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Abstract. 

We present recent advances with the quantum Monte Carlo (QMC} method in its 
application to molecular systems. The QMC method is a procedure for solving the 
Schrodinger equation statistically, by. the simulation of an appropriate random process. 
The formal similarity of the Schrooinger equation with a diffusion equation allows one to 
calculate quantum· mechanical expectation values as Monte Carlo averages over an 

. ensemble ?f random ;walks .. We have previ?usly obtained highly accurate correlation 
energies for a number of molecules, as well as the singlet-triplet splitting in methylene 
and the' barrier height for the H + H2 exchange reaction. Recently we have begun a 
program of extending the QMC approach to the calculation of analytic derivatives of the 

. . ~ -
e'nergy. A brief description of the approach is presented here, together with some prel-
iminary .results. In addition, we are now computing expectation values of properties 
other than the energy, We summarize how standard QMC must be modified, and 
present some results for H2 and N2. Finally, we describe preliminarY work toward the 
goal of obtaining accurate molecular excited states through QMC. 

* This work was supported in part by the Office of Naval Research. 
t Also, Department of Chemistry, University of California, Berkeley, CA 94720. 
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I. Introduction 

In the past few years, quantum mechanical Monte Carlo {QMC) methods have 

begun to make a contribution to quantum chemistry [1-4]. The Monte Carlo technique 

is complementary to traditional ab initio approaches for obtaining molecular properties. 

·The principle behind the two techniques is, however, quite different. In particular, QMC 

uses the formal similarity of the Schrodinger equation to a diffusion equation to solve the 

former statistically [1]. 

Until now, however, QMC applications have been limited to calculations of energies 

of ground-states and lowest states of a gi\ren symmetry. Using QMC, workers have stu­

died molecular correlation energies [1,2] as well as critical points on potentiai-energy sur-

faces [3]. A calculation of the singlet-triplet splitting in methylene has also been carried 

out [4]. The two states studied, however, are both lowest-energy states of their respec­

tive symmetries. In these studies, the accuracies obtained with QMC have been compar-

able to the best achieved by other rigorous methods: Here we discuss our recent effort in 

extending QMC to molecular properties other than the energy {Sect. IT), to energy 

derivatives (Sect. III), and to excited states of the same symmetry as the ground state 

(Sect. IV). Preliminary results of this work are presented. 

IT. QMC Molecular Properties 

The QMC method of obtaining energies has been described in detail elsewhere [1-5]. 

The key point to note here is that a simulation is performed in which an ensemble of 

random walks (the coordinates of which, at any given time, represent a "configuration" 

of the electrons) evolve to an equilibrium distribution. At any time after equilibrium bas 

been reached, the ensemble of configurations is a random sample drawn from the proba-

bility distribution f 00(R )=\f! T (R )~(R ). Here \f! T (R ) is a simple trial wave function 

used for importance sampling [1,5,6], and in the present applications also for determining 

r· 

r, 
.. 
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the nodes of the problem (i.e. the nodes of WT are imposed on ~) [1,7]; the coordinate 

vector R is the multi-dimensional vector describing the full many-body system. The 

function ~(R) is the lowest-energy eigenfunction of the Schrodinger equation for the 

imposed set of nodes. Although neither this function nor I 00 is known analytically, we 

can nevertheless sample desired quantities from the equilibrium distribution. Averages 

taken with respect to the distribution I 00 are known as mixed averages. For example, 

sampling a quantity A in equilibrium after N samples gives the average (in the limit of 

large N) 

_!_ E A =<A >too 
N config• 

J I 00(/l. ) A d/l. (1) 

I w T (H. )~(H.) A d/1. 

IwT (R. )~(R.) dH. 
1 

or in abbreviated Dirac notation (with the normalization absorbed), 

<A >t =<WT I A 14>>. 
00 . 

(2) 

On the other hand, the correct expectation value of A , for an eigenstate ~. is 

<~I A I~>. In computing the energy, or any property for which ~ is an eigenstate, 

there is no difference between these two averages. This follows since the eigenvalue can 

be taken out of the integral in the numerator of Eq. 1. In particular, to compute the 

energy one samples the quantity EL (R) = \lli.l(R )H W T (R ). Then 

<E> 
I ~(H. )w T (H. )[w i 1(/1. )H w T (11. )J dH. 

