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Abstract: Newcastle disease virus (NDV) is a devastating worldwide poultry pathogen with major
implications for global food security. In this study, two highly inbred and genetically distinct chicken
lines, Fayoumis and Leghorns, were exposed to a lentogenic strain of NDV, while under the effects
of heat stress, in order to understand the genetic mechanisms of resistance during high ambient
temperatures. Fayoumis, which are relatively more resistant to pathogens than Leghorns, had larger
numbers of differentially expressed genes (DEGs) during the early stages of infection when compared
to Leghorns and subsequently down-regulated their immune response at the latter stages to return to
homeostasis. Leghorns had very few DEGs across all observed time points, with the majority of DEGs
involved with metabolic and glucose-related functions. Proteomic analysis corroborates findings
made within Leghorns, while also identifying interesting candidate genes missed by expression
profiling. Poor correlation between changes observed in the proteomic and transcriptomic datasets
highlights the potential importance of integrative approaches to understand the mechanisms of
disease response. Overall, this study provides novel insights into global protein and expression
profiles of these two genetic lines, and provides potential genetic targets involved with NDV resistance
during heat stress in poultry.

Keywords: chicken; Newcastle disease virus; RNA-seq; proteomics

1. Introduction

Newcastle disease virus (NDV) has become one of the most important avian diseases impacting
poultry production and trade worldwide. NDV is a highly contagious viral disease, capable of
spreading rapidly among populations of birds and decimating poultry flocks [1]. The World
Organization for Animal Health includes virulent forms of NDV as a specific hazard due to the
impact that NDV outbreaks have on international trade and animal welfare [2]. Proper vaccination,
along with effective use of biosecurity and biosafety measures on poultry farms, have been largely
successful in preventing infections by NDV. However, understanding host genetic diversity and
heterogeneity in the immune response can aid in supporting these measures and inform upon the
genetic factors involved in effectively responding to infection.
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Changing climate conditions is an additional factor that may impact the host’s resistance and
response to disease. Extreme weather events have been found to create more frequent [3] and intense [4]
disease outbreaks. Studies on seasonality, and the effects of temperature on Newcastle disease outbreaks
have noted higher incidences during the hot and dry, and hot and humid seasons [5,6]. Additionally,
investigations into the specific effects of heat stress on the immune response in chickens have
shown immunosuppressing effects through reduced lymphoid organ weights [7,8], lower circulating
antibodies [9], and altered systemic humoral response [10].

Several studies have investigated the role that host genetics plays in explaining differences in
response to NDV without heat treatment [11–13] in chickens. These studies found Fayoumi chickens,
native to Egypt and imported to the U.S. in 1954, to be relatively more resistant to the La Sota strain of
NDV, with significantly lower viral load and higher circulating anti-NDV antibodies, than Leghorn
chickens [12,14]. Furthermore, Fayoumis has demonstrated higher resistance to other viral pathogens
such as avian influenza [15] and Marek’s disease [16]. Transcriptome profiling of the two genetic
lines during NDV infection has identified many candidate genes and signaling pathways potentially
regulating the tissue-specific response to NDV infection [11–13]. Specifically, the mucosal surface of the
airways in chickens is one of the main sites targeted for infection and entry by respiratory pathogens
such as NDV. The innate and adaptive immune response of tissues in the respiratory tract, including
the lungs, are of critical importance to limiting the systemic spread of the virus in the bird.

Large-scale analysis of the proteome can accurately determine the relative abundance of proteins
within tissues. Proteomics offers the opportunity to comprehensively investigate the changes in
signaling pathways and biological processes that would otherwise be missed by transcriptome
sequencing. In addition, quantitative proteomics and the integrative analysis of the transcriptome can
provide corroborative evidence for high priority targets to aid in the discovery of unique mechanisms.
The objective of this study was to identify candidate genes and proteins involved with the chicken
response to NDV infection during heat stress using an integration of proteomic and transcriptomic
approaches. We believe this integrated approach will identify novel biomarkers and provide insight
into the differences in response to NDV infection during high ambient temperatures between Fayoumi
and Leghorn chicken lines.

