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When Can Nonrandomized Studies Support 
Valid Inference Regarding Effectiveness or 
Safety of New Medical Treatments?
Jessica M. Franklin1,2,*, Richard Platt3, Nancy A. Dreyer4, Alex John London5, Gregory E. Simon6,  
Jonathan H. Watanabe7, Michael Horberg8, Adrian Hernandez9 and Robert M. Califf10

The randomized controlled trial (RCT) is the gold standard for evaluating the causal effects of medications. 
Limitations of RCTs have led to increasing interest in using real- world evidence (RWE) to augment RCT evidence and 
inform decision making on medications. Although RWE can be either randomized or nonrandomized, nonrandomized 
RWE can capitalize on the recent proliferation of large healthcare databases and can often answer questions that 
cannot be answered in randomized studies due to resource constraints. However, the results of nonrandomized 
studies are much more likely to be impacted by confounding bias, and the existence of unmeasured confounders 
can never be completely ruled out. Furthermore, nonrandomized studies require more complex design considerations 
which can sometimes result in design- related biases. We discuss questions that can help investigators or evidence 
consumers evaluate the potential impact of confounding or other biases on their findings: Does the design emulate a 
hypothetical randomized trial design? Is the comparator or control condition appropriate? Does the primary analysis 
adjust for measured confounders? Do sensitivity analyses quantify the potential impact of residual confounding? 
Are methods open to inspection and (if possible) replication? Designing a high- quality nonrandomized study of 
medications remains challenging and requires broad expertise across a range of disciplines, including relevant 
clinical areas, epidemiology, and biostatistics. The questions posed in this paper provide a guiding framework for 
assessing the credibility of nonrandomized RWE and could be applied across many clinical questions.

The randomized controlled trial (RCT) has been the gold standard 
for evaluating the effectiveness and safety of medications for more 
than 50 years.1 Despite the many advantages of traditional RCTs, 
there are concerns that the narrowly defined patient population 
and tightly controlled treatments and settings required in many 
RCTs for drugs may not reflect treatment effects or outcomes in 
usual care. In addition, the high costs of both implementation 
and long- term follow- up in a traditional RCT often constrain the 
focus to outcomes that can be measured in the shorter term with 
smaller sample sizes, including intermediate outcomes, biomark-
ers, or surrogates. For these reasons, real- world evidence (RWE) 
has been proposed as a complementary source of evidence that can 
better capture treatments as used in routine care and the subse-
quent outcomes that are most meaningful to patients.2,3 RWE 
has been defined as any evidence regarding the risks and benefits 
of medications derived from data sources other than traditional 
RCTs, i.e., real- world data (RWD).4,5 Under this definition, RWE 
can be either randomized or nonrandomized.

Randomly allocating treatment to study patients ensures that, on 
average, treatment groups will be similar with respect to all patient 

characteristics that may impact risk for the outcome.6 The result-
ing balance in patient characteristics enables one to infer that dif-
ferences in outcomes between treatment groups can be attributed 
to differences in the treatments under study, rather than other fac-
tors. Nonrandomized or observational studies, in contrast, do not 
use random treatment allocation. As patients and their providers 
make treatment decisions on the basis of individual patient charac-
teristics and circumstances, patients receiving alternative therapies 
may differ on many important factors affecting outcomes. While 
confounders known to influence both treatment assignment and 
outcomes can be measured and adjusted for in the design or anal-
ysis of nonrandomized studies, it can never be guaranteed that all 
such confounding factors have been controlled. There is always a 
possibility that there were additional factors unknown to the in-
vestigators that may be confounding the observed relationships 
between treatments and outcomes, leading to inaccurate estimates 
of treatment effects.

