decoding performances, the proposed framework showed high efficiency and 

efficacy in ranking the existing source models according to their predicted performance 

on a new user. The experimental results also suggest the importance of data size in 

supporting positive inter-subject model transferring. As the proposed framework 

successfully reduced the required calibration time by 90% (18.00 min to 1.72±0.36 min) 

for drowsiness detection, it can considerably improve the practicality of brain-state-

decoding BCIs and lead to many real-world applications. 
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CHAPTER 5 
 
CONCLUSION AND FUTURE WORKS 
	
  
 

This thesis summarizes the efforts made for transitioning a DD-BCI to a real-

world application with usability and convenience. Specifically, this thesis highlights 

improvements in the EEG recording montage and the calibration time for initiating the 

BCI. 

A large-scale analysis on the associations between EEG and drowsiness was 

performed on a multi-subject EEG dataset collected in lane-keeping driving experiments. 

To gain a thorough understanding of the EEG-drowsiness associations, the correlations 

between EEG features and a response time-based drowsiness index were visualized using 

hierarchical cluster analysis. The clustering showed that similar EEG-drowsiness 

correlations were found among different subjects. This finding suggests the feasibility of 

transferring decoding models across subjects. Meanwhile, the EEG features appeared 

similar and redundant across channels in the spatial domain. Therefore, it might be 

possible to reduce the number of channels for EEG recording without loss in the 

decoding performance. 

For the improvement of brain monitoring montage, the efficacy of NHB EEG in 

detecting drowsiness was investigated in terms of the EEG-drowsiness correlations. The 
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drowsiness-related features obtained from NHB EEG were shown capable of supporting 

satisfactory decoding performance. The validation for the proposed NHB DD-BCI 

exhibited a comparable accuracy to that using whole-scalp EEG. Reducing from whole-

scalp to NHB areas, this novel montage introduces flexibility and convenience for 

designing the next generation of real-world BCIs. 

Human variability in brain activity is a major issue in the development of a plug-

and-play BCI with minimal calibration. To obviate inter- and intra-subject variabilities, a 

subject-transfer framework with large-scale data and baseline calibration was proposed 

and compared to the conventional self-decoding approach that requires individual task-

relevant data. The proposed subject-transfer framework was able to reduce the calibration 

time by 90% without compromising the performance of drowsiness detection. 

Intuitively inferred from the contributions presented in this thesis, one possible 

future work is to build a plug-and-play NHB DD-BCI with a mini-sized EEG wearable 

featuring near-zero calibration. This future work would require further validation on the 

efficiency of the subject-transfer framework with the low-density NHB EEG recording. 

Another interesting research direction is applying deep learning to drowsiness detection. 

This new approach might improve the accuracy and robustness beyond the current 

approach, as deep learning-based EEG classification has recently been shown promising 

in recognizing motor-imagery patterns [114] and sleep stages [116]. 
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APPENDIX A 
 
SELECTIVE TRANSFER LEARNING FOR 
EEG-BASED DROWSINESS DETECTION 
 
 

On the pathway from laboratory settings to real world environment, a major 

challenge on the development of a robust electroencephalogram (EEG)-based brain-

computer interface (BCI) is to collect a significant amount of informative training data 

from each individual, which is labor intensive and time-consuming and thereby 

significantly hinders the applications of BCIs in real-world settings. A possible remedy 

for this problem is to leverage existing data from other subjects. However, substantial 

inter-subject variability of human EEG data could deteriorate more than improve the BCI 

performance. This study proposes a new transfer learning (TL)-based method that 

exploits a subject’s pilot data to select auxiliary data from other subjects to enhance the 

performance of an EEG-based BCI for drowsiness detection. This method is based on our 

previous findings that the EEG correlates of drowsiness were stable within individuals 

across sessions and an individual’s pilot data could be used as calibration/training data to 

build a robust drowsiness detector. Empirical results of this study suggested that the 

feasibility of leveraging existing BCI models built by other subjects’ data and a relatively 

small amount of subject-specific pilot data to develop a BCI that can outperform the BCI 

based solely on the pilot data of the subject. 



