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Mapping internal brainstem
structures using T1 and T2
weighted 3T images

Susanne G. Mueller*

Department of Radiology, University of California, San Francisco, San Francisco, CA, United States

Background:Many neurodegenerative diseases a�ect the brainstem and often do

so in an early stage. The overall goal of this project was (a) to develop a method

to segment internal brainstem structures from T1 and T2 weighted sequences

by taking advantage of the superior myelin contrast of the T1/T2 ratio image

(RATIO) and (b) to test if this approach provides biological meaningful information

by investigating the e�ects of aging on di�erent brainstem gray matter structures.

Methods: 675 T1 and T2 weighted images were obtained from the Human

Connectome Project Aging. The intensities of the T1 and T2 images were

re-scaled and RATIO images calculated. The brainstem was isolated and k-

means clustering used to identify five intensity clusters. Non-linear di�eomorphic

mapping was used to warp the five intensity clusters in subject space into a

common space to generate probabilistic group averages/priors that were used

to inform the final probabilistic segmentations at the single subject level. The five

clusters corresponded to five brainstem tissue types (two gray matters, two mixed

gray/white, and 1 csf/tissue partial volume).

Results: These cluster maps were used to calculate Jacobian determinant

maps and the mean Jacobians of 48 brainstem gray matter structures extracted.

Significant linear or quadratic age e�ects were found for all but five structures.

Conclusions: These findings suggest that it is possible to obtain a biologically

meaningful segmentation of internal brainstem structures from T1 and T2

weighted sequences using a fully automated segmentation procedure.

KEYWORDS

brainstem, internal structures, segmentation, T1, T2, aging

1 Introduction

The brainstem is the main gateway for information flow in and out of the cerebrum

and plays a major role in locomotion, sensory processing, autonomic control, consciousness

and even cognitive function. Many neurodegenerative diseases such as Alzheimer’s and

Parkinson’s disease affect the brainstem and often do so in a relatively early or even

prodromal stage (Winkler et al., 2011; Braak and Del Tredici, 2012; Seidel et al., 2015; Rüb

et al., 2016). Consequently there is a considerable interest in assessing brainstem structure

and function in vivo. However, except for the substantia nigra and nucleus (ncl.) ruber,

brainstem nuclei and tracts are usually not discernible in MR images acquired for clinical

purposes. This prompted the development of several dedicated brainstem sequences, e.g.,

high resolution and high field DTI and fMRI, MP2Rage for multi-contrast segmentation,

3D multi-echo FLASH sequence for multiparametric mapping, iron sensitive susceptibility

mapping, myelin water fraction mapping and neuromelanin sensitive turbo-spin echo and
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magnetization transfer weighted sequences (Sasaki et al., 2006;

Lambert et al., 2014; Faull et al., 2015; Betts et al., 2017; Keuken

et al., 2017; Bianciardi et al., 2018; Priovoulos et al., 2018;

Sclocco et al., 2018; Liu et al., 2019; Bouhrara et al., 2020;

Mueller, 2020). These specialized sequences depict the targeted

brainstem structures with impressive detail but time constraints

and additional requirements such as for example ultra-high field

magnets or need of expert post-processing make them difficult to

implement in clinical protocols.

Whole brain T1 and T2 weighted sequences however are

routinely acquired in clinical 3T brain imaging protocols. Their

signal intensities strongly covary with myelin content but while the

T1 signal increases with increasing myelin content, the T2 signal

decreases. Glasser and Van Essen (2011) and Van Essen et al. (2013)

exploited this divergent behavior by calculating a T1/T2 ratio image

(RATIO) that has a greatly enhanced cortical myelin signal and is

now commonly used for cortical myelin mapping. The brainstem

also contains sparsely myelinated structures, e.g., brainstem nuclei

or the spinothalamic tract, and densely myelinated/ iron rich

structures, e.g., the cortico-spinal tract or the nucleus ruber.

Densely and sparsely myelinated structures are tightly packed

together resulting in steep myelination gradients similar to those

observed in the cortex. Therefore, the RATIO image alone or

in combination with the T1 and T2 weighted image could also

be useful for the segmentation of internal brainstem structures.

The first aim of this study was to test this assumption using

a modification of a brainstem segmentation approach based on

MP2Rage derived T1 weighted and T1 relaxation images (Mueller,

2020). The second aim was to test if this approach provides

biological meaningful information by investigating the effects of

typical aging on the volumes of the different brainstem gray matter

structures identified in these segmentations.

2 Methods

2.1 Population

The imaging data of 675 subjects [age mean (SD): 58.9 (14.9),

age range: 36–100, m/f: 292/382] from the Human Connectome

Project Aging (HCA) was used for this project. The aim of

the HCA is to study “typical aging,” i.e., its population includes

participants who exhibit health issues typically seen in their age

cohort, e.g., hypertension, musculoskeletal pain, but do not suffer

from pathological conditions, e.g., major depression, sleep apnea,

stroke or suspected Alzheimer’s disease etc. It collects a variety

of structural and functional MR images as well as behavioral and

biological data.

