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Abstract
The notion that novelty attracts attention is core to many ac-
counts of visual saliency. However, a consensus has not been
reached on how to best define novelty. Various interpretations
of novelty lead to different bottom-up saliency models that
have been proposed for static images and more recently for
dynamic scenes. In previous work, we assumed that a basic
goal of the visual system is to locate targets such as predators
and food that are potentially important for survival, and devel-
oped a probabilistic model of salience (Zhang, Tong, Marks,
Shan, & Cottrell, 2008). The probabilistic description of this
goal naturally leads a definition of novelty as self-information,
an idea that has appeared in other work. However, our notion
uses the idea that the statistics used to determine novelty are
learned from prior experience, rather than on the current im-
age, leading to an efficient implementation that explains sev-
eral search asymmetries other models fail to predict. In this pa-
per, we generalize our saliency framework to dynamic scenes
and develop a simple, efficient, and online bottom-up saliency
algorithm. Our algorithm matches the performance of more
complex state of the art algorithms in predicting human fixa-
tions during free-viewing of videos.

Introduction
It is of great research interest to understand how the visual
system rapidly and efficiently samples the available visual in-
formation. One major line of this research stems from the
intuition that novel objects or statistical outliers attract at-
tention. Koch and Ullman (1985) introduced the notion of
a saliency map based around the notion that a region is intrin-
sically salient if it differs substantially from its surroundings.
A number of models stem from a similar intuition that being
a local outlier makes a point salient (Itti, Koch, & Niebur,
1998; Gao & Vasconcelos, 2007a; Bruce & Tsotsos, 2006;
Torralba, Oliva, Castelhano, & Henderson, 2006). As the
small foreground items are often statistically different from
the large background, locating statistical outliers in an image
can facilitate detecting interesting objects. In addition, as low
probability events contain more information (in an informa-
tion theoretic sense), the definition of saliency as low proba-
bility event connects the selective process of visual attention
with maximally sampling information.

Since humans live in a dynamic world, video and interac-
tive environments provide a more faithful representation of
the task facing the visual system than the static images fre-
quently used in experiments. Studies also show that static
measures of saliency do not perform as well as measures that
use temporal information in predicting human fixations(Itti,
2005). Thus it is of interest to investigate saliency for dy-
namic scenes. The notion that statistical outliers attract atten-
tion applies equally well to the spatiotemporal domain and

again, one sees variants of local outliers. Gaborski, Vain-
gankar, Chaoji, Teredesai, and Tentler (2004) used mixtures
of Gaussians to model what has occurred over a spatiotem-
poral region of a video; an event is novel and salient if it
cannot be accounted for by the model. Gao and Vasconce-
los (2007b) extended their static image saliency to dynamic
scenes: saliency is measured as KL divergence between the
histogram of features in a location and the surround region,
with the features implemented as optic flow. Itti and Baldi
(2008) related saliency to Bayesian surprise which defines
saliency as a deviation from what is expected based on a set
of internal models of the local visual world.

It is reasonable to assume that one goal of the visual system
is to locate targets that are potentially important for survival.
In our previous work, we developed a visual saliency model
that is based on this simple assumption. From the resulting
probabilistic description of this goal, the self-information of
the features falls out as bottom-up, task-independent saliency
(Zhang et al., 2008). Self-information in this context, learned
from natural statistics over development, corresponds with
findings that novel items attract attention in visual search
(Wolfe, 2001). The reliance of learned natural statistics forms
the basis of our model: Saliency Using Natural statistics
(SUN). The definition of novelty in SUN, however, is dif-
ferent from that has been used in previous computational
saliency models in that statistical outliers are not based only
on the current image. In all the models discussed, the statis-
tics were local; for static images, the statistics were gath-
ered solely from the current image, while for video they are
gathered over some local spatiotemporal region. In previous
work, we showed that feature distributions learned from ex-
perience with natural scene images provide a straightforward
account for human search asymmetries, a phenomenon that
is difficult for models that rely solely on the current image’s
statistics, as they would find a vertical bar among tilted bars
just as salient as a tilted bar among vertical bars. Further-
more, the implementation of SUN performs as well as or bet-
ter than previous models in predicting human fixations when
free viewing images, and is computationally much more effi-
cient(Zhang et al., 2008).