2. Materials and Methods

2.1. Experimental Populations and Design

The experimental design of this study has been previously described by Wang et. al. 2018 [17].
Briefly, Fayoumi (M15.2) and Leghorn (GHs 6) inbred chicken lines from Iowa State University (Ames,
IA, USA) were used in this study. On the day of hatching, 56 Fayoumi and 55 Leghorn chicks
were transported from Iowa State University to the University of California, Davis. Upon arrival,
the chicks were housed in temperature- and humidity-controlled chambers in a biosafety level 2
animal facility. Twenty-five individuals from each genetic line were randomly selected and housed in
a separate chamber to be used as the control group. From day 1 to day 13 both groups were reared at
29.4 ◦C and 60% humidity. At 14 days of age, the experimental group was exposed to 38 ◦C for 4 h,
then decreased to 35 ◦C and maintained at this temperature until conclusion of the trial. The control
group was maintained at 29.4 ◦C and gradually decreased to 25 ◦C. On day 21, the heat-treated
birds were inoculated with 200 µL 107 EID50 of the La Sota strain of NDV through both ocular and
nasal passages. The control group was mock inoculated with 200 µL of 1X phosphate-buffered saline
(PBS). At 2, 6, and 10 days post-infection (dpi), four birds per treatment group per genetic line were
randomly selected and euthanized with CO2. Lung tissue was harvested and quickly placed into
RNAlater (ThermoFisher, Waltham, MA USA Cat#AM7024) and kept at −80 ◦C. Additional lung tissue
samples were collected at 2 and 6 dpi and snap frozen in liquid nitrogen and then stored at −80 ◦C
until protein extraction. Protein extraction, protein assay, and the in-solution trypsin digestion were
performed as reported by Kultz et. al. [18]. The experiment’s procedures were performed according
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to the guidelines approved by the Institutional Animal Care and Use Committee at the University of
California, Davis (IACUC #17853).

2.2. RNA Isolation and Library Construction

Total RNA was extracted from the lung of four individuals per treatment and genetic line for
each of the three time points. The lung tissue was homogenized in ice cold TRIzol (ThermoFisher,
Waltham, MA USA Cat#15596026) and processed using a standard phenol:chloroform method and
precipitated in 100% ethanol. The RNA pellet was then dissolved into water and treated with DNase
I (ThermoFisher, Cat#EN0521). Strand-specific RNA library preparation was prepared using the
NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB, Ipswich, MA USA Cat#E7420S)
according to the manufacturer’s instructions. Library validation and quantification was conducted
using the Agilent Bioanalyzer High Sensitivity Kit (Agilent, Santa Clara, CA USA Cat#5067-4626) and
Qubit dsDNA HS Assay kit (ThermoFisher, Cat#Q32854). The 100 base pair, paired-end sequencing
was performed on the Illumina HiSeq2500 system with a minimum sequencing depth of 30 million
reads per sample. Sequence data have been submitted through the Sequence Read Archive under
accession number: SRP155740.

2.3. Protein Identification and Quantification

Protein identification and quantification was performed as previously described by Kultz et. al.
(2016) [19]. Briefly, peptides from each sample were separated by reverse phase liquid chromatography
and then analyzed by an ImpactHD UHR-QTOF mass spectrometer (Bruker Daltonics, Bremen,
Germany). Peak lists were imported into PEAKS 7.5 (BSI, Waterloo, Canada) and PEAKS, Mascot 2.2
(Matrix Science, London, UK) and X!Tandem Cycle [19] search engines used to identify proteins from
the MS/MS spectra. Search results from all three methods were combined in Scaffold 4.4 (Proteome
Software Inc., Portland, OR, USA) with peptide false discovery rate (FDR) < 0.1, protein FDR < 0.1,
and peptides per protein ≥ 2. Label-free quantitative profiling of peptide intensities was performed
in PEAKS 7.5, and all identification and profiling data were made publicly available at the CAMP
proteome at the University of California, Davis (Davis, CA USA, AC# CAMPDDA00051). Pathway
analysis of differentially abundant proteins, DAPs, identified at each timepoint between conditions
was done using STRING [20]. The correlation between the log2 change in protein abundance and log2

fold change in gene expression was calculated on 585 protein-transcript pairs. Spearman’s correlation
coefficient and significance value was determined using R’s cor.test function [21] for all timepoints.