	
  

	
   69 

A.1 Background 

Recent progress in brain-computer interface (BCI) has been made in a great 

variety of applications [2]. Electroencephalogram (EEG)-based BCIs have begun to seek 

real-life applications. For example, several BCI studies have proved the feasibility and 

practicability of detecting an individual’s drowsiness level using spontaneous EEG 

activities [17][21][41]. Nevertheless, promising results of the offline prediction were just 

a first step on the pathway toward real-world applications. 

A major challenge in moving BCIs from well-controlled laboratory settings to 

real-world environments is that most of the BCIs require a significant amount of training 

data to build an accurate and robust model for each individual, which is labor-intensive 

and time-consuming and thereby significantly hinders the applications of BCIs in real-

world settings. 

Taking EEG-based drowsiness estimation as an example, the pilot data collecting 

session could be very long and tedious because the pilot session for each individual must 

contain a representative variety of drowsiness levels. It is thus imperative to develop a 

method to reduce the amount of training data needed from each individual for drowsiness 

detection BCI. An obvious alternative is to leverage existing data from other subjects. 

However, substantial inter-subject variability in human EEG could be an enduring 

obstacle for building a robust and capable EEG-based BCI from other individuals’ data 

[90]. 

Our previous studies have shown that changes in EEG spectra are highly 

correlated with minute-scale fluctuations of a global level of drowsiness, indexed by the 
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sustained-attention performance [17][21][41]. Furthermore, this relationship is stable 

within individuals across sessions, but variable across individuals [17]. Thus, blindly 

training a BCI with all existing data from different individuals could deteriorate more 

than improve its performance. Fortunately, as the relationship between the EEG spectra 

and the drowsiness level are relatively stable across sessions within an individual, it 

might be possible to select informative data (or positive samples/sessions) from other 

individuals based on the EEG-drowsiness correlation seen in the pilot data from the test 

individual. 

This study thus investigates the feasibility of transferring the knowledge of 

existing data to enhance the performance of EEG-based BCI. Specifically, this study 

proposes a framework of selective transfer learning (TL) to exploit a test subject’s pilot 

session to select auxiliary models from other subjects to build a more accurate and robust 

drowsiness-detection BCI. The results of the proposed method are compared to that of a 

conventional within-subject cross-session validation approach in drowsiness detection 

and a routine, i.e., non-selective, TL. 

A.2 Materials and Methods 

A.2.1 Experiment and Participants 

A lane-keeping driving task [117] was adopted to study the EEG correlates of 

participant’s cognitive state. During the experiment, a participant was seated in a driving 

simulator and was instructed to steer the car back to the original cruising lane as quickly 

as possible once s/he realized the car was drifted from the cruising position (i.e., a lane-

departure event). The lane-departure event was introduced randomly every 8-12 s after 
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the end of the previous event. Thirty-six voluntary participants with normal or corrected-

to-normal vision participated in a total of 77 sessions of the lane-keeping driving task. 

These data were adopted from four different studies [19][40][50][118] in which 

participants performed the same lane-keeping driving task. The experiment was approved 

by the Institutional Review Board of the Veterans General Hospital, Taipei, Taiwan. All 

participants read and signed an informed consent form before the experiments. Fifteen 

subjects performed the driving task multiple times on different days, resulting in a total of 

36 sessions. This study examined the feasibility of the proposed selective transfer 

learning framework (see below) on these sessions. 

A.2.2 EEG Dataset and Preprocessing 

This study used EEG data collected by a 32-channel Quik-Cap (Compumedical 

NeuroScan, Inc.) from electrodes placed according to the international 10-20 system, and 

referenced to the arithmetic mean of the left and right mastoids. The impedance of all 

electrodes was kept under 5k Ohm during the experiments. The EEG signals were 

recorded with 16-bit quantization level at the sampling rate of 500 Hz. The EEG data 

were first processed by a 1-50 Hz band-pass finite impulse response filter to remove low-

frequency drifts and high-frequency artifacts. Severe artifacts or noise were then 

manually removed. The resultant EEG data were further down-sampled to 250 Hz before 

further analysis. 