2.2 Imaging

All participants were scanned on a customized Siemens 3T

“Connectome Skyra” at Washington University using a standard

32-channel Siemens receive and a body transmission coil (van

Essen). The distortion corrected T1 weighted images [3DMPRAGE

TR = 2400ms, TE = 2.14ms, TI = 1000ms, FA = 8◦, Bandwidth

(BW) = 210Hz per pixel, Echo Spacing (ES) = 7.6ms, 0.8mm

isotropic resolution] and T2 weighted images (SPACE, TR =

3200ms, TE = 565ms, 0.8mm isotropic resolution with same

matrix and slices as T1 weighted images) were used for this project.

2.3 Image processing

The work flow is summarized in Figure 1. The segmentation

of the internal brainstem structures used a modification of the

MP2Rage based approach (Mueller, 2020). The T2 SPACE image

(T2) was co-registered to MPrage T1 weighted image (T1).

In the next step, the bias correction algorithm implemented

in SPM12’s “unified segmentation” (https://www.fil.ion.ucl.ac.uk/

spm/software/) was used to generate bias corrected versions of

the T1 and co-registered T2 (rT2) and to obtain gray and

white matter tissue maps from the T1. The gray matter map

was spatially normalized into the MNI space using SPM12’s

“normalize” function and template, and the forward and inverse

transformations of this step calculated. The former was applied

to all outputs (T1, rT2, tissue maps, and the binary brain tissue

mask that was generated by combining gray and white matter

maps thresholded at 0.2). The next step was to enhance the

gray/white contrasts of the T1 and rT2 images using a modification

of the linear scaling procedure proposed by Ganzetti et al. (2014),

i.e., instead of obtaining reference intensities from non-brain

tissue regions it used fixed, experimentally determined reference

intensities at Ref1 = 100 and Ref2 = 20. The CSF map and the

white matter tissue map were thresholded at 0.9 to identify voxels

with high probability to be either CSF voxels or white matter

voxels. The intensities of these high probability CSF and white

matter voxels were extracted from each subject’s T1 and rT2 and

the modes of their intensity histograms determined after excluding

voxels corresponding to vessels whose intensity was either below

the 1th percentile (rT2) or above the 99th percentile (T1). The

histogram modes were used to re-scale the T1 and rT2 using the

following formulas:

T1:

T1fact = abs(
Ref 1− Ref 2

wmT1Mode
− csfT1Mode

)

T1shift = abs(

((

wmT1Mode
Ref 2

)

−
(

csfT1Mode
Ref 1

))∗
2

wmT1Mode
− csfT1Mode

)

T1cal =
(

T1∗T1fact
)

− T1shift

wm_T1_Mode, mode of histogram from voxels with more

than 90% probability to be white matter, csf_T1_Mode, mode of

histogram from voxels with more than 90% probability to be CSF

voxels, T1fact, scale factor for T1 by which the original intensity

range is reduced, T1shift, distance by which the intensity histogram

is moved toward the left, abs, absolute. T1_cal, re-scaled T1 image.

rT2:

rT2fact = (abs(
Ref 2− Ref 1

wmrT2Mode
− csfrT2Mode

))

rT2shift = abs(

(

csfrT1mode
Ref 2

)

−
(

wmrT2Mode
Ref 1

)

wmrT2Mode
− csfrT2Mode

)

rT2cal =
(

rT2∗rT2fact
)

− rT2shift
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FIGURE 1

Summary of brainstem segmentation pipeline. The pipeline consists of 3 main modules of which each encompasses several steps. The first module is

“pre-processing” that uses SPM12 routines for tissue segmentation with inbuilt additional bias correction and brainmask generation, followed by

spatial normalization to the MNI space while maintaining the original image resolution. The T1 and T2 image are re-scaled and the T1/T2 or RATIO

image calculated. The rois used to extract the gray (blue) and white (red) matter intensities reported in Table 2 are shown in the insert. The images are

then passed on to the second module whose first step is to use a binary brainstem/thalamus mask in MNI space to extract the

brainstem/diencephalon from each of the three images. The next step uses a k-mean clustering algorithm to identify 5 intensity clusters. The cluster

labels are converted into an image in subject space as binary first pass segmentations. This is followed by the generation of a group average

probability map or prior map for each cluster by warping the first pass binary segmentations into a common space using SPM’s DARTEL “create

template algorithm” which is also the first step of the last module or “final segmentation,” i.e., the generation of probabilistic group averages to be

used as priors to refine the segmentation outputs. The transformation matrix from this step was inverted and used to warp the probabilistic group

averages into the subject/MNI space. The information from the priors was combined with the distance information from the clustering step which

allowed to clean-up voxels assigned to a cluster not consistent with the probability information and to convert the binary first pass segmentation into

a probabilistic final segmentation. Please see “Methods” for more details.

wm_rT2_Mode, mode of histogram from voxels with more

than 90% probability to be white matter, csf_rT2_Mode, mode

of histogram from voxels with more than 90% probability to be

CSF voxels, rT2fact, scale factor for rT2 by which the original

intensity range is reduced, rT2shift, distance by which the intensity

histogram is moved toward the left, abs, absolute, rT2_cal, re-scaled

rT2_map image.