I~(R )wT(R) dR 

{3) 

where E 0 is the eigenvalue corresponding to the state ~- The last equality follows upon 

noting that H is Hermitian, and thus can operate to the left. 

... , 
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Fot expectation values of quantities whose operators do not commute with H, the 

mixed average is only approximate. One suspects that the mixed average is in some 

sense "half-way" between the exact expectation value (with respect to ~) and the varia-

tional expectation value, taken with respect to the trial wave function, I.e. 

Taken literally, this implies that 

2 < W T I A I ~>-<\If T I A I W T >. This result can be formalized through the follow-

ing argument. The trial function \If T, if it is good, differs from ~ only by a "small" 

function ~~ i.e. ~=WT +~. Then (see also [5b]) 

<~I A I ~>=<WT I A I~> + <~ I A I ~> 

~<WT I A I~> + <~I A I WT > 

=2< \If T I A I ~> - <'If T I A I \If T > . (4) 

The first equality follows on expanding the ~ bra. The approximation in the next line 

occurs on expanding the ~ ket in the second term, and dropping the resulting term of · 

order ~2• Finally, ~ is re-expanded; A is assumed an observable, and hence Hermitian. 

This gives ali approximate formula for expectation values taken solely with respect to ~ 

from just mixed and variational averages. The above argument ignores the different nor-

malizations implicit in the different terms. However, it is easy to demonstrate that Eq. 4 

divided by <~I~> differs from 

<WT I A I \liT >/<WT I WT >by terms of only 0(~2). This gives the desired result. 

It is, however, difficult to know how significant it is to drop terms of order ~2. Thus, it 

is desirable to be able to sample exactly from the distribution I ~ I 2• This can be done 

[8], though with some changes to the usual QMC algorithm. The distribution f 00 must 

be weighted locally by ~(R )/'If T (R ). This quantity is essentially the asymptotic 

number of survivors of the local configuration R [8]. Thus, algorithmically, one must 

follow each configuration into the future before computing any averages. Details of our 

algorithm will be presented elsewhere [9]. Our results (see Tables 1 and 2) show that 

r: 

~f 
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while the variational approximation is poor, the approximate formula (Eq. 4) is quite 

good. Furthermore, excellent agreement with exact results is obtained by sampling from 

the pure I ~ I 2 distribution. 

ill. Energy Derivatives 

While conventional ab initio approaches regularly compute the analytic derivative 

of the energy with respect to nuclear coordinates in order to determine equilibrium 

geometries [10] and (by finite difference or higher analytic derivatives) vibrational fre­

quencies [11], only finite difference approaches have been implemented in QMC [12]. In· 

principle there is no reason for this limitation. To compute the energy derivative with 

respect. to a nuclear coordinate p, we write 

. d <E > foo 

·dp 
d { I ~(11. )\If T (B.) EL (11.) d/1. } 

dp f~(R)\IfT(R) d/1. 

1 a~ 1 a~ + <""A""-a EL >, -<""A""-a >, <EL >, 4>P oo q,p oo oo 

1 awT 1 awT 
+ <~-ap EL >'-<~-a-> 1 <EL > 1 · 

'ffT oo 'ffT p oo oo 
(5) 

The second equality is obtained from differentiation using the chain rule, followed by 

expression of. the resulting ratios 88 averages over the. distribution f 00 • The derivative 

a~jap is unknown; it is however possible to sample it. The other terms in Eq. 5 may be 

evaluated straight-forwardly during the QMC simulation. Rather than sampling a~jap, 

88 a first approximation we may take ~-~a~jap=\lfj.lawT jap. This turns out to be a 
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good approximation even when W T IS only of moderate accuracy (e.g. dou hie-zeta 

Hartree-Fock). 

