
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Prefetching Complex Access Patterns with Deep Learning

Permalink
https://escholarship.org/uc/item/6z70d1sb

Author
Braun, Peter Vladimir

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6z70d1sb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

Prefetching Complex Access
Patterns with Deep Learning

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

by

Peter Braun
June 2023

The thesis of Peter Braun is ap-
proved:

Professor Heiner Litz, Chair

Professor Jose Renau

Professor Scott Beamer

Peter Biehl
Vice Provost and Dean of Graduate
Studies

Contents

1 Introduction 1

2 Background 3

2.1 Microarchitectural Prefetchers . 3

2.2 Deep Neural Networks . 4

2.2.1 Long Short-Term Memory Network (LSTM) 4

3 Characterization Framework 7

3.1 Problem Formulation . 7

3.2 Microbenchmarks . 8

3.3 Trace Generation and Simulation 9

3.4 Data Preprocessing . 10

3.5 DNN Model . 10

4 Experimental Results 12

4.1 Accuracy on Microbenchmarks . 12

4.2 Adding Noise . 14

4.3 Parameter Sensitivity Analysis . 16

4.3.1 Lookback Size . 16

4.3.2 Model Size . 18

iii

4.3.3 Linked List Traversal . 18

5 Related Work 20

6 Conclusion and Future Work 21

iv

List of Figures

2.1 A schematic of the LSTM network, showing the inputs, outputs,

and computation. Inputs from previous time-steps may influence

the current prediction through the cell state and hidden state. . . 5

2.2 The number of trainable parameters scales with the number of

LSTM cells. This is shown for a single-layer LSTM model plus

a fully-connected output layer that outputs a vector of length 50.

The number of parameters ranges from 1K for a 4-cell layer to 98K

for a 128-cell layer . 6

4.1 Accuracy of LSTMmodel with microbenchmarks. Each microbench-

mark is an interleaving of multiple patterns. The 4 interleaved

periodic has a regular predictable switch between patterns (e.g.

pattern1, pattern2, pattern3, pattern4, pattern1, ...), and the rest

have their next pattern chosen randomly (r). For those a certain

percentage of labelled noise is added. Since the ’noise’ accesses hap-

pen randomly, the DNN understandably is unable to predict them

and greater noise leads to lower accuracy. For example, with 80%

noise the maximum accuracy we can get is 20% which is indeed

what the model obtains. 13

v

4.2 Lookback size was found to have a dramatic nonlinear impact on

the ability of the model to learn a pattern within the data. There

appears to be some threshold lookback size below which the model

is just guessing. Above this size, the model rapidly picks up the

pattern. The 4 periodic patterns with varied percentage noise were

used, trained on a model. An LSTM layer width of 8 cells was used.

The trends were identical for larger layers. 15

4.3 Accuracy decreases as the number of interleaved streams (periodic

patterns) increases. 17

4.4 Maximum accuracy for interleaved periodic streams increases as the

width of the LSTM layer is increased. The importance of larger

model becomes much more important as the number of distinct

streams to learn is increased. 17

4.5 For the multiple periodic streams, accuracy dramatically increases

once the window size (lookback) is increased past a threshold. The

same relationship holds regardless of the number of separate streams. 18

4.6 Higher lookback captures the local pattern and is able to provide

higher accuracy. There is not a significant difference between linked

list sizes since a small number of deltas provides almost complete

coverage. 19

vi

List of Tables

3.1 Simulation parameters . 10

vii

Abstract

Prefetching Complex Access Patterns with Deep Learning

Peter Braun

The Von Neumann bottleneck is a persistent problem in computer architec-

ture, causing stalls and wasted CPU cycles. The Von Neumann bottleneck is

particularly relevant for memory-intensive workloads whose working set does not

fit into the microprocessor’s cache and hence memory accesses suffer the high ac-

cess latency of DRAM. One technique to address this bottleneck is to prefetch

data from memory into on-chip caches. While prefetching has proven success-

ful, for simple access patterns such as strides, existing prefetchers are incapable

of providing benefit for applications with complex, irregular access patterns. A

neural network-based prefetcher shows promise for these challenging workloads.

We provide an understanding of what type of memory access patterns an

LSTM neural network can learn by studying its effectiveness on a suite of mi-

crobenchmarks with well-characterized memory access patterns, and perform a

parameter sensitivity analysis to identify the most important model parameters.