2.4. Data Analysis

Four major factors were included for analysis: condition (treated, non-treated), line (Leghorn,
Fayoumi), sex (male, female), and time point (2, 6, and 10 dpi). Data at each time point consisted of
16 individuals, four per treatment and genetic line. Raw reads from RNA-seq were trimmed using
FastQC [22] to remove duplicates, reads with base quality scores <30, and adapter contamination.
These reads were then aligned using STAR [23] to the galGal5 reference genome and Ensembl
annotation using default settings. Gene counts were calculated using HTSeq [24] and differential gene
analysis was done using edgeR [25]. The statistical model design included the effects of line, condition,
sex, and time point. In addition, in order to identify genes that were differentially expressed between
genetic lines in response to treatment and, therefore, potentially associated with disease resistance
to NDV, the interaction between condition and genetic line was included. Genes were identified as
differentially expressed if they had an FDR < 0.05, and an average transcript count >10. Pathway
analysis using the DEGs of within line contrasts was performed using Qiagen’s Ingenuity Pathway
Analysis software [26]. Z-score cutoff of |z| > 1 identified significantly up- or down-regulated
pathways [26].
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3. Results

3.1. Differential Gene Expression from within-Line Comparisons

Differential gene expression analysis between treated and non-treated individuals was performed
within both Fayoumi and Leghorn chickens at 2, 6, and 10 dpi to explore changes in gene expression
induced by NDV infection and heat stress. Comparisons between treated and non-treated Fayoumi
chickens at 2 dpi identified 122 differentially expressed genes (DEGs) that were up-regulated and
58 DEGs that were down-regulated (Table 1). The number of DEGs subsequently decreased to 26
up-regulated and 27 down-regulated DEGs at the 6 dpi timepoint. The largest number of DEGs
identified within line was at 10 dpi with 173 up-regulated and 358 down-regulated DEGs. For Leghorns,
35 DEGs were up-regulated while only two DEGs were down-regulated at 2 dpi. Principal component
analysis to identify sample clustering for the transcriptomic and proteomic data can be found
in the Supplementary Figures (Figures S1 and S2). For both the transcriptomic (Figure S1) and
proteomic (Figure S2) datasets, the samples appeared to cluster by genetic line and then by dpi.
In both datasets, the samples did not appear to cluster by treatment state across all three time points.
Very few genes were differentially expressed at 6 dpi with only six DEGs up-regulated and one
DEG that was down-regulated. At 10 dpi, Leghorns had only 10 and five DEGs up-regulated and
down-regulated, respectively.

Table 1. Number of differentially expressed genes (DEGs) and differentially abundant proteins (DAPs)
in Fayoumis and Leghorns at each timepoint with a false discovery rate (FDR) < 0.05.

Differentially Expressed Genes Differentially Abundant Proteins

Line Days Post-Infection Up-Regulated Down-Regulated Up-Regulated Down-Regulated

Fayoumi 2 122 58 0 6
Leghorn 2 35 2 5 5
Fayoumi 6 26 27 4 9
Leghorn 6 6 1 62 37
Fayoumi 10 173 358
Leghorn 10 10 5

3.2. Pathway Analysis of Differentially Expressed Genes

Ingenuity pathway analysis (IPA) of the DEGs identified in the Fayoumi and Leghorn within line
comparisons revealed canonical pathways unique to each genetic line (Figure 1A–F). Fayoumi had
eight and 19 significant pathways enriched at 2 and 6 dpi, respectively. Notable pathways include the
phagosome maturation (2 dpi), serotonin receptor signaling (2 dpi), IL-9 signaling (6 dpi), ERK/MAPK
timepoint (6 dpi), and autophagy signaling (6 dpi) pathways. Pathway enrichment at 10 dpi
identified 47 significantly enriched pathways, with 28 of these pathways with a predicted negative
Z-score suggesting down-regulation and one pathway with a predicted positive Z-score (Table 2).
These down-regulated pathways include IL-8 signaling, B cell receptor signaling, and NF-kappaB
signaling which are prominent pathways involved in the immune response. Very few pathways were
enriched among the Leghorn DEGs across all three timepoints. At 2 dpi, only six pathways were
significantly enriched, and of these pathways the majority were involved with glycogen metabolism
including glycogen degradation II, glycogen degradation III, and glucose and glucose-1-phosphate
degradation pathways. Similarly, these three glycogen and glucose degradation pathways were again
among the seven enriched pathways at the 6 dpi timepoint for Leghorns. Analysis at the 10 dpi
timepoint identified only four significantly enriched pathways.
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Figure 1. Significantly enriched pathways identified through the Ingenuity Pathway Analysis among the differentially expressed genes by timepoint and genetic
line. (A) Fayoumi at 2 days post-infection (dpi), (B) Leghorn at 2 dpi, (C) Fayoumi at 6 dpi, (D) Leghorn at 6 dpi, (E) Fayoumi at 10 dpi, and (F) Leghorn at 10 dpi.
The number of genes in each pathway is shown in black, up-regulated (red) and down-regulated genes (green) within the pathway, and the significance value
calculated as the −log(p-value) is depicted as an orange line.
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Table 2. Top canonical pathways significantly enriched between treated and non-treated Fayoumis at
10 dpi. Activated pathways are Z-score > 0 and inhibited pathways are Z-score < 0. NA designates
pathways without a predicted activity score.

