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ABSTRACT OF THE DISSERTATION

Essays on Return Insurance and Antitrust Issues

By

Phuong Minh Vo

Doctor of Philosophy in Economics

University of California, Irvine, 2023

Associate Professor Michael Choi, Chair

Chapter 1 introduces a continuous-time monopoly model that considers a return policy

allowing consumers to return purchased products within a specified period. The model

shows that an easy return policy, allowing for no-questions-asked returns, reduces consumer

surplus compared to a stricter policy that only refunds under specific conditions. This

decrease in consumer surplus happens when consumers are not highly price-sensitive. The

study also explores how product quality affects the return policy and finds that lower quality

products result in longer return periods. Additionally, lower quality products can lead to

higher market prices if the value of the defective item is high enough.

In Chapter 2, a duopoly model is developed to study competition between an online seller

and a local store seller in the presence of a return policy. The model finds that offering

returns after sales increases the sellers’ market power. The local store targets consumers

with lower utility by offering a shorter return period and a lower price. The study also shows

that an increase in the information cost at the local store increases market price dispersion

and gives the online store more market share.

Chapter 3 uses economic theory and experiments with AI-based pricing algorithms to analyze

the impact of consumer search friction on collusion, market prices, and consumer welfare.

The chapter develops an oligopoly model where consumers search sequentially for the best

x



product with advertised prices. The study finds that collusion is easier to sustain with lower

search costs. However, increasing search costs can reduce the collusive price, but this does

not increase consumer surplus if the collusion sustains. The experiments show that simple

reinforcement learning algorithms (Q-learning) can adopt a trigger-price strategy to keep

prices above the competitive level in a frictional market.
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Chapter 1

Product Return Policies, Pricing, and

Consumer Welfare

1.1 Introduction

Many retailers accept product returns within a certain time and give refunds. According

to “Customer Returns in the Retail Industry 2021” by the National Retail Federation, the

annual product returns in the U.S. retail industry totaled an unprecedented amount of 761

billion U.S. dollars.1 Online returns accounted for more than 218 billion U.S. dollars, which

is more than double as much in 2020 and more than five times as much in 2019. The two

key factors of a return policy are: (1) how much the consumers receive when they return

a product, taking into account deductions, fees, and return hassles, and (2) the length of

the return period.2 The literature has analyzed the role of return policies focusing on the

former factor. The latter factor has been treated as exogenous in a common “two-period”

1In comparison, the U.S. total spending on national defense