In this paper, we use spatiotemporal visual features to gen-
eralize the static image saliency model to dynamic scenes.
We develop an efficient algorithm in which saliency is up-
dated online upon each new frame. The model’s performance
in predicting human fixations while watching videos is com-
parable to previous methods, with the advantage of being sub-
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stantially simpler.

Saliency is Information
Our definition of bottom-up saliency emerges from a more
general goal of the visual attention system: detecting po-
tentially important targets and allocating computational re-
sources to them for further processing. To achieve such a
goal, the pre-attentive process must estimate the probability
of a target given the visual features at every location in the
visual field. We have proposed elsewhere that this probability
is visual saliency (Zhang, Tong, & Cottrell, 2007; Zhang et
al., 2008).

To make this more explicit, we can calculate the probability
that the target is present at a point, z, in the visual field. We
use the term “point” loosely here; in this work, it refers to a
pixel in an image, but elsewhere it can refer to a single object
(e.g. Zhang et al., 2007). This point contains two pieces of
information our model makes use of: its location, denoted by
L = lz, and the visual features present there, denoted F = fz.
If we define C as a binary variable that is 1 when the target
is present at the current point and 0 otherwise, the probability
of interest is sz = p(C = 1|F = fz,L = lz). Applying Bayes’
rule and making the (unwarranted) simplifying assumptions
that features and locations are independent and conditionally
independent given that C = 1, this can be rewritten as:

sz = p(C = 1|F = fz,L = lz)

=
p(F = fz,L = lz|C = 1)p(C = 1)

p(F = fz,L = lz)

=
p(F = fz|C = 1)p(L = lz|C = 1)p(C = 1)

p(F = fz)p(L = lz)

=
1

p(F = fz)
· p(F = fz|C = 1) · p(C = 1|L = lz)

To compare this probability across locations in an image, it
suffices to estimate the log probability (since logarithm is a
monotonically increasing function). For this reason, we take
the liberty of using the term saliency to refer both to sz and to
logsz, which is given by:

logsz=− logp(F = fz)︸ ︷︷ ︸
Self-info
(salience)

+logp(F = fz|C=1)︸ ︷︷ ︸
Log Likelihood

+logp(C=1|L= lz)︸ ︷︷ ︸
Location prior︸ ︷︷ ︸

Dependent on target
(top-down knowledge)

The first term on the right side of this equation, − log p(F =
fz), contains no knowledge of the target and depends only
on the visual features observed at the point. In informa-
tion theory, − log p(F = fz) is known as the self-information
of the random variable F when it takes the value fz. Self-
information increases when the probability of a feature
decreases—in other words, rarer features are more informa-
tive. While both Torralba et al. (2006) and Bruce and Tsot-
sos (2006) also define bottom-up saliency as related to self-
information, they base their statistics on the current scene (for

a more thorough discussion of the differences, see Zhang et
al., 2008), while we learn the distributions of the features
from previous experience. The remaining terms describe the
target appearance and likely locations respectively. Work
with SUN’s appearance model is described in (Kanan, Tong,
Zhang, & Cottrell, in press).

When the organism is not actively searching for a partic-
ular target (the free-viewing condition), the organism’s atten-
tion should be directed to any potential targets in the visual
field, despite the fact that the features and locations associ-
ated with the target class are unknown. In this case, the log-
likelihood term and location prior are unknown, so we omit
these terms from the calculation of saliency. Because the goal
of the SUN model is to find potential targets in the surround-
ing environment, the probabilities should reflect the natural
statistics of the environment and the learning history of the
organism, rather than just the statistics of the current image.
For our bottom-up model, this means that attention will be
drawn to novel targets, an idea that has been in the psychol-
ogy literature for decades at least. For example, Fantz (1964)
showed that novel objects attract the attention of infants.