A.2.3 Estimation of Drowsiness Level 

This study first defined the behavioral performance during the lane-keeping 

driving task based on the reaction time (RT) responded to randomly induced lane-

departure events. That is the time interval before the onset of the lane-departure event and 
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the onset of steering wheel. For each session, the measured RT of each lane-departure 

trial was normalized according to the following equation: 

𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅  𝑹𝑻 =
𝟎

(𝟏− 𝒆! 𝝉!𝝉𝟎 )/(𝟏+ 𝒆! 𝝉!𝝉𝟎 )
, 𝝉 ≤ 𝝉𝟎
, 𝝉 > 𝝉𝟎

 

where τ is the RT to a lane-departure event, and τ0 is the alert reaction time, which is 

empirically defined by the median RTs of the 10% of all trials that had shortest RTs in 

the session. The resultant normalized RT ranged from zero (fully alert) to one 

(drowsiness). The drowsiness level was then derived from the average of the normalized 

RTs within a 90-second window before the onset of each trial under study. 

A.2.4 EEG Feature Extraction 

This study explored the relationship between the EEG activities and drowsiness 

level by correlating the EEG spectra with the putative drowsiness level. For each channel, 

a 256-point Welch’s fast Fourier transform was applied to a 64-point moving window 

(zero-padded to 256 points) with an overlap of 52 points to calculate the spectral power 

with a frequency resolution of ~1 Hz. This study focused on the spectra between 0.98 and 

30.3 Hz (30 frequency bins). The spectral power of each channel was then converted into 

a logarithmic scale. The resultant power spectra were then normalized by the baseline 

power that was calculated from the average power of the first 60 seconds of a session. 

A.2.5 EEG-Based Drowsiness Regression Model 

This study employed a typical linear regression model to assess the relationship 

between the EEG spectra and the drowsiness level for each session. Prior to building a 

model, a dimension-reduction procedure based on principal component analysis (PCA) 

was applied to the EEG spectra. PCA transferred the 900-dimension EEG spectra (30 
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channels × 30 frequencies) into a set of principal components (PCs). Only a subset of PCs 

accounting for 80% of the data variance was retained and used for the regression analysis. 

The present study used the Pearson correlation coefficient between the actual and 

predicted RTs as a metric to evaluate the performance of drowsiness estimation. 

A.2.6 Level of Session Generalizability 

This study hypothesized that if the pilot session of an individual provides 

discriminative information between alertness and drowsiness for the session and for 

sessions from others, then the information from others might not add any value to 

improve the model based solely on the pilot session for the individual. Conversely, if the 

pilot session is not informative enough to model the drowsiness level as well as is not 

generalizable to predict the drowsiness level of sessions from others, then the model for 

this individual might benefit from the transfer learning procedure. That is, the 

individual’s model can be improved by leveraging the models based on others’ data to 

better estimate the drowsiness level of an unseen (test) session from the subject. To this 

end, it was imperative to characterize the extent of the generalizability of each session for 

each individual. This study thus defined a term, the level of session generalizability 

(LSG), that essentially accounts for both the performance of a given session and the 

performance of using that session to estimate the sessions from other subjects. The 

calculation of LSG is formularized as follows: 

𝑳𝑺𝑮𝒊 =
𝑷(𝒊, 𝒊)+ 𝑷(!,𝜱(!))

𝑷(!, !)+ 𝑷(!,𝜱(!))
𝒋∈𝜱(𝒊)

 

where 
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𝑷 𝒂,𝒃 ≡  performance (Pearson correlation between actual and predicted RTs) of 

session a’s model on session b 

𝜱(𝒊) ≡ assemble of indices of sessions from all other subjects of session i 

𝑷(!,𝜱(!)) = the median performance of using session i's model on all other subjects’ 

sessions 

The LSG of a given session is the summation of its self-prediction performance 

and its prediction ability to other sessions with respect to the self-prediction and cross-

session performance of other subjects’ sessions. This study empirically separated the 36 

sessions into high- and low-LSG groups with the threshold of LSG=1. That is, under our 

hypothesis, the pilot session with LSG<1 tended to benefit from the TL procedure to 

model the test session from the same individual. Otherwise, the TL is not recommended 

to augment the pilot model for the sessions with LSG>1. 

