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ABSTRACT OF THE DISSERTATION 

 

Genetic and Epigenetic Control of Gene Expression  

in Human and Non-Human Primates 

 

by 

 

Ivette Maria Zelaya 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2019 

Professor Giovanni Coppola, Chair 

 

A majority of the work presented in this dissertation focuses on identifying 

differences in transcriptome profiles across different phenotypes. The first project I 

present incorporates controls from different developmental time points, namely, 

prenatal and postnatal, to identify gene expression and splicing differences in SMA 

cases. Findings from this study report a large number of genes with prenatal 

expression patterns in iliopsoas from postnatal SMA samples. Similarly, differential 

splicing analyses uncovered prenatal splicing patterns in SMA cases in two muscle 

relevant genes: TNNT3 and MYBPC1.   

The next project characterizes the transcriptome profile of seven different 

tissues in the vervet monkey using RNA-seq data. Transcriptome profiles from two of 

the three brain tissues explored showed expression patterns correlated with 

developmental time point. Additionally, this project presents an eQTL study which 
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resulted in identifying eQTL SNPs within a region associated with hippocampal 

volume.   

Building on the observation of developmental expression patterns in 

Brodmann’s area 46 and caudate in the previous project, the next project I present 

focuses on the identification of age-related genes in vervet hippocampus. With the 

addition of younger samples, I also perform an eQTL analysis and report two 

additional genes, CHMP1B and RAB31, with associated SNPs within the hippocampal 

volume associated region.  

Finally, the final project described focuses on improving the characterization 

of vervet chromatin modifications using human epigenomic datasets. Through the 

use of machine learning algorithms and prediction variables previously shown to 

correlate with conversion depth of histone marks across species, I show improved 

accuracy can be obtained while still maintaining biologically relevant peak signals.  
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Chapter 1 

Introduction 

Over the past decade, next generation sequencing technologies have 

revolutionized the field of genetic research (Metzker, 2010). Technological advances 

have afforded us improved transcriptome quantification methods without the need 

for dedicated microarray or other gene expression platforms (Ozsolak and Milos, 

2011). This in turn has provided research avenues that would have been challenging 

to explore using microarray platforms, areas such as: exploration of alternative 

splice-sites, transcript-level quantification and detection of gene fusion events 

(Ozsolak and Milos, 2011). This is especially beneficial in studying brain disorders, 

where splicing has been found to play a role in disease pathogenesis in various 

neurological disorders (Dredge, Polydorides, and Darnell, 2001).  

One such example occurs in spinal muscular atrophy (SMA), where splicing 

mutations in the SMN1 gene splice out exon 7 which leads to a non-functional SMN 

protein (Lunn and Wang, 2008). SMA is a neurodegenerative disorder characterized 

by the degeneration of motor neurons in the spinal cord which leads to muscle 

atrophy. However, previous studies suggest a lack of maturation occurring during 

development in muscles from SMA type I cases (Martínez-Hernández et al., 2013). 

In an effort to identify developmental processes that may be affected in SMA cases, 

chapter 2 of this dissertation makes use of iliopsoas and diaphragm samples from 6-

8 SMA cases, prenatal controls and postnatal controls to identify genes with prenatal 

expression and splicing patterns.  
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At the DNA level, genome-wide association studies have identified numerous 

genetic variants associated with disease (Welter et al., 2014), mostly located in non-

coding regions of the genome, making it difficult to understand the functional impact 

of such variants. As a result, interest in understanding the functional role of 

noncoding variation has paved the way for studies exploring effects of genetic 

variants on gene expression (Nicolae et al., 2010) as well as identifying regulatory 

elements within the genome (Tak and Farnham, 2015).   

Systematic studies aimed at the identification of expression quantitative loci 

(eQTL) in humans are limited by tissue sample availability across multiple 

developmental stages (Consortium et al., 2017; C.-H. Yu, Pal, and Moult, 2016). In 

addition, even an imperfect control of environmental conditions is impracticable in 

human studies. As such, model organisms have provided a feasible alternative. 

Mammalian model organisms, including invertebrates and rodents, are widely used 

in research studies and now multiple resources exist to facilitate gene expression 

studies (Blake et al., 2017; Shimoyama et al., 2015). However, the evolutionary 

distance of these models from humans limits their applicability, especially in the 

context of human disease. Nonhuman primate models, including the vervet monkey 

(Chlorocebus aethiops sabaeus) (Jasinska et al., 2013), constitute an attractive 

alternative for this type of studies, as considerable tissue resources have already 

been collected and the genome sequenced. 

Chapter 3 describes the creation of an RNA-seq-based transcriptional resource 

across seven vervet tissues, including blood, fibroblasts, three brain tissues (caudate, 

Brodmann’s area 46 [BA46], hippocampus), and two endocrine tissues (adrenal and 

pituitary gland). This resource provides an assessment of gene expression levels in 
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multiple vervet tissues across ten developmental time points, ranging from infant (7 

days) to adult (9 years). Two of the three brain regions, caudate and BA46, are found 

to have developmental related expression patterns. Additionally, we perform 

characterization of eQTLs within these seven tissues and identify a hippocampal 

eQTLs located within a region associated with hippocampal volume. Chapter 4 builds 

on these results and expands our interrogation of developmental relevant genes in 

vervet hippocampus. In addition to uncovering genes associated with aging 

pathways, we also show many of these vervet genes are also developmentally 

regulated in the Allen Brain Atlas human and rhesus datasets. 

Finally, significant progress has been made in understanding the contribution 

of noncoding variation to epigenetic marks regulating gene expression, both in 

rodents (Stamatoyannopoulos et al., 2012) and in humans (ENCODE Project 

Consortium, 2012). Through the use of these resources, it has been observed that 

regulatory regions, such as histone marks, vary across tissues and, importantly, that 

loci associated with specific diseases are enriched in tissue-specific histone marks in 

disease relevant tissues (Trynka et al., 2013). Chapter 5 describes a machine learning 

approach to classify vervet enhancer (H3K27ac) and promoter (H3K4me3) marks 

using human data from the Epigenomics Roadmap project (Kundaje et al., 2015). We 

show that factors such as distance to the transcription start site, GC content, and 

peak length can be used as predictive variables to classify true peak calls obtained 

by lifting over human epigenomic coordinates to the vervet genome.      
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Chapter 2 

Prenatal expression patterns in Spinal Muscular Atrophy 

 

2.1 Introduction 

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative 

disease and the leading genetic cause of infant mortality (Lunn and Wang, 2008). 

Mutations in the survival motor neuron gene (SMN1) cause disease by reducing the 

amount of functional SMN protein. The SMN1 paralog SMN2 differs from SMN1 by 

five nucleotides which consequently produces a non-functional, truncated SMN 

protein. Nonetheless, SMN2 has been found to act as a disease modifier whose copy 

number is inversely related to disease severity. Lack of a functional SMN protein 

results in degeneration of α-motor neurons in the anterior horn of the spinal cord 

which leads to muscle atrophy (Hamilton and Gillingwater, 2013). Despite recent 

advances in the treatment of SMA (Finkel et al., 2017; Mendell et al., 2017), the 

molecular pathway by which muscle atrophy occurs is not fully understood and seems 

to be dependent on disease severity (Deguise et al., 2016). Muscle biopsies from 

SMA type I cases report a prenatal appearance (Fidziańska, Goebel, and Warlo, 

1990), while additional studies suggest a lack of maturation in SMA muscle (Martínez-

Hernández et al., 2009). 

Prenatal patterns are not unique to SMA and have previously been reported in 

other muscular degenerative diseases such as Duchenne muscular dystrophy (DMD) 

(Fitzsimons and Hoh, 1981). By uncovering possible genes and pathways altered in 

SMA muscles in comparison to normal muscle development, a better understanding 

may be gained into mechanisms involved in SMA muscle pathology. Thus, we sought  
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Sample 
Name 

Sample 
Type 

Age 
SMN1 
Copies 

SMN2 
Copies 

Cause of 
Death 

Iliopsoas Diaphragm 

SMA_08_02 

SMA 

16m 0 2 Type 1 SMA X X 

SMA_12_01 2.5m 0 2 Type 1 SMA X X 

SMA_08_01 4.5m 0 2 Type 1 SMA X X 

SMA_09_02 4m 0 2 Type 1 SMA X X 

SMA_10_16 72m 0 2 Type 2 SMA   X 

SMA_14_04 72m 0 2 Type 1 SMA X X 

SMA_17_03 0.5m 0 2 Type 1 SMA X X 

SMA_17_06 
18w 

(prenatal) 
0 2 Type 1 SMA X X 

MBB_113 

Prenatal 
Control 

18w 2 1 Control X X 

MBB_314 21w 3 1 Trisomy 1 X X 

MBB_684 22w 2 2 
Tuberous 
Sclerosis 

X X 

MBB_361 28w 2 1 
Hydrops 
fetalis 

X X 

CNTL_15_02 25w       X   

CNTL_15_03 22w       X X 

CNTL_15_04 18w         X 

CNTL_15_07 34w     
Congenital 

Heart 
Defect 

X X 

CNTL_12_02 

Postnatal 
Control 

0.3m 2 2 
Meconium 
Aspiration 

X X 

UMB_86 1.9m 2 2 
Congenital 

Heart 
Defect 

  X 

UMB_1296 3.26m 2 2 Control X   

UMB_1472 3.93m 2 2 Control   X 

UMB_195 4.1m 2 2 Control X   

CNTL_12_05 19m 2 1   X X 

CNTL_13_01 168m 2 1 
Cardiac 

Arrest 
X X 

CNTL_15_05 

23w, 3 
mon 
post-

delivery 

      X X 

CNTL_15_06 144m       X X 

CNTL_17_01 9m     Trisomy 21 X X 

MBB_106 0.73m 2 1 Control   X 

MBB_569 4.4m 2 1   X   

Table 2-1: Summary of samples used in differential expression and splicing analyses. Red "X" 

indicates outlier samples that were excluded from analyses. 
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 to identify gene expression changes and splicing differences in diaphragm and 

iliopsoas muscle from SMA affected infants, compared to postnatal and prenatal 

controls.  

 

2.2 Results 

  We obtained RNA sequencing data from postnatal SMA cases, and prenatal and 

postnatal controls from diaphragm and iliopsoas tissues (Table 2-1). For our 

differential expression and splicing analyses we focused on three comparison groups 

for each tissue type: prenatal vs postnatal controls, SMA cases vs postnatal controls 

and prenatal controls vs SMA cases (Figure 2-1). To identify genes in SMA cases with 

prenatal patterns we focused on genes shared between prenatal controls and SMA 

cases vs postnatal comparisons, while excluding genes with similar patterns in 

prenatal controls vs SMA cases. By excluding genes shared with this third comparison 

group (prenatal controls vs SMA cases) we excluded differentially expressed SMA 

genes with expression values somewhere between those observed in prenatal and 

postnatal controls. Inferring biological significance of such 

Comparison Tissue 
Up-regulated 

genes 

Down-
regulated 

genes 

Total 
# of 
DE 

genes 

SMA vs Postnatal Controls 

Iliopsoas 

540 496 1,036  

Prenatal Controls vs SMA 2,314 2,073 4,387  

Prenatal vs Postnatal Controls 3,775 3,447 7,222  

SMA vs Postnatal Controls 

Diaphragm 

29 42 71  

Prenatal Controls vs SMA 3,172 2,698 5,870  

Prenatal vs Postnatal Controls 2,041 1,846 3,887  

Table 2-2: Summary of differential expression results for each comparison group by tissue type.  
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Figure 2-1: Schematic of differential expression and splicing analyses performed.  
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expression patterns is a more challenging task, thus we sought to focus our 

investigation on differentially expressed genes where SMA expression mirrored 

prenatal expression.    

Differential expression analysis highlights neurodegeneration-associated genes  

Differential expression analysis performed on diaphragm and iliopsoas muscle 

tissues resulted in the analysis of approximately 17,000 genes, after filtering. At an 

FDR threshold of 0.05, we observed the greatest number of differentially expressed 

genes in prenatal vs postnatal tissue comparisons in iliopsoas and in prenatal vs SMA 

comparisons in diaphragm (Table 2-2). First, we focused on the 500 genes up- or 

down-regulated in iliopsoas SMA and prenatal vs postnatal comparisons but not in 

prenatal vs SMA (Figure 2-2). We performed functional annotation using DAVID (D. 

Figure 2-2. Venn diagrams of differential expression results. Venn diagrams show overlap of DE genes 

in each comparison group with the highlighted region indicating genes with potential prenatal 

expression patterns in SMA cases. Red and green numbers indicate up- and down-regulated genes, 

respectively.   
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W. Huang, Sherman, and Lempicki, 2009a, 2009b) on these genes and found an 

enrichment of SMA and prenatal down-regulated genes involved in Parkinson’s, 

Huntington’s and Alzheimer’s disease as well as metabolic and mitochondrial 

translational pathways (FDR < 0.05; Figure A-1). Then, we explored if any of these 

500 genes were DE in the opposite direction in prenatal vs SMA which would suggest 

Figure 2-3. Normalized expression across sample types for CHRNG and COL19A1. Expression plots 

showing a greater divergence from postnatal expression in iliopsoas SMA cases vs prenatal controls. 

While similar expression trends are observed in iliopsoas and diaphragm for both genes, expression of 

these genes in diaphragm SMA cases more closely resemble diaphragm prenatal expression patterns.  
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a more significant departure from postnatal expression patterns in SMA cases than 

that observed in prenatal controls. We found 17 genes with such a pattern, including 

COL19A1 and CHRNG (Figure 2-3), both of which have been previously implicated in 

muscle-related disorders (Ana et al., 2018; Morgan et al., 2006). COL19A1 and 

CHRNG are upregulated in SMA iliopsoas, but not in pre- or post-natal control muscle. 

Next, we explored the six DE genes overlapping in SMA vs postnatal and pre- vs post-

natal control comparisons in diaphragm. Of these six genes, one gene, COL19A1, 

recapitulated the increased expression signature observed in iliopsoas SMA cases in 

diaphragm SMA cases (Figure 2-3). Although COL19A1 expression is considerably 

less in diaphragm SMA cases than iliopsoas SMA cases, the pattern of expression was 

similar in diaphragm and iliopsoas. Similarly, CHRNG expression also showed an 

increase in diaphragm SMA cases and prenatal controls, however, unlike our iliopsoas 

findings, CHRNG expression in diaphragm SMA cases better reflected CHRNG 

expression in prenatal controls (Figure 2-3).  

Differential splicing analyses uncover prenatal splicing patterns in SMA cases 

Comparison Tissue 
# of Splicing 

Events 
# of Spliced 

Genes 

SMA vs SMA 

Diaphragm vs Iliopsoas 

175 169 

Prenatal vs Prenatal 12 11 

Postnatal vs Postnatal 130 126 

SMA vs Postnatal Controls 

Iliopsoas 

106 103 

Prenatal Controls vs SMA 620 562 

Prenatal vs Postnatal Controls 1,495 1,252 

Prenatal Controls vs SMA 

Diaphragm 

1,121 1,016 

SMA vs Postnatal Controls 24 24 

Prenatal vs Postnatal Controls 465 427 

Table 2-3: Summary of differential splicing results. 



11 
 

 

Figure 2-4. Overview of differential 

splicing results. (A) Overlap of iliopsoas 

and diaphragm splicing results by 

comparison group. (B) Splicing patterns 

in differentially spliced gene MYBPC1. 

Cluster 11991 represents exons 3-8 of 

the gene while cluster 11992 illustrates 

exons 26-28. Splicing clusters show 

increased exclusion of exons 6-7 

(superscript b) and inclusion of exon 27 

(superscript c) in SMA cases and prenatal 

controls.  