Implementation of Bottom-up Saliency on
Dynamic Scenes

In this section, we describe an algorithm that estimates the
bottom-up saliency in videos. First we apply a bank of spa-
tiotemporal filters to each video; these filters are designed to
be both efficient and in line with the human visual system.
The probability distributions of these spatiotemporal features
are learned from a set of videos from natural environments.
Then for any video, we calculate its features and estimate the
bottom-up saliency of each point as − log p(F = fz). In the
rest of the paper, the features are indexed by pixel coordinates
so we drop the index z for notational simplicity.

Features
Let r, g and b denote the red, green, and blue components of
an input video pixel. The intensity (I), red-green (RG) and
blue-yellow (BY ) channels are calculated as I = r + g + b,
RG = r−g, BY = b− r+g

2 −
min(r,g)

2 .
The spatiotemporal filters we used are separable linear fil-

ters. The feature response function has the form F =V ∗g∗h,
where V is a channel of the video, g is the component that
applies only along the spatial dimensions and h is the com-
ponent that applies only along the temporal dimension. The
filter responses are then used as features.

Difference of Gaussians (DoG) filters are used as the spa-
tial component, g. These linear filters loosely model the re-
sponse of cells in the lateral geniculate nucleus (LGN) and
elsewhere. Mainly we choose these features to keep the
implementation as simple as possible in order to verify the
power of the underlying model.

The DoG filters are generated using

g(x,y;σ)=
1

σ2 exp
(
−x2 + y2

σ2

)
− 1

(1.6σ)2 exp
(
− x2 + y2

(1.6σ)2

)
.
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Figure 1: On the left is the temporal filter when τ = 0.1. Plot-
ted are h′(t;τ) (blue line), h′(t;2τ) (black line) and h(t;τ) (red
line). The right plot shows the temporal filters for the five
time scales used (values of τ of 0.025, 0.05, 0.1, 0.2, and
0.4).

We applied DoG filters to all three channels (I, RG, and BY )
using 5 scales (σ = 2,4,8,16 or 32 pixels), resulting in 15
spatial filters in total.

The temporal filter h takes the form:

h(t;τ) = h′(t;2τ)−h′(t;τ)

where
h′(t;τ) =

τ

1+ τ
· (1+ τ)t

t ∈ (−∞,0] is the frame number relative to the current frame
(0 is the current frame, −1 is last frame, etc.) and τ is a tem-
poral scale parameter that determines the shape of the tempo-
ral filter. We used 5 temporal scales in our implementation
τ = 0.025,0.05,0.1,0.2,0.4. Figure 1 shows how h(t;τ) is
formed and how it varies with τ. We will refer to h(t;τ) as
a DoE (Difference of Exponentials) due to h′(t;τ)’s similar-
ity with the exponential distribution. We choose DoE as a
temporal filter for the following reasons:

• limt→−∞ h(t;τ) = 0. Therefore frames in the distant past
do not contribute to the current saliency.

• Σ0
−∞h(t;τ)dt = 0. If a part of the scene does not change for

a extended period of time, it ceases to be salient.

• h(t;τ) is largest near t = 0 and falls off rapidly. This says
that DoE has a strong response to onset and offset of ob-
jects.

• The DoE bears some resemblance to the temporal re-
sponses of some neurons in LGN of cats(Cai, Deangelis,
& Freeman, 1997).

• Using DoE as temporal filters enables very efficient online
calculation of the spatiotemporal filter responses (shown
below).

With the exception of the last property, these properties are
all shared with the DoG. Because all filters are linear:

F(x,y, t;σ,τ) = V (x,y, t)∗g(x,y;σ)∗h(t;τ)
= V (x,y, t)∗g(x,y;σ)∗ (h′(t;2τ)−h′(t;τ))
= F ′(x,y, t;σ,2τ)−F ′(x,y, t;σ,τ)

where F ′(x,y, t;σ,τ) = V (x,y, t)∗g(x,y;σ)∗h′(t;τ). This can
be calculated efficiently, as:

F ′(x,y,0;σ,τ) =
F ′(x,y,−1;σ,τ)

1+ τ

+
τ

1+ τ
·V (x,y,0)∗g(x,y;σ)

To estimate the response to spatiotemporal feature g(x,y;σ)∗
h′(t;τ) at the current frame, F ′(x,y,0;σ,τ), we simply require
the spatiotemporal filter response at the previous frame and
the spatial filter response at the current frame. Besides the
advantage in calculation speed, this also removes the need
for memory of earlier frames, a property not enjoyed by pre-
viously used spatiotemporal filters. The final response can
then be easily calculated by F(x,y, t;σ,τ) = F ′(x,y, t;σ,2τ)−
F ′(x,y, t;σ,τ).