Given the strong control of both known and unknown con-
founding factors that is a benefit of randomization, why pursue 
the use of nonrandomized RWE for informing treatment decision 
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making and drug regulation, rather than limiting focus to random-
ized RWE? There will always be more open clinical questions than 
there are resources to answer them all with traditional RCTs. For ex-
ample, large nonrandomized RWE studies can provide evidence on 
how an average treatment effect, estimated from a traditional RCT, 
varies across trial subpopulations or across patient populations not 
included in the trial. In rare diseases, it may be impossible to recruit a 
sufficiently large number of patients into multiple randomized trials 
exploring varying clinical questions. Traditional RCTs are often too 
small to investigate rare adverse medication events, and increasingly 
globalized drug development means that there is little incentive to 
conduct postmarketing RCTs in order to access new geographic 
markets. In addition, the recent proliferation of research- ready lon-
gitudinal healthcare databases, including health insurance claims, 
electronic health records, and patient registries, provide abundant 
opportunities for nonrandomized research to quickly and efficiently 
answer questions on medications that are widely used.

There are many well- established uses of such data for providing 
evidence on medications, including evaluations of drug prescrib-
ing, utilization patterns, or adherence.7 Due to the issues of con-
founding, use of RWD to infer the causal effects of a treatment 
is more difficult. The US Food and Drug Administration (FDA) 
relied on RWD to create the Sentinel System, which uses claims 
data from multiple databases to quickly investigate medication 
safety concerns as they arise.8,9 Even before the Sentinel System, 
the FDA, the European Medicines Agency (EMA), and other drug 
regulators have long accepted nonrandomized data to inform reg-
ulatory decisions on medication safety.7,10 Strong confounding is 
generally less likely in assessment of adverse effects that are unex-
pected or unrelated to a treatment’s therapeutic “target.”11 The use 
of nonrandomized RWE from healthcare databases intended to 
support a claim of either drug safety or effectiveness deserves care-
ful consideration, as such studies can more easily lead to erroneous 
conclusions because of bias, including a greater risk of manipula-
tion to meet desired outcomes.

In this paper, we discuss what is required for valid assessment 
of medication safety and effectiveness from nonrandomized stud-
ies, the topic of the third component of the National Academies 
of Science, Engineering and Medicine (NASEM) Forum on Drug 
Discovery, Development, and Translation Workshop Series on 
RWE, sponsored by the FDA.12 Although the focus on nonran-
domized research is spurred in part by the availability of longi-
tudinal healthcare databases, we discuss principles applicable to 
nonrandomized research more broadly, including nonrandomized 
studies using primary data collection and single- arm trials using 
external nonrandomized control groups. Accurate measurement of 
study variables remains of fundamental importance to the validity of 
nonrandomized studies, and measurement needs are further compli-
cated in nonrandomized studies by the need for accurate assessment 
of confounders in addition to treatments and outcomes. However, 
we do not directly address data integrity and relevancy concerns 
here, as they are already discussed in an accompanying paper.

STRATEGIES TO MINIMIZE BIAS
As described above, the principal challenge of nonrandomized re-
search on medications or other medical treatments is controlling 

for confounding, driven by differing characteristics of patients 
receiving alternative treatment strategies in real- world care. The 
alternative treatment strategies being compared may include dif-
ferent medications, different doses or formulations, or treatment 
vs. no treatment, commonly referred to as a nonuser comparator 
group. Although confounding by indication, caused by intentional 
choices of clinicians or patients to select different treatments for 
patients with differing characteristics, is typically thought of as 
the most pernicious type of confounding,11 confounding can arise 
from several other sources. Differences in costs between compared 
treatments can result in treatment groups with differing socioeco-
nomic status and therefore differing burden of disease and access 
to high- quality care.13 Patients who take preventive medications 
are often more likely to practice other healthy behaviors such as 
diet and exercise and are less likely to be suffering from major 
chronic conditions that consume the focus of medical care such as 
cancer or end- stage renal disease.14,15

Does the design emulate a hypothetical randomized trial 
design?
Control of confounding in nonrandomized research depends 
strongly on study design, as no analytic method can rescue a seri-
ously flawed design. Although the details of the study design for 
nonrandomized RWE must be tuned to the specific clinical ques-
tion, consensus has emerged in the last decade that the design of 
a nonrandomized study should fit within the “target trial frame-
work” by emulating the design of a hypothetical randomized tri-
al.16– 18 A hypothetical target trial does not need to be a real RCT; 
it doesn’t even need to be a trial that could feasibly be conducted. 
It serves only as a guiding framework for design of the correspond-
ing nonrandomized study, and there is now strong evidence that 
using a hypothetical target trial as a design guide can eliminate 
many of the most egregious design mistakes in nonrandomized 
studies of medications. It can also help focus thinking on how 
randomization can be emulated through control of confounding 
factors. Broad knowledge across relevant clinical, epidemiological, 
and biostatistical domains is needed. If using an existing database, 
deep knowledge of the data provenance is also required, as dis-
cussed in the accompanying paper on data quality.