Canonical Pathway Z-Score

ERK/MAPK Signaling −2.24
Thrombin Signaling −2.24

mTOR Signaling −2.00
Fcy Receptor-mediated Phagocytosis in Macrophages and Monocytes −2.00

p70S6K Signaling −1.89
B Cell Receptor Signaling −1.89

Colorectal Cancer Metastasis Signaling −1.89
Mouse Embryonic Stem Cell Pluripotency −1.63

Rac Signaling −1.34
Ga12/13 Signaling −1.34

IL-8 Signaling −1.34
NF-kappaB Signaling −1.34

Regulation of eIF4 and p70S6K Signaling −1.34
NGF Signaling −1.34

Telomerase Signaling −1.34
Acute Myeloid Leukemia Signaling −1.34

Fc Epsilon RI Signaling −1.00
fMLP Signaling in Neutrophils −1.00

ErbB Signaling −1.00
Growth Hormone Signaling −1.00

EIF2 Signaling −1.00
FLT3 Signaling in Hematopoietic Progenitor Cells −1.00

Melanocyte Development and Pigmentation Signaling −1.00
Renal Cell Carcinoma Signaling −1.00

Neuregulin Signaling −1.00
Insulin Receptor Signaling −1.00

GM-CSF Signaling −1.00
Sirtuin Signaling Pathway −0.45

Prolactin Signaling 0.00
PTEN Signaling 0.00

Neuroinflammation Signaling Pathway 0.45
AMPK Signaling NA

G Beta Gamma Signaling NA
FcyRIIB Signaling in B Lymphocytes NA

Renin-Angiotensin Signaling NA
Role of NFAT in Cardiac Hypertrophy NA

eNOS Signaling NA
Huntington’s Disease Signaling NA

GP6 Signaling Pathway NA
ErbB4 Signaling NA

Lymphotoxin B Receptor Signaling NA
PAK Signaling NA
CD40 Signaling NA

Production of Nitric Oxide and Reactive Oxygen Species in Macrophages NA
alpha-Adrenergic Signaling NA

P2Y Purigenic Receptor Signaling Pathway NA
Amyotrophic Lateral Sclerosis Signaling NA

3.3. Quantification of Protein Levels and Differential Protein Abundance

Proteins from lung tissue were extracted and quantified from the same birds used for
transcriptome analysis at 2 and 6 dpi to identify significantly over or under abundant proteins
expressed during the early immune response. The primary goal for protein quantification was to
investigate the early stages of infection, and the early proteomic response observed within these
timepoints. The 10 dpi timepoint was not investigated for protein quantification due to sample
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limitations and central focus of the early immune response. Comparing treated to non-treated
Fayoumis, we found six and 13 DAPs at 2 and 6 dpi, respectively (Table 1). Differentially abundant
proteins are proteins that have been identified as differentially abundant in either the treated or
non-treated groups. The same comparisons made within Leghorns revealed 10 DAPs at 2 dpi.
The largest number of DAPs was identified at 6 dpi with 99 DAPs found to be differentially abundant
between treated and non-treated birds. No significant pathways were identified within Fayoumis at
either timepoint and for Leghorn at 2 dpi using STRING. However, KEGG pathway enrichment analysis
found 10 significant pathways enriched among the 99 DAPs at 6 dpi in Leghorns (Figure 2). Similar
metabolic-related pathways identified from the differential gene expression analysis in Leghorns were
found among the pathways enriched in the protein dataset.

Figure 2. STRING network analysis on DAPs between treated and non-treated Leghorns at 6 dpi.
Nodes depict protein-protein interactions. Figure table lists the significantly enriched pathways and
their corresponding differentially abundant protein within these pathways.