Learning the distribution
As described above, there are 15 features on the spatial di-
mension: 5 from each channel. On the temporal dimension
there are 5 scales and they are combined with each spatial
feature. Thus there are in total 75 feature responses. By
computing these feature responses on natural videos (about
2 hours of animal/plant documentary videos), we obtained an
estimate of the probability distribution over the observed val-
ues of each of 75 features.

We used Song’s algorithm (Song, 2006) to fit a generalized
Gaussian distribution to the estimated distribution for each
feature:

p(r;ς,θ) =
θ

2ςΓ( 1
θ
)

exp

(
−
∣∣∣∣ rς
∣∣∣∣θ
)

.

In this equation, θ is the shape parameter, ς is the scale pa-
rameter and r is the filter response. This resulted in one shape
parameter, θi, j, and one scale parameter, ςi, j, for each of the
75 filters: i = 1,2, ...,15 is the index for spatial filters, and
j = 1,2, ...,5 is the index for temporal scales. The general-
ized Gaussians provide an excellent fit to the data.

Taking the logarithm, we obtain the log probability over
the possible values of each feature:

log p(Fi, j) =−
∣∣∣∣ fi, j

ςi, j

∣∣∣∣θi, j

+ const. (1)

These feature responses are not independent, but we proceed
as if they are for simplicity. Saliency can then be calculated
with a simple formula:

logs =− log p(F = f ) =
5

∑
j=1

15

∑
i=1

∣∣∣∣ fi, j

ςi, j

∣∣∣∣θi, j

+ const.

This equation shows how easily bottom-up saliency is to cal-
culate in SUN; raw filter responses are scaled and shaped
by the learned parameters and combined through summation.
It’s worth repeating that aside from feature selection, all pa-
rameters of the model are completely determined by natural
statistics.
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Table 1: Summary of initial results.
Method KL ROC area
Chance 0 0.5

Bayesian Surprise 0.133 0.647
SUN 0.100 0.626

SUN (w/ 8 pixel border) 0.181 0.660
Centered Gaussian 0.441 0.764

Results
We evaluate our saliency algorithm on the human fixation
data from (Itti, 2005). Eye movements were recorded from 8
subjects viewing 50 videos from indoor and outdoor scenes,
television broadcasts, and artificial environments totaling
over 25 minutes of video at 640×480 (at 60.27 Hz, a viewing
distance of 80 cm, and with a field of view of 28deg×21deg).
Data was collected using an ISCAN RK-464 tracking the
right eye. Two hundred eye movement traces were used (four
subjects for each video clip). See (Itti, 2005) for more details.

Itti and Baldi (2008) reports results of their saliency mea-
sure (Bayesian surprise) on this data set. Under this the-
ory, organisms form models of their environment, and assign
probability distributions over the possible models. Upon the
arrival of new data, the distribution over possible models is
updated with Bayes rule, and the KL divergence between the
prior distribution and posterior distribution is measured. The
more the new data forces the distribution to change, the larger
the divergence. These KL scores of different distributions
over models combine to produce a saliency score.

Saliency maps were sampled at the target location of a sac-
cade at the time the saccade was initiated. By histogram-
ming the number of actual fixations for each value of salience,
a distribution of saliency was formed for human fixations.
This could be compared with the distribution of fixations over
saliency for random ”fixations” chosen uniformly over the
image. By looking at the KL divergence (”distance”) between
the two distributions, we get the KL score we report (Itti &
Baldi, 2008). The farther from the distribution of salience
over random locations, the better.