The re-scaling introduced brain tissue voxels with negative

intensities in the T1 and rT2. These negative voxels were identified

and replaced with the mean of the intensities of non-negative first-

order neighborhood voxels. The next step was to calculate the

RATIO image from the re-scaled T1 and rT2. Voxels in the RATIO

image whose intensity exceeded the 99th percentile were replaced

with the mean of the intensities of the first-order neighborhood

voxels with intensities at or below the 99th percentile. Combining

the re-scaled T1 and rT2 in this way further increased the

gray/white matter contrast. Table 1 summarizes the recalibration

effects in 10 randomly selected data sets.

2.4 First-pass binary brainstem
segmentation and prior generation

A brainstem/thalamus label in MNI space generated from the

2009 ICBM152 T1 atlas was used to extract the brainstem/thalamus
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TABLE 1 E�ects of rescaling on gray/white intensities.

Image Orig [mean(SD)] Rescaled [mean(SD)]

T1 1.35 (0.04)# 1.42 (0.10)∗

T2 1.45 (0.13)# 1.93 (0.31)∗

RATIO 2.88 (0.52)

Graymatter intensity, mean intensities extracted from 61 voxels in left amygdala; white matter

intensity, mean intensities extracted from 69 voxels in deep left temporal lobe white matter.

The intensities were used to calculate white/gray ratios for the original and rescaled T1 image

and to calculate gray/white ratios for the original and rescaled T2 images from 10 randomly

selected subjects. The white/gray (T1) and gray/white (T2) ratios of the original images were

significantly smaller than those of the rescaled images (#gray/white ratio of orig smaller

than rescaled p < 0.05 with two-tailed t-tests). The intensities extracted with the same rois

from T1/T2 ratio image (RATIO) calculated from the rescaled images were higher than the

intensities ratios from the rescaled T1 and T2 images (∗gray/white ratio of RATIO higher than

gray/white ratios of rescaled p < 0.05, two-tailed t-tests).

images (bs) from the re-scaled whole brain T1_cal, rT2_cal

and RATIO images. The brainstem/thalamus T1_cal image was

thresholded to generate a subject-specific binary brainstem tissue

mask. This mask was used to extract the tissue intensities from

each subject’s brainstem T1_cal, rT2_cal and RATIO image. The

intensities from each image type were converted into z-scores that

were supplied to the k-means clustering algorithm implemented in

Matlab 9.4 (The Math Works, Natick, MA) (number of clusters

n = 5, squared Euclidian distance function, maximum number

of iterations = 1000, replicates = 100). The optimal number of

clusters n = 5 had been determined experimentally by exploring

the range from 4 [no. of tissue components identified by Lambert

et al. (2014)] to 8 in three subjects. With n = 5 clusters, one of

the resulting first-pass cluster images corresponded to the outer

brainstem boundaries and the remainder highlighted different

internal brainstem structures when displayed in image space. The

cluster centroid information of each subject was matched to the

centroid information of a randomly selected reference subject and

the cluster numbering accordingly changed to ensure a consistent

cluster numbering/centroid assignment across different subjects.

2.5 Evaluation of segmentation
performance

The rationale for starting out by entering all three images into

the clustering algorithm was based on the following reasoning:

A white matter voxel in the T1_cal whose intensity falls into the

gray matter range due to noise is assigned to the same cluster

as a gray matter voxel in a gray matter structure. Since noise

is random, the likelihood that this voxel has also a gray matter

intensity in the T2_cal image is low and this also mitigates

the influence of the T1 noise on the signal intensity in the

RATIO image. Combining all three images therefore increases

the likelihood that this white matter voxel is either assigned to

the correct cluster or at least has a larger distance to the gray

matter cluster centroid than it would have if the segmentation

would be based on the T1_cal alone. The next step was to

investigate if this assumption is indeed true. This was done by

obtaining raw segmentations using each of the three images as

the sole input and combinations, i.e., RATIO and T2, T1 and

T2. The following three indices were calculated for the three

image input and each clustering variant: (1) Misclassification

index: Percentage of voxels assigned to a cluster that fall outside

its probabilistic group average (thresholded at 0.3, see next

paragraph) averaged over all 5 clusters. A low value indicates

good clustering performance. (2) Misclassification distance: The

standardized centroid distance (see next paragraph for definition)

of all misclassified voxels as defined in 1 averaged over all 5 clusters.