3.4. Correlation of Change in Protein Abundance and Differential Gene Expression

The strength of the relationship between the change in protein abundance and gene expression
changes due to NDV infection and heat treatment were determined for each line and comparison
(Table 3). A total of 585 protein-transcript pairs were identified across 2 and 6 dpi in order to observe
protein and gene expression correlations (Figure 3). Correlation between the change in protein
abundance and gene expression differences due to treatment at both time points in Leghorns and
at 2 dpi in Fayoumis were weakly negatively correlated by Pearson correlation analysis. Fayoumi
at 6 dpi had weakly positive correlation, however, none of the correlations at any timepoint within
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either genetic line was significant. Additional comparisons between the normalized read counts and
relative protein abundances also failed to find significant association between the two datasets across
all comparisons except for non-treated samples at 6 dpi in the Fayoumi line (Additional File 1).

Table 3. Correlation coefficients and p-value statistics calculated between the log2(fold change) in gene
expression and the log2(fold change) in protein abundance between treated and non-treated birds at
each timepoint.

Line Days Post-Infection r p-Value
Fayoumi 2 −0.0072 0.86
Leghorn 2 −0.053 0.22
Fayoumi 6 0.051 0.22
Leghorn 6 −0.018 0.65

Figure 3. Correlation between the log2(fold change) in gene expression and the log2(fold change) in
protein abundance between treated and non-treated birds at each timepoint. Intensity of each point
represents the q-score of the gene.

4. Discussion

To our knowledge, this study is the first to simultaneously address the molecular events that occur
during NDV infection and heat stress using global proteomic and transcriptomic profiling techniques
in chickens. Our study investigated the dynamic protein and gene expression changes induced in the
lung by NDV at 2, 6, and 10 dpi to understand the host response during heat stress. Differential gene
expression analysis between disease states found interesting differences in response patterns when
comparing the relatively resistant Fayoumis to the more disease susceptible Leghorns. In the Fayoumi
comparisons, there was a large number of DEGs identified at 2 dpi with the majority of the DEGs
(122) significantly up-regulated. Notable immune-related genes include IL17REL, which is involved in
cytokine-mediated signaling, and NOX4, PRDX1, RAB7B, which are part of the phagosome maturation
pathway. Interestingly, very few genes were differentially expressed at 6 dpi, however, results from
our group show a similar result in the Harderian gland tissue of the same individuals [14]. The 10 dpi
timepoints had many DEGs identified but most of the genes were significantly down-regulated (358).
This could be an indication of a resolution of the immune response with genes involved with immunity
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being down-regulated for the maintenance of tissue homeostasis in Fayoumies. Similar studies in
chicken Harderian gland, lung, and trachea have also observed a down-regulation of DEGs at 10 dpi
providing further indication that the Fayoumis may have resolved the infection and are returning to
homeostasis [11,12,14]. Compared to Fayoumis, Leghorns had very few DEGs identified across all
three timepoints in this study. The low number of DEGs may suggest that the lungs of Leghorn birds
are not responding as effectively to NDV infection during heat stress. One gene that is of particular
interest is PGM3, which was significantly up-regulated at both the 2 and 6 dpi timepoints in Leghorns.
PGM3 encodes for a protein that mediates glycogen formation and utilization [27]. Studies on PGM3
mutants demonstrate immune deficiency [28], decreased cytokine production [29], and increased
susceptibility to avian influenza [30].

Pathways enriched among the DEGs identified provide insight into the potential mechanisms and
gene groups utilized in response to NDV infection during heat stress. At 2 dpi, Fayoumi had significant
enrichment in two immune-related pathways, serotonin receptor signaling and phagosome maturation.
Serotonin receptor signaling is of particular interest due to its role in hormonal regulation of immune
function and high expression amongst immune cells with several immunoregulatory functions such as
cytokine secretion and T-cell activation [31]. Differentially expressed genes from 6 dpi had a similar
trend in enrichment of immune-related pathways (IL-9 signaling, ERK/MAPK, autophagy signaling)
amongst the small number of significant pathways. These pathways may be critically important for
the enhanced disease resistance observed in Fayoumis. In addition, IPA predicted down-regulation
of enriched pathways at 10 dpi. However, the neuroinflammation signaling pathway was weakly
activated at the 10 dpi timepoint within Fayoumis. Velogenic and mesogenic strains of NDV often
localize within the central nervous system (CNS) where it can result in systemic disease and rapid
mortality [32]. Neuroinflammation can drive the activation of many pro-apoptotic pathways in
an attempt to alleviate infection but may also result in increased pathology of neuro diseases [32].
While the activation of this pathway was limited (z-score = 0.45), it is worth noting the potential benefits
of the neuroinflammation response observed in the putatively NDV resistant Fayoumis. Fayoumis’
down-regulation and modulation of the immune system to return to homeostasic levels can be viewed
as characteristic of an efficient immune response at the early stage of infection.