A.2.7 Selecting Auxiliary Sessions for Transfer Learning 

In order to study how many auxiliary sessions were required for a TL procedure 

to improve the performance of the pilot model, this study systematically incorporated 

more sessions from other subjects and compared their TL performance. Specifically, for a 

given pilot session, all of its auxiliary sessions (within-subject sessions were excluded) 

were ranked by their performance in estimating the drowsiness level of the pilot session. 

The models from top-ranked auxiliary sessions were recruited first. The output 

drowsiness level for an unseen session was determined by the mean of the predicted 

values of all N+1 sessions (N from other subjects, one from the pilot session). 
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A.2.8 Selective transfer Learning and Performance Evaluation 

This study proposed a framework of selective transfer learning to test the posed 

hypothesis that the sessions with lower LSG could benefit from leveraging other subjects’ 

models. Thus, only the subjects whose pilot sessions had low-LSG would leverage the 

models from others to build a TL-augmented model. The performance using the proposed 

selective transfer learning was evaluated and compared to those based on the within-

subject cross-session validation, i.e., only using the pilot model from each individual to 

predict the unseen session (without TL) from the same individual, and routine (non-

selective) TL validation, i.e., forcing all individuals to use TL-augmented approach. 

A.3 Results 

Figure A.1 shows the performance improvement with transfer learning as a 

function of the level of session generalizability. As can be seen, the TL improvement was 

found negatively correlated with the LSG values (p=0.0004). The sessions with lower 

LSG values tended to get improved more from the TL procedure that leveraged other 

subjects’ sessions, which evidently supported our hypothesis. 

Figure A.2 portrays the performance of the TL-augmented pilot sessions (with 

LSG<1) as a function of the number of auxiliary sessions involved. The performance 

based on the within-subject cross-session validation (without TL) was also provided for 

comparison. Note that among the 36 pairs of pilot and test sessions, twenty pilot sessions 

were regarded as low generalizability and subject to this comparative study. In general, 

the TL-augmented pilot models (red solid line) significantly outperformed the 

performance based on the within-subject cross-session validation (gray line, without TL). 
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The TL-augmented performance rose steadily until 24 top-comparable auxiliary models 

from other subjects were included, but then started declining when adding more auxiliary 

models. This result suggested that naively pooling all auxiliary sessions together might 

not necessarily lead to better performance for a pilot model. Thus, selecting an optimal 

set of the auxiliary models for a pilot model was an imperative step to the success of 

transfer learning. 

Figure A.3 shows the performance using three different approaches: the proposed 

selective transfer learning, routine transfer learning, and within-subject cross-session 

validation. Specifically, Figure A.3 (a) shows the comparative results along the individual 

sessions. As shown in Figure A.3 (a), in the high LSG group (LSG > 1) where the 

selective TL directly inherited the performance of within-subject validation (that is, no 

distinct TL improvement for these subjects). On the other side, the selective TL directly 

inherited the results from the TL-augmented models (red open circles and blue squares 

were completely overlapped for the LSG < 1 group 1). Figure A.3 (b) compares the 

average drowsiness-detection performances in high and low LSG sessions obtained by 

different approaches. TL was unable to improve the accuracy of drowsiness detection in 

the high LSG sessions, but could offer significant improvements for the low LSG 

sessions. The overall performance in Figure A.3 (c) suggested that the proposed selective 

TL could enhance the performance of drowsiness estimation. 
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Figure A.1: The performance improvement with transfer learning as a function of the level of session 
generalizability (LSG). The significantly negative correlation implies that a pilot model with lower LSG 

value benefited more from applying transfer learning approach to estmiate the drownsiness level. 