Using this approach, we have performed calculations on H2 at a few nuclear separa­

tions. Our results are presented in Table 3, where they are compared with the essen-

tially exact work of Kolos and Wolniewicz [13], as well as with the results of conven-

tional a.b initio approaches. As can be seen, QMC is competitive with CI, and far supe-

rior to Hartree-Fock at the equilibrium geometry. Studies are in progress at other 

nuclear geometries, and on other molecular systems. 

IV. Excited States 

Work thus far with QMC has been limited to ground-state potential-energy sur-

faces and lowest energy states of a particular symmetry [1-4]. This restriction comes 

from an essential feature of the mapping of the Schrooinger equation into its diffusion, 

analog--that time in these two equations differs by a factor of i . This means that the 

expansion of a time-dependent molecular state vector in energy eigenfunctions multiplied 

by exp(-iEt /M, results in a series in which only the lowest energy term (i.e. ~) survives 

at large t. Thus one obtains exponential convergence to the lowest energy eigenstate. 

If W r is orthogonal to the exact lowest-energy state, one can see from Eq. 3 that 

convergence will be to the next-lowest energy. {Initially ~ contains a superposition of 

states.) This fact allows the calculation of molecular energies to begin with, as Fermi 

energies are excited states (with respect to the Bo5on ground state) of the Schrodinger 

equation. By choosing W r to be antisymmetric with respect to particle exchange, one 

projects out all symmetric states. A similar result holds for calculations of different sym-

metry states of a given molecule. 

When studying states of the same symmetry, it is generally not possible to find a 

trial wave function exactly orthogonal to all the lower-energy states of that symmetry. 
, .. ..--

~·· I, 

,\1 

r· 
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This implies ( cf. Eq. 3) that convergence will ultimately be to the lowest-energy state. 

However, the fixed-node approximation [1,7] used to treat the Fermi problem is of assis-

tance here too. In the fixed-node approximation, the nodes of \If T are used to divide 

R -space into separate volume elements. The Schrodinger equation is solved separately 

in each of these elements. This results in a solution of the Schrodinger equation with 

added boundary conditions. Viewed this way, the Fermi problem is handled by forcing 

the generation of an antisymmetric state above the Bose ground state through the place­

ment of nodes in the solution ~. In like manner, other excited states can be treated 

approximately by imposing additional nodes. The accuracy of the approximation will 

depend on how well these nodes are placed. 

In treating excited states, traditional ab initio methods generate wave functions 

with the right number of nodes. Thus such wave functions are a good place to begin in 

searching for a function \If T. We report preliminary results achieved with QMC when 

\II T is a two-determinant SCF wave function. More details are given in Ref. 14. Tables 

4 and 5 report our results on the first excited state of the He atom and of H2 respec­

tively. Two determinants are needed to obtain the required spatial symmetry. In the 

case of He, we have obtained 64% of the correlation energy for the ls2s 1s state. 

Though this appears low, we note that our final result is within 0.66 kcal/mol of the 

experimental energy. For H2 we note that there is some basis set dependence. Neverthe­

less, a fairly simple basis set (double-zeta plus polarization) yields 75% of the correlation 

energy. We expect that better results will be obtained through the use of better optim-

ized trial functions. 

In summary, we have extended QMC to the study of energy derivatives, molecular 

properties, and molecular excited states. Preliminary results in these extended directions 

are encouraging. Further investigations are in progress. 
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Table 1. Comparison of expectation values for proper~ies of H2. The properties studied 
are expectation values of the squared distance from the H2 axis, along the H2 axis, and 
from the center of the molecule (in bohr2

). The electric quadrupole moment, Q, (in 
esu·cm2x 10-26

) can be derived from the other expectation values. The trial function, 
'If T, is a single-zeta-plus-bond SCF function, multiplied by electron-electron and 
electron-nuclear Jastrow functions. The function, ~' is the exact wave function in this 
case, since there are no nodes for the ground-state of H2. However, a small bias due to 
the short-time approximation may be present. Here the time step is T=0.01 au. 
"Approximate formula" refers to Eq. 4 of the text. Statistical uncertainty in the last 
significant figures is shown in parentheses. 