A low value indicates a good clustering. (3) Subthreshold silhouette

index. The silhouette coefficient (range −1 to 1 with higher values

indicating a better performance) is a commonly used method to

assess the clustering performance. It provides an excellent measure

to assess clustering performance based on voxel intensity but is

oblivious to spatial information, i.e., the hypothetical noise affected

white matter voxel would receive a similar silhouette coefficient

as a true gray matter voxel in a gray matter structure if the

segmentation is solely based on the T1_cal intensity. Adding

the information from the T2_cal and RATIO image decreases

the silhouette coefficient of the noise affected white matter voxel

or “downgrades” its membership to the gray matter cluster but

leaves the silhouette coefficient of the true gray matter voxel

mostly unchanged thus confirming its membership to this cluster.

“Downgrading” noise-affected voxels in this way will increase

the number of voxels whose silhouette coefficient falls below

0.6. A segmentation that successfully “downgrades” misclassified

voxels is expected to have a high “subthreshold silhouette

index.” Taken together, the best performing segmentation is

expected to be characterized by a low misclassification index,

a low mean misclassification distance and a high subthreshold

silhouette index.

2.6 Final segmentation

The sorted first-pass cluster images from all 675 subjects

were used as inputs for DARTEL’s create template algorithm

in SPM12 to generate a probabilistic 5 cluster population

template. The transformation matrices generated for each subject

during this process were inverted and applied to the group

average of each cluster to project the latter into each subject’s

cluster image space. Using the information from the probabilistic

group averages in subject space and the standardized centroid

distances (original distances transformed to values between 0

and 1 with voxel closest to the cluster centroid = 1 and the

voxel with greatest distance= 0), each brainstem voxel in the

individual subject was assessed for consistency. It was considered

consistent if the cluster assignment based on centroid distance

coincides with the cluster assignment based on probabilistic group

averages, i.e., its probability to belong to this cluster is higher

than that to belong to one of the other clusters. Voxels with

inconsistent assignments were re-assigned to the cluster suggested

by the probabilistic group averages (alternate cluster) if they

met one of the following conditions. (1) Probability that voxel

belongs to the alternate cluster is ≥0.75 (2) Probability that

voxel belongs to the alternate cluster is higher by ≥0.20 than
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TABLE 2 Segmentation performance summary.

k-mean clustering inputs Misclassification index Misclassification standardized distance Silhouette index

All 3 images 0.22 (0.03) 0.987 (0.002) 0.53 (0.03)

RATIO only 0.51 (0.04)∗ 0.996 (0.001)∗ 0.27 (0.01)∗

T1 only 0.37 (0.03)∗ 0.994 (0.001)∗ 0.29 (0.00)∗

T2 only 0.31 (0.05)∗ 0.993 (0.001)∗ 0.31 (0.01)∗

RATIO & T2 0.28 (0.04)∗ 0.993 (0.001)∗ 0.31 (0.01)∗

T1 & T2 0.43 (0.09)∗ 0.986 (0.002) 0.55 (0.01)∗

∗Different from “all 3 images” p < 0.05.

probability to belong to original cluster. Finally, the binary cluster

images for each subject were converted into probabilistic cluster

images by multiplying them with the corresponding probabilistic

group average weighted by the standardized centroid distance

information for this subject.

2.7 Image analysis

The probabilistic cluster images in MNI space from all

675 subjects were used as inputs for DARTEL’s create template

algorithm in SPM12 to generate the final 5 cluster population

template. On these templates 48 brainstem regions of interest

(roi) (periaqueductal gray (PAG), ventral tegmental area (VTA),

rostromedial tegmental (Trm) and laterodorsal tegmental (Tld)

nucleus (ncl), raphe dorsalis ncl. (DR) median raphe ncl. (MedR),

raphe magnus ncl. (MR), raphe obscurus (OR) and raphe pallidus

ncl. (PR), left and right substantia nigra (SN), ncl. ruber (NR),

ncl. pedunculopontinus (PP), ncl. reticularis cuneiformis (CR),

ncl. reticularis pontis oralis (RPO), ncl. reticularis pontis tegmenti

(RPT), ncl. reticularis pontis caudalis (RPC), ncl. reticularis

gigantocellularis and parvocellularis (RG), medullary reticular ncl.

or ncl. reticularis medullae oblongatae (RMO), locus coeruleus

(LC), ncl. subcoeruleus (SC), ncl. parabrachialis (PB), ncl. pontis

(PN), ncl. tractus solitarii (NTS), ncl. olivarius inferior (OI),

ncl. ventrolateral medulla (VLM), parafacial zone (PZ), colliculus

superior (CS), and colliculus inferior (CI) were identified using the

brainstem atlases fromNaidich et al. (2009) and Paxinos andHuang

(2011) as references and manually delineated. The transformation

matrices generated during the final 5 cluster population template

building were converted into Jacobian determinant maps from

which the mean intensities from each of the 48 rois were extracted

for each subject.