We achieve over 95% accuracy on the microbenchmarks and find a strong

relationship between lookback (history window) size and the ability of the model

to learn the pattern. We find also an upper limit on the number of concurrent

distinct memory access streams that can be learned by a model of a given size.

viii

Chapter 1

Introduction

The Von Neumann performance bottleneck is a well-known and persistent problem

within computer architecture. The latency of an access to DRAM can cause the

processor to stall for many cycles, a significant inefficiency. Many techniques

have been implemented to address this problem, with the most important being

the use of small, fast caches close to the processor. Caches exploit the spatial

and temporal memory access locality exhibited by most programs to reduce the

latency of an access. A data prefetcher can improve the utility of caches, by

predicting what data will be used in the near future, fetching it from DRAM into

the cache. Existing mechanisms such as the stride or GHB [13] prefetcher are

unable to perform well to prefetch complex memory access patterns such as those

that are irregular. This includes memory-intensive applications such as graph

processing, applications that spend a significant amount traversing pointer based

data structures, as well as datacenter applications that exhibit large working sets

exceeding the processor caches [2].

Previous work [6] has found promise for the use of a long short term memory

(LSTM) deep neural network (DNN) for prediction of memory accesses in complex

1

memory-intensive workloads. While the work has shown good prediction accuracy

on the SPEC2006 benchmark suite [7], it fails to provide an in-depth analysis of

how well DNNs can predict different types of access patterns. To address this

knowledge gap, we develop the following methodology. We first determine a set

of microbenchmarks which cover common memory access patterns. Next, we exe-

cute the microbenchmarks, tracing their memory access patterns. We then train

LSTM-based DNN models for each of the microbenchmark traces, to gain an in-

depth understanding of the types of memory accesses that can be predicted with

good performance. As part of this work, we make the observation that a key tech-

nique for achieving high accuracy is proper data preparation. Finally, we evaluate

a range of DNN hyperparameters to determine the effect of model complexity on

prediction accuracy. We find that our DNN model achieves high accuracy for

next-element prediction in all of our microbenchmarks, given sufficiently gener-

ous hyperparameters. We find also that appropriate selection of window size of

previous loads (lookback) plays a key role in allowing the model to capture and

identify local patterns, and that the size of the DNN model can be substantially

decreased for moderately complex access patterns.

2

Chapter 2

Background

2.1 Microarchitectural Prefetchers

Data prefetchers are used to prefetch data that is expected to be used soon from

DRAM into caches. When the prediction is correct, the latency of that memory

access can be dramatically decreased. A typical access time can be 200 CPU cycles

for DRAM and 40 cycles for the L3 cache, providing a potential latency reduction

of 5x. When prefetching into the L1 cache directly the latency reduction can be

up to 100x. Most popular prefetchers such as GHB [13] and stride [4] use recent

memory accesses to predict future accesses. These hardware prefetchers generally

follow simple heuristics or algorithms. A typical PC-indexed stride prefetcher can

identify a fixed number of strided data streams, e.g. 16. In the case a workload

concurrently utilizes a greater number of streams, prefetcher performance starts

to decline as the many streams compete for resources such as memory access

history tables. This sets a limit on the complexity of the memory access patterns

that can be handled. More sophisticated prefetchers have the potential to be

able to capture more complex patterns, however, they generally only work well

3

for a subset of applications. The main issue with these prefetchers is that they

generally apply a single workload-independent technique that needs to work well

in average. Machine learning approaches that can train application specific models

show promise in addressing this limitation.

2.2 Deep Neural Networks

Recent advances in deep neural networks have driven their success in fields such as

natural language processing and image recognition. DNNs are now being explored

for a wide range of problems. Their strength lies in the backpropagation algorithm

that enables convergence to local optima efficiently. DNNs obtain their prediction

by taking a numeric input feature vector and computing across layers of ”neurons”

to provide an output vector which is interpreted to provide the prediction. The

approach can be smaller in terms of space and computation compared to manually

designed rule-based models [10].