Designing a nonrandomized study through emulation of 
an RCT typically favors cohort studies, where cohorts of pa-
tients receiving different treatment strategies are followed over 
time. However, case- control studies nested within a cohort, self- 
controlled designs, and some other designs can also be thought of 
as emulations of trials. Emulation of an RCT also favors new user 
designs, where patients are followed from the beginning of treat-
ment initiation, vs. prevalent user studies that include patients at 
varying points along the treatment pathway; alternative designs can 
focus on patients who do or do not switch from one medication to 
another, or on patients who do or do not continue treatment past 
a given time period.19– 21

The important feature in all of these designs is that the design 
clearly identifies the inception point of the study, which serves 
both to anchor the study to the timing of the treatment decision 
and to anchor all other study measurements, comparable to the 
time of randomization in an RCT. Specifically, “baseline variables” 
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are focused on characterizing the study participants at the incep-
tion point and should be checked for balance to evaluate compa-
rability of treatment groups, just as is commonly done in RCTs to 
evaluate the success of randomization. Follow- up begins immedi-
ately or shortly after the inception point, and thus, shortly after the 
treatment decision is made, minimizing the chance that patients 
with early adverse events are excluded from study follow- up. A 
clear inception point tied to the timing of the treatment decision 
also eliminates many errors related to measurement of inclusion/
exclusion criteria, treatment status, and baseline covariates during 
the follow- up period, which can lead to large biases in effect esti-
mates, such as immortal time bias.17,22

Thus, if the planned nonrandomized design cannot be envi-
sioned as a corresponding target trial, then the validity of the 
design and resulting findings are questionable. With this perspec-
tive, it becomes clear that many of the published nonrandomized 
studies of treatment effects using RWD, including a large propor-
tion of studies evaluating treatments for coronavirus disease 2019 
(COVID- 19), have used less valid designs. For example, several 
studies of COVID- 19 treatments assessed inclusion/exclusion 
criteria or treatment assignment during study follow- up, a design 
that clearly would not be possible in a randomized trial.23 These 
design issues may account for many of the conflicting findings of 
such studies.

Is the comparator or control condition appropriate?
Another aspect of the design that is known to have a large impact 
on confounding is the type of comparator selected. Although 
the choice of comparator is largely driven by the research ques-
tion, focusing on active treatment comparator(s) with similar 
indications and similar treatment modality as the treatment of 
interest can greatly mitigate the risk of unmeasured confound-
ing.15,24,25 Nonuser comparator groups are highly suspect, as 
patients who are receiving treatment are often very different 
with respect to their disease severity and risk of adverse events 
compared with patients who are not receiving treatment for the 
same disease. Even if researchers are interested in demonstrat-
ing effectiveness or safety for a given medication, rather than 
comparing the effectiveness of alternative medications, evalu-
ating medication outcomes against an active alternative treat-
ment may be sufficient to answer the question with lower risk 
of unmeasured confounding.26 For example, if research interest 
is focused on evaluating the cardiovascular effects of a sodium- 
glucose cotransporter 2 inhibitor for type 2 diabetes mellitus, 
comparing against another antihyperglycemic drug, such as a 
dipeptidyl peptidase 4 inhibitor, whose cardiovascular effects 
are already well known, may be preferred. Use of an active com-
parator is also considered to yield findings more relevant to real- 
world decision making in diseases with at least one indicated 
treatment with known efficacy. Thus, if a nonuser comparator 
group is used, there should be a strong justification for its neces-
sity and extreme care taken to measure and balance all potential 
confounders. In addition to similar indications and treatment 
modality, active comparators with similar formulary access and 
good availability or market share in the geographic areas of the 
study are preferred.