B 

A 
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Given the role splicing plays in various neurodevelopmental diseases (Mills and 

Janitz, 2012), we explored splicing differences between SMA cases and controls in 

iliopsoas and diaphragm. We first compared diaphragm and iliopsoas splicing 

differences within the same sample groups and then focused on comparisons between 

our three samples conditions within each tissue type.  

Differential splicing analysis between conditions (i.e. diaphragm vs iliopsoas 

SMA cases) yielded the lowest number of splicing differences between prenatal 

diaphragm and iliopsoas samples and the highest number between SMA cases (Table 

2-3). Functional annotation of these gene sets failed to uncover enriched pathways 

or gene ontology terms after correcting for multiple hypothesis testing (FDR < 0.05). 

Comparison of differentially spliced clusters across sample types resulted in very little 

overlap (Figure 2-4A), suggesting splicing differences are specific to sample type 

rather than tissue. Similar to what we observed in our differential expression analysis, 

differential splicing results across sample types within the same tissue yielded the 

greatest number of differential splicing events in diaphragm prenatal controls vs SMA 

cases and iliopsoas prenatal vs postnatal controls (Table 2-3). In addition, we 

observed a strong correlation between the number of differentially spliced events and 

the number of differentially expressed genes in each dataset (R=0.98, p=4e-4; 

Figure A-1B). 

Next, we explored SMA vs postnatal differential splicing events that were 

present in prenatal and SMA vs postnatal comparisons but not in SMA vs prenatal 

dataset. We found 38 genes in iliopsoas (37% of the DS genes) that reported delta 

percent-spliced-in (dPSI) values in SMA cases similar to prenatal dPSI values. These 

results suggest that although all our SMA cases are postnatal, splicing patterns in 
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these genes better reflect what we observe in our prenatal controls. One notable 

example, MYBPC1 (Figure 2-4B), encodes the slow skeletal  isoform of the myosin-

binding protein C (Geist and Kontrogianni-Konstantopoulos, 2016). Splicing results 

in MYBPC1 suggest a higher proportion of exons 6-7 being spliced out in SMA cases 

and prenatal controls (cluster 11991), in addition to a higher spliced-in proportion of 

exon 27 (cluster_11992).  

We sought to follow up on these 38 genes with prenatal splicing patterns in 

SMA cases by performing additional splicing analyses focusing on differential 

transcript usage. Through this analysis, we replicated our differential splicing results 

in two of our 38 genes, TNNT3 and MYBPC1 (Figure 2-5). Lack of replication of the 

other 36 genes may be due to SMA- or prenatal-specific splicing events which result 

Figure 2-5. Differential isoform usage results for two validated differentially spliced genes: TNNT3 

and MYBPC1. SMA cases and prenatal controls both present decreased usage of ENST00000381589.3 

TNNT3 transcript and increased usage of ENST00000381579.3 isoform. Similarly, postnatal controls 

show a preference for MYBPC1 transcript ENST00000361685.2, while SMA cases and prenatal 

controls show a preference for ENST00000441232.1.  
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in different transcripts being generated. Observed differential isoform usage in 

MYBPC1 coincide with our original results which highlight a higher inclusion and 

exclusion percentage of exon 27 and exons 6-7, respectively, in SMA cases and 

prenatal controls when compared to postnatal controls (Figure 2-4B). These splicing 

events contribute to increased and decreased proportions of ENST00000441232.1 

and ENST00000361685.2 transcripts, respectively, in SMA cases and prenatal 

controls (Figure 2-5).  

 

2.3 Discussion 

Our study interrogated the transcriptome in two relevant tissues from human 

postnatal SMA cases, and compared it to pre- and postnatal controls. Our analysis 

revealed a subset of gene expression changes in postnatal SMA cases which 

resembled the pattern of expression observed in prenatal controls.  

Our differential expression analysis uncovered sets of interesting genes 

associated with various neurodegenerative disorders. Interestingly, one of the top 

genes, CHRNG, encodes the fetal acetylcholine receptor subunit gamma (Gu and Hall, 

1988). During development, as muscle maturation occurs, the fetal gamma subunit 

of the acetylcholine receptor is switched to the adult epsilon subunit (Hesselmans, 

Jennekens, Van Den Oord, Veldman, and Vincent, 1993). The increased CHRNG 

expression observed in our iliopsoas SMA cases further supports previous findings in 

human and mouse studies reporting the presence of the fetal gamma subunit in 

postnatal SMA muscle (Kariya et al., 2008; Martínez-Hernández et al., 2013). 

Similarly, studies exploring COL19A1 expression reported increased expression in 

fetal muscle compared to adult muscle, and decreased expression in fetal brain 
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compared to adult brain (Sumiyoshi, Inoguchi, Khaleduzzaman, Ninomiya, and 

Yoshioka, 1997). More importantly, similar to our observations in SMA cases, recent 

studies also found increased expression of COL19A1 in amyotrophic lateral sclerosis 

(ALS) cases, even suggesting the use of COL19A1 as a prognostic biomarker for the 

disease (Ana et al., 2018). Taken together, these results confirm a gene expression 

signature switched toward a prenatal state in postnatal in SMA muscle.  

Our differential splicing analysis provided novel insights into splicing patterns 

in SMA cases when compared to pre- and postnatal controls. Our observation of 

splicing patterns in iliopsoas postnatal SMA cases that better reflect those of prenatal 

controls in genes such as TNNT3 and MYBPC1 suggests either a lack of developmental 

progression, or reversal to a fetal state in muscle gene expression. TNNT3 knockout 

studies in mice suggest troponin T3 is essential for growth and postnatal survival (Ju 

et al., 2013). More importantly, alternative splicing of TNNT3 is developmentally 

regulated with several isoforms exclusively expressed in fetal or adult muscle tissues 

(Wei and Jin, 2016). The higher abundance of the ENST00000381579.3 transcript in 

SMA cases and prenatal controls contrasts isoform expression reported by the GTEx 

portal (www.gtexportal.org, data source v7) in adult skeletal muscle tissues where 

this transcript is only the third most abundant transcript. Similarly, splicing results in 

MYBPC1 also suggest preferential expression of specific isoforms in prenatal controls 

and SMA cases. MYBPC1 belongs to the myosin-binding protein family which plays a 

crucial role in muscle contraction (Lin et al., 2018). Myosin genes are known to have 

isoforms expressed exclusively during development (Schiaffino, Rossi, Smerdu, 

Leinwand, and Reggiani, 2015), however, no known fetal isoforms have been 

reported for MYBPC1. Despite the lack of known fetal isoforms, the higher abundance 

http://www.gtexportal.org/
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of the ENST00000441232.1 transcript in SMA cases and prenatal controls, combined 

with low expression of this transcript in our postnatal controls as well as in GTEx adult 

muscle tissues (TPM = 4.04, www.gtexportal.org, data source v7), suggests this 

transcript may be developmentally regulated. While these observed transcripts 

identified in TNNT3 and MYBPC1 may not be exclusive to fetal muscle tissues, their 

increased abundance in prenatal controls suggest a function for them and their 

encoded proteins which is diminished in our postnatal controls. 

Finally, our expression and splicing results highlighted genes known to be 

involved in muscle development and suggested a possible role for these genes in SMA 

muscle pathology. Functional studies are now needed to better understand how 

prenatal expression patterns of these genes affect normal development and if they 

contribute to muscle atrophy. The inclusion of prenatal control samples in our study, 

coupled with our differential expression and splicing results can provide a valuable 

resource in understanding developmental pathways that may be affected in spinal 

muscular atrophy and other neurodegenerative diseases.  

 

2.4 Methods 

Sample Collection  

RNA sequencing was performed on diaphragm and iliopsoas tissues from SMA 

cases, prenatal & postnatal controls. Samples were run in two batches using different 

methods due to availability of technology at the time of extraction and sequencing. 

For batch one, human iliopsoas and diaphragm muscle tissues were disrupted and 

homogenized in Lysing Matrix A (MP Biomedicals, LLC, Santa Ana, CA), plus RLT plus 

buffer (QIAGEN, Valencia, CA) by FastPrep 5G (MP Biomedicals, LLC, Santa Ana, CA). 

http://www.gtexportal.org/
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About 30 mg of tissues were used. The lysate was span down and the supernatant 

was saved. The total RNA was then extracted using RNeasy ® Plus Mini Kit (QIAGEN, 

Valencia, CA) according to manufacturer’s instructions.  The RNA integrity (RIN) was 

examined using Bioanalyzer 2100 (Agilent, Santa Clara, CA). The RNA with RIN 4.6 

or above was used in the following RNA-seq prep. 

The RNA-seq libraries were prepared using TruSeq Stranded Total RNA Library 

Prep Kit with Ribo-Zero Gold (Illumina, La Jolla, CA) following the manufacturer’s 

instruction. The libraries were pooled for sequencing of pair-end 50-bp on 

HiSeq™2500 (Illumina, La Jolla, CA). 

For samples in our second batch, about 30 mg of human iliopsoas and 

diaphragm muscle tissues were used in a 2-ml tube with a 5-mm stainless steel bead 

and RLT buffer (QIAGEN, Valencia, CA), then disrupted and homogenized in 

TissueLyser LT (QIAGEN, Valencia, CA), operated at 40 Hz for 2 min. The lysate was 

used for the further total RNA extraction using RNeasy Fibrous Tissue Mini Kit 

(QIAGEN, Valencia, CA) following manufacturer’s instructions. The RNA integrity 

(RIN) was examined using Bioanalyzer 2100 (Agilent, Santa Clara, CA). The RNA with 

RIN 4.2 or above was used in the following RNA-seq prep. 

The RNA-seq libraries were prepared using TruSeq Stranded Total RNA Library 

Prep Kit with Ribo-Zero Gold (Illumina, La Jolla, CA) following the manufacturer’s 

instruction. The libraries were pooled for sequencing of pair-end 50-bp on 

HiSeq™4000 (Illumina, La Jolla, CA). 

Sample Processing and Outlier Detection 

RNA-seq fastq files were aligned to human reference hg19 using STAR aligner 

v2.5.0a (Dobin et al., 2013) and expression counts were obtained using HTSeq 
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(Anders, Pyl, and Huber, 2015). Outliers were determined through hierarchical 

clustering and removed from subsequent analyses (CNTL_15_03 in diaphragm and 

SMA14_04 and CNTL_15_07 in iliopsoas; Figure A-2A,B). Additional outlier detection 

was performed using principal component analysis (PCA), where two additional 

diaphragm outliers were observed: SMA_17_03 and CNTL_17_01 (Figure A-2C,D). 

Similarly, in iliopsoas and diaphragm, we observe our single prenatal SMA sample 

(SMA_17_06) and our only premature postnatal control sample (CNTL_15_05) 

cluster with prenatal controls. Due to the nature of these samples and the way they 

clustered in both of our hierarchical clustering and PCA approaches, they were 

excluded so as to eliminate any possible influence on our prenatal comparisons.  

Differential Expression Analyses 

Lowly expressed genes with a counts-per-million (cpm) values less than 0.5 in 

more than 25% of the samples were removed. Differential expression analyses were 

performed using the edgeR generalized linear model (GLM) approach (McCarthy, 

Chen, and Smyth, 2012) on trimmed mean normalized counts (Robinson and 

Oshlack, 2010). To account for possible batch effects due to differences in extraction 

methods and sequencing technology, batch was included as a factor in our model. 

Differential expression results were considered significant at an FDR threshold of 0.05 

for each comparison group. 

Differential Splicing Analysis 

Alternative splicing analysis was performed using the leafcutter package v1.0 

(Y. I. Li, Knowles, and Pritchard, 2016), an annotation-free splicing analysis software. 

Default parameters were used in the leafcutter script, except for minimum samples 

per intron which was reduced to three to account for the smaller number of iliopsoas 
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SMA cases. Batch was included as a covariate. FDR values were calculated using the 

p.adjust function in R and results were considered significant at an FDR threshold of 

0.05. 

Additional splicing analyses were limited to genes identified by differential gene 

expression and leafcutter differential splicing analyses as having prenatal patterns in 

SMA samples. Differential transcript usage isoform expression was performed using 

the DEXSeq v1.28 R package (Anders, Reyes, and Huber, 2012). Transcript counts 

were obtained using Salmon (Patro, Duggal, Love, Irizarry, and Kingsford, 2017) due 

to its fast computing time and strong correlation with alternative isoform 

quantification methods (C. Zhang, Zhang, Lin, and Zhao, 2017). Counts were 

imported and scaled using tximport (Soneson, Love, and Robinson, 2015) to account 

for differences in library size and transcript length. Filtering was performed to remove 

lowly expressed transcripts, defined as transcripts expressed in fewer than 4 samples 

with a minimum count value of 5. To ensure consistency between all our analyses, 

batch was also included in our linear model. Finally, two-stage FDR control was 

performed using the stageR package (Van den Berge, Soneson, Robinson, and 

Clement, 2017) to control the false-discovery rate at the gene and feature level. 

Leafcutter splicing events were considered validated if differential splicing was 

observed at an overall (two-stage) FDR threshold of 0.05.  
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Chapter 3 

Expression quantitative trait loci in vervet tissues 

 

3.1 Introduction 

Efforts to understand how genetic variation contributes to common diseases 

and quantitative traits increasingly focus on the regulation of gene expression. Most 

loci identified through genome-wide association studies (GWAS) lie in noncoding 

genome regions (Hindorff et al., 2009) and are enriched for eQTLs, SNPs regulating 

transcript levels, primarily of nearby genes (Nicolae et al., 2010). This observation 

suggests that eQTL catalogs may signpost variants responsible for GWAS signals 

(Albert and Kruglyak, 2015). Normal functioning of complex organisms depends on 

tightly regulated gene expression at specific developmental stages in specific cell 

types. Existing human eQTL data sets are likely missing information relevant to 

understanding disease, as most known human eQTLs have been identified in adult 

individuals, largely from lymphocytes or lymphoblastoid cell lines (Gibson, Powell, 

and Marigorta, 2015; Gilad, Rifkin, and Pritchard, 2008). This lack is particularly 

striking for neuropsychiatric disorders, given the inaccessibility of brain tissues in 

living individuals and the enormous modifications occurring in the brain across 

development (H. J. Kang et al., 2011). 

Databases of gene expression obtained in samples from post-mortem donors 

have begun to remedy the lack of human data connecting genotypic variation and 

multitissue transcriptome variation. The Genotype-Tissue Expression (GTEx) project 

eQTL catalog is the most extensive of such resources available (Mele et al., 2015). 

However, limitations of the GTEx project inherent to human research, namely the 
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lack of developmental data, the relatively low number and variable quality of 

samples, and their genetic heterogeneity, motivate the generation and investigation 

of equivalent resources from model organisms. The advantages of model systems 

include (i) the feasibility of controlling for interindividual heterogeneity in 

environmental exposures and minimizing the interval between death and tissue 

preservation; (ii) the practicability of obtaining sizable numbers of samples from 

multiple tissues across development; and (iii) the opportunity to systematically 

phenotype individuals carrying particular eQTL variants. The similarities between 

humans and nonhuman primates (NHPs) in behavior, neuroanatomy and brain 

circuitry (Jasinska et al., 2013; Jennings et al., 2016; Rogers and Gibbs, 2014) make 

NHP eQTLs particularly valuable for illuminating neuropsychiatric disorders.  

We report here, in Caribbean vervets (Chlorocebus aethiops sabaeus) from the 

Vervet Research Colony (VRC) extended pedigree, the first NHP resource combining 

genotypes from whole-genome sequencing (WGS) (Y. S. Huang et al., 2015), 

multitissue expression data across postnatal development, controlled environmental 

exposures (see Methods), and quantitative phenotypes relevant to human brain and 

behavior. Caribbean vervets are Old World monkeys whose population expanded 

dramatically from a founding bottleneck occurring when West African vervets were 

introduced to the Caribbean in the seventeenth century (Jasinska et al., 2013); 

genetic variation has drastically declined in Caribbean vervet populations since then, 

resulting in enrichment for numerous deleterious, or otherwise rare alleles. 