The NLP problem of predicting the next word in a sentence seems like a par-

ticularly interesting problem related to the prefetching challenge. The task is,

given a sequence of the N most recent words, predict the subsequent word. In

NLP sequence prediction, there are complex patterns and interrelationships be-

tween words in the sentence, similar to the relations between the memory accesses

emitted by an application.

2.2.1 Long Short-Term Memory Network (LSTM)

The long short-term memory network (LSTM) [12] has been shown to be effective

for this problem [6]. The LSTM is a type of recurrent neural net, which are

4

Figure 2.1: A schematic of the LSTM network, showing the inputs, outputs,
and computation. Inputs from previous time-steps may influence the current
prediction through the cell state and hidden state.

designed for time-series sequences and provide the benefit of smaller model size

due to weight sharing. LSTMs contain memory elements storing information of

the past, controlled by a forget gate whose weights are also learned as part of

the training process. This has the potential for better capturing longer term

relationships between inputs.

A DNN generally consists of multiple layers, where the number of layers is

referred to as the depth of the network. Each layer has a width specified by a

tensor that can be tuned by the model developer. Finally, LSTMs define a lookback

hyperparameter. Within the scope of this work, this specifies the number of past

accesses the model considers to predict the next at each time-step.

The scaling of the number of tunable parameters versus layer size is shown

for a single layer LSTM in Figure 2.2. For example, the 8-cell single-layer LSTM

contains 2338 parameters.

5

101 102

Number of LSTM Cells

103

104

105

Nu
m

be
r o

f T
ra

in
ab

le
 P

ar
am

et
er

s

Number of Parameters vs Number of Cells in a Single Layer LSTM

Figure 2.2: The number of trainable parameters scales with the number of LSTM
cells. This is shown for a single-layer LSTM model plus a fully-connected output
layer that outputs a vector of length 50. The number of parameters ranges from
1K for a 4-cell layer to 98K for a 128-cell layer

6

Chapter 3

Characterization Framework

3.1 Problem Formulation

The prefetching problem can be formulated as a prediction problem. Given the

past N memory accesses, predict the next access. Common features used by state-

of-the-art prefetchers are the sequence of the N most recent memory addresses as

well as their associated instructions defined by the program counter (PC) ad-

dress. Each PC is uniquely associated with a particular instruction. A given load

instruction will often have a more predictable sequence of memory accesses, so

knowing the PC can help distinguish separate patterns or streams.

Data prefetching can be seen as a classification problem. From a pool of the

k most common memory addresses, choose the most likely address to occur next.

The drawback of this approach is that the number of memory addresses accessed

can be very large, creating a very large search space.

A second option is to use memory address deltas. Memory address deltas are

computed as the difference between two consecutive memory addresses. Typical

memory access patterns such as array or immutable list traversals contain far

7

fewer distinct deltas than distinct memory addresses. For the same reason, con-

temporary stride and GHB prefetchers also exploit this characteristic to increase

prediction accuracy. Memory address deltas are used for following experiments.

Since the LSTM has been successfully applied for sequence prediction prob-

lems such as next-work prediction in natural language, it presents an interesting

algorithm to evaluate for data access sequence prediction.

The goals are to:

1. Demonstrate the LSTM’s level of effectiveness for memory access sequence

prediction, for a set of microbenchmarks of variable complexity.

2. Identify important LSTM parameters and their ideal values through a pa-

rameter sensitivity analysis.

3.2 Microbenchmarks

To understand a prefetcher’s effectiveness for each class of memory access patterns,

we evaluate on a suite of configurable microbenchmarks that demonstrate the

major patterns of memory accesses.

To the best of our knowledge this does not exist, so to that end we designed

a suite of microbenchmarks written in C++ representing the different memory

access patterns discussed in the previous section. In particular, we developed the

following applications:

1. Array traversal (sequential memory accesses)

2. Array of structs (strided memory access with configurable distance)

3. Traversal of a fixed length immutable linked-list (periodic accesses)

8

4. Compositions of multiple access patterns

Each of these 4 applications generate a regular memory access pattern. The

strided patterns continually accessed a memory location that was n bytes away.

Since each cache line was 64 bytes, a multiple of 64 bytes was chosen to prevent

successive accesses to the same cache line and create a more interesting pattern

to predict. The periodic patterns each had a fixed sequence of 5-7 deltas that was

repeated, each again multiples of 64 bytes. These 4 basic applications were then

composed into complex memory access streams by interleaving.