2.8 Statistical analysis

ANOVA tests with Scheffe post-hoc tests were used to compare

misclassification indices, misclassification distances and silhouette

indices of the different clustering variants. Linear and quadratic

regression analyses with the mean Jacobian determinant of each roi

as dependent and age (linear regression) and age and age squared

(quadratic regression) as independent variable(s) were used to

investigate the influence of age on each roi. False discovery rate

(FDR) with q= 0.05 was used to correct for multiple comparisons.

3 Results

3.1 Segmentation performance

Please see also Table 2. As stated in Section 2.5, the

best performing segmentation is characterized by a low

misclassification index, a low mean misclassification distance

and a high subthreshold silhouette index. The three image

approach fulfills these criteria well given its low misclassification

index and misclassification distance combined with the high

subthreshold silhouette index. The segmentation based the

combined information from the T1_cal and T2_cal image performs

similarly well or slightly better as the three image approach

regarding misclassification distance and high subthreshold

silhouette index. However, its misclassification index is almost

twice that of the three image approach. This indicates that although

the T1 and T2 combination is effective downgrading misclassified

voxels, the three image approach creates fewer misclassified

voxels. Despite its strong gray/white contrast, the RATIO image

as sole input performed worse than the T1_cal or T2_cal image as

sole inputs.

3.2 Tissue types in probabilistic population
cluster maps or priors

Please see also Figure 2, that depicts the probabilistic priors for

each of the five clusters on the left side and an example of the

quality of the final segmentation in a single subject on the right

side. Using the brainstem atlas of Naidich et al. (2009) as reference,

Cluster 1 encompasses mostly the iron rich SN (reticulata) and

NR and white matter structures such as the frontopontine and

parietotemporopontine tract and at the level of the pons sections

of the middle cerebral peduncle. Cluster 2 is a “partial volume”

cluster that consists of voxels at the brainstemCSF/tissue boundary.

Cluster 3 is a gray matter cluster containing the PAG. Cluster 4 is a

mixed gray/white cluster that besides gray/white transitions/partial

volume predominantly contains white matter structures, e.g.,

superior and inferior cerebellar peduncles, corticospinal tract,

spinothalamic tract, medial and lateral lemniscus, central tegmental

tract but also gray matter structures, e.g., SN (compacta), CS, CI,

PB, RPO, RPC, Tld, RG. Cluster 5 is a predominantly gray matter

cluster that encompasses for example, VTA, CR, DR, LC, SC,MedR,

MR, OI, NTS, PR, OR.

Frontiers inNeuroimaging 05 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1324107
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Mueller 10.3389/fnimg.2023.1324107

FIGURE 2

Brainstem segmentation outputs. The first 5 left-sided rows are 3D renderings and the corresponding projections of the 5 probabilistic population

cluster maps or priors onto a population T1 brainstem image that were generated with DARTEL (A) The first 5 right sided rows show the final

segmentations of an individual subject (B) The row below depicts a 3D rendering of the brainstem labels and the labels overlaid on the population T2

brainstem image (C) Below (D) is a Jacobian Determinant map generated by the standard VBM approach (input whole brain gray and white tissue

maps) whereas the bottom row (E) shows the Jacobian Determinant map generated by supplying the 5 final segmentations of an individual to

DARTEL. Details of individual structures, e.g. RN, NTS etc. are identifiable.
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TABLE 3 Results of linear and quadratic regression analyses.