 Through necropsies performed under uniform conditions, we obtained brain 

and peripheral tissue samples from captive VRC vervets. Using these resources, we 

have delineated cross-tissue RNA-seq-based expression profiles for seven of these 
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tissues across multiple developmental stages from birth to adulthood. We identified 

numerous local and distant eQTLs in each tissue and validated a locus associated with 

multiple distant eQTLs, observed previously using pedigree-wide analyses (Jasinska 

et al., 2009). Additionally, we demonstrated the relevance of vervet eQTLs to an 

example of higher-order traits: hippocampus-specific local eQTLs regulate a set of 

lncRNAs associated with hippocampal volume, a phenotype related to 

neuropsychiatric disorders (Stein et al., 2012). 

 

 3.2 Results 

 We investigated two data sets. Data set 1, described previously (Jasinska et 

al., 2009), consists of gene expression levels obtained by hybridizing all available 

VRC whole blood–derived RNA samples (n = 347) to Illumina HumanRef-8 v2 

microarrays, which we used because no vervet arrays are available. After filtering 

out probe sequences not represented in the vervet genome (Warren et al., 2015) or 

containing common vervet SNPs (Y. S. Huang et al., 2015), we estimated expression 

levels at 6,018 probes, corresponding to 5,586 unique genes (Table 3-1). Data set 2 

consists of RNA-seq reads from seven tissues collected under identical conditions 

Tissue Protein-Coding Non-Coding Pseudogene Other/Unknown Total Genes 

Dataset 1 

Blood 5436 59 89 2 5586 

Dataset 2 

Adrenal 18221 3898 3036 32 25187 

BA46 18451 5656 3393 30 27530 

Blood 20529 8112 5093 42 33776 

Caudate 18695 5961 3559 34 28249 

Fibroblast 16614 2913 2787 14 22328 

Hippocampus 18290 5411 3223 33 26957 

Pituitary 18879 4976 3344 37 27236 

Table 3-1.  Biotypes of genes analyzed in Datasets 1 and 2 
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from each of 58 VRC monkeys (representing ten developmental stages, from birth 

through adulthood; Methods). Five of these tissues have prominent roles in 

 

cognitive and behavioral phenotypes (Arnett, Muglia, Laryea, and Muglia, 2016; 

McEwen, Gray, and Nasca, 2015; Nestler, E., Hyman, S., Holtzman, D. & Malenka, 

Figure 3-1. Principal components 1, 2, 3 and 6 from analysis of gene expression levels (RNA-

seq) in seven tissues. PC1 (47.5% of total variance) separates fibroblast from brain tissues 

and PC2 (18.2% of variance) separates blood from all other tissues, while the three brain 

regions do not separate until PC6 (2% of variance). 
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2015): Brodmann area 46 (BA46), a cytoarchitectonically defined region 

encompassing most of the dorsolateral prefrontal cortex (DLPFC); hippocampus; 

caudate nucleus, a component of dorsal striatum; pituitary gland; and adrenal gland. 

The other two tissues (cultured skin fibroblasts and whole blood) are relatively 

accessible and are thus widely used in studies aimed at identifying biomarkers. We 

assessed expression of 33,994 annotated genes but minimized spurious signals by 

excluding genes expressed in <10% of individuals or at lower than one read per 

tissue (Table 3-1).  

Principal-components analysis (PCA) of data set 2 showed that, overall, 

expression levels clustered more by tissue than by individual (Figure 3-1).  

Sources of variation in multitissue expression data  

The availability in data set 2 of multiple samples from both sexes at each age 

point enabled us to examine developmental trajectories and sex differences in gene 

expression. To maximize our ability to observe patterns, we conducted PCA on the 

expression of the 1,000 most variably expressed genes separately for each tissue 

(Figure 3-2). Comparison of the ranks of expression for the orthologs of these genes 

in matched tissues in humans and rhesus macaques yielded Spearman correlations 

of ~0.5–0.8 and ~0.3–0.4, respectively (Tables 3-2,3-3,3-4). Among the seven 

vervet tissues, the patterns in BA46 and caudate nucleus displayed the clearest 

association with development; PC1 (20.1% of BA46 variability and 18.5% of caudate 

nucleus variability) distinguished the vervets nearly linearly by age. All tissues except 

fibroblasts showed sharply demarcated expression patterns between males and 

females: on PC1 (hippocampus and pituitary gland, 19.3% and 16.2% of variability, 
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respectively), on PC2 (BA46, caudate nucleus and blood, 15.5%, 17.4% and 3.2% of 

variability, respectively) and on PC3 (adrenal gland, 8.2% of variability).  

Figure 3-2. Principal-components analysis of the 1,000 genes with the most variable expression 

levels. Analysis was performed separately by tissue; sample size was 60 animals for adrenal 

gland, blood, fibroblasts and pituitary gland and 59 for BA46, caudate nucleus and hippocampus. 

Numbers in the labels for the x and y axes correspond to the proportion of total variance 

accounted for by that PC. 
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Age 
(V) 

Age (H) 

BA46 (V) vs DLPFC (H) Caudate (V) vs Striatum (H) 
Hippocampus (V) vs 

Hippocampus (H) 

# of 
samples 

(V) 

# of 
samples 

(H) 
Rho 

# of 
samples 

(V) 

# of 
samples 

(H) 
Rho 

# of 
samples 

(V) 

# of 
samples 

(H) 
Rho 

7 d <=5 m 5 2 0.638 5 2 0.548 5 2 0.628 

90 d 6-18 m 6 2 0.618 6 1 0.537 6 1 0.615 

1-1.25 y 19m-5y 12 3 0.544 12 2 0.539 12 2 0.552 

1.5-2.5 y 6-11y 22 3 0.599 22 1 0.567 23 3 0.66 

3-4y 12-19y 6 3 0.603 6 2 0.512 6 3 0.601 

>=5y 20-60+ y 6 5 0.591 6 5 0.549 6 5 0.622 

Table 3-2. Rank correlation values (rho) for expression comparison between vervet and human 

data from ABA.  V=Vervet; H=Human. d=days, y=years, m=months 

 

Age(V) Age(R)  

BA46 (V) vs Medial Frontal 
Cortex (R) 

Caudate (V) vs Basal ganglia 
(R) 

Hippocampus (V) vs 
Hippocampal Cortex (R) 

# of 
samples 

(V) 

# of 
samples 

(R) 
Rho 

# of 
samples 

(V) 

# of 
samples 

(R) 
Rho 

# of 
samples 

(V) 

# of 
samples 

(R) 
Rho 

7 d 0 m 2 3 0.381 2 2 0.274 2 3 0.379 

90 d 3 m 3 3 0.349 3 3 0.287 3 3 0.372 

1-1.25y 12 m 6 3 0.326 6 3 0.303 6 3 0.371 

>=4 y 48 m 3 3 0.339 3 3 0.288 3 3 0.376 

Table 3-3. Rank correlation values (rho) for expression comparison between vervet and rhesus 

data from ABA. V=Vervet; R=Rhesus. d=days, m=months, y=years 

 

Vervet-GTEx Comparison  

Vervet Human Correlation 
(rho) Tissue # of Samples Tissue # of Samples 

Adrenal 58 Adrenal 126 0.794 

Blood 58 Blood 338 0.78 

Caudate 57 Caudate 100 0.683 

Hippocampus 58 Hippocampus 81 0.717 

Pituitary 58 Pituitary 87 0.795 

Table 3-4. Rank correlation values (rho) for expression comparison between 

vervet and human GTEx 
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To evaluate whether cell type heterogeneity influences the interpretation of 

our expression and eQTL results for blood and brain tissues, we conducted a 

transcriptional deconvolution analysis of these tissues using published data (Gaujoux 

and Seoighe, 2013; Y. Zhang et al., 2014) (Figure 3-3). We estimated the diversity 

of cell types per sample in each tissue by calculating entropy, observing that blood 

had substantially higher diversity of cell types than the three brain tissues (Figure 3-

3).  

We also examined the relationship between the proportion of specific cell types 

and developmental stage. For BA46 and hippocampus, the proportion of 

oligodendrocyte precursor cells decreased as age increased, as observed previously 

Figure 3-3. Cell type composition in each animal and distribution of scaled entropy of cell type. 

Deconvolution analysis was applied to vervet BA46, caudate, hippocampus and blood, and the 

proportion of cell types is presented for each animal, as well as the distribution, over 58 vervets, of 

scaled entropy for each tissue.  
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in human (Q. Yu and He, 2017); in contrast, in caudate nucleus, the proportion of 

this cell type increased with age. Similarly, the proportion of neurons increased with 

age in BA46 and hippocampus but decreased with age in caudate nucleus (Figures B-

1,B-2,B-3). We found no correlation between estimated cell proportions and major 

PC axes in any tissue. These estimated proportions may not fully reflect in vivo 

cellular composition, but any bias would remain relatively systematic across animals 

and so would be unlikely to confound other analyses.  

We evaluated the effect of RNA-seq sample batch on transcriptomic profiles 

and PC patterns. As batch showed association with expression profiles in pituitary 

gland and adrenal gland (PC2) and caudate nucleus and pituitary gland (PC3), we 

included it as a covariate in eQTL analyses. 

Identification of eQTLs 

 WGS of 721 VRC monkeys provided the first NHP genome-wide, high-

resolution genetic variant set (Y. S. Huang et al., 2015), which includes 497,163 WGS 

based SNPs that tag common variation across the genome. Using these SNPs, we 

conducted separate GWAS of data sets 1 and 2 to identify local (probe/gene <1 Mb 

from an associated SNP) and distant (all other probe/gene–SNP associations) eQTLs 

in each data set. The covariates in all eQTL analyses included age, sex and batch.  

Using SOLAR (Almasy and Blangero, 1998), we identified significant estimated 

heritability for 3,417 probes in data set 1 (out of the 6,018 filtered probes that we 

evaluated, corresponding to 5,586 unique genes) at a false discovery rate (FDR) 

threshold of FDR < 0.01. A GWAS of each heritable probe identified one or more 

significant eQTLs at 461 local and 215 distant probes (Bonferroni-corrected threshold 

of 4.8 × 10−8 for local eQTLs and 1.5 × 10−11 for distant eQTLs; Table 3-5). 
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Approximately 35% of probes with a significant eQTL (173/498) displayed at least 

one local and one distant significant association.  

Tissue 
Probes/genes 

analyzed 
Local 
eQTL 

Distant 
eQTL 

% Distant 
eQTL on 
same chr 

Dataset 1: Microarray         

Blood 3,417 461 215 80.80% 

Dataset 2: RNA-seq         

Adrenal 25,187 555 80 54.50% 

BA46 27,530 307 30 81.80% 

Blood 33,776 60 4 100% 

Caudate 28,249 441 47 69.00% 

Fibroblast 22,328 239 43 33.20% 

Hippocampus 26,957 361 45 70.60% 

Pituitary Gland 27,236 596 80 77.50% 

Table 3-5. Gene expression data sets. The number of probes/genes with at 

least one significant local and distant eQTL (at Bonferroni corrected thresholds) 

are presented.  We have 80% power to detect distant eQTLs accounting for 15% 

of the variability in expression in Dataset 1 and 66% of the variability in Dataset 

2 

In data set 2, we observed, for each of the five solid tissues, 361–596 genes 

with local eQTLs and 30–80 genes with distant eQTLs. For blood and fibroblasts, 60 

and 239 genes showed local eQTLs and 4 and 43 genes showed distant eQTLs, 

respectively, all at Bonferroni corrected thresholds (6.5 × 10−10 (local) and 5.3 × 

10−13 (distant); Table 3-5). The paucity of eQTLs in blood likely reflects heterogeneity 

in the proportions of different cell types in this tissue, as found in deconvolution 

analyses (Figures 3-1 and 3-3). The paucity of eQTLs in fibroblasts has no obvious 

explanation, although we analyzed fewer genes overall in fibroblasts than in tissues 

with cellular heterogeneity. For about 70% of Bonferroni-significant eQTLs (local and 

distant and in all tissues), the SNPs demonstrating association had minor allele 

frequency (MAF) >30%.  
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Comparison to human eQTLs  

While the eQTLs summarized in Table 3-5 are genome-wide significant at 

Bonferroni thresholds, we also applied FDR-controlling procedures to expand the list 

of local eQTLs for more exploratory investigations and to make our results 

comparable to those of the GTEx project (Table 3-6). We controlled FDR at 0.05 for 

eGenes (genes with a significant eQTL; see Methods), accounting for multiple testing 

using a hierarchical error-controlling procedure developed for multitissue eQTL 

analysis (Bogomolov, Peterson, Benjamini, and Sabatti, 2017). We applied this same 

procedure to GTEx eQTLs to facilitate comparisons between the data sets. 

Tissue 
Vervet 

number of 
individuals 

# Local 
eQTL 
Vervet 
Genesa 

GTEx 
number of 
individuals 

GTEx 
number 

of 
# Vervet 

Genes 
with 

Human 
Ortholog 

# 
Orthologous 

Genes 
Tested in 

GTExb 

% 
Tested 
Genes 

p<0.05 

% 
Tested 
Genes 

% Tested 
Genes 

significant 
genome-
wide in 
GTExd eGenesa 

p 
<.05/# 
tested 
Genesc 

Adrenal 58 2932 126 2915 1828 1674 100% 28.70% 18.20% 

Blood 58 574 338 5438 264 229 100% 70.70% 38.90% 

Caudate 57 3140 100 2396 1737 1548 100% 24.60% 14.10% 

Hippocampus 58 2437 81 1405 1436 1296 100% 18.40% 9.20% 

Pituitary 58 3395 87 2222 1863 1743 100% 20.70% 13.00% 

Table 3-6. Comparison of specific genes with local eQTL in Vervet Dataset 2 to GTEx.  The number 

of genes with at least one significant local eQTL in Vervet (at FDR thresholds) are presented.   

a The number of eGenes found in the multi-tissue hierarchical FDR procedure applied to vervet Dataset 2 and to 
GTEx. 

b Vervet genes with a human ortholog that were not tested in GTEx were filtered by their QC procedures 
c The threshold for significance corrected for the number of genes compared between Vervet and GTEx (column 
7). 
d Genes were declared significant by GTEx at an FDR of 0.05. 

Despite having a smaller sample size than v6 (accession phs000424. v6.p1) of 

the GTEx project, we identified more local eQTLs (at FDR thresholds applied to both 

data sets; Methods) for the five solid tissues evaluated in both resources (Table 3-

6). The larger number of local eQTLs in vervets likely reflects the more homogenous 

environment of colonied NHPs as compared to humans and the more uniform tissue 
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collection process in this study. Specific vervet and GTEx eQTLs overlapped 

substantially. All vervet genes with a genome-wide significant eQTL (FDR < 0.05) 

also displayed a human eQTL in the same tissue (P < 0.05), given that the gene had 

a known human ortholog and was tested in the GTEx project. Using instead the GTEx-

defined significance threshold for orthologous genes (FDR < 0.05), an average of 

19% of vervet eQTLs corresponded to a human eQTL (Table 3-6). Restricting the 

comparison to Bonferroni-significant local eQTLs, an average of 23% of vervet eQTLs 

also had an eQTL in the same tissue in the GTEx data set.  

 We additionally compared our local eQTL results for brain tissues to the open-

access version of human eQTLs from DLPFC, available from the CommonMind 

Consortium (CMC) (Fromer et al., 2016). Almost 90% of vervet brain local eQTL 

genes with human orthologs in the CMC data set had a local eQTL at FDR < 0.05 in 

that data set (Table 3-7). 