3.3 Trace Generation and Simulation

To obtain the input for model training, we execute the microbenchmarks and ob-

tain memory access traces via DynamoRIO’s memtrace [3]. Memtrace captures

the instruction program counters (PC) of all executed basic blocks (BBLs) as well

as the effective addresses of all loads and stores. In combination with the binary

executable, traces can precisely replay the instructions and memory accesses ex-

ecuted by the program. We then simulate using the zsim [15] microarchitectural

simulator to perform cache simulation. Cache parameters are described in Ta-

ble 3.1. The simulation provides the sequence of all L1 cache accesses and L3

misses. The L3 misses are the memory accesses that are targeted for prefetching,

while the L1 accesses are the full memory access trace, which provides informa-

tion that can be used to predict L3 miss addresses. The output of this step

is a sequence of 3-tuples containing the memory address, PC of the load/store

instruction as well as L3 miss information. This obtained sequence is further

pre-processed before being used to train a DNN.

9

Table 3.1: Simulation parameters

Parameter Value
L1i 64B block: 32KiB, 4-way, 3 cycle latency
L1d 32KiB, 4-way
L2 1MiB 8-way, 4KiB-entry

3.4 Data Preprocessing

As shown by [6], predicting absolute memory addresses is difficult due to the

size and sparsity of the 64-bit memory address space. A promising technique,

therefore, is to compute memory address deltas of the absolute addresses. As the

number of deltas, e.g. for a stride access pattern, is much lower than the number

of absolute addresses, prediction accuracy can be improved. Prior work computed

deltas between consecutive memory accesses [6] [14]. While this technique works

well for individual, isolated memory access streams such as a single stride, we

observe that when interleaving streams this is no longer a functional approach.

Instead, we propose to compute per-PC memory address deltas which maintain

the delta pattern for each PC. Due to the sheer number of memory addresses that

are accessed and the fact that related memory accesses are usually spatially close

to each other, using memory address deltas significantly decreases the state space

of values to predict.

3.5 DNN Model

We cast the challenge of predicting future memory accesses as a sequence learning

problem. To enable capturing the recent access history as well as longer trends we

utilize an LSTM RNN model. Instead of utilizing a regression model we perform

classification as we want to predict cache line aligned memory deltas. The input

10

to the model is a sequence of PCs and memory address deltas and the output is a

memory address delta relative to the absolute address that was used to compute

the input delta. More specifically, the output is a probability distribution over

the different classes, the most common deltas for the PCs being studied.

The number of deltas is taken to be the minimum needed for 99.95% coverage

of all deltas for these PCs, up to a maximum of 100. The delta with the highest

probability is taken as the model’s prediction. The prediction is considered correct

if the next access is identical to the one that is predicted. Our model includes a

single LSTM layer whose width is determined by a hyperparameter and a single

dense layer that produces the output class predictions. As part of this work

we vary a set of hyperparameters including the width of the LSTM layer and

the lookback size of the LSTM. We train the model in batches of 64 with the

ADAM optimizer. We utilize Tensorflow [1] to describe our model and the Keras

CuDNNLSTM layer to perform rapid hyperparameter tuning.

The input/output deltas are limited to a subset of all deltas, so they are

represented by classes from 1 to 100 and encoded with one-hot encoding.

11

Chapter 4

Experimental Results

4.1 Accuracy on Microbenchmarks

The accuracy of LSTMmodels trained on compositions of the previously described

memory access patterns is shown in Figure 4.1. Each model’s LSTM layer had a

width of 128 cells and used a lookback sequence size of 64. The first four patterns

include compositions of 2-4 strided and periodic accesses. The periodic accesses,

which model the traversal of an immutable list, have a periodicity of 5-7.

The LSTM performs well, obtaining close to 100% prediction accuracy. For

the interleaved streams, every 40 data accesses the program switches to the next

stream. In the first four patterns the interleaving of the different patterns is

fixed (e.g. pattern1, pattern2, pattern3, pattern4, pattern1, pattern2, ...) so that

pattern2 always follows pattern1, etc. In the case of the 4 periodic (random) mi-

crobenchmark, each individual stream/pattern follows a periodic sequence; how-

ever, patterns are alternated randomly. This models an application where there

exist multiple independent streams of data accesses. We can observe that accuracy

drops by 3.5% in this case.

