UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Dynamics vs. Development in Numerosity Estimation: A Computational ModelAccurately Predicts a Developmental Reversal

Permalink

https://escholarship.org/uc/item/6zd812kk

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 42(0)

Authors

Kim, Dan Opfer, John

Publication Date

2020

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

Dynamics vs. Development in Numerosity Estimation: A Computational Model Accurately Predicts a Developmental Reversal

Dan Kim

The Ohio State University, Columbus, Ohio, United States

John Opfer

The Ohio State University, Columbus, Ohio, United States

Abstract

Perceptual judgments result from a dynamic process, but little is known about the dynamics of numerosity estimation. A recent study proposed a computational model (D-MLLM) that combined a model of trial-to-trial changes with a model for the internal scaling of discrete number. Here, we tested a surprising prediction of the model – a situation in which children's estimates of numerosity would be better than those of adults. Consistent with the model simulations, task contexts led to a clear developmental reversal: children made more adult-like, linear estimates when to-be-estimated numbers were descending over trials (backward), whereas adults became more like children with log estimates when numbers were ascending (forward). In addition, adults' estimates were subject to inter-trial differences regardless of stimulus order. In contrast, children were not able to use the trial-to-trial dynamics unless task contexts were salient (forward or backward order), indicating the limited memory capacity for dynamic updates. Together, the model adequately predicts both developmental and trial-to-trial changes in number-line tasks.