Hippocampus eQTLs in a region linked to hippocampal volume 

Tissue 
# Local eQTL 
Vervet Genes 

# Vervet Genes 
with Human 

Ortholog 

# Genes 
Tested in 

CMC 

% Tested Genes 
CMC 

FDR<0.20 

% Tested Genes 
significant genome-

wide in CMC 

Vervet local eQTL at Bonferroni Thresholds    

BA46 307 183 130 100% 90.77% 

Caudate 441 225 151 100% 87.42% 

Hippocampus 361 187 137 99% 87.59% 

Vervet eQTL at FDR thresholds     

BA46 2251 1346 1079 99% 88.60% 

Caudate 3079 1712 1316 99% 87.61% 

Hippocampus 2377 1391 1115 99% 88.25% 

Table 3-7.  Comparison of Vervet eQTL with Common Mind Consortium (CMC) 
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 As an initial investigation of the impact of vervet eQTLs on higher order traits, 

we focused on magnetic resonance imaging (MRI)-based hippocampal volume, a 

highly heritable trait in the VRC (h2 = 0.95) (Fears et al., 2009) for which  the 

strongest QTL signal across the genome (peak logarithm of odds (LOD) score = 3.42) 

lies in an ~8.3-Mb segment of CAE18. Power simulations (SOLAR) indicated that, in 

the VRC pedigree, quantitative trait data for 347 vervets (the number with 

hippocampal volume data) provided 80% power to detect a locus with LOD = 2 when 

locus-specific heritability was >45%.  

Figure 3-4. Hippocampal volume QTL and local hippocampal eQTLs in RNA-seq analysis. Top, the 

dashed purple line is the multipoint LOD score for hippocampal volume (measured in 347 animals). 

Circles correspond to evidence for association in 58 animals of SNPs with hippocampal expression of 

three genes: LOC103222765 (red), LOC103222769 (blue) and LOC103222771 (gold). Filled circles 

correspond to genomewide significant associations. The region between the black vertical lines is 

expanded in the middle and bottom panels. The dashed horizontal line represents the genome-wide 

significance threshold for local eQTLs. Middle, SNPs with −log10 P > 8 for association with expression 

in hippocampus; color codes are as in the top panel. Bottom, genes located between 68.7 and 69 Mb 

(the eQTL region); color codes are as in the top panel. The Pearson correlations between expression 

of these three genes are as follows: LOC103222765–LOC103222769, r = −0.16; LOC103222765–

LOC103222771, r = 0.32; LOC103222769–LOC103222771, r = 0.60. 
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In the center of the broad region around this linkage peak, two hippocampus-

specific local eQTLs were genome-wide significant (Bonferroni threshold; Figure 3-

4). These SNPs reside in and regulate expression of two lncRNAs located 168 kb 

apart: LOC103222765 (nine associated SNPs) and LOC103222769 (three associated 

SNPs). An additional lncRNA, LOC103222771, situated 2 bp from LOC103222769, 

showed hippocampus-specific association with six SNPs at a significance level (P < 1 

× 10−9) just above the genomewide threshold. While all three genes displayed 

hippocampus-specific eQTLs, the genes themselves were expressed across all seven 

tissues that we analyzed and showed no significant sex- or age specific differences 

in expression patterns (data not shown). The incomplete database annotation for 

lncRNAs (Mattick and Rinn, 2015) limits comparative analyses of such genes among 

primates; however, a BLAST search found a homolog for LOC103222765 in the white-

tufted-ear marmoset (Callithrix jacchus) and one for LOC103222771 in the crab-

eating macaque (Macaca fascicularis). While LOC103222765 overlaps a coding gene 

(RAB31), LOC103222769 and LOC103222771 do not overlap the exons of any coding 

genes (Ulitsky and Bartel, 2013).  

 

3.3 Discussion 

We describe here the first NHP resource for investigating the genetic 

contribution to interindividual variation in multitissue gene expression across 

development. This resource complements the GTEx project (Ardlie et al., 2015; Wang 

et al., 2016) but is differentiated from it by a study design that is infeasible in human 

research. Notably, age-based sampling enabled delineation of tissue-specific 

expression profiles in relation to developmental trajectories. These profiles illuminate 
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biological processes associated with the expression patterns of particular genes. For 

example, several genes critical in synapse formation and postnatal myelination of the 

central nervous system (Bergoffen et al., 1993; Bond et al., 2002; Sargiannidou et 

al., 2009; Tang et al., 2005) contribute to the nearly linear age-related pattern 

observed in BA46 and caudate nucleus, suggesting that the observed expression 

pattern reflects this process. Conversely, the lack of such a developmentally specific 

pattern in the hippocampus may be related to the lifelong generation of functional 

neurons in this tissue, underpinning its functions in learning and memory (Eriksson 

et al., 1998; van Praag et al., 2002).  

Three factors increase the signal-to-noise ratio of vervet eQTL analyses 

relative to human studies: (i) the homogeneity of environmental exposures; (ii) the 

greater control over necropsy conditions; and (iii) the restricted genetic background 

of the population. These factors enabled us to identify 385 genes with genome-wide 

significant distant eQTLs, including the MRL at IFIT1B. 

Just as GTEx data help refine signals from human GWAS of complex traits 

(Gibson et al., 2015), we used vervet hippocampal eQTLs to identify a set of lncRNAs 

as candidate genes for hippocampal volume. The genetic and environmental 

homogeneity of the relatively small vervet study sample likely facilitated these 

findings and support multitissue vervet eQTL studies as a strategy for identifying loci 

with a large impact on higher-order phenotypes generally. The tissues examined thus 

far are a fraction of those available from the same vervets; the investigations 

reported here can be extended to an additional 60 brain regions and 20 peripheral 

tissues.  
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Expanding tissue resources in NHPs, generally, will create additional 

opportunities to identify biomedically relevant eQTLs (Bakken et al., 2016; Rogers 

and Gibbs, 2014). The abundance of wild Caribbean vervet populations, and their 

almost complete identity genetically to the samples we analyzed, make them 

uniquely valuable for maximizing the value of our eQTL resource (Jasinska et al., 

2013, 2009). Each lead SNP for the eQTLs associated with hippocampal volume in 

the VRC is common in the Caribbean vervet population. We anticipate that our eQTL 

database will enhance interpretation of well-powered GWAS that can be conducted 

in these populations for a wide range of complex traits. 

 

3.4 Methods 

Study Sample  

The monkeys in this study were from the VRC, established by UCLA during the 

1970s to 1980s from 57 founder animals captured in the wild on St. Kitts and Nevis 

(Jasinska et al., 2013). MRI phenotypes were obtained before the VRC moved to the 

Wake Forest School of Medicine in 2008. All vervets in this study were born in 

captivity, reared by a mother and socially housed in large indoor–outdoor enclosures, 

in matrilineal groups that approximated the social structure of wild vervet 

populations. They had uniform exposure to light and darkness and were fed a 

standardized diet. 

Gene expression  

Two gene expression data sets were collected. Data set 1 consisted of 

microarray (Illumina HumanRef-8 v2) assays of whole-blood RNA in 347 vervets. 

Data set 2 consisted of RNA-seq data from seven tissues assayed in 60 animals. Six 
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vervets were in both data sets. No randomization was applied in allocating animals 

to data sets, and investigators were not blinded to the allocation of animals to data 

sets. 

Data set 1: microarrays from whole blood  

The microarray data set has been described previously (GSE15301) (Jasinska 

et al., 2009). To obtain a set of probes usable in vervet from the Illumina HumanRef-

8 v2 microarray, we used the vervet reference sequence to select probes containing 

no vervet indels and demonstrating ≤5 mismatches, with a maximum of one 

mismatch in the 16-nt central portion of the probe. To prevent bias in expression 

measurement due to SNP interference with hybridization, we excluded probes 

targeting sequences with common SNPs identified in the VRC. A total of 11,001 

probes passed these filters. Illumina provides a ‘detection P value’ for detection of a 

given probe in a specific individual (with P < 0.05 considered significant). We 

analyzed 6,018 probes with detection P values of P < 0.05 in at least 5% of vervets 

and tested 3,417 significantly heritable probes for eQTL association. Expression data 

were inverse normal transformed before analysis. 

Data set 2: RNA-seq data from seven tissues  

Tissues collected during experimental necropsies (Wake Forest School of 

Medicine IACUC protocol A09-512) were obtained from 60 vervets representing ten 

developmental stages, ranging from neonates (7 d) through infants (90 d and 1 

year), young juveniles (1.25, 1.5, 1.75 and 2 years), subadults (2.5 and 3 years) to 

adults (4+ years), with 6 vervets (3 male and 3 female) from each developmental 

time point. Two vervets (a 1.75-year-old female and a 7-d-old male) for which we 

did not have WGS data were excluded from this study. Altogether, we included 11 
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vervets less than 1 year old, 23 vervets between 1 and 2 years old, and 24 vervets 

between 2 and 4 years old, 29 males and 29 females.  

For all vervets, we conducted RNA-seq in seven tissues: three brain tissues 

(BA46, caudate nucleus and hippocampus), two neuroendocrine tissues (adrenal 

gland and pituitary gland) and two peripheral tissues (blood and fibroblasts). From 

purified RNA, we created two types of cDNA libraries; poly(A)+ RNA (fibroblasts, 

adrenal gland and pituitary gland) and total RNA (blood, caudate nucleus, 

hippocampus and BA46) libraries. For one vervet in which the RNA-seq data indicated 

a mix-up between the caudate nucleus and BA46 samples, we excluded data from 

these two tissues in all analyses.  

RNA-seq reads were aligned to the vervet genomic assembly 

Chlorocebus_sabaeus  1.1 by the ultrafast STAR aligner (Dobin et al., 2013) using 

our standardized pipeline. STAR was run using default parameters, which allow up to 

ten mismatches. Gene expression was measured as total read counts per gene. For 

paired-end experiments, we considered total fragments. Fragment counts aligning to 

known exonic regions (based on NCBI Chlorocebus sabaeus Annotation Release 100) 

were quantified using the HTSeq package (Anders et al., 2015). The counts for all 

33,994 genes were then combined; weakly expressed genes (mean in raw counts of 

<1 across all samples) and genes detected in <10% of individuals were filtered out. 

The calcNormFactors function in the edgeR package (Robinson, McCarthy, and 

Smyth, 2010) was applied to normalize counts. Finally, an inverse normal transform 

was applied to counts per million, before analysis.  

Deconvolution analysis was performed in vervet brain and blood tissues using 

available references for these tissues. For brain tissues, gene signatures were 
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obtained from Zhang et al. (Y. Zhang et al., 2014); for blood, cell-type-specific 

markers were taken from data sets built into the CellMix package (Gaujoux and 

Seoighe, 2013). Cell type composition for each tissue was evaluated using the CellMix 

R package. 

Data sets for comparative expression analysis between species  

We performed comparative analysis of gene expression between vervet brain 

samples, GTEx and age-matched samples from Allen Brain Atlas (ABA) data sets; 

BrainSpan (human RNA-seq data) and the NIH Blueprint NHP Atlas (rhesus macaque 

microarray data) (Bakken et al., 2016; H. J. Kang et al., 2011). Matching the three 

vervet brain tissues to the most closely corresponding available tissues in the other 

species, we compared overall expression profiles between these species and 

inspected developmental expression patterns for selected genes.  

Overall mean levels of expression were compared between species using a 

rank correlation. GTEx and BrainSpan were compared to vervet independently. For 

the GTEx comparison, vervet tissues were matched to the five available 

corresponding tissues: adrenal gland, blood, caudate nucleus, hippocampus and 

pituitary gland. Analyses involving the two ABA data sets were limited to the three 

brain regions most closely related to the brain tissues analyzed in vervets. As the 

rhesus macaque data set included only males, we limited comparisons to male 

vervets.  

For each of the three data set comparisons, vervet raw counts were first 

converted to RPKM values using the edgeR R package (Robinson et al., 2010). GTEx 

and human ABA counts were already normalized to RPKM values; rhesus macaque 

counts had been normalized using an RMA approach (Bakken et al., 2016). Mean 
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expression was then calculated by tissue for each data set. For ABA data sets, mean 

expression was calculated by tissue type and time point, according to matched age 

groups. Vervet gene names were converted to their corresponding human orthologs 

to ensure gene names matched between vervet and comparison data sets; genes 

with no human ortholog were excluded. Additionally, genes not present in both vervet 

and the comparison species data set were also removed. Variances were then 

calculated for each gene across the five or three different vervet tissues, for GTEx 

and ABA comparisons, respectively. The top 1,000 genes with the highest variances 

were then selected for rank–rank correlation testing. The base R function cor.test 

was used to perform correlation testing. 

Hippocampal volume  

Estimates of hippocampal volume were obtained in 347 vervets >2 years of 

age using MRI. Details of the image acquisition and processing protocol were 

described previously (Fears et al., 2009). Prior to genetic analysis, hippocampal 

volume was log transformed and regressed on sex and age (SOLAR (Almasy and 

Blangero, 1998)); residuals were used as the final phenotype. 

Genotype data  

Genotypes were generated through WGS, as described previously 

(ERP008917) (Y. S. Huang et al., 2015). Genotypes from 721 VRC vervets that 

passed quality control procedures can be queried via the EVA at EBI. Two genotype 

data sets were used (Y. S. Huang et al., 2015): (i) the Association Mapping Set 

consists of 497,163 SNPs on the 29 vervet autosomes. This set has, on average, 198 

SNPs per megabase of vervet sequence, with a maximal gap of 5 kb between adjacent 

SNPs. (ii) The Linkage Mapping Set consists of 147,967 SNPs on the 29 vervet 
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autosomes. This set has, on average, 58.2 SNPs per megabase of vervet sequence, 

with an average gap of 17.5 kb between adjacent SNPs.  

The software package Loki (Heath, Snow, Thompson, Tseng, and Wijsman, 

1997), which implements Markov chain Monte Carlo methods, was used to estimate 

multipoint identical by decent (MIBD) allele sharing among all vervet family members 

from the genotype data. As long stretches of IBD were evident among these closely 

related animals, a reduced marker density (9,752 SNPs of the 148,000 set) was 

sufficient to evaluate MIBD at 1-cM intervals. The correspondence between the 

physical and genetic positions of vervet SNPs was established by interpolation using 

360 markers from the vervet STR linkage map (Jasinska et al., 2007), for which 

physical and genetic positions were known. 

Principal-component analysis.  

The top 1,000 genes with the most variable expression were selected for each 

tissue (data set 2), and PCA was applied to log2-transformed counts per million, using 

the singular value decomposition and prcomp function in R. Expression was mean-

centered before analysis. We examined genes in the top and bottom 10% of the 

distribution of PC loadings on PC1, PC2 or PC3 (200 genes per tissue, per PC) where 

these loadings are taken from the eigen decomposition of the expression matrix. The 

gene loadings represent the amount that gene contributes to the PC value for that 

sample on the axis in question.  

Mapping gene expression and hippocampal volume phenotypes  

For the higher-order phenotype hippocampal volume, we anticipated having 

power only to detect loci with a strong effect and therefore evaluated it using linkage 
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analysis. For gene expression traits, we expected to have power to identify relatively 

small effects and therefore applied genome-wide association analyses.  

Heritability and multipoint linkage analysis  

We estimated the familial aggregation (heritability) of traits using SOLAR, 

which implements a variance components method to estimate the proportion of 

phenotypic variance due to additive genetic factors. This model partitions total 

variability into polygenic and environmental components. The environmental 

component is unique to individuals while the polygenic component is shared between 

individuals as a function of their pedigree kinship. Genome-wide multipoint linkage 

analysis of hippocampal volume was also implemented in SOLAR, which further 

partitions the genetic covariance between relatives for each trait into locus-specific 

heritability and residual genetic heritability. Linkage analysis was performed at 1-cM 

intervals using the likelihood-ratio statistic.  