12

2 s
trid

ed

1 s
trid

ed
, 1

 pe
rio

dic

2 p
eri

od
ic

4 p
eri

od
ic (

pre
dic

tab
le)

4 p
eri

od
ic (

ran
do

m)

4 p
eri

od
ic,

no
ise

 20
% (r)

4 p
eri

od
ic,

no
ise

 40
% (r)

4 p
eri

od
ic,

no
ise

 80
% (r)

0

20

40

60

80

100

Pe
rc

en
t A

cc
ur

ac
y

Microbenchmark Accuracy

Figure 4.1: Accuracy of LSTM model with microbenchmarks. Each microbench-
mark is an interleaving of multiple patterns. The 4 interleaved periodic has a
regular predictable switch between patterns (e.g. pattern1, pattern2, pattern3,
pattern4, pattern1, ...), and the rest have their next pattern chosen randomly (r).
For those a certain percentage of labelled noise is added. Since the ’noise’ ac-
cesses happen randomly, the DNN understandably is unable to predict them and
greater noise leads to lower accuracy. For example, with 80% noise the maximum
accuracy we can get is 20% which is indeed what the model obtains.

13

4.2 Adding Noise

For the last three microbenchmarks we add noise by inserting random accesses

at random times into the regular access streams. While the address of perfectly

random accesses cannot be predicted by an ML system, this experiment provides

insight into how random noise affects the ability of the LSTM to predict the

regular access patterns. As expected, adding these unpredictable accesses causes

a drop in accuracy.

To separate noise from signal, we add a separate ’Noise’ or ’no predict’ class

to the model. This enables the model to distinguish noise from predictable ac-

cesses. To prevent the model from always predicting ’noise’ for noisier traces, the

importance of this ’no predict’ class was lowered by decreasing its effect on the

loss function reducing the class weight.

We also evaluate prediction accuracy for the regular (periodic) accesses only.

In particular, we compute accuracy as the fraction of correctly predicted labels

of all regular accesses in contrast to all regular and noisy accesses. The accuracy

is over 96% for all amounts of noise (96.3%, 97.6%, 98.2% for 20%, 40%, 80%

noise respectively). These results show that the presence of labelled noise does

not affect learning of separate patterns within the data access sequence.

14

20 40 60 80 100 120
Lookback size

0

20

40

60

80

100

Pe
rc

en
t A

cc
ur

ac
y

Accuracy vs Lookback Size for Varied Percentage Noise, Model Size 8
No Noise
20%
40%
80%

Figure 4.2: Lookback size was found to have a dramatic nonlinear impact on the
ability of the model to learn a pattern within the data. There appears to be
some threshold lookback size below which the model is just guessing. Above this
size, the model rapidly picks up the pattern. The 4 periodic patterns with varied
percentage noise were used, trained on a model. An LSTM layer width of 8 cells
was used. The trends were identical for larger layers.

15

4.3 Parameter Sensitivity Analysis

4.3.1 Lookback Size

In the following experiments, we analyze how LSTM model complexity affects the

prediction accuracy by performing a parameter sensitivity analysis. In particular,

we want to understand the correlation between lookback size and its ability to

learn streams that exhibit a long period, due to other unpredictable loads. In

Figure 4.2 we vary lookback size to determine the its impact on a model’s accuracy.

If the lookback size is too low, the model is unable to learn the pattern. As soon

as it reaches some threshold size, the model is able to achieve the full expected

accuracy. The threshold for the 0%, 20%, and 40% traces is between 48 and 64.

For the 80% trace, the threshold is between 92 and 128 accesses. The pattern

is switched every 20 accesses, so 48 accesses for the no noise case is more than

enough to include the full accesses from 2 patterns. It appears that the lookback

size has to be much larger than the periodicity of a pattern, and larger than the

number of accesses before switching to another pattern. This suggests that the

ideal lookback size is related to the window size needed to capture the pattern.

For the microbenchmarks thus far, a small model with LSTM layer width of 8 is

sufficient to capture the pattern.

To explore limits of this smaller model, we increase the number of unique

streams (interleaved patterns). As the number of interleaved streams increases, it

becomes increasingly difficult to rapidly identify the stream a particular memory

access belongs to, causing an expected drop in accuracy as seen in Figure 4.3.