 

Figure A.2: The performances of TL-augmented sessions (with LSG<1) as a function of the number of 
auxiliary sessions invovled. The performance based on within-subject validation was also provided for 

comparison. Red bold line shows the mean of the TL performance for 20 low-LSG session pairs, whereas 
red dashed lines represent their standard errors. Gray line indicates the perofrmance based on the within-

subject validation(without TL). Asterisk indicates the significant difference between TL and within-subject 
performances assessed by a paired t-test (p<0.05). 
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Figure A.3: The performance using the proposed selective TL, TL (non- selective), and within-subject 
cross-session validation. (a) presents the comparative results along the individual sessions. Sixteen session 

pairs were regarded as high LSG, whereas twenty sessions were categorized as low LSG. (b) compares three 
approaches separately in high and low LSG conditions. TL and selective TL both outperformed within-

subject under low LSG condition (paired t-test, p<0.01). (c) The selective TL showed consistently 
significant improvements for all 36 sessions as compared to the with-subject and TL methods using a 

paired t-test (p<0.01). 

A.4 Discussions and Conclusion 

This study investigated the feasibility of leveraging existing data from other 

subjects to improve the performance of a drowsiness-detection BCI. The study results 

showed that exploiting data from other subjects for an individual was not always 

favorable for estimating the level of drowsiness in a new session for the same individual. 

As shown in Figure A.1, transfer learning could sometimes deteriorate more than 

improve the within-subject BCI performance. The results of this study also showed that a 
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pilot session with high LSG might not able to take advantage of other subjects’ data using 

the transfer learning method implemented in this paper. Therefore, it might be necessary 

to formulate a strategy to selectively apply transfer learning under different circumstances. 

To appropriately select auxiliary data, this study ranked each session from other 

subjects by the performance of each session’s model testing against the other subject’s 

data. The obtained empirical results showed that the ranking method was effective for 

selecting informative auxiliary data (c.f. Figure A.2), where the transfer learning 

performance was improved even using only one extra session, and was gradually 

increased until using ~24 sessions. Figure A.3 shows a comparison study among three 

approaches: routine TL, selective TL and no-TL. The selective TL evidently 

outperformed others.  

In summary, this study proposed a framework to effectively leverage a large 

amount of training data from other subjects and a small amount of subject-specific pilot 

data to improve BCI performance. This framework can be useful to obtain good BCI 

performance when collecting a sufficient amount of subject-specific pilot data is difficult 

or impossible. 
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APPENDIX B 
 
EXPLORING THE EEG CORRELATES OF 
DROWSINESS WITH ROBUST PRINCIPAL 
COMPONENT ANALYSIS 
 
 

Recent developments of brain-computer interfaces (BCIs) for driving drowsiness 

detection based on electroencephalogram (EEG) have made much progress. This study 

aims to leverage these new developments and explore the use of robust principal 

component analysis (RPCA) to extract informative EEG features associated with 

drowsiness. Study results showed that the RPCA decomposition could separate 

drowsiness-related EEG dynamics from the task-irrelevant spontaneous background 

activity, leading to more robust neural correlates of drowsiness as compared to the 

original EEG signals. This study will shed light on the development of a robust 

drowsiness-detection BCI system in real-world environments. 

B.1 Background 

The drowsiness has been known as a critical safety issue in vehicle driving. Such 

momentary drowsiness causes approximate 1.9 million drivers to fatal car accidents with 

injury or death [15]. Technologies that enable instant drowsiness detection and feedback 

delivery to rectify drivers from the occurrence of drowsiness are thus urgently required. 

For the past two decades, the noninvasive brain-sensing technology, namely 
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electroencephalogram (EEG), has been adopted for this purpose because of its high 

temporal resolution of brain signals allowing a prompt response to drowsiness. For 

example, studies have shown strong EEG correlates of behavioral drowsiness, including 

power spectra [17][19][20][65] and autoregressive features [119][120]. These EEG 

features could then be used to develop various on-line/off-line neuroergonomic systems 

for monitoring drowsiness, fatigue, and behavioral drowsiness in task performance 

[17][19][41][63][77][121]. It is believed that an effective computational approach that 

can further leverage EEG correlates of drowsiness is a crucial step for improving the 

practicability of BCI-based drowsiness detection system in real life, which is the main 

focus of this study. 