Association analysis  

Association between specific SNPs and gene expression phenotypes was 

evaluated using EMMAX (H. M. Kang et al., 2010). EMMAX employs a linear mixed 

model approach, where SNP genotype is a fixed effect, and correlation of phenotype 

values among individuals is accounted for using an identity-by-state approximation 

to kinship. Association analyses used 497,163 SNP markers and for both data set 1 

and data set 2 included age (in data set 2, age corresponds to developmental stage), 

sex and sample batch as covariates. It is common to try to account for unmeasured 

factors influencing global gene expression by including probabilistic estimation of 

expression residuals (PEER) factors as covariates (Stegle, Parts, Piipari, Winn, and 
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Durbin, 2012). We considered the controlled nature of the study environment and 

experimental design to preclude the need for this adjustment.  

Multiple-testing considerations in eQTLs  

As our primary error-controlling strategy for eQTL discovery, we used a 

Bonferroni correction to account for multiple testing across genes, SNPs and tissues. 

Thresholds for data set 2 were more stringent, as it included analysis of multiple 

tissues and tested more genes than in data set 1 (~25,000 versus ~3,000). In data 

set 1, we analyzed association with 3,417 heritable probes. The local eQTL 

significance threshold (4.8 × 10−8) was corrected for testing of SNPs within 1 Mb of 

3,417 probes. The distant eQTL significance threshold (1.5 × 10−11) accounted for 

genome-wide testing of 3,417 probes. Data set 2 significance thresholds were 

constructed in a similar fashion but also accounted for testing of 191,263 gene–tissue 

combinations (Table 3-5). The RNA-seq local eQTL threshold was 6.5 × 10−10, and 

the distant eQTL threshold was 5.3 × 10−13.  

To identify multitissue eGenes, the tissues in which they are active and the 

associated SNPs in each of these tissues, we used TreeBH, a hierarchical testing 

approach (Bogomolov et al., 2017) that extends the error-controlling procedure 

characterized in Peterson et al. (C. B. Peterson, Bogomolov, Benjamini, and Sabatti, 

2016) to multitissue eQTLs.  

We compared the number of eGenes identified in each tissue using the above 

procedure with the results of GTEx (Analysis Release V6; dbGaP accession 

phs000424.v6.p1). We downloaded all eQTL association results for tissues in common 

with our study and applied this same hierarchical procedure to the GTEx results to 

identify eGenes. 
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Chapter 4 

Exploring gene expression changes across developmental 

 time points in vervet hippocampus 

 

4.1 Introduction 

Over the last decade, various genetic and genomic resources have been 

compiled to further our understanding of brain phenotypes across healthy and 

diseased individuals (Negi and Guda, 2017; Ramasamy et al., 2014; van Erp et al., 

2016). More importantly, many studies have focused on identifying genomic regions 

which may be involved in regulating gene expression and thus contributing to 

quantitative or disease phenotypes (Majewski and Pastinen, 2011). These regions, or 

expression quantitative trait loci (eQTL), are enriched in genomic regions associated 

with disease phenotypes in genotype-wide association (GWAS) studies (Welter et al., 

2014). Published resources have revealed a high level of tissue specificity in eQTL 

results (Consortium et al., 2017), thus highlighting the importance of studies of brain 

regions to further our understanding of the genetic contributions to brain disorders. 

Interestingly, even within the same tissue, eQTLs have been found to vary across 

specific cell types (Ackermann, Sikora-Wohlfeld, and Beyer, 2013; Gerrits et al., 

2009), proportions of which have been shown to differ across development (Q. Yu 

and He, 2017). While existing resources, such as the Genotype-Tissue Expression 

(GTEx) project (Ardlie et al., 2015; Consortium et al., 2017), provide expression and 

genetic data across various brain regions, donor ages range from 18-70 years and 

thus fail to provide data across developmental time points; such data are crucial to 

our understanding of neurodevelopmental disorders. Developmental expression data 
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are available through the Allen Brain Atlas (Hawrylycz et al., 2015; Miller et al., 2014) 

(ABA) for human and rhesus macaque, however no genetic marker information is 

available for the ABA dataset and, perhaps more importantly, a limited number of 

samples are available at each developmental time point, rendering the heterogeneity 

in expression signatures difficult to resolve.  

Non-human primate models provide numerous advantages over other model 

organisms for the study of neuropsychiatric disorders, due to their large genetic 

similarities and strong resemblance in brain circuitry and anatomy with humans 

(Warren et al., 2015). The Caribbean-origin vervet monkey (Chlorocebus aethiops 

sabaeus) is an Old World monkey species frequently used in biomedical research 

(Jasinska, 2019; Jasinska et al., 2013) that has served as a model for studies in 

Alzheimer’s disease and aging (J. A. Chen et al., 2018; Kalinin et al., 2013; Postupna 

et al., 2017), the role of insulin in increasing the risk of Alzheimer’s disease in diabetic 

individuals (Morales-Corraliza et al., 2016), and the effects of fetal alcohol exposure 

on hippocampal neurons (Burke, Ptito, Ervin, and Palmour, 2015). The Caribbean-

origin vervets, which have been previously described in detail (Y. S. Huang et al., 

2015), provide a unique opportunity for genetic trait mapping for multiple reasons. 

First, the Caribbean populations, which were founded from a small number of West 

African vervets, are characterized by reduced genetic variability due to their rapid 

expansion from an extreme bottleneck; because of this demographic history, many 

highly deleterious alleles are present in relatively high frequency in these populations. 

Second, the large genetically and phenotypically characterized vervet pedigree 

established from these founder populations, the Vervet Research Colony (VRC), 

facilitates studies under a controlled environment thus increasing the power to 
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observe effects of other variables. Third, hundreds of specimens are available from 

VRC brain and peripheral tissues from various developmental time points. 

We previously characterized the role of genetic variation in determining gene 

expression differences across seven different tissues spanning ten time points 

(ranging between 7 days and 9 years) in VRC monkeys, and identified numerous 

eQTL genes (eGenes), as well as a region on chromosome 18 associated with 

hippocampal volume (Jasinska et al., 2017), although no age-related genes were 

identified in hippocampal tissues. Much of hippocampal development occurs during 

embryonic stages (Khalaf-Nazzal, R; Francis, 2013) and therefore identifying age-

related genes in the hippocampus might require younger animals. To address this 

possibility, we obtained hippocampal tissue from 32 animals under 1 year of age, 

extending the range of ages from 0 to 9 years, and explored expression differences 

across developmental time points using RNA sequencing. We identified age-related 

groups of transcripts, which correlated well with existing human and primate 

resources. We also confirmed and expanded the hippocampal eQTL catalog, and 

identified an additional two genes correlated with hippocampal volume.  

 

4.2 Results 

Hippocampal samples were obtained at six time points ranging between 0 and 

270 days of age (6-7 per group, 32 animals in total). RNA sequencing was performed 

and analyzed as previously described (Jasinska et al., 2017). This novel dataset was 

then combined with the previous hippocampal dataset that included 59 animals 

studied at ten developmental time points ranging between 7 days and 9 years. Thus, 

a combined analysis was performed on samples from 91 animals at 15 developmental 
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time points, ranging between 0 days and 9 years (Figure 4-1, Table C-1), with roughly 

the same number of male and female animals at each time point. 

We examined the relationship between quantitative phenotypes (such as body 

and brain weight) and age in days. Body weight was linearly correlated with age in 

days (Figure C-1A), while brain weight showed a steep increase in animals younger 

than 100 days and a plateau shortly after (Figure C-1B). These trends are consistent 

with what has been previously reported in humans (Dekaban and Sadowsky, 1978), 

highlighting the importance of studying younger animals when exploring genes 

involved in developmental processes in brain regions such as hippocampus. 

 

Correlation and network analysis identify age-related transcripts in the developing 

hippocampus.  

Figure 4-1. Schematic summarizing hippocampal samples and analyses performed. Newly collected 

hippocampal samples are shown in red while previously published hippocampal samples (Jasinska, 

et al.) are in blue under their corresponding time points. After processing new samples, expression 

data was combined with existing hippocampal data. Age related gene expression, WGCNA and eQTL 

analyses were then performed on the combined dataset.   
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Over 2,000 transcripts were correlated with age in days (FDR < 0.05) with a 

similar number of directly and inversely correlated transcripts (Figure C-2A). Gene 

ontology analysis identified biological processes involving regulation of signal 

transduction and cell communication, as well as various protein kinase activities 

(Figure C-2B). Because our six oldest animals were significantly older than the rest, 

we wanted to determine whether these samples might be driving our observed age-

Figure 4-2. DAVID functional analysis results of up- and down-regulated age-related genes. (A) 

Functional analysis results of positively correlated age-related genes (Animals aged < 1500 days; 

FDR < 0.05). (B) Functional analysis terms enriched in list of negatively correlated age-related genes 

(Animals aged < 1500 days; FDR < 0.05).  (C) Average expression trend of epidermal growth factor 

and cell cycle genes with age. 
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correlations. We calculated correlation values for all 2,767 age-related genes, both 

including and excluding our six oldest samples, and determined that the age effect 

was being driven by these six samples for 15% of our age-related genes (n=404). 

Thus, in order to identify with confidence developmentally regulated transcripts, we 

repeated our analysis after excluding our six oldest animals.  

Age-related expression analysis limited to animals aged between 0 and 1,500 

days identified age-related expression in more than 6,000 genes (FDR<0.05; Figure 

C-3). Comparison of these results to the results that we obtained when including 

older animals identified significant overlap of genes with negative and positive 

correlation values (p < 2.2e-16, Fisher exact test; Figure C-3B). We performed 

functional annotation analyses on our age-related genes using DAVID (D. W. Huang 

et al., 2009b, 2009a) and observed a significant overlap of actin binding genes with 

our positively correlated age-related transcripts (FDR < 0.05, Figure 4-2A). Similarly, 

terms significantly associated with our negatively correlated transcripts included 

mitotic nuclear division, cell cycle and epidermal growth factor-like conserved regions 

(FDR < 0.05, Figure 4-2B,C).  

In order to refine the list of age-associated transcripts, and to identify groups 

of co-expressed transcripts during development, we performed weighted gene co-

expression network analysis (WGCNA) (Langfelder and Horvath, 2008). We identified 

16 WGCNA modules and correlated their eigengenes (see Methods) with phenotypic 

information, including age in days (or categorized in 6 age groups), sex, and brain 

weight (Figure 4-3). Modules correlated with body weight were also significantly 

correlated with age in days, as expected given the linear relationship between body 

weight and age (Dekaban and Sadowsky, 1978) (Figure C-1A). Modules with 
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eigengenes correlated with brain weight (g) were also correlated with the “<= 1 

month” age category, independent of sex, confirming the relationship we had 

observed between animals under 100 days old and brain weight (Figure C-1B).  

We used enrichR (E. Y. Chen et al., 2013; Kuleshov et al., 2016) to functionally 

annotate the top modules positively (grey60 module, including 1,067 transcripts, 

Figure 4-4A) and negatively (salmon module, 1,608 transcripts, Figure 4-4B) 

correlated with brain weight, which also presented a marginally significant correlation 

to age in days (Figures 4-4C, 4-4D). Enrichment analysis showed an 

Figure 4-3. WGCNA module correlation coefficients and p-values for multiple traits (x-

axis). P-values, listed in parenthesis, have been FDR corrected to account for multiple 

hypothesis testing. Modules with eigengenes positively correlated with specific traits are 

shown in red, while those with negatively correlated eigengenes are shown in blue. 
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overrepresentation of apoptosis modulation and signaling genes in the grey60 

Brain weight: r = -0.72, p = 7.1e-16 
Age in Days: r = -0.34, p = 1.1e-03 

Brain weight: r = 0.72, p = 5.95e-16 
Age in Days: r = 0.31, p = 2.7e-03 

A 

B 

C D 

Figure 4-4. Bar and scatterplots of eigengene values for Grey60 and Salmon modules. 

Eigengene values of (A) grey60 and (B) salmon module by increasing age in days. (C) 

Grey60 and (D) salmon module eigengene values plotted against age in days (bottom x-

axis) and brain weight (top x-axis).  
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module, while cell cycle genes were enriched in the salmon module (FDR < 0.05).   

Comparisons to other developmental datasets  

We compared our hippocampal age-related genes with age-related 

hippocampal genes from humans and other non-human primates, using 

developmental datasets available in public repositories. We first analyzed human 

hippocampal data from the BrainSeq project (including 286 samples from individuals 

ranging from 3.5 weeks-84 years of age)(Collado-Torres et al., 2019). Using the 

same approach applied to our vervet data (see Chapter 4-4, pg 60), we identified 

8,567 age-related human hippocampal genes of which 4,652 had known vervet 

orthologs. Of those with known vervet orthologs, 2,401 overlapped our age-related 

vervet genes with the age-effect occurring in the same direction in 2,140 of these 

(89%). We then explored the ranking of our shared age-related genes using a 

Spearman rank correlation test on signed log p-values and found a strong correlation 

A B 

Figure 4-5. Rank-rank plots using signed log P-values. Plots comparing signed log p-values of 

shared age-related genes in vervet hippocampus versus human (A) BrainSeq and (B) BrainSpan 

signed log P-values. 
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between vervet and human hippocampal results (Figure 4-5A, rho=0.706, p<0.05). 

Additionally, we plotted rank mean expression values of the top 1000 vervet age-

related genes at matched human and vervet developmental timepoints (Table C-2) 

and observed an even higher degree of correlation (rho = 0.873-0.908, Fig. C-4).  

We performed a similar analysis on the BrainSpan human developmental 

dataset (comprising 17 postnatal samples across 15 time points) (H. J. Kang et al., 

2011) and Allen Brain Atlas (ABA) rhesus developmental dataset (including 12 

samples from 4 timepoints)(Bakken et al., 2016). The Spearman rank correlation 

value of signed log p-values was lower in human BrainSpan comparisons (rho=0.607, 

p=2.21e-15, Fig. 4-5B), most likely due to the smaller sample size of the BrainSpan 

Figure 4-6. Overlap between vervet and human BrainSpan WGCNA age-related modules. Table 

shows number of overlapping genes between modules and permutation p-values in parenthesis.  



53 
 

dataset, which in turn led to the identification of a smaller number of age- related 

genes (n=736). While we observe higher correlation values of ranked expression 

values at almost all six timepoints (rho = 0.593-0.756, Fig. C-5) they are lower than 

BrainSeq ranked expression correlations, most likely a result of the different 

normalization methods used on vervet and human BrainSpan expression data. Age-

related analysis on the ABA rhesus dataset failed to uncover age-related genes at p 

< 0.05. Moreover, correlation analysis of mean expression data of top vervet age-

related genes at age-matched timepoints (Table C-3) yielded low correlation values 

(rho=0.407-0.436, data not shown).  

Finally, we performed WGCNA on the human developmental BrainSpan dataset 

to identify age-related modules. While no modules were significantly correlated with 

age, we identified three modules significantly correlated with younger age categories 

in male and female samples (FDR<0.05, Figure C-6). We then tested for enrichment 

of genes from age-related vervet modules in these three human age category-related 

modules. We observed genes from three vervet modules were enriched in at least 

one human BrainSpan module (p < 0.05, permutation test, Figure 4-6). More 

importantly, similar to BrainSpan modules, these age-related vervet modules were 

correlated with our youngest age group (< 5 mos) in both females and males. In 

addition, these enriched vervet modules were correlated in the same direction as 

BrainSpan modules, while modules without significant correlation were inversely 

correlated.  