Does the primary analysis adjust for measured confounders?
The goal of adjustment is to compare outcomes between the treat-
ment groups, only among patients who are similar with respect to 
the confounders, thereby eliminating the impact of confounder 
differences on the estimation of treatment effect. One approach 
is ordinary multivariable regression, including linear, logistic, 
proportional hazards or other forms of regression.27 While mul-
tivariable regression is simple and has been in use for estimating 
the effects of explanatory variables for many decades, it can lead to 
bias when there are regions of nonpositivity, i.e., patients who are 
outliers with respect to one or more of the confounders and who 
have no similar patients in the alternative treatment group against 
whom they can be compared.28 Diagnosing areas of nonpositivity 
and checking balance of confounders in general is difficult in a 
regression model, as the balancing of confounders is part of the 
regression procedure itself.

Alternatively, propensity score methods can create balance 
in confounders and easily diagnose regions of nonpositivity. 
The propensity score is the probability of treatment assignment, 
given the confounders.29 In a randomized trial, the probability 
of receiving each treatment is known for all patients, as it is de-
fined by the randomization scheme (0.5 for each arm in an RCT 
with equal distribution between two arms). In a nonrandomized 
study, the propensity to treatment is typically unknown and must 
be estimated using observed data, often with a logistic regression 
model. It has been shown that creating balance in the distribution 
of the propensity score between treatment groups will on average 
balance the variables that went into estimation of the propensity 
score model.29,30 Therefore, use of propensity score methods can 
emulate how randomization balances baseline factors in an RCT, 
except that propensity score methods balance only those factors 
measured and included in the propensity score model, while ran-
domization theoretically balances all factors, both measured and 
unmeasured.

There are now many variations on how the propensity score 
can be utilized to create balanced treatment groups, but two of 
the simplest and most common approaches in RWE on medica-
tions are matching and weighting on the propensity score.31– 33 An 
important advantage of these methods is the fact that balance on 
confounders can be directly evaluated in the matched or weighted 
patient sample, similar to the evaluation of balance in an RCT.34 If 
acceptable balance has not been achieved, the propensity score ap-
proach must be modified and reimplemented until acceptable bal-
ance is reached, potentially including removal of patients from the 
study sample if there are no comparable patients in the alternative 
treatment group. Evaluation of balance should consider the study 
question and the importance of individual confounders, as tighter 
balance may be required for risk factors with stronger relationships 
with the outcome.

In all of the adjustment approaches discussed above, con-
founders must be selected prior to implementing adjustment. 
Confounders should include at minimum all variables that im-
pact both treatment assignment and outcomes, but adjusting for 
all variables that impact the outcome, regardless of whether they 
impact treatment assignment, has been shown to lead to the most 
precise treatment effect estimates.35,36 Instrumental variables 
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(IVs) that impact treatment assignment but not outcome ex-
cept through treatment should not be adjusted for as they can 
increase bias from unmeasured confounding as well as decrease 
estimate precision.37,38 Therefore, when selecting confounders 
for adjustment for an outcome with a previously developed risk 
score, all factors incorporated into the risk score should be con-
sidered. Other factors not typically found in risk scores that can 
nonetheless impact the outcome, such as socioeconomic status 
and access to care, should also be considered. As noted previ-
ously, good measurement of confounders is critical to the success 
of confounding adjustment, and increasing misclassification or 
mismeasurement in confounders leads to increasing bias in ef-
fect estimates.39