The threshold for effective lookback size is unaffected by the number of streams

as can be seen by the identical trend in both Figures 4.2 and 4.5.

16

0 200 400 600 800 1000
Number of Separate Streams

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
Pe

rc
en

t A
cc

ur
ac

y

Periodic Microbenchmark Accuracy

Figure 4.3: Accuracy decreases as the number of interleaved streams (periodic
patterns) increases.

20 40 60 80 100 120
Model Size

20

40

60

80

100

Pe
rc

en
t A

cc
ur

ac
y

Accuracy vs Model Size for lookback 64

4 streams
100 streams
1000 streams

Figure 4.4: Maximum accuracy for interleaved periodic streams increases as the
width of the LSTM layer is increased. The importance of larger model becomes
much more important as the number of distinct streams to learn is increased.

17

35 40 45 50 55 60 65
Lookback

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
t A

cc
ur

ac
y

Accuracy vs Lookback for model size 128
20 streams
100 streams
1000 streams

Figure 4.5: For the multiple periodic streams, accuracy dramatically increases
once the window size (lookback) is increased past a threshold. The same relation-
ship holds regardless of the number of separate streams.

4.3.2 Model Size

As predicted, the size of the model (number of parameters) becomes important

as the information it must learn increases. In Figure 4.4, we observe that a larger

model size is required to capture applications with 1000 or more streams. Figure

4.4 also shows that DNNs enable compression as the model size scales sublinear

compared to the number of streams. For instance, a model width of 120 is sufficient

to learn an application with 1000 streams where as conventional prefetchers that

store per stream scale linearly in terms of storage resources.

4.3.3 Linked List Traversal

For the last microbenchmark, we perform linked list lookups on lists with variable

sizes and achieve a maximum accuracy of 99%. Increasing lookback from 32 to

64 only increases the accuracy by about 10 percentage points as seen in Figure

18

4.6. The dramatic ”threshold” observed for the periodic microbenchmarks is not

seen here. The number of deltas required to achieve near-complete coverage is

much smaller than the number of nodes, probably because nodes may have been

allocated adjacently on cache lines. This makes the access pattern simpler and

potentially easier to learn with a smaller window of recent memory accesses. This

view is supported by the finding that increasing the model size did not provide

any benefit.

35 40 45 50 55 60 65
Lookback

88

90

92

94

96

98

100

Pe
rc

en
t A

cc
ur

ac
y

Accuracy vs Lookback for Linked List Lookups with model size 128
50 nodes
100 nodes
500 nodes
1000 nodes

Figure 4.6: Higher lookback captures the local pattern and is able to provide
higher accuracy. There is not a significant difference between linked list sizes
since a small number of deltas provides almost complete coverage.

19

Chapter 5

Related Work

Here we highlight several threads of research of machine learning applied to com-

puter architecture. Prior work has used a perceptron to predict whether a branch

is taken or not taken [8]. The perceptron learns online by incrementing or decre-

menting weights analogous to the commonly used two-bit counters. A naive

Bayesian model has been used to predict microarchitectural power and perfor-

mance for more efficient design space exploration [11]. Other research looks at

learning methods to improve system performance. One system is designed to be

able to manage itself, noticing changes in its environment and working to achieve

global system goals such as low network latency, higher reliability, power efficiency

and adaptability [16]. Another learning algorithm addresses the existence prob-

lem in a multiple-WBAN environment using a naive Bayesian classifier [5]. The

explosion of interest in DNNs and machine learning has spurred parallel efforts

in accelerating these models. The specialized hardware research may be typified

by the TPU [9], a hardware accelerator for neural network training and inference.

Another direction looks at eliminating spurious computations during NN predic-

tion [5], using this with specialized hardware to improve speed and efficiency.