Expression Quantitative Trait Locus Analysis 

We previously identified (Chapter 3.2, pg 32) eQTLs in multiple tissues in 

vervets, and comparison of our identified eQTL genes (eGenes) with published 
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resources, such as GTEx, revealed an increased number of local eGenes identified 

despite our smaller sample size (Figure 4-7A)(Jasinska et al., 2017). More 

importantly, we performed linkage analysis in this same study and identified a region 

of chromosome 18 that was significantly associated with hippocampal volume (LOD 

score = 3.42). Incorporating our hippocampal eQTL results with this linkage finding, 

we observed three long noncoding RNA (lncRNA) eGenes associated to SNPs within 

this locus, one of which was marginally significant (LOC103222771). Using qRT-PCR 

we confirmed expression of these lncRNAs was significantly correlated with 

hippocampal volume. Thus, to follow up on our eQTL findings and possibly identify 

additional eGenes within this hippocampal volume associated region, we performed 

A B 

Figure 4-7. eQTL results. (A) eQTL results comparing number of local eGenes identified in 

Jasinska et al, GTEx and this study at an FDR threshold of 0.05. (B) Significant associations 

located within hippocampal volume associated locus.  



55 
 

an eQTL analysis on our combined dataset. We identified 1,567 genes with local 

eQTLs at a Bonferroni threshold of 4.6x10-09, which is four times more than identified 

in our previous dataset (Jasinska et al., 2017) (n=361, Figure 4-7A) denoting an 

increased power due to a larger sample size. In addition to confirming SNPs at the 

locus previously linked to hippocampal volume as being associated with gene 

expression of the three nearby lncRNAs: LOC103222765, LOC103222769, and 

LOC103222771, we identified two additional genes, RAB31 and CHMP1B, which were 

also associated to SNPs within that locus (Figure 4-7B) expanding the list of possible 

candidates to investigate.  

We then compared our results to hippocampal eQTL results from GTEx. All of 

our local eGenes replicated in GTEx at a threshold of p < 0.05 (Table 4-1). More 

importantly, in comparison with GTEx we identified more than eight times the number 

of local eGenes (Figure 4-7A). At a Bonferroni threshold of 3.67x10-12, we identified 

262 genes with distant associations, defined as locus/transcript associations in which 

the locus was located further than +/- 1Mb from the associated transcript, or on a 

different chromosome.  Of these 262 genes, 26 were found to have eQTLs on a 

different chromosome. These 26 genes were distributed across the genome with the 

largest number associated to SNPs clustered on chromosomes 16, 9 and 25 (Table 

C-4). No locus was found to be associated to more than 1 gene from a different 

Multiple 
hypothesis 
correction 

method 

Vervet 
number of 
individuals 

# 
Local 
eQTL 

Vervet 
Genes 

GTEx 
number of 
individuals 

GTEx 
number 

of 
eGenes 

# Vervet 
Genes 
with 

Human 
Ortholog 

# 
Orthologous 

Genes 
Tested in 

GTEx 

% 
Tested 
Genes 

p<0.05 

% Tested 
Genes 

significant 
genome-
wide in 
GTEx 

Bonferroni 87 1,567 81 310 1,045 968 100% 4.40% 

FDR 87 9,530 81 1,164 6,306 5,908 100% 8.10% 

Table 4-1. GTEx comparison results using Bonferroni and FDR corrected thresholds. 
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chromosome. Functional analysis of these 26 genes was not possible due to the fact 

that 25 have no known human ortholog. 

Next, following up on our differential expression analysis, we sought to 

determine whether our age-related differentially expressed genes were over- or 

underrepresented in our eQTL results. Transcripts positively correlated with age were 

neither over- nor under-represented in our eQTL results. In contrast, genes with 

expression inversely correlated with age (either including and excluding older 

animals) were significantly underrepresented in our eQTL results (p <= 4.198x10-07).  

This result aligns with our previously reported finding that age-related genes were 

less likely to be eGenes than non-age-related genes (Jasinska et al., 2017).  

 

4.3 Discussion 

Ethical limitations restrict the availability of developmental samples to 

investigate differences in gene expression across development in humans, a 

limitation that has obvious relevance for our understanding of brain-related traits and 

diseases (Glass et al., 2013). Here, we provide a survey of transcriptional activity in 

the vervet hippocampus across various developmental time points, corresponding to 

human time points ranging from birth to old age. The correlation between brain 

weight and earlier developmental timepoints highlights the importance of studying 

younger samples as they contribute to this phenotype.  

We observe genes with significant correlation with age driven by older animals 

included several classes of genes essential for neurodevelopment (indicated in 

Supplementary Table 2). Among them were genes implicated in autism, such as 

NLGN3, MARK1, SETD5, NLGN4X, and other genes involved in synaptic functions. For 
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example, DVL1 is implicated in modulating of APP processing (Mudher et al., 2001) 

and is a key player in aging and Alzheimer disease-related Wnt signaling pathway 

(Palomer, Buechler, and Salinas, 2019; Tapia-Rojas and Inestrosa, 2018). 

Age-related transcripts identified after removing our six oldest animals show 

an overrepresentation of cell cycle and epidermal growth factor genes. Previous 

studies have reported epidermal growth factor genes play a role in healthy aging and 

longevity in C. elegans (S. Yu and Driscoll, 2011). Moreover, a study performed in 

mice reported increased neurogenesis in the hippocampal dentate subgranular zone 

and the subventricular zone when treated with heparin-binding epidermal growth 

factor-like growth factor (HB-EGF) (Jin et al., 2003). Just as neurogenesis decreases 

with aging (Apple, Solano-Fonseca, and Kokovay, 2017), expression of EGF genes 

also decreases which further suggests a shared mechanism for these biological 

processes.  

Additionally, six of our 16 modules identified by WGCNA were correlated to the 

same multiple phenotypes, namely, age in days, body weight, brain weight, age 

category and “< = 1 month” in both sexes. We hypothesized that such modules 

contain genes involved in general aging pathways and thus their being enriched in 

cell cycle processes and apoptosis is consistent with previously reported findings 

regarding aging (Chandler and Peters, 2013; Cooper, 2012). The directionality of our 

observations reinforces the idea that apoptosis increases during the aging process, 

since the genes driving this enrichment show a positive correlation with age (Figure 

4-3).  

We have shown that expression patterns for our age-related genes are 

comparable across vervet and human datasets. More importantly, we found that 
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about half of the genes correlated with age in human and with known vervet orthologs 

were also identified as age-related genes in our vervet dataset, with the majority of 

these correlations occurring in the same direction. These findings support our 

identification of developmental genes in vervet hippocampus and suggest that 

relative expression across timepoints are conserved across species.  

Finally, the increase in sample size in our eQTL analysis allowed us to identify 

a greater number of local and distant associations. We validated our previous finding 

implicating two lncRNAs within a locus associated with hippocampal volume (Jasinska 

et al., 2017), and identified two additional genes, CHMP1B and RAB31, whose 

expression levels are associated to SNPs within the hippocampal volume-linked 

region. These additional candidates can contribute to our understanding of this 

phenotype, as they have known human orthologs. Specifically, RAB31 has been 

reported to play a role in the differentiation of neural progenitor cells into astrocytes, 

with overexpression resulting in enhanced differentiation, and silencing in a reduction 

of differentiation (Chua, Goh, and Tang, 2014). Reduced glial density as well as 

reduced hippocampal volume have been previously implicated in chronic stress 

(Rahman, Callaghan, Kerskens, Chattarji, and O’Mara, 2016) and major depressive 

disorder (Cotter, Mackay, Landau, Kerwin, and Everall, 2001). This finding suggests 

a possible shared pathway between these brain phenotypes, in which RAB31 might 

play a role. Finally, our eQTL findings coupled with our identified developmental genes 

can provide additional insight into underlying mechanisms contributing to 

hippocampal developmental phenotypes. 

 

4.4 METHODS 
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Data Collection 

Total RNA was processed with Ribo-Zero Gold kit (Epicentre, WI) to remove 

ribosomal RNAs. Sequencing libraries were prepared using Illumina TruSeq RNA 

sample prep kit following manufacturer's protocol. After library preparation, amplified 

double-stranded cDNA was fragmented into 125 bp (Covaris-S2, Woburn, MA) DNA 

fragments, which were (200 ng) end-repaired to generate blunt ends with 5’- 

phosphates and 3’- hydroxyls and adapters ligated. The purified cDNA library 

products were evaluated using the Agilent Bioanalyzer (Santa Rosa, CA) and diluted 

to 10 nM for cluster generation in situ on the HiSeq paired-end flow cell using the 

CBot automated cluster generation system. All samples were multiplexed into a single 

pool in order to avoid batch effects (Auer and Doerge, 2010) and sequenced using 

an Illumina HiSeq 2500 sequencer (Illumina, San Diego, CA) across 2 lanes of 69bp-

paired-end sequencing, corresponding to 3 samples per lane and yielding between 

52 and 65 million reads per sample. Quality control was performed on base qualities 

and nucleotide composition of sequences. 

RNA data processing 

Alignment to the Chlorocebus sabeus reference annotation (NCBI release 100) 

was performed using the STAR (Dobin et al., 2013) spliced read aligner with default 

parameters. Additional QC was performed after the alignment to examine: the level 

of mismatch rate, mapping rate to the whole genome, repeats, chromosomes, key 

transcriptomic regions (exons, introns, UTRs, genes), insert sizes, AT/GC dropout, 

transcript coverage and GC bias. Between 83 and 91% (average 89.9%) of the reads 

mapped uniquely to the vervet genome. Total counts of read-fragments aligned to 

candidate gene regions were derived using HTSeq (Anders et al., 2015) program with 
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Chl. Sab (May 2014) NCBI annotation as a reference and used as a basis for the 

quantification of gene expression. Only uniquely mapped reads were used for 

subsequent analyses.  

To identify the main sources of variation in our dataset, we obtained principal 

components (PC) from the top 1000 most variable genes across all samples. We 

found that PC1 (24.9% variance) differentiated animals by batch while PC2 (16.5% 

variance) separated animals by sex (Figure C-7A). We then corrected for batch effect 

and once again performed principal component analysis on the corrected data (Figure 

C-7B,C).  Finally, we performed correlation analysis on the top 15 principal 

components and known covariates (Table C-5) and found that the top three PCs were 

strongly correlated with age category or sex (p<0.05), but no significant correlation 

occurred with age in days. 

Age-related gene expression analysis 

Age-related gene expression analysis was performed using the edgeR R 

package (Robinson et al., 2010), treating age as a continuous variable. Genes with 

cpm counts < 0.5 in less than 25% of the samples were removed. Counts were 

normalized using a trimmed mean of M-values (TMM) method (Robinson and Oshlack, 

2010). Batch and sex were used in the generalized linear model with age in days as 

the variable of interest. Finally, a likelihood ratio test was performed to identify age-

related genes. Significance threshold was set at FDR <0.05. Reported log2FC 

represents the log2 of the multiplicative effect of a single unit increase in age. 

Weighted gene co-expression analysis 

Weighted co-expression analysis was performed using the WGCNA R package. 

Read counts were normalized and log-transformed using the edgeR R package 
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(Robinson et al., 2010). Genes with less than 0.5 counts-per-million (cpm) in less 

than twenty-two samples were removed to reduce the likelihood of spurious results. 

After filtering, WGCNA was performed on a total of 19,994 genes. We then corrected 

for batch using the removeBatchEffect function from the limma R package 

(Gentleman et al., 2004). A minimum threshold of 30 genes was used during module 

construction. Similar modules were merged at a correlation threshold of r=0.75. 

Finally, module eigengenes were correlated with brain weight (g), age in days, body 

weight (kg), sex, age category and age category by sex and p-values were calculated 

using the corPvalueStudent function from the WGCNA package. Enrichment analysis 

was performed on the grey60 module, made up of 1,067 genes and the salmon 

module, comprised of 1,608 genes.  

Comparison to other datasets 

Age-related gene comparisons were performed using downloaded expression 

values from the BrainSeq Phase II project, human BrainSpan developmental data, 

and rhesus Allen Brain Atlas database. Processed expression counts were downloaded 

from BrainSeq and genes with cpm < 0.5 in less than 25% of samples were removed. 

Normalization was then performed using edgeR to maintain consistency with our 

vervet age-related analysis. For human and rhesus developmental datasets, age-

related genes were identified using the edgeR generalized linear model approach 

(McCarthy et al., 2012), with sex included in the model for human datasets. 

Additionally, for the BrainSeq dataset the first five principal components (obtained 

from genotype information) were also included to account for ethnicity. The 

intersection of vervet and human/rhesus age-related genes was obtained, and rank 

correlation values were calculated and plotted using signed log10 p-values. 
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Spearman rank correlation comparisons of normalized expression was also performed 

using the top 1000 vervet age-related genes with known human orthologs at 

corresponding time points (Tables C-2,C-3). Vervet expression data was normalized 

using the edgeR package and RPKM counts were calculated. Finally, since rhesus data 

included only males, the vervet comparison was also limited to males.  

Weighted gene co-expression analysis was performed on the human BrainSpan 

dataset using the same module construction thresholds as described above. Analysis 

was limited to human genes with known vervet orthologs. After module construction, 

module eigengenes were correlated with age, age category, sex and a combination 

of sex + age category. Overlap significance of human BrainSpan and vervet age-

related modules was performed using a permutation test (n=10,000). Overlap was 

defined as significant at a threshold of p < 0.05. 

eQTL Analysis 

Genotype information was available for 29 out of the 32 new samples, thus 

eQTL analysis was performed on 87 hippocampal samples. Lowly expressed genes, 

defined as reads with a zero count in more than 10% of the samples and a combined 

mean less than 1, were excluded from our analysis. Counts per million (cpm) were 

then obtained using the edgeR package and a quantile transformation was applied 

across all 27,425 remaining genes. Association analysis between expression and 

genotype data was performed using the linear mixed model package EMMAX (H. M. 

Kang et al., 2010). The first fifteen principal components were included in our model 

as covariates, which accounted for 60% of observed total variance. A kinship matrix 

was also calculated and included to account for the high degree of relatedness in our 

samples. Strict Bonferroni thresholds for local and distant eQTL associations were 
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calculated as 4.6x10-09 and 3.67x10-12, respectively. Finally, FDR results were 

obtained separately for local and distant associations using the hierarchical error 

control R package, TreeQTL. The distance parameter for local associations was set 

within 1MB from gene start and stop positions and anything greater than that was 

classified as distant. Comparison of local eQTL results with GTEx was performed using 

our Bonferroni threshold and an FDR threshold of 0.05, as calculated by TreeQTL (C. 

Peterson, Bogomolov, Benjamini, and Sabatti, 2015). For both thresholds, we 

observed all of our eGenes had a p-value < 0.05 in the corresponding GTEx results. 
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Chapter 5 

Characterization of epigenetic marks in non-human primates 

 

5.1 Introduction 

 The development of high-throughput technologies has facilitated the 

sequencing of thousands of individuals (Metzker, 2010). This has led to the 

identification of numerous genetic markers associated with various disease 

phenotypes (Welter et al., 2014). Despite the implications of such findings, 

functionally annotating these variants has been challenging due to their location 

within noncoding regions of the genome. Expression quantitative trait locus (eQTL) 

studies have been successful in finding association of some of these variants to 

changes in gene expression (Nicolae et al., 2010), however, a better understanding 

of the underlying mechanism by which these variants regulate gene expression is 

required. This sparked an interest in identifying regulatory regions of the genome 

and their impact on gene expression (Maurano et al., 2012).  