Group Structure Linear
regression

age
coe�cient

R
square
adjust

p-
value

FDR Quadratic
regression

age
coe�cient

quad

R square
adjust

p-value FDR

Autonomic PAG −0.002 0.035 0 Sig 0 0.033 0.915 Not sig

L PB 0 −0.001 0.744 Not sig 0 −0.003 0.755 Not sig

R PB 0 −0.001 0.837 Not sig 0 −0.002 0.452 Not sig

L NTS −0.003 0.187 0 Sig 0 0.186 0.914 Not sig

R NTS −0.003 0.164 0 Sig 0 0.164 0.423 Not sig

L PFZ −0.001 0.022 0 Not sig 0 0.023 0.141 Not sig

R PFZ −0.001 0.025 0 Not sig 0 0.027 0.15 Not sig

L VLM −0.002 0.031 0 Sig 0 0.036 0.041 Not sig

R VLM −0.002 0.023 0 Not sig 0 0.028 0.038 Not sig

Nigra L SN −0.002 0.135 0 Sig 0 0.139 0.045 Not sig

R SN −0.002 0.119 0 Sig 0 0.13 0.003 Sig

Pre-cerebellar L NR −0.006 0.195 0 Sig 0 0.196 0.209 Not sig

R NR −0.006 0.222 0 Sig 0 0.223 0.174 Not sig

L PN −0.001 0.032 0 Sig 0 0.036 0.066 Not sig

R PN −0.001 0.024 0 Not sig 0 0.023 0.525 Not sig

L OI −0.003 0.152 0 Sig 0 0.153 0.27 Not sig

R OI −0.003 0.161 0 Sig 0 0.161 0.345 Not sig

Sensory L CS −0.003 0.048 0 Sig 0 0.047 0.869 Not sig

R CS −0.003 0.084 0 Sig 0 0.086 0.121 Not sig

L CI −0.004 0.058 0 Sig 0 0.059 0.155 Not sig

R CI −0.004 0.078 0 Sig 0 0.079 0.189 Not sig

Tegmental VTA −0.002 0.114 0 Sig 0 0.011 0.826 Not sig

Trm 0.005 0.056 0 Sig 0 0.064 0.164 Not sig

L PP −0.001 0.002 0.102 Not sig 0 0.001 0.849 Not sig

R PP 0 −0.001 0.836 Not sig 0 −0.001 0.27 Not sig

L Tld −0.002 0.061 0 Sig 0 0.06 0.391 Not sig

R Tld −0.002 0.074 0 Sig 0 0.08 0.021 Not sig

Coeruleus L LC −0.001 0.058 0 Sig 0 0.057 0.544 Not sig

R LC −0.002 0.08 0 Sig 0 0.082 0.138 Not sig

L SC −0.002 0.047 0 Sig 0 0.046 0.446 Not sig

R SC −0.002 0.091 0 Sig 0 0.092 0.302 Not sig

Raphe DR 0 0.001 0.245 Not sig 0 −0.001 0.817 Not sig

MedR −0.001 0.02 0 Not sig 0 0.021 0.258 Not sig

MR −0.002 0.023 0 Not sig 0 0.023 0.242 Not sig

PR −0.002 0.03 0 Sig 0 0.028 0.768 Not sig

OR −0.001 0.004 0.059 Not sig 0 0.014 0.006 Sig

Reticular L CR −0.004 0.203 0 Sig 0 0.207 0.035 Not sig

R CR −0.004 0.218 0 Sig 0 0.218 0.179 Not sig

L RPO −0.004 0.118 0 Sig 0 0.118 0.442 Not sig

R RPO −0.004 0.145 0 Sig 0 0.146 0.215 Not sig

(Continued)
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TABLE 3 (Continued)

Group Structure Linear
regression

age
coe�cient

R
square
adjust

p-
value

FDR Quadratic
regression

age
coe�cient

quad

R square
adjust

p-value FDR

L RPT −0.004 0.048 0 Sig 0 0.052 0.043 Not sig

R RPT −0.004 0.052 0 Sig 0 0.063 0.003 Sig

L RPC −0.001 0.027 0 Not sig 0 0.026 0.344 Not sig

R RPC −0.001 0.03 0 Sig 0 0.032 0.097 Not sig

L RG −0.001 0.004 0.05 Not sig 0 0.008 0.052 Not sig

R RG −0.001 0.005 0.038 Not sig 0 0.009 0.049 Not sig

L RMO −0.002 0.01 0.005 Not sig 0 0.017 0.019 Not sig

R RMO −0.001 0.002 0.114 Not sig 0 0.011 0.009 Not sig

PAG, periaqueductal gray, PB, ncl. parabrachialis, NTS, ncl. tractus solitarii, PFZ, parafacial zone; VLM, ventrolateral medulla: SN, substantia nigra; NR, ncl. ruber: PN, pontine nuclei; OI, ncl

olivarius inferior, CS, ncl. colliculus superior; CI, nucleus colliculus inferior; VTA, ventral tegmental area; Trm, ncl tegmentalis rostromedialis;PP, ncl. pedunculopontinus; Tld; ncl. tegmentalis

laterodorsalis, LC, locus coeruleus; SC, ncl subcoeruleus; DR, ncl. raphe dorsalis, MedR, ncl raphe medianus; MR; ncl raphe magnus; PR, ncl raphe pallidus; OR, ncl raphe obscurus; CR, ncl.

reticularis cuneiformis; RPO, ncl. reticularis pontis oralis; RPT, ncl. reticularis pontis tegmenti; RPC, ncl reticularis pontis caudalis; RG; ncl. reticularis gigantocellularis; RMO, ncl. reticularis

medullae oblongatae, adjust, adjusted.

FIGURE 3

Brainstem structures with significant age e�ect after correction for multiple comparisons with (FDR, q = 0.05). The roi color reflects the regression

coe�cient strength (please see also Table 3), negative coe�cients are indicated in cold and positive coe�cients in warm colors. CI, colliculus

inferior; CR, ncl. reticularis cuneiformis; CS, colliculus superior; LC, locus coeruleus; NR, ncl. ruber; NTS, ncl. tractus solitarii; OI, ncl. olivarius interior;

OR, ncl. raphe obscurus; PAG, periaqueductal gray; PN, pontine nuclei; PR, ncl. raphe pallidus; RPC, ncl., reticularis pontis caudalis; RPO, ncl.

reticularis pontis oralis, RPT, ncl. reticularis pontis tegmenti; SC, ncl. subcoeruleus; SN, substantia nigra; Tld, ncl. tegmentalis laterodorsalis; Trm, ncl.

tegmentalis rostromedialis; VLM, ventrolateral medulla; VTA, ventral tegmental area.