Robust principal component analysis (RPCA) [122] has recently been shown to be 

able to separate task-relevant and sparse EEG dynamics from the spontaneous task-

irrelevant background activity [123]. The study demonstrated that the RPCA could 

improve the characterization of emotion-related EEG patterns across different recording 

days, and in turn facilitate a more effective emotion-classification model. As such, the 

task-related EEG dynamics of interest could be extracted from the task-irrelevant 

spontaneous background activity using RPCA, and could alleviate the EEG variability 

across sessions [123]. Analogously, this study explores the applicability of the RPCA for 

assessing the EEG correlates of neurocognitive drowsiness during driving. 
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B.2 Materials and Methods 

B.2.1 Experiment and EEG Recording 

This proof-of-concept study employed an EEG dataset of eight subjects 

participating in a lane-keeping driving task (LKT) in which EEG data and human driving 

behavior were simultaneously recorded [117]. The experiments were conducted in a 

virtual-reality-based driving simulator. Each subject drove on a straight highway scene 

during the night with artificial lane-deviation events introduced every 6-10 seconds. In 

each lane-deviation event, the car would randomly drift toward to left or right, and the 

subject was instructed to steer the car back to the cruising position as soon as possible. 

The duration from the onset of lane-deviant to the onset of steering movement was 

defined as the reaction time (RT), which indexed the extent of neurocognitive drowsiness. 

Longer RT indicated poor driving performance at the given moment. The experiment 

started in early afternoon when afternoon slump often occurred and thus maximized the 

opportunity of collecting neurocognitive drowsiness. The entire session of LKT lasted 

about 90 minutes, which was long enough to collect sufficient data under both alertness 

and drowsiness. 

The EEG data were recorded by a 32-channel Quik-Cap electrode system 

(Compumedics Neuroscan, Inc.). Thirty Ag/AgCl electrodes were deployed according to 

the modified international 10-20 system, and two reference electrodes were placed upon 

left and right mastoids. The EEG signals were sampled with 16-bit quantization and 500 

Hz sampling rate. 



	
  

	
   84 

B.2.2 Experiment and EEG Recording 

In this study, drowsiness refers to momentary unresponsiveness to the lane-

deviation event in the LKT, and its level was quantitatively estimated based on RT. This 

study empirically defined the RT as alertness if its value was below the 5th percentile of 

the RTs across entire session for each session. In order to calibrate the individual 

differences in the distributions of RT values, the RTs of each individual was further 

normalized into a range of 0 to 1, defined as follows [121]: 

𝑫𝑰 =𝒎𝒂𝒙  (𝟎, (𝟏− 𝒆!𝒂 𝝉!𝝉𝟎 )/(𝟏+ 𝒆!𝒂 𝝉!𝝉𝟎 )) 

where τ is the RT of the given lane-departure event, and a is a constant set as 1 s-1. 

The higher DI value is, the more momentary drowsiness a subject is showing. This study 

used correlation analysis to investigate the relationship between the EEG dynamics and 

the changes of RT. 

B.2.3 EEG Data Processing 

The 30-channel EEG signals referenced to the arithmetic average of left and right 

mastoid were first submitted to a band-pass finite impulse response filter (2 to 30 Hz) to 

eliminate DC drift and high-frequency noise including 60 Hz powerline noise. Trials 

contaminated by artifacts or noise were manually inspected and removed. Next, the 

filtered 30-channel EEG data were down-sampled to 250 Hz for analysis. 

Previous studies [17][19] have reported significant EEG spectral correlates of RT 

in stereotype frequency bands, such as delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), 

and beta (13-30 Hz) bands. This study thus examined the impact of RPCA processing on 

EEG spectral time series in the same EEG frequency bands. To assess the associations 

between EEG dynamics and cognitive drowsiness, this study first calculated the band 
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power (logarithmic signal variance) of each channel within a 3-second window before the 

onsets of each lane-deviation events, and then correlated that with the corresponding RT 

values. 