We also use the ROC area evaluation method, where each
saliency map is treated as a binary classifier that, for a given
threshold, classifies points with salience above the threshold
as fixated and those below the threshold as not fixated. By
varying the threshold and comparing the performance at each
threshold to the human fixations (which are treated as ground
truth), an ROC curve is obtained. The area under the curve re-
flects how well the saliency map predicts the human fixations
(Gao & Vasconcelos, 2007a; Bruce & Tsotsos, 2006).

The results are shown in Table 1. ”Chance” indicates base-
line performance. The KL score for Bayesian Surprise is
smaller than that reported in (Itti & Baldi, 2008) because they
use an extra step of taking the maximum in a local window
on the saliency map. We found this step systematically in-
creases all the reported measurements but does not change
our qualitative conclusions. We observed border artifacts in

Figure 2: Center bias and border effects. Top left: Overall
average of human fixations on the Itti (2005) dataset. Top
right: A 2D gaussian fit to the fixation data from (Bruce &
Tsotsos, 2006). Bottom row: The average saliency map over
all frames of the Itti (2005) dataset for three models: Bayesian
Surprise, SUN, and SUN with an 8 pixel zeroed-out border.

our saliency map because of filter convolutions extending be-
yond the image. We therefore set the border of our map to
zero remove the invalid portion of the convolution and ap-
proximate the borders present in (Itti & Baldi, 2008). Surpris-
ingly, this drastically improved the evaluation scores. This
was most apparent in the KL measurement; modifying the
border had large effects on the random-saccading distribution
of salience, but little effect on the distribution of salience for
human saccades. Hence, depending on how edges were han-
dled, we could report performance that was better or worse
than Itti and Baldi (2008).

This appears to be a function of a phenomenon in such data
sets known as center bias (Parkhurst & Niebur, 2003; Tatler,
Baddeley, & Gilchrist, 2005; Zhang et al., 2008). Hence we
decided to look at how well a “saliency measure” based on
a simple Gaussian fit to the distribution of human saccades
from another data set (on the static images in (Bruce & Tsot-
sos, 2006)) would perform on this data set (see Figure 2).
This simple technique drastically outperformed our results
and the the surprise model using these metrics (Table 1). The
reason for this is clear by visual inspection of the data in Fig-
ure 2. The human data is highly center-biased, and so adding
a larger border increases performance. The width of the bor-
der added to SUN in the right hand image was approximately
equal to the darkened borders of Itti and Baldi (2008), and
led to our model outperforming theirs. This finding for fix-
ations while viewing video is consistent with earlier studies
involving static images, showing that a simple model that pre-
dicts that saliency falls off with distance from the center of
the screen outperforms other models (Le Meur, Le Callet, &
Barba, 2007; Zhang et al., 2008). It is hard to tell whether the
difference between two algorithms is due to the model or sim-
ply differences in treating the filter responses on the border.
Clearly, a better method of evaluation is needed.

The fundamental problem is that sampling image locations
uniformly is not at all indicative of how human saccades tend
to be distributed. (Parkhurst & Niebur, 2003; Tatler et al.,
2005) have suggested that the random fixations should be
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Table 2: Summary of results with shuffled metric.

Method KL ROC area
Chance/Gaussian 0 0.5
Bayesian Surprise 0.034 0.581
Dynamic Saliency 0.041 0.582

drawn with the location distribution of human fixations. We
therefore modified the KL measurement to account for this.
Instead of forming the baseline (comparison) distribution of
salience by counting how often each salience value occurs at
random locations sampled from the image, we form it instead
by counting how frequently salience values occur at human
fixations in an image. We use the locations of human fix-
ations from a different frame of the video and measure the
salience values at those locations. Then we compare the dis-
tribution of salience values at the locations humans fixated in
each frame to the salience values in that same frame, but using
fixations from a different frame. I.e., the comparison distri-
bution is created by shuffling the frames of the saliency maps
over each movie, giving them the human spatial distribution
but not the temporal distribution. Put another way, rather than
determining whether subjects looked at the most salient loca-
tion in each frame, we instead measure whether they look at a
fixated point when it is most salient. This has the desired ef-
fect of causing the simple static measure of fitting a Gaussian
to the human distribution to have a score of zero; since this
static version of saliency does not change, shuffling has no ef-
fect on the distribution of salience value counts. We modified
the ROC metric similarly. A related method was proposed in
(Tatler et al., 2005) and used in (Zhang et al., 2008) for static
images. However, the temporal component makes the metric
more stringent than when shuffling a set of independent im-
ages - for video, this necessitates accurate prediction of the
timing of fixations. As discussed in (Carmi & Itti, 2006) this
metric underestimates the model performance since the cen-
ter of the screen for pictures and video genuinely tends to be
the most salient part of the scene due to cameraman (or direc-
tor) bias. However, this is still a useful measure for relative
model comparisons, serving as a lower bound assessment of
models’ prediction ability.