3.3 Regression analysis

Please see Table 3 and Figure 3. Significant negative linear

associations between age and volume surviving FDR correction

were found for 31 brainstem rois (PAG, VTA, NTS, SN, NR,

OI, CS, CI, Trm, Tld, LC, SC, PR, CR, RPO, RPT, left PN, left

VLM, and right RPC). The adjusted r squares ranged from <0.03

to 0.22. Age explained 20% or more of the variations of the

volumes of the left and right NR and CR and more than 10% of

the variation of the volumes of the left and right SN, RPO, OI

and NTS. Negative significant associations that did not survive

FDR correction were found for 10 additional brainstem rois (PFZ,

RG, MedR, MR, right PN, right VLM, left RPC, and left RMO).

Significant quadratic age effects surviving FDR correction were

found for right SN, right RPT and OR. Of these, the OR was the

only structure that showed only quadratic age effects. Quadratic

age effects not surviving FDR correction were found for left SN,

left CR, left RPT, right RG and bilateral VLM and RMO. Age had
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no significant effects on the volumes of the DR, left and right PP

and PB.

4 Discussion

The study had the following main findings: (1) The myelin-

sensitive RATIO image together with the re-scaled and thus

contrast-enhanced T1 and T2 images used to calculate it allows

to identify 5 tissue clusters depicting internal gray and white

matter brainstem structures when supplied to k-means clustering.

These 5 tissue clusters allow to generate probabilistic priors

at the group level that together with the distance information

from the clustering step can be used to eliminate misclassified

voxels and to generate probabilistic brainstem tissue maps for

individual subjects. In combination with a labeled brainstem

atlas, these tissue maps can be used to obtain volumetric

information of brainstem structures of interest for example by

calculating Jacobian determinant maps. (2) The ability of the new

brainstem segmentation approach to detect biological meaningful

information was demonstrated by investigating the impact of

typical aging on the volumes of 48 brainstem structures in 675

subjects from the HCA data repository. With the exception of DR,

PP and PB whose volumes were not influenced by age, strong aging

effects, i.e., typical aging explained at least 10% or more of the

volume variability, were found for VTA, NR, CR, SN, RPO, OI and

NTS. Effects smaller than 10% were found for the volumes of many

of the remaining brainstem structures. The next paragraphs will

discuss these findings in more detail.

To the best of our knowledge the T1/T2 brainstem

segmentation method presented here is the first that uses

sequences that are routinely acquired in clinical exams. The same

sequences are also often used in research studies investigating large

populations of healthy subjects such as the Human Connectome

Project which allows to establish normal ranges. Furthermore,

the process is fully automated and does not require expert user

input. This indicates that this technique could potentially be

used in clinical settings to probe for brainstem pathologies

if the T1 and T2 sequences have the same and high enough

resolution (ideally < 1mm isotropic) and are acquired before

contrast injection.

A crucial component of this new technique is the myelin-

sensitive RATIO image. Although more complex than the cortical

rim with its sparsely myelinated outer and densely myelinated

inner layers, the RATIO image also enhances the contrast

differences between sparsely and densely myelinated or iron rich

brainstem structures. Considering that the RATIO image is derived

from the T1 and T2 images and has a superior gray/white

contrast and myelin signal compared to these images, combining

it with these two contrasts for the cluster analysis seems at

first redundant. But as demonstrated here, combining the three

images for the cluster analysis is an efficient way to reduce

misclassification due to random noise and thus to achieve a

better segmentation performance than it is possible with just the

RATIO image.

The T1/T2 brainstem segmentation is based on a modification

of a previously described segmentation approach (Mueller, 2020)

that used the T1 relaxation map and T1 weighted image derived

from the MP2Rage sequence (Marques et al., 2010) as input.

The T1/T2 brainstem segmentation depicts the same structures as

the MP2Rage based brainstem segmentation. The T1/T2 derived

cluster maps primarily describing gray matter structures (cluster 3,

cluster 5) and brainstem tissue/csf partial volume (cluster 2) look

similar to the gray matter clusters generated with the MP2Rage

approach, i.e., the same structures are grouped together in the

T1/T2 and the MP2Rage segmentation. However, clusters 1 and

4 both depict white and gray matter structures together in one

cluster but are separated by tissue class in the clusters generated

by the MP2Rage approach. These mixed-tissue clusters cannot

be explained by the different cluster number (6 clusters for the

MP2Rage vs. 5 clusters for the T1/T2 approach) because clustering

the intensities into 6 instead of 5 cluster number only further

subdivides cluster 2 but keeps clusters 1 and 4 intact. There are

two possible explanations for this: (1) In contrast to the T1/T2

approach, the images derived from the MP2Rage sequence do

not have to be co-registered, i.e., the signal properties of the

MP2Rage images are not affected by re-sampling and interpolation.