B.2.4 Robust Principal Component Analysis 

The applicability of the RPCA [120] has been demonstrated in effectively 

separating emotion-relevant and sparse EEG dynamics from the spontaneous task-

irrelevant background activity. This study employed RPCA for assessing the EEG 

correlates of drowsiness during driving. The RPCA mathematically decomposes multi-

channel EEG signals, X  ∈ 𝑹𝒎×𝒏 (m: number of attributes, n: number of observations), 

into a sparse matrix, S, and a low-rank matrix, L, followed by X = S + L, which can be 

efficiently solved by a tractable convex optimization proposed in [13]: 

𝒎𝒊𝒏𝑺!,𝑳!   𝝀 𝑺! 𝟏 + 𝑳! ∗   subject to X = S + L 

where ∙ ∗ denotes the matrix nuclear norm, i.e., the sum of singular values, ∙ 𝟏 

denotes the L1 norm, i.e., the sum of absolute values of matrix entries, 𝑺!  is the 

optimized estimate of sparse component, 𝑳!  is the optimized estimate of low-rank 

component, and 𝛌  is a positive regularizing parameter empirically defined as 𝝀 =

𝟏/ 𝒎𝒂𝒙(𝒎,𝒏) [13]. This study formed the input matrix (m: number of electrodes × 

number of time points in a 3-s epoch, n: number of epochs in a session) for each subject. 

The method of augmented Lagrange multipliers [124] was adopted to perform RPCA 

decomposition. After the RPCA decomposition, the correlation coefficients between the 

normalized RTs (the drowsiness index) and the EEG spectral features estimated 

separately from the original band-passed EEG signals, sparse component, and low-rank 

component were compared using a statistical assessment of Wilcoxon signed-rank test. 



	
  

	
   86 

This study hypothesized that the sparse components, S, would profitably extract 

drowsiness-related EEG dynamics, and therefore would be more correlated with the RTs, 

compared to the low-rank components, L, and the original EEG signals, X. 

B.3 Results and Discussion 

Figure B.1 illustrates the time series of RT profiles before and after the proposed 

RT normalization in two representative subjects. The alert RT is set to 0.6 second to map 

the RT to the drowsiness index. When a RT value is close to the defined alert RT, the 

drowsiness index increases more linearly as RT increases, until it reaches to a plateau 

close to 1 as RT is 4 seconds or longer. This warping is based on an assumption that there 

is very little difference in the brain state between 4- and 10-second RT as the subject was 

unresponsive to lane-deviation events. As can be seen, before the RT normalization 

shown in Figure B.1 (b), S1 seemed to retain alert across the entire session, while S2 

frequently behaved with drowsiness after 10 min driving. However, the drowsiness index 

after the RT normalization exhibited realistic fluctuations of drowsiness for both S1 and 

S2 in a 90-min driving task as shown in Figure B.1 (c). 

Figure B.2 explores the statistical significance of the correlations (log p-value) 

between RTs and band power at different scalp locations using the (the 1st row) band-

passed EEG signals, (the 2nd row) sparse components, and (the 3rd row) low-rank 

components. Brightness in gray-scaled topographies represents the correlation was 

statistically significant (a strong correlation) between the band power and RTs. The 4th 

(5th) row plots the differences of p-values between the 1st and the 2nd (3rd) rows. The red 

squares mark the channels whose correlations between the band power and RTs were 
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significantly enhanced in terms of the p-value over using the original EEG band power. 

Specifically, the ‘Original’ scalp map exhibited strong correlations in frontal delta, 

moderate correlations in frontal theta, and parietal-occipital theta and alpha, which were 

somewhat in line with previous studies [17][19]. The sparse components obtained by 

RPCA enhanced the extents of the correlations between the EEG power and RTs at 

several channels (marked in red), compared to the original scalp-EEG band power. The 

augmentations in the highlighted channels (see the 4th raw, Sparse - Original) were 

statistically significant. In contrast, the low-rank component did not provide any 

improvement in the correlations between EEG power and RTs (see the bottom row, Low-

rank – Original). 