While Fayoumis appears to be activating pathways involved with the immune and antiviral
response at 2 and 6 dpi, Leghorns were primarily enriched for metabolic-related pathways such as
glycogen degradation II and III, and glucose and glucose-1-phosphate degradation at these timepoints.
Leghorns appear to be responding to the effects of infection-induced hyperglycemia at both the
2 and 6 dpi timepoints. During infection, it is common to observe increased glucose utilization
during increased periods of fasting. Failure of peripheral glucose clearance can lead to hyperglycemia
and result in the dysregulation of the immune response [33]. The induction of a fasting state due
to both infection and heat stress, and a dysregulation of the glucose-related processes in Leghorn,
could potentially explain the poor performance of their immune response.

Despite the similarities in pathways and genes enriched in the proteome and transcriptome
data, significant correlation was not observed between the two datasets. Many studies have shown
evidence that protein and mRNA levels tend to have poor correlation, especially amongst diverse cell
types [34,35]. This may be due to various post-transcriptional or post-translational events that would
be difficult to observe within our datasets. In addition, the in vivo dynamics in our dataset may not
necessarily recapitulate the in vitro systems typically reported when comparing the two methodologies.
However, our study identified unique DAPs between treated and non-treated groups that were not
identified in the transcriptome analysis. Of the DAPs identified in Fayoumi, ATOX1, SFTPA1 and LL
are of interest due to their prominent roles in the innate immune system and defense against respiratory
pathogens. Yeast two-hybrid screens found ATOX1 to interact with partners in the TRIM family of
proteins related to the immune response [36] and inhibition of viral growth [37]. LL and SFTPA1
are surfactant-related proteins predominantly found within the lung and are involved in the defense
against respiratory pathogen and modulation of ligand C-type lectin-related-b (Clr-b) proteins [38].
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A study in cell lines and mice observed that decreases in surfactant proteins leading to a decrease
in clr-b, increase natural killer (NK) cells’ ability to sense virus-infected cells and increase NK cell
response [39]. However, within Leghorns, proteomic analysis appeared to capture similar observations
of increased metabolic and glucose-related processes seen within RNA expression data. COL1A2 was a
protein differentially abundant at 2 dpi between Leghorn treatment groups and family collagen-related
genes have been observed to be differentially expressed in studies of NDV infection in the lung and
trachea [11,12]. At the 6 dpi timepoint, there was significant enrichment of KEGG pathways which
include: metabolic, carbon metabolism, citrate cycle (TCA cycle), and fatty acid degradation. It appears
that Leghorns were having a more profound alteration of lung metabolism due to infection that may
be causing a dysregulation of their immune response. In vivo studies have observed the magnitude of
infection and inflammation which result in profound activation of the glucoregulatory systems [40].
The infection status within Leghorns may be substantial enough to shift the body to a state of metabolic
inflexibility, typically observed during high levels of inflammatory stress.

In summary, comparisons within Fayoumis and Leghorns using protein and gene expression
profiling identified unique significant pathways and candidate genes involved in the lung’s response to
NDV infection during heat stress. The integration of these two methods allowed for global profiling of
the birds’ responses and provided corroborative evidence for observations witnessed in the gene
expression and protein studies. Additionally, our study identified potentially important sets of
genes and proteins which would have been missed through the independent use of either method.
The potential roles and underlying molecular mechanisms involved in NDV response during heat
treatment require further investigation into the candidate genes and signaling pathways identified.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/12/579/s1,
Figure S1: Principle component analysis of sample clustering of all RNA-Seq samples. Samples appear to
cluster primarily due to the genetic line rather than treatment state, Figure S2: Principal component analysis
demonstrating the clustering of proteomic samples at A) 2 dpi and B) 6 dpi.
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