(2) The T1/T2 signal is known to be influenced by other factors

besides myelin (Arshad et al., 2017; Hagiwara et al., 2018; Uddin

et al., 2018) and thus captures slightly different features than

T1 or T2 relaxation based approaches. These differences suggest

that the MP2Rage based approach might be superior to the

T1/T2 based approach for the segmentation of internal brainstem

structures. However, this needs to be confirmed by a direct

comparison of the performance of these two approaches in the

same population.

The majority of the investigated brainstem structures becomes

smaller with age but the effect of age on their volume was modest as

it explained <10% of the variation. The exception were VTA, SN,

NR, CR, RPO, OI and NTS in which age explained between 10 to

20% of the volume variation. SN and NR are iron rich structures

whose iron content increases with age (Keuken et al., 2017; Li et al.,

2021). This not only enhances their contrast thus allowing for a

more accurate segmentation but also causes a neuroinflammatory

state and cell damage (Zucca et al., 2017) which could explain

the more pronounced age-related volume loss in these nuclei.

Age-related structural and functional alterations have also been

described for the VTA (Siddiqi et al., 1999) NTS (Sturrock, 1992;

Yamamoto et al., 2005; Hardy et al., 2018) and for the OI (Pesce

et al., 1980; Sjöbeck et al., 1999; Lasn et al., 2006; Baizer et al., 2018)

although the findings are less consistent than those for SN and NR.

There exist to the best of our knowledge no studies investigating

age effects in CR or RPO but functions in which these nuclei, play

important roles i.e., locomotion, pain perception and sleep, are

affected by age (Bassant and Poindessous-Jazat, 2002; Farrell, 2012;

Lau et al., 2015) which supports the notion of age-related volume

losses in these structures.

The age-related volume loss in brainstem graymatter structures

found in this study complements the age-related myelin loss in

brainstem white matter tracts described by Bouhrara et al. (2020)

using myelin water fraction (MWF) mapping. Bouhrara et al.

(2020) also tested for quadratic age – MWF associations and

found that this model explained a higher percentage of the MWF

variability in white matter of the midbrain and superior cerebral

Frontiers inNeuroimaging 09 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1324107
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Mueller 10.3389/fnimg.2023.1324107

peduncle and the gray matter of the subthalamic nucleus, red

nucleus and substantia nigra than linear age – MWF models.

Testing for quadratic age – volume associations in this study

identified significant associations for SN, RPT, RG, VLM, OR, right

RMO, left CR and right Tld. However, the additional amount

of variation explained by the quadratic model compared to the

linear model was 1% or less which was consistent with the

visual impression of a linear age-volume associations in these

structures. The quadratic associations found by Bouhrara et al.

(2020) were stronger. There are several possible explanations for

this. The population studied by Bouhrara et al. (2020) included

younger subjects and thus a larger age range, i.e., 21–94 years

than this study with an age range 35–100 years. Lifetime white

matter myelination follows an inverted U shape and peaks in

the late twenties-early thirties (Bartzokis et al., 2004; Dvorak

et al., 2021) which means that in contrast to Bouhrara et al.

(2020) the myelination peak period is not adequately represented

in this study. Furthermore, with the exception of SN, NR and

subthalamic nucleus, Bouhrara et al. (2020) focused on well

myelinated larger white matter structures and usedMWFwhile this

study focused on volumes of small and mostly sparsely myelinated

gray matter structures.

This study has limitations. (1) The HCP-Aging project (ages

36–100 years) is part of the Human Connectome Lifespan project

that also includes the HCP-Development project (ages 5–21 years).

The HCP-Aging and HCP-Development use the same imaging

protocol. The age range 21–35 years is covered by the HCP Young

Adults project that used a slightly different imaging protocol, i.e.,

the T1 and T2 sequences have a higher resolution (0.7mm isotropic

instead of 0.8mm isotropic) which complicates combining it with

HCP-Aging and HCP-Development particularly when the focus

of interest is small structures such as brainstem nuclei. (2) The

re-scaling approach and in particular the reference values were

taken from the MP2Rage approach. No attempts were made to

optimize the reference values for the T1/T2 approach. Although

the resulting segmentation quality was satisfactory, it cannot

be excluded that optimizing these values would have improved

the segmentation.

Taken together, the findings presented here suggest that it

is possible to obtain a biologically meaningful segmentation

of internal brainstem structures using a fully automated

segmentation procedure and high resolution (0.8−1mm

isotropic) T1 and T2 weighted sequences. These sequences

can be easily implemented into a clinical protocol. Combined

with age corrected normal reference volumes, this technique

could be used to screen for the type of subtle brainstem

abnormalities that often precede the clinical manifestations

of neurodegenerative diseases such as Alzheimer’s and

Parkinson’s disease.
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