 Projects like ENCODE (ENCODE Project Consortium, 2012) and Roadmap 

Epigenomics (Bernstein et al., 2010) have succeeded in identifying chromatin 

modifications across various tissues and cell types. Studies incorporating regulatory 

features have identified tissue specificity in epigenomic marks overlapping risk 

associated variants (Trynka et al., 2013) and regulating gene expression (Heintzman 

et al., 2009). These studies not only reinforce the overall relevance of epigenomic 

resources, but the importance of incorporating in a tissue-specific manner.  

 The usefulness of model organisms such as the green African vervet monkey 

(Chlorocebus sabeus) has been previously established (Jasinska et al., 2013), 
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however, limited genomic information about epigenetic markers poses a challenge to 

their use in the characterization and refining of GWAS loci. While tools allowing for 

the conversion of genetic coordinates across species exist, corresponding genomic 

regions at the sequence level do not always correspond to corresponding chromatin 

markers. For example, we generated vervet liver H3K27ac peaks through liftover of 

human H3K27ac liver peak calls and compared them with a known H3K27ac vervet 

liver dataset (data not shown), and observed that only 49% of known peaks 

overlapped with liftover results. More importantly, 38% of peaks generated by liftover 

were identified as false peaks. The low true positive rate can perhaps be addressed 

by pooling results from multiple conversion algorithms, or by imputation methods 

(Ernst and Kellis, 2015). However, the introduction of large numbers of false positives 

can undermine our ability to draw relevant biological conclusions and has not 

previously been addressed.  

Thus, we set out to improve the prediction of vervet histone marks obtained 

by the application of genome coordinate conversion tools like liftover. Through the 

use of machine learning algorithms and predictive variables compiled from factors 

such as distance from transcription start site, average GC percent and peak length, 

we attempt to differentiate actual peaks from false peaks. We then evaluate the 

efficacy of our model using known enhancer (H3K27ac) and promoter (H3K4me3) 

marks obtained from a vervet liver dataset. 

 

5.2 Results 



66 
 

Numerous machine learning algorithms have been implemented in the field of 

genetic research (Larrañaga et al., 2006). We selected random forest (RF) and 

support vector machine (SVM) algorithms due to their run-time efficiency and ability 

for parallelization.  

Model building and selection of best predictive features 

To determine whether our predictive variables share similar patterns across 

species, we decided to test the use of human and vervet datasets as training sets in 

our machine learning models (Figure 5-1). For our human training set, human liver 

H3K27ac and H3K4me3 peak calls were downloaded from the Roadmap Epigenomics 

database (Bernstein et al., 2010). Simulated peaks were generated to serve as false 

peak calls. Simulated and known peak calls were then combined and a balanced 

subset of this dataset was then selected to use as our training set. 

Figure 5-1. Schematic describing method workflow. Models 

are trained using human and vervet datasets separately to 

determine best approach. 
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 Our vervet dataset was generated by applying the liftover algorithm as 

implemented by the rtracklayer R package (M. Lawrence, Gentleman, and Carey, 

2009), to human liver H3K27ac and H3K4me3 peak calls. Human liver datasets were 

selected due to the availability of vervet liver ChIP-seq data which allow validation of 

liftover results and thus provide labelled vervet peaks to be used in our supervised 

learning approach. To obtain vervet liver H3K27ac and H3K4me3 peak calls we used 

published vervet liver ChIP-seq data included in Villar, et al (2015) (Villar et al., 

2015). Peaks were called using the MACS2 peak caller (Yong Zhang et al., 2008) 

using the same p-value and q-value thresholds utilized by the Roadmap Epigenomics 

consortium (Kundaje et al., 2015). These peak calls were then used to differentiate 

between positive and negative peak calls in our generated vervet liftover peaks.  

 Once true and false peaks were labelled in our human and vervet datasets, we 

calculated features to be included in our model. Model features were selected based 

on evidence suggesting correlation of genetic features to conservation of enhancer 

(H3K27ac) or promoter (H3K4me3) marks across species (Villar et al., 2015). Histone 

mark features calculated included distance to transcription start site (TSS), GC 

content percentage and peak length. Additionally, due to the common practice of 

discretizing continuous variables in machine learning (Chmielewski and Grzymala-

Busse, 1996), we converted our continuous variables into categorical variables by 

binning them according to value (see Methods). SVM and RF models were then 

trained and tested using one of three values: actual parameter values (values), 

discretized parameter values (factors), and combined values and factors (all). 

 Random forest and svm-linear algorithms were run using default parameter 

values, with the exception of the number of trees which was set to 100 (Probst and 
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Boulesteix, 2018). The use of vervet or human training datasets were tested along 

with varying feature values described above (i.e. values, factors, all). Regardless of 

training set used, our vervet dataset was split into a training and test sets. RF and 

SVM functions were then trained using either vervet training set or a subset of our 

human dataset and tested using the vervet test set. 

 As expected, models trained on the vervet data outperformed human trained 

models for each histone mark and algorithm type (Tables 5-1, 5-2). Surprisingly, our 

SVM models yielded the same results when using factor and combined data values 

suggesting factors played a bigger role in building the hyperplane despite the 

inclusion of continuous variables. Overall, the random forest algorithm yielded higher 

accuracy for most features tested and thus was the selected machine learning 

approach for our final model. For feature selection we prioritized specificity to avoid 

losing relevant peak calls, while also ensuring minimal loss of accuracy and 

Training Data Algorithm Feature Accuracy Sensitivity Specificity 

Human 

SVM 

Values 60.32% 0.55% 98.84% 

Factors 59.68% 0.05% 98.10% 

All 59.68% 0.05% 98.10% 

RF 

Values 59.41% 1.37% 96.80% 

Factors 59.56% 0.28% 97.76% 

All 59.53% 0.26% 97.73% 

Vervet 

SVM 

Values 69.58% 54.62% 78.21% 

Factors 66.08% 66.76% 65.65% 

All 69.12% 58.85% 75.74% 

RF 

Values 67.04% 53.13% 76.00% 

Factors 65.80% 30.15% 88.78% 

All 70.05% 56.93% 78.59% 

Table 5-1. H3K27ac model results. Results are broken down by training data type and 

data features included in the model. Red indicates predictive variables selected for further 

model tuning.  
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sensitivity. Thus, for H3K27ac and H3K4me3 histone marks, we selected combined 

factor + values (all) and values only (values), respectively (Tables 5-1, 5-2). 

Training Data Algorithm Feature Accuracy Sensitivity Specificity 

Human 

SVM 

Values 27.66% 0.04% 99.68% 

Factors 27.61% 0.09% 99.35% 

All 27.61% 0.09% 99.35% 

RF 

Values 27.65% 0.39% 98.71% 

Factors 27.61% 0.09% 99.35% 

All 27.62% 0.20% 99.12% 

Vervet 

SVM 

Values 78.61% 92.70% 41.90% 

Factors 79.55% 98.03% 31.39% 

All 79.55% 98.03% 31.39% 

RF 

Values 81.71% 90.42% 59.01% 

Factors 78.73% 95.72% 34.42% 

All 82.90% 92.49% 57.89% 

Table 5-2. H3K4me3 model results. Results are broken down by training data type and 

data features included in the model. Red indicates predictive variables selected for further 

model tuning.  

 

Model parameter tuning 

 After determining the best features and machine learning algorithm for each 

histone mark, we attempted to tune our model parameters in an effort to improve 

model prediction. Additionally, since our current implementation of the SVM algorithm 

uses a linear kernel, which works best on data that can be separated linearly, we also 

decided to test an SVM model with a non-linear (radial) kernel. Given the 

computational time it takes to train such a model, using it to identify preferential 

features was not feasible. 

 Our random forest model was run on mtry values of 1 to 20, while maintaining 

the number of trees at 100. Meanwhile, the SVM radial algorithm was implemented 

using a random grid search to determine best cost (C) value. The accuracy metric 

was used to select optimal values for random forest and SVM-radial models (Figure 
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5-2). After tuning, our SVM-radial model failed to offer any improvement over our 

random forest model (Table 5-3).   

 

Histone Mark Algorithm Accuracy Sensitivity Specificity 

H3K27ac 
RF 70.11% 56.79% 78.69% 

SVM-radial 70.85% 55.90% 78.70% 

H3K4me3 
RF 83.02% 91.20% 61.69% 

SVM-radial 82.58% 91.38% 59.65% 

Table 5-3. Performance summary of the best RF and SVM-radial models after 

parameter tuning. RF outperforms SVM-radial by a slight margin for both histone 
marks. 

 

Classification of vervet peaks in three brain tissues 

 We applied our optimized RF models to vervet peaks lifted over from three 

human brain datasets: anterior caudate, dorsolateral prefrontal cortex (DLPFC) and 

hippocampus middle. We then used the predicted true peaks to test whether our 

multi-tissue eQTL results, at Bonferroni or FDR thresholds, from chapter 3 were 

enriched in tissue or brain specific peak calls for each histone mark. For each brain 

region we classified peaks as tissue specific if it did not overlap any peak calls in 

Figure 5-2. Tuning of random forest mtry parameter. Tuning was performed using best 

performing predictive variables. For H3K27ac random forest model was optimized at an mtry 

value of 3, while H3K4me3 model demonstrated the highest accuracy at an mtry value of 1. 
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neither of the other two brain regions nor vervet liver. Additionally, due to the 

possibility of tissue specific peaks being false positives, we defined brain specific 

peaks as peaks present in at least two brain regions but not in vervet liver. We tested 

for enrichment of eQTLs from each brain tissue individually and found significant 

enrichment of caudate FDR-corrected eQTLs in caudate specific peaks for both 

histone mark (p < 0.05, hypergeometric test). Next, we analyzed whether the 

combined set of brain eQTLs was enriched in brain specific peaks and found nominal 

enrichment of our brain eQTLs (FDR< 0.05) in H3K27ac brain specific peaks (p = 

0.0558, hypergeometric test).  

Figure 5-3. Example of a brain specific H3K27ac peak within NEUROD2 gene. Top section 

illustrates location of NEUROD2, a gene enriched in brain tissues. Blue bars illustrate 

H3K27ac peaks in liver dataset. Orange bars at the bottom represent the peak span in 

dorsolateral prefrontal cortex (DLPFC) and hippocampus. Image was generated using the 

vervet genome browser (Ramensky, et al. Unpublished; 

https://coppolalab.ucla.edu/vgb/home).   

https://coppolalab.ucla.edu/vgb/home
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 Finally, we explored whether brain specific peaks fell near genes highly 

expressed in brain tissues using the top 12 genes with the highest level of enriched 

expression as listed at the Human Protein Atlas: OPALIN, GFAP, OMG, OLIG2, GRIN1, 

NEUROD6, SLC17A7, CREG2, NEUROD2, C1orf61, ZDHHC22 and KCNJ6 (Uhlen et al., 

2015) (https://www.proteinatlas.org/humanproteome/tissue/brain). We observed 

H3K27ac and H3K4me3 brain specific peaks occurring within 7 and 8 of these genes, 

respectively. An example, using H3K27ac, is presented in Figure 5-3 for NEUROD2, 

a neuronal differentiation gene.  

 

5.3 Discussion 

 We presented a method to improve the accuracy of vervet histone peak 

predictions generated by lifting over histone peaks from other species such as human. 

Our approach makes use of the reported relationship of certain features in relation 

to conservation of histone marks (Villar et al., 2015) and uses them as predictive 

variables to identify true peak calls. Limitations of our method exist, as evidenced by 

the lower accuracy in predicting H3K27ac peaks. We hypothesize this may be due to 

the lower contribution of our selected features in relation to conservation depth 

H3K4me3 marks when compared to H3K27ac (Villar et al., 2015). However, despite 

the lower accuracy observed, we still retain biologically relevant tissue specific 

information as observed in our brain specific peak calls.  

 Additionally, we demonstrated the effectiveness of random forest models in 

differentiating true peaks from false peaks. Random forest models have been used 

in gene expression studies (Kursa, 2014), while machine learning approaches 

characterizing chromatin modifications have focused on the use of hidden markov 

https://www.proteinatlas.org/humanproteome/tissue/brain
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models (HMM) (Ernst and Kellis, 2010; Larson and Yuan, 2010; Won, Chepelev, Ren, 

and Wang, 2008). However, we found no studies focused on improving the 

conversion of genomic features across species despite the large number of studies 

incorporating current methods (Kuhn, Haussler, and Kent, 2013; Zhao et al., 2014). 

Our method can be expanded to take advantage of the multiple conversion tools 

available, plus it can build on these tools through the use of imputation methods 

(Ernst and Kellis, 2015).  

 However, in order to introduce additional predicted peak calls without 

introducing a large number of false positives, we would need to ensure high specificity 

and sensitivity values. Thus, additional prediction variables will be needed to improve 

upon the accuracy of our model. One such variable, peak intensity, might be able to 

be carried over from original human histone values, however, it would not contribute 

much when differentiating between two peak calls corresponding to the same original 

human peak. Incorporating additional information such as gene expression values 

corresponding to the nearest genes may be a feasible predictive variable worth 

testing due to the high degree of correlation between gene expression and histone 

modification levels (Karlić, Chung, Lasserre, Vlahovicek, and Vingron, 2010).     

Finally, like most predictive methods, our method would greatly benefit from 

additional vervet ChIP-seq data sets to further improve our model and validate our 

results. Despite the improvements that can still be made, our approach provides a 

good starting point to ensure accuracy of predicted peak calls generated from liftover. 

Due to the availability of epigenomic resources from a number of species, our 

approach may prove beneficial to researchers without the necessary resources to 

generate their own epigenomic datasets. 
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5.4 Methods 

Chromatin modification peak calls from vervet liver data 

ChIP-Seq files for vervet liver H3K27ac and H3K4me3 histone modifications 

were downloaded from the Villar, et al manuscript (Villar et al., 2015). Vervet peak 

calls generated by Villar, et al were not used due to the method by which they were 

obtained. Namely, Villar, et al aligned vervet ChIP-seq data to the rhesus macaque 

genome and applied liftover to obtain corresponding vervet coordinates. We observe 

that through the use of this method, vervet peaks were limited to autosomal 

chromosomes 1-20 and sex chromosome X, effectively ignoring vervet chromosomes 

21-29. 

ChIP-seq files were aligned to the Chlorocebus sabaeus v1.0 reference genome 

using the bwa aligner with default parameters (Heng Li and Durbin, 2010). Low 

quality reads or non-uniquely mapped reads were removed using samtools option -q 

1 (H. Li et al., 2009). Peaks were called using MACS2 peak caller (Yong Zhang et al., 

2008) using the -nomodel and -broad options, with -p threshold set to 0.01. Peaks 

with a p-value less than 0.01 within gapped peak files were retained as valid peak 

calls. Gapped peak files contain broad peak calls (p < 0.1) with at least one 

overlapping strong narrow peak call (p < 0.01). 

Vervet training dataset 

Human liver H3K27ac and H3K4me3 gapped peak calls were downloaded from 

the epigenomics roadmap data repository (Bernstein et al., 2010). Liftover of human 

peak calls was implemented using the rtracklayer R package (M. Lawrence et al., 

2009) and hg19ToChlSab2 chain file downloaded from the UCSC browser 
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(Rosenbloom et al., 2015). The rtracklayer function was selected over the command 

line script due to an observed increase in true H3K27ac vervet liver peak calls from 

human data (data not shown), though the reason for this difference is not known. 

The liftOver function implemented in rtracklayer produced smaller blocks often a few 

base pairs apart; thus, blocks were combined using a gap value of 100 added to start 

and end coordinates, and overlapping regions were consolidated. Once all 

overlapping blocks were combined, start and end coordinates were adjusted to 

account for gap value. Feature values were then generated and true peaks were 

classified based on overlap of known vervet liver peaks. 