Although the selection of variables for confounding ad-
justment is clear in theory, in any given nonrandomized RWE 
study, it can never be known with certainty which variables 
are predictive of outcome, of treatment, or neither. In nonran-
domized research in existing healthcare databases, selection of 
confounders from the thousands of measured variables can be 
especially difficult. There are now many approaches to auto-
mated variable selection, which are capable of sifting through a 
large number of measured variables to identify those most likely 
to contribute to confounding by evaluating variable associations 
with outcome and treatment. For example, the freely accessible 
high- dimensional propensity score algorithm, created for use 
with health insurance claims data, automatically creates binary 
variables describing the frequency of unique diagnoses, proce-
dures, and medication dispensations in the claims data.40 It then 
calculates an approximation of the expected bias in the treatment 
effect estimate due to each variable based on the variable’s prev-
alence and univariate associations with treatment and outcome. 
The bias calculation is used for prioritizing variables for inclu-
sion in the propensity score model. Alternatively, several other 
machine learning– based approaches focus on modeling the pro-
pensity score and/or the outcome while simultaneously selecting 
variables for adjustment.41– 44 Many of these have been shown to 
have very good theoretical properties, but may need additional 
work to scale to large healthcare databases common in RWE.45,46

Debate is still ongoing regarding whether investigator selec-
tion of covariates or automated confounder selection is preferred 
in studies based on existing healthcare databases. However, 
there is increasing consensus that automated approaches, guided 
by knowledgeable investigators, may provide the best of both 
worlds.33,47,48 At minimum, if investigator selection is used for 
primary analyses, automated procedures can provide a useful 
sensitivity analysis to identify whether there are any import-
ant variables that were missed by investigators. If automated 
procedures are used for primary analyses, then investigators 
should review the list of confounders selected by the automated 
approaches to evaluate whether additional variables should be 
included. Allowing automated procedures to determine adjust-
ment for primary analyses without reporting and assessment 
of the adjustment variables and achieved balance is not recom-
mended. Often, it is worthwhile to seek collaboration or con-
sultation from developers of the primary data source to ensure 
appropriate employment of data in development of covariates.

DO SENSITIVITY ANALYSES QUANTIFY THE POTENTIAL 
IMPACT OF RESIDUAL CONFOUNDING?
Even if the study design and adjustment strategy has attempted to 
thoroughly account for potential differences between treatment 
groups that could lead to confounding of the treatment effect 
estimate, residual confounding cannot be ruled out. Therefore, 
nonrandomized studies that will be used for regulatory and 
treatment decision making must consider the potential im-
pacts of residual confounding in sensitivity analyses. Sensitivity 
analyses could directly evaluate unmeasured confounders by, 
for example, evaluating the balance of confounders that were 
unavailable for adjustment for the full study population but 
are measured in a subset of the study population through data 
linkage.49 Another possibility is assessing the effects of treat-
ments on control outcomes that share a similar confounding 
mechanism as the outcome of interest but have a known rela-
tionship with treatment.50,51 Replicating the known effect on 
the control outcome provides some assurance that confound-
ing has been well controlled. Even when there is no suitable 
control outcome available and no information on confounders 
available through data linkage, quantitative bias analysis can be 
performed to identify the magnitude of unmeasured confound-
ing that would be required to invalidate the conclusions from 
the study.52,53 This information can then be compared with the 
plausible range of associations of likely confounders with treat-
ment assignment and outcome to identify whether unmeasured 
confounding remains a significant concern in the study.

IV methods are an alternative confounding adjustment ap-
proach that, unlike the propensity score methods described 
above, can adjust for unmeasured confounders. Utilizing an IV 
adjustment approach requires the availability of a valid IV that is 
predictive of treatment but affects outcome only through treat-
ment.54,55 Randomization in an RCT can be thought of as an 
IV, as randomization does not impact outcomes except through 
its influence on patient treatment. Occasionally, formulary or 
policy changes that lead to significant modifications in treat-
ment choice can provide a “natural experiment” that can be used 
for constructing an IV analysis.56 Other suggestions for IVs in 
nonrandomized RWE studies of medications include physician 
prescribing preference, hospital or regional preferences, or spe-
cialist access.57– 60 However, all of these potential IVs have been 
criticized as likely correlated with outcome and therefore con-
founded.61 IV analyses also typically have lower statistical power 
than traditional adjustment approaches. Thus, these approaches 
may be inappropriate for primary analyses or for studying rare 
medication safety events but can provide supplemental assess-
ment of unmeasured confounding in studies of intended med-
ication effects, where the risk of residual confounding is higher.