Nevertheless, our method continues to do better than
chance, and slightly better numerically than Itti and Baldi’s
surprise model (Itti & Baldi, 2008) on this data set, as shown
in Table 2. Scores of both models may appear low, but the
strictness of our evaluation metric needs to be remembered;
we’re evaluating whether the model predicts when a fixation
will be made to a location, not simply where as in Table 1.
This demonstrates that saliency models outperform the base-
line Gaussian after compensating for the center bias.

Figure 3 shows the saliency maps on some frames of differ-
ent videos. This provides some insight into what SUN finds
salient. For instance, motion is one of the most salient fea-
tures, as shown clearly in the first row; the person that is
moving while talking is far more salient than the face of the

Figure 3: The saliency maps for several frames of video from
(Itti, 2005).

person who is calmly listening.
Despite the similarity in performance, our model is signif-

icantly simpler. We use 15 spatial filters and learn 75 distri-
butions offline. Bayesian Surprise, in contrast, uses 72 spatial
filters and must maintain 432,000 distributions that must be
updated with each frame. This difference in complexity has
consequences on runtime; on a Pentium 4 3.8 GHz dual core
PC with 1 GB RAM, SUN runs through a video of about 500
frames in minutes while Bayesian Surprise requires hours. A
version of SUN designed to run in faster than real time with
only modest decreases in performance is described by Butko,
Zhang, Cottrell, and Movellan (2008) and was shown to have
applications in a social robotics environment1.

Discussion
In this paper we generalized our principled probabilistic mea-
sure of saliency (Zhang et al., 2008) to video. In our formu-
lation, bottom up saliency emerges as the self-information of
visual features when estimating the probability of finding a
target. We designed a feature space that can be calculated
very efficiently, which leads to a simple, fast algorithm.

Our findings also agree with (Parkhurst & Niebur, 2003;
Tatler et al., 2005) in pointing out some disadvantages of
using some of the previously proposed evaluation metrics.
Data collected in a lab often show a strong center bias that
confounds proper evaluation of the results. By shuffling the
frames but maintaining the patterns of fixations, we effec-
tively remove the effects of this bias. However, as (Carmi
& Itti, 2006) points out, there is also a central bias introduced
by having humans center the camera on interesting parts of
the scene - the center is inherently more likely to be salient.

Overall, our results show comparable performance with Itti
and Baldi’s surprise model (Itti & Baldi, 2008) in predicting
human fixations despite the relative simplicity of the SUN

1FastSaliency code is available for download at http://mplab.
ucsd.edu/˜nick/NMPT/
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model. The efficiency of the SUN model is due to two main
factors: First, we give our model experience with other videos
that allow us to precompute what is novel, rather than what
is “currently unexpected.” Second, the particular form of our
temporal component, the Difference of Exponentials, allows
for a linear, nearly memoryless updating of the salience map.
Both of these lead to a model that could plausibly be com-
puted by neurons. Furthermore, the search asymmetries dis-
cussed by Zhang et al. (2008) provide additional motivation
for using prior statistics. We do not deny that there are ef-
fects of more recent history, and in the end, the right an-
swer might be some combination of precomputed statistics
and more temporally local statistics.

In our future work, we intend to investigate such is-
sues such as the effects of a foveated retina (currently both
Bayesian Surprise and our model are applied to the entire im-
age at the same resolution), and generalizing our notion of
salience to one of utility, as in (Nelson & Cottrell, 2007).
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