Figure B.3 plots the comparative correlation coefficients between band power and 

RTs using the band-passed EEG signals, sparse components, and low-rank components at 

four representative locations, including Fz, Cz, Pz, and Oz. The improvements of 

spectrum-RT correlation could be found by the enhancement in correlation coefficients 

between RTs and Fz delta, Cz delta and theta, Pz delta, theta, and alpha, and Oz delta, 

theta, and alpha power. In particular, the highest correlation could be obtained at Oz 

(alpha power) using the original band-passed EEG signal, where the sparse component 

further strengthened this correlation. Subtle discrepancy in statistical testing results could 

be found as compared to Figure B.2 due to the different measurements (logarithmic p-

values and correlation coefficients) that were used in the statistical test. For instance, 

there is significant enhancement at F4 delta (see the red dot at delta, 1st column & 4th row 

in Figure B.2), but no significance at the nearby Fz delta. However, the correlation 

coefficient was significantly enhanced at Fz delta (see the top left of Figure B.3). Note 
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that the sparse components generated features with higher correlations for most of the 

comparative conditions, which was consistent with the inference from the results shown 

in Figure B.2. The comparison of correlation coefficients suggests that sparse component 

can enhance the discriminative power of drowsiness-related EEG features. 

The above findings evidently proved the posed hypothesis that the sparse EEG 

signals obtained by RPCA can profitably extract drowsiness-related EEG dynamics, and 

therefore carry more informative EEG spectral features accounting for behavioral 

drowsiness. In this preliminary proof-of-concept study, with such an improvement in 

feature extraction for EEG correlates of drowsiness, we believe that RPCA could boost 

the performance of a drowsiness detecting system. 

While previous studies have applied independent component analysis (ICA) to 

extract highly informative EEG correlates of drowsiness [19][41], a quantitative 

comparison between RPCA, ICA, and other related approaches on enhancing the quality 

of EEG features would be of interest to the researchers in this field and a natural next step 

of this study. Future work will also study to what extent the RPCA-enhanced EEG 

spectral correlates of drowsiness can improve the performance of drowsiness detection, 

which will increase the practicability of BCI-based drowsiness detection system in real 

life. 
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Figure B.1: Time series of RTs before and after RT normalization in two representative subjects. (a) the 
conversion from RT to the proposed lapse index with alert RT = 0.6 s. (b) the time series of original RTs in 

Subjects S1 and S2, and (c) the time series of the lapse index after RT normalization. 
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Figure B.2: The statistical significance of the correlations (log p-value) between RTs and band power 
using (from the top) the band-passed EEG signals (original), sparse components, and low-rank components 
at different scalp locations. The correlation intensity was estimated by logarithmic p-value from correlation 
analysis. Brightness in the gray-scaled topographies represents a strong correlation between the EEG band 

power and RTs. (the 4th row) Sparse - Original (the 5th row, Low-rank - Original) compares the significance 
of correlations between sparse (low-rank) and the original spectra. The red squares mark the channels with 

not only strong correlation (log(p)<-11), but also significant increases from that of original EEG band 
power (p<0.05). 
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Figure B.3: The average correlation coefficients between band power and RTs at four representative scalp 
locations (Fz, Cz, Pz, and Oz) using the band-passed EEG signals (Original), sparse components (S), and 

low-rank components (L). Black bars indicate significant increase (either positive or negative) in 
correlation coefficient (p<0.05) comparing S to Original. 

B.4 Conclusion 

The present study empirically demonstrated the efficacy of RPCA for enhancing 

EEG correlates of drowsiness. Study results suggested that the RPCA could be used as a 

pre-processing step to extract the drowsiness-related EEG dynamics of interest from the 

spontaneous background activity, leading to a more robust drowsiness-detection BCI in 

real-world environments. 
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