20

Chapter 6

Conclusion and Future Work

The recent increase in deep learning research exposes tools that have promise

for being applied to microarchitectural problems such as the pattern prediction

problem of data prefetching. These applications have been minimally explored

and information on how best to apply these techniques to the data prefetching

problem is lacking. We identified a starting point for evaluation of data prefetchers

on simpler memory access traces that can represent compnents of more complex

workloads. Through exploration of the model parameters, we found that lookback

size must be chosen carefully to be able to capture local patterns. We found

that for fewer interleaved patterns increasing model size provided no benefit, but

that for many unique streams providing a larger model played a large role. We

demonstrated the ability of the LSTM model to learn compositions of strided

and periodic patterns, with and without added noise, and to be able to learn

the patterns in a linked list traversal. The impact of lookback window size on

prediction accuracy suggests that the local patterns can be identified with just a

sufficient history of memory accesses and that the long short-term memory of an

LSTM may play a smaller role. Future work may explore other DNN architectures

21

such as CNNs. Two features were used in these experiments: program counter

and distance between successive memory accesses. Future work may explore the

addition of more features such as previously loaded data to make it possible to

maintain performance on a rapidly changing linked list as well as instructions

executed preceding a memory load.

22

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems, Mar. 2016. arXiv:1603.04467 [cs].

[2] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan. Memory hierarchy
for web search. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 643–656. IEEE, 2018.

[3] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive
dynamic optimization. In International Symposium on Code Generation and
Optimization, 2003.

[4] T.-F. Chen and J.-L. Baer. Effective hardware-based data prefetching for
high-performance processors. IEEE Transactions on Computers, 44(5):609–
623, 1995.

[5] Y. Han, Z. Jin, J. Cho, and T.-S. Kim. A prediction algorithm for coexistence
problem in multiple WBANs environment. In Proceedings of the 8th Inter-
national Conference on Ubiquitous Information Management and Communi-
cation, ICUIMC ’14, pages 1–7, New York, NY, USA, Jan. 2014. Association
for Computing Machinery.

[6] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan. Learning memory access patterns. arXiv
preprint arXiv:1803.02329, 2018.

[7] J. L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Computer
Architecture News, 2006.

23

[8] D. Jimenez and C. Lin. Dynamic branch prediction with perceptrons. In
Proceedings HPCA Seventh International Symposium on High-Performance
Computer Architecture, pages 197–206, Monterrey, Mexico, 2001. IEEE Com-
put. Soc.

[9] N. Jouppi. Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers. In [1990] Proceedings.
The 17th Annual International Symposium on Computer Architecture, pages
364–373, May 1990.

[10] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–
444, May 2015. Number: 7553 Publisher: Nature Publishing Group.

[11] B. C. Lee and D. M. Brooks. Accurate and efficient regression modeling
for microarchitectural performance and power prediction. ACM SIGOPS
Operating Systems Review, 40(5):185–194, Oct. 2006.

[12] J. Li, X. Chen, E. Hovy, and D. Jurafsky. Visualizing and Understanding
Neural Models in NLP. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 681–691, San Diego, California, June 2016.
Association for Computational Linguistics.

[13] K. Nesbit and J. Smith. Data Cache Prefetching Using a Global History
Buffer. In 10th International Symposium on High Performance Computer
Architecture (HPCA’04), pages 96–96, Feb. 2004. ISSN: 1530-0897.

[14] L. Peled, S. Mannor, U. Weiser, and Y. Etsion. Semantic locality and context-
based prefetching using reinforcement learning. In Proceedings of the 42nd
Annual International Symposium on Computer Architecture, ISCA ’15, pages
285–297, New York, NY, USA, June 2015. Association for Computing Ma-
chinery.

[15] D. Sanchez and C. Kozyrakis. Zsim: Fast and accurate microarchitectural
simulation of thousand-core systems. In International Symposium on Com-
puter Architecture, 2013.

[16] W.-T. Wu and A. Louri. A Methodology for Cognitive NoC Design. IEEE
Computer Architecture Letters, 15(1):1–4, Jan. 2016. Conference Name:
IEEE Computer Architecture Letters.

24

	Introduction
	Background
	Microarchitectural Prefetchers
	Deep Neural Networks
	Long Short-Term Memory Network (LSTM)

	Characterization Framework
	Problem Formulation
	Microbenchmarks
	Trace Generation and Simulation
	Data Preprocessing
	DNN Model

	Experimental Results
	Accuracy on Microbenchmarks
	Adding Noise
	Parameter Sensitivity Analysis
	Lookback Size
	Model Size
	Linked List Traversal

	Related Work
	Conclusion and Future Work