Method 

Point Charge Modela 

<'1fT I A I "'T > 

<'1fT I A I~> 

Approximate 
Formula 

<~lA I~> 

Exactb 

a Ref. 15. 
b Ref. 16. 

( <x2> + <y2>) 

--

0.7715(9) 

0.7670(24) 

0.7625(49) 

0.7635(28) 

0.7617 

<z2> <r2> Q 

--- - 0.50 
.• 

1.078{2) 2.621(3) 0.49(1) 

1.047(4) 2.580(9) 0.56(2) 

1.016(9) 2.539(18) 0.63(5) 

1.025{5) 2.552(10) 0.61(3) 

1.023 2.546 0.61 
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Table 2. Comparison of values obtained for the electric quadrupole rrioment of N2. 
The trial function, 'II T, is a double-zeta SCF function, multiplied by electron-electron 
and electron-nuclear Jastrow functions. Time· steps of r=0.0025 and 0.00125 au are 
used, with no noticable bias present. "Approximate formula" refers to Eq. 4 of the text. 
Statistical uncertainties are indicated in parentheses . 

. · 

Method 

Hartree-Focka 

MCSCFa 

<'~~T I Q I '~~T > 

<'~~TIQ I~> 

Approximate 
Formula 

E . b xper1ment 

a Ref. 17.· 
b Ref. 18. 

Q ( esu ·em 2 X 10-26) 

-1.29 

-1.22 

-2.19(4) 

-1.80(10) 

-1.41(20) 

-1.4(1) 
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Table 3. Comparison of energy derivatives of H2 at equilibrium with standard tech­
niques. The QMC trial function consists of a double-zeta SCF wave function multiplied 
by an electron-electron correlation function of the form fi(1-a exp(br;i +cr;~)). The 

ij 

parameters used are a =0.48, b =0.54, c =0.33, and d =1.4 .. Time steps ranging from 
1"=0.1 au to 1"=0.005 au are used. The quoted results are extrapolations to T=O. Ener-:­
gies are in hartrees and derivatives in hartreesjbohr. Statistical uncertainties are indi­
cated in parentheses. 

Method E 

SCF 11 -1.1335 

CI6 -1.1737 

QMC -1.1745{12) 

Exactc -1.17447 

11 Pulay in Ref. 10. 
6 Ref. 19. 
c Ref. 13. 

dE/dp 

0.0053 

0.0007 

0.0009{24) 

0.0000 
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Table 4. Comparison of the energy of the first excited 1S state of He with SCF and 
experiment. The SCF wave function, whose energy is shown in the table, is used as the 
QMC W T. The column headed %CE gives the percentage of the correlation energy 
recovered, and is computed relative to the SCF number in the first row of the table. A 
time step of r=0.05 au is used. Statistical uncertainties are indi~ated in parentheses. 

Method 

SCF 

QMC 

Experiment 

a Ref. 20. 
b Ref. 21. 

E (h) 

-2.1430711 

-2.14493(7) 

-2.145986 

%CE 
~(E -E exp) 

(kcalf mole) 

0 1.83 

64 0.66(4) 
' 

100 0.00 
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Table 5. Comparison of the energy of H2 (B 1Eu+) at its equilibrium geometry with 
self-consistent field (SCF), configuration interaction (CI) and exact results. For QMC, 
two different trial functions are used. They are constructed from double-zeta (DZ) and 
double-zeta-plus-polarization (DZP) SCF functions. The column beaded % CE gives the. 
percentage of correlation energy recovered, and is computed relative to the SCF number 
in the first row of the table. A time step of r=0.01 au is used. Statistical uncertainties 
are indicated in parentheses. 

Method E(h) 

SCF -0.742 ° 

QMC 
-0.748(2) 

(DZ) 

QMC 
-0.753(1) 

(DZP) 

CI -0.7553 6 

Exact -0.7567 c 

• Ref. 22. 
6 . 

Ref. 23. 
c Ref. 24. 

%CE 
~(E-Eencl) 
(kcalfmole) 

0 9.4 

41 5.6 

75 2.5 

90 0.9 

100 0.0 ' 
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