ARE METHODS OPEN TO INSPECTION AND (IF POSSIBLE) 
REPLICATION?
Protocol registration
Despite the progress made over the last few decades in understand-
ing the study designs and methods that allow for valid inferences 
from nonrandomized studies, one major hurdle that remains is 
agreement on study processes that can ensure transparency and 
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integrity of analyses. For example, all randomized trials that are ei-
ther published in a major medical journal or used for a regulatory 
decision are required to register a detailed protocol at ClinicalTrials.
gov prior to enrolling the first study patient. Registration of the trial 
protocol ensures that design and analytic choices were made prior 
to evaluation of study outcomes and were therefore not influenced 
by the results. In the context of a nonrandomized study, protocol 
registration can enhance the likelihood that the investigators or 
other parties do not modify the design and analysis in order to pro-
duce a desired result, as changes to the protocol occurring during 
the conduct of the study and their rationale would be documented.

Comparable to registration in randomized trials, registration of 
nonrandomized studies is often completed prior to study start, i.e., 
prior to conducting any analytic work on the study question of in-
terest (but likely after an appropriate data source with a sufficient 
number of patients of interest has been identified). This approach 
is often used, for example, for studies registered on the European 
Union postauthorization studies register prior to data accrual 
(www.encepp.eu). However, some investigators may be resistant 
to this recommendation, as nonrandomized database studies are 
often designed adaptively with initial learnings on confounding 
mechanisms observed in the database contributing to decisions 
on study design. Alternatively, one could simply blind herself to 
outcome information, but use other data, such as balance on con-
founders, to contribute to study design.62 This approach guards 
against data dredging but does not allow information on observed 
outcome risks to contribute to the study design. While a strong 
need for evidence on important safety questions sometimes means 
that even underpowered analyses should proceed, assessments of 
effectiveness are often postponed if there is not sufficient power to 
provide meaningful results. Thus, a more flexible option is to allow 
use of outcome information overall (not separated by treatment 
groups) in order to estimate likely study power given the number 
of observed events.63 Registration of the protocol could then take 
place after these initial analyses of feasibility and validity have been 
conducted and the design and analysis are finalized.

A related question concerns to what extent outcome informa-
tion can be used to aid investigators in the selection of confounders 
to be used for adjustment. As noted in prior sections, many ma-
chine learning– based approaches now utilize outcome modeling 
in order to simultaneously identify confounders and estimate treat-
ment effect, making prespecification of the final set of covariates 
impossible. However, the approach to automated confounder se-
lection should be prespecified in the protocol, thereby maintain-
ing the benefits of preregistration and allowing for a diverse set of 
confounder adjustment methods.

The challenge in all of these approaches is guaranteeing that 
investigators did not evaluate treatment effect estimates prior to 
selecting the design and analysis. Even registration of the protocol 
does not eliminate this concern, as there is no way to know whether 
investigators conducting retrospective RWE previously identified 
favorable designs and analyses prior to registering the protocol. 
There are now some analytic platforms for healthcare databases 
that provide an audit trail of all analyses that have been conducted 
that could then be shared with regulators to verify that compar-
ative analyses of outcomes were not conducted until after the 

protocol was registered.64 However, if data were available to inves-
tigators outside of the platform, it may still be possible to evaluate 
treatment effect estimates outside of the platform prior to protocol 
registration.

Sharing results
Rather than relying on the integrity of investigators or on analytic 
platforms to guarantee that study design and analysis were prespec-
ified, an alternative approach is to instead allow regulators or other 
evidence consumers to replicate or reproduce findings independently 
of the sponsor. This approach could include supporting replication 
of study findings in a separate real- world database or setting, using 
the same methodology as the original study. Alternatively, sponsors 
could provide data supporting primary analyses so that regulators 
could reproduce primary analyses and examine whether results are 
robust to changes in design or analysis. Submission of study data is 
required for FDA submissions involving RCTs and is typically pro-
vided for nonrandomized studies based on primary data collection, 
but is not uniformly required across regulatory agencies. Given the 
increased concerns about the quality of both data and design in non-
randomized RWE based on healthcare databases, one might expect 
that the submission of study data for regulatory submission of such 
studies is more imperative. However, sharing data is more difficult 
in this context. Databases derived from patient records may be con-
trolled by healthcare systems or payers who license use of the data to 
investigators under agreements that prohibit the further sharing of 
patient- level data. While they may make exceptions for sharing data 
with regulatory agencies, which data should be shared? Extensive 
modifications to the design or analysis (using different comparators, 
different washout periods for defining new use of a drug, etc.) could 
require access to the underlying healthcare database rather than 
simply sharing of a final analytic data set.