Human training dataset 

 The human training set was composed of known human peak calls and 

simulated human peak calls. Simulation was performed by randomly sampling 

chromosome values and chromosome start position. We ensured randomly sampled 

start positions were within chromosome boundaries by including known lengths of 

human chromosomes. Peak end coordinates were determined by random sampling 

the width ranges observed in human peaks at a qvalues > 1.30 corresponding to an 

FDR > 0.05. Simulated false peaks were then combined with actual peak calls and 

feature values were calculated as described. Simulated peaks with missing GC 

content information were excluded from our final human dataset. Finally, our human 

dataset was subsampled to better match the size of the vervet training set.     

Model parameters 

Human and vervet transcription start site (TSS) and GC percent data was 

downloaded from the UCSC browser (Rosenbloom et al., 2015), using genome 

assembly hg19 and chlSab2 for human and vervet, respectively. GC content 
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information was provided in 5-bp regions combined across 1024 total regions. For 

each human or vervet peak, average GC percent values were calculated for the entire 

region spanning each histone mark. Distance to the nearest transcription start site 

was determined using the distanceToNearest function from the GenomicRanges R-

package (Michael Lawrence et al., 2013). Length of peaks was determined using 

difference between peak start and end coordinates.  

Feature values were converted to factors by binning actual values for GC 

percentage, peak length and distance to nearest TSS. For TSS distance, values were 

binned into the following ranges:  distance = 0, 0 < distance <= 10000, 10000 < 

distance <= 30000, and distance > 30000. Similarly, peak lengths were categorized 

as length <= 2000, 2000 < length <= 4000, 4000 < length <= 7000, 7000 < length 

<= 15000, and length > 15000. Finally, average GC percent values were factored 

into the following groups: less than 20, 20 to 30, 30 to 40, 40 to 50, 50 to 60 and 

greater than 60.   

Machine learning implementation 

 Machine learning algorithms were implemented using the caret R-package. 

Random forest and svm algorithms were run using default parameters, except for 

nTree which was reduced to 100. For SVM implementation, default cost (C) value is 

set to 1, while for RF, default mtry value for classification is the sqrt(p), where p is 

the number of variables. Additionally, scale and center pre-processing options were 

applied to feature variables. Finally, accuracy calculations were determined through 

repeated cross-validation with repeats set to a value of three within the trainControl 

function from the caret package.  
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Model parameter tuning 

 Random forest parameter tuning was implemented using the tuneGrid 

parameter to include mtry values from 1 to 20. For our svm-radial model, random 

tuning was permitted and tuneLength was set to ten to allow testing of ten different 

cost values (C).  

Peak prediction using best model 

For vervet peak prediction, epigenomic roadmap human peak calls from 

anterior caudate, dorsolateral prefrontal cortex and hippocampal mid were used to 

correspond with vervet eQTL results obtained from caudate, Brodmann’s area 46 and 

hippocampus. We applied our best model, identified as our random forest model with 

mtry values of 3 and 1 for H3K27ac and H3K4me3 marks, respectively.  

Classification of vervet peaks and eQTL enrichment in three brain regions 

Enrichment of eQTLs, at Bonferroni or FDR thresholds, was determined by 

focusing on two different peak types: tissue specific and brain specific peak calls. To 

obtain tissue specific peak calls, we defined a factor variable for each tissue 

comparison, with values of 1 and 0 representing overlap and no overlap in 

comparison tissue, respectively. Hypergeometric tests were then performed to test 

for enrichment of tissue specific eQTL SNPs in tissue specific histone peaks from the 

same tissue type. Next, we labelled peaks with present in at least one other brain 

region but not present in liver data as brain specific, and performed enrichment 

analysis using the combined set of eQTLs identified in brain tissues. 

 
 
 
 
 



78 
 

Appendix A 

Supplementary Figures for Chapter 2 

 

 

 

 

 

 

 

 

 

A 

Figure A-1. (A) Functional enrichment results for down-regulated DE genes in iliopsoas SMA cases 

and prenatal controls vs postnatal controls. (B) Relationship between number of differentially 

expressed genes and differentially spliced events in each comparison group and tissue type. 

B 
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Figure A-2. Hierarchical clustering and principal component analyses of diaphragm and iliopsoas 

samples. Samples in plots are color coded by sample type with SMA cases, prenatal and postnatal 

controls displayed in red, green and blue, respectively. (A) Hierarchical clustering of Iliopsoas 

identified two outlier samples: SMA_14_04 and CNTL_15_07. Similarly, clustering shows the only 

prenatal SMA case (SMA_17_06) and prematurely born postnatal control (CNTL_15_05) clustering 

with prenatal controls. (B) Hierarchical clustering of diaphragm samples identified one outlier: 

CNTL_15_03. Similar to iliopsoas, prenatal SMA case (SMA_17_06) and premature postnatal control 

(CNTL_15_05) once again cluster with prenatal controls. (C) PC2 as a function of PC1 for iliopsoas, 

showing clustering of prenatal SMA sample (SMA_17_06) and premature postnatal control 

(CNTL_15_05) clustering with prenatal controls. (D) PCA identified two additional outliers in 

diaphragm: CNTL_17_01 and SMA_17_03. Additionally, PCA once again showed clustering of 

prenatal SMA case and prematurely born postnatal control (SMA_17_06 and CNTL_15_05) clustering 

with prenatal controls.    

B 

Iliopsoas C Diaphragm 

A 

D 
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Appendix B 

Supplementary Figures for Chapter 3 

 

  

Figure B-1. Distribution of cell type composition by age for vervet BA46. Deconvolution analysis was 

applied to vervet BA46. The distribution of cell type proportions is plotted for six vervet age groups.  
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Figure B-2. Distribution of cell type composition by age for vervet caudate. Deconvolution analysis 

was applied to vervet caudate. The distribution of cell type proportions is plotted for six vervet age 

groups. 



82 
 

  

Figure B-3. Distribution of cell type composition by age for vervet hippocampus. Deconvolution 

analysis was applied to vervet hippocampus. The distribution of cell type proportions is plotted for 

six vervet age groups. 
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Appendix C 

Supplementary Tables and Figures for Chapter 4 

 

 
 

  

A B 

Figure C-1. Brain and body weight as a function of age in days. (A) Body weight (in kg) as a function 

of age (in days). (B) Brain weight (in g) as a function of age (in days). Inset: in animals aged under 

500 days brain weight rises rapidly and begins to plateau after the 100-day mark. Males and females 

are indicated by blue triangles and red circles, respectively.  
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Sample ID Sex Age (days) Weight (kg) BrainWt (g) Batch 

2009098 F 7 0.34 41.66 1 

2010056 F 7 0.25 36.65 1 

2010069 M 7 0.43 51.44 1 

2010083 M 7 0.36 43.61 1 

2010014 F 8 0.34 44.53 1 

2009055 F 89 0.77 61.51 1 

2010023 M 90 0.89 76.47 1 

2010024 M 91 0.88 66.26 1 

2010018 F 93 0.81 62.23 1 

2010016 M 95 0.69 58.37 1 

2010019 F 95 0.72 63.88 1 

2008138 F 353 1.7 66.43 1 

2009052 F 363 1.57 66.69 1 

2008148 M 373 1.87 82.44 1 

2008143 F 375 1.47 66.04 1 

2008122 M 376 2.1 80.83 1 

2009057 M 379 2.22 75.2 1 

2008036 M 435 2.33 75.44 1 

2008102 M 452 2.09 73.62 1 

2008064 F 454 2.05 68.3 1 

2008093 F 461 2.27 83.54 1 

2008089 M 463 2.39 75.4 1 

2008060 F 477 1.8 69.93 1 

2008010 M 533 2.7 84.99 1 

2008012 F 545 2.51 74.93 1 

2008090 F 555 2.31 73.11 1 

2008066 F 564 2.28 75.1 1 

2008054 M 573 2.31 77.23 1 

2008101 M 573 2.39 76.62 1 

2008014 F 611 2.57 81.02 1 

2008017 M 611 2.57 77.34 1 

2008147 F 635 2.35 69.59 1 

2008023 M 639 2.22 78.37 1 

2008007 M 661 2.84 75.35 1 

2008141 F 665 2.74 63.38 1 

2008095 M 695 2.62 78.4 1 

2008074 F 707 2.54 74.82 1 

2008114 F 709 2.43 80.53 1 

2008021 M 715 3.38 77.05 1 

2008022 M 721 2.52 81.87 1 

2008052 F 722 2.61 74.18 1 

2007047 F 887 3.35 78.87 1 

2007043 F 906 3.78 71.01 1 

2007044 F 923 3.08 61.61 1 

2007035 M 941 3.15 74.72 1 

2007041 M 946 3.42 86.8 1 

2007023 M 958 3.71 72.67 1 

2007006 F 1000 3.44 69.47 1 

2007032 F 1082 3.74 71.65 1 

2007016 M 1087 4.74 88.14 1 

2007002 M 1092 4.54 80.03 1 

2007031 F 1111 4.12 77.56 1 

2007020 M 1132 3.68 76.77 1 
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2003104 F 2795 6.71 66.71 1 

2002090 M 2894 6.44 82.62 1 

2002024 M 3003 6.35 81 1 

2002079 F 3179 5.4 69 1 

2002060 M 3223 8.44 69.87 1 

2002053 F 3244 4.97 66 1 

2010084 M 0 0.38 46.1 2 

2010004 F 1 0.36 40.83 2 

2010055 F 1 0.36 42.13 2 

2010059 M 1 0.39 43.14 2 

2010072 F 1 0.46 40.54 2 

2011020 M 1 0.34 45.62 2 

2011017 M 9 0.31 39.95 2 

2010052 M 29 0.55 60.38 2 

2010071 M 29 0.43 46.05 2 

2010009 F 31 0.42 52.75 2 

2010045 F 31 0.44 48.97 2 

2009088 M 32 0.51 56.87 2 

2010051 F 33 0.47 52.39 2 

2010042 M 55 0.7 59.99 2 

2010040 M 56 0.62 64.23 2 

2010032 F 58 0.69 72.23 2 

2010053 M 58 0.64 60.46 2 

2009078 F 59 0.42 45.77 2 

2010033 F 61 0.57 58.46 2 

2009077 M 176 0.92 74.83 2 

2009092 F 176 1.11 69.42 2 

2009086 F 177 1.09 65.5 2 

2009085 F 183 1.15 60.08 2 

2009007 M 186 1.51 75.01 2 

2009075 F 189 1.11 65.99 2 

2010102 M 189 1.38 67.56 2 

2009050 M 257 1.58 74.24 2 

2009091 F 260 1.36 70.54 2 

2009048 F 261 1.35 68.42 2 

2009064 M 261 1.49 74.11 2 

2009060 F 270 1.11 66.71 2 

2009084 M 279 1.53 75.29 2 

 
Table C-1. Summary of vervet hippocampus samples 
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Biological Processes 

Molecular Function 

Figure C-2. (A) Number of differentially expressed age-related genes using N=91 animals. (B) 

Gene ontology results for genes positively and negatively correlated with age, represented by red 

and green, respectively. 

A 

B 

Age-related genes at FDR < 0.05 (n=2767) 

-1482 1285 
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Genes with 
log2FC > 0 

Genes 
with 

log2FC < 0 

-3409 3116 

Age-related genes at FDR < 0.05 (n=6525) 

Figure C-3. (A) Number of positively correlated (red) and negatively correlated (green) age-related 

genes after excluding six oldest animals. (B) Comparison of age-related expression results with and 

without six oldest animals. 

A 

B 
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Figure C-4. Rank-Rank plots for human BrainSeq and vervet hippocampal gene expression 

comparison across six time points, using the top 1,000 vervet age-related genes.   
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Figure C-5. Rank-Rank plots for human BrainSpan and vervet gene expression comparison 

across six time points, using the top 1,000 vervet age-related genes.   
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Time 
Period 

Human Age 
Human 

Developmental 
Period 

Vervet Age 
Vervet 

Category 

Vervet 
Transcriptome 
Age Categories 

T1 Birth - 5 months Early Infancy 0 to 1 month Neonates 1d, 7d, 30d 

T2 6-18 months Late Infancy 
1.5 - 4.5 
months 

Young 
Infants 

60d, 90d 

T3 
19 months - 5 

years 
Early Childhood 

6 months - 
1.25 years 

Older infants 
to young 
juveniles 

180d, 270d, 
1y, 1.25y 

T4 6-11 years Late Childhood 
1.5 - 2.75 

years 
Older 

Juveniles 
1.5y, 1.75y, 2y, 

2.5y 

T5 12-19 years Adolescence 3 - 4.75 years Adolescents 3y, 4y 

T6 20-60+ years Adulthood 5+ years Adults 5y or older 

Table C-2. Corresponding age categories between vervet and human datasets [Adapted from 

Jasinkska, et al (2017)] 
 

 
 
 
 
 

Time Period Age rhesus macaques Age Vervet 

T1 0m Infants 0, 1 and 7 days 

T2 3m Infants 90 days 

T3 12m Infants 1 and 1.25 years old 

T4 48m Adults 4+ years 

Table C-3. Corresponding age categories between vervet and rhesus macaque [Adapted from 

Jasinska, et al (2017)] 
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Figure C-6. Correlation of BrainSpan WGCNA module eigengenes with sample traits. P-values 

have been corrected for multiple hypothesis testing.  
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Figure C-7. (A) PCA plot of combined hippocampal samples (n=91). (B) PCA plot of 

PC1 vs PC2 after removing batch effect, with labels specifying age in days.  

A 

B 
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Gene Name 
Gene 

Chromosome 
Number of 

Distant eQTLs 
eQTL Chromosome(s) 

LOC103217586 CAE10 33 CAE9 

LOC103218775 CAE11 10 CAE16 

LOC103238280 CAE11 28 CAE1 

LOC103219243 CAE12 1 CAE25 

LOC103239854 CAE12 25 CAE29 

LOC103240737 CAE13 29 CAE5 

LOC103241453 CAE15 3 CAE14 

LOC103242588 CAE16 1 CAE14 

DPPA5 CAE17 1 CAE18 

LOC103222806 CAE18 12 CAE12 

LOC103244222 CAE18 2 CAE28 

LOC103246126 CAE2 97 CAE18 

LOC103226062 CAE21 11 CAE9 

LOC103244257 CAE23 4 CAE6 

LOC103244881 CAE23 1 CAE6 

LOC103229920 CAE24 26 CAE26 

LOC103230363 CAE25 4 CAE9 

LOC103246473 CAE27 10 CAE23 

LOC103214808 CAE3 28 CAE16 

LOC103233076 CAE5 9 CAE16 

LOC103236151 CAE7 7 CAE2 

LOC103236677 CAE7 10 CAE16 

LOC103237663 CAE8 3 CAE25 

LOC103216138 CAE9 51 CAE28 

LOC103232262 CAEX 4 CAE25 

LOC103232591 CAEX 11 CAE3 

Table C-4. eGenes with associated SNPs located on a different chromosome. 

 
Principal 

Component 
Age Category Age in Days Sex Concentration Volume RIN 

PC1 0.426 0.106 0.999 0.0778 0.106 0.0764 

PC2 0.678 0.142 0.106 0.133 0.106 0.0909 

PC3 0.641 0.354 0.106 0.105 0.106 0.296 

PC4 0.267 0.284 0.106 0.0662 0.105 0.121 

PC5 0.353 0.099 0.104 0.0912 0.106 0.0712 

PC6 0.176 0.062 0.104 0.0465 0.106 0.0202 

PC7 0.641 0.409 0.106 0.101 0.106 0.126 

PC8 0.141 0.0998 0.106 0.0549 0.106 0.19 

PC9 0.222 0.0627 0.106 0.051 0.106 0.015 

PC10 0.11 0.104 0.106 0.114 0.106 0.091 

Table C-5. Correlation between first 10 principal components and known covariates. 
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