Sharing of individual- level data should mitigate risks of reiden-
tification. Several privacy- preserving options for data sharing for 
RWE based on healthcare databases have been described previ-
ously in the literature.65 For example, sharing healthcare databases 
with regulators may be done via an “archive,” where regulators or 
other research consumers can access data directly via an analytics 
platform or data access portal, or via an “enclave,” where regula-
tors can submit queries and receive aggregate results. One exam-
ple of the enclave model is the Centers for Medicare and Medicaid 
Services (CMS) Virtual Research Data Center (VRDC), which 
allows remote access to CMS data and transfer of aggregate results 
through the submission of Statistical Analysis System (SAS) que-
ries.66 Similar systems could be setup for other large research da-
tabases but would require substantial additional investment from 
database aggregators. Other techniques to mitigate reidentification 
risks include using statistical methodologies for deidentification, 
requiring contractual commitments not to reidentify, and limiting 
data access only for legitimate research purposes.67 Given that the 
need for transparency, reproducibility, and rigor must be weighed 
against the imperative to protect patient and health system inter-
ests, there likely will not be a single solution that is uniformly ap-
plicable to all studies.

Sharing programming code used for creating all analytic results, as 
well as code for cohort creation in the context of healthcare database 
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studies, should be required in regulatory submissions and highly en-
couraged in published literature. For example, the FDA’s Sentinel 
program posts code for planned analyses prior to running the code 
to produce results, thereby serving as both preregistration of planned 
analyses and sharing of code.68 Similarly, websites developed for reg-
istration of nonrandomized study protocols could allow for sharing 
of study code, before or after completion of analyses. However, im-
plementing or understanding publicly available code may be diffi-
cult, even when it is developed for use with a common data model. 
Thus, along with the programming code, protocols registered prior 
to the study should be updated and shared to ensure that the final 
implementation of the study is described accurately in the protocol 
and changes to the protocol are clearly documented with rationale. 
Several resources have become available recently to promote thor-
ough and transparent reporting of nonrandomized studies,69– 72 and 
standardization of reporting may improve the ability of regulators 
and other interested parties to comprehend and synthesize study 
findings and would allow other investigators to replicate findings.

CONCLUSION
Understanding of when and how nonrandomized studies can 
lead to valid quantification of the benefits and risks of med-
ications has greatly improved over the last few decades.73,74 In 
particular, the emulation of RCT designs in nonrandomized 

studies has helped to clarify design thinking in both primary 
data collection and analysis of existing healthcare databases. 
The recent proliferation of structured healthcare databases, 
such as health insurance claims, electronic health records, and 
registries has further stimulated interest in RWE on drugs 
based on nonrandomized designs. However, designing a high- 
quality nonrandomized study of medications remains challeng-
ing. Addressing confounding requires that a study can build 
on existing causal knowledge, for example, the relationships of 
potential confounders to exposure and outcome. Thus, evalua-
tion of confounding and other potential biases requires broad 
expertise across a range of disciplines, including relevant clinical 
areas, epidemiology, and biostatistics. There is unlikely to ever 
be a simple checklist that can differentiate a high- quality non-
randomized study from a low- quality study as these judgements 
will always require subject matter expertise, but the guiding 
questions and recommendations provided in this paper detail 
strategies that could be applied across many clinical questions 
(Figure  1). Nonrandomized studies that cannot respond ade-
quately to these questions lack credibility needed for decision 
making. Standardization of study processes, including protocol 
registration, sharing of data and analytic code, and reporting of 
results will further improve the reliability of nonrandomized re-
search, just as it has for RCTs.

Figure 1 Valid inference on medication effects from nonrandomized studies. RCT, randomized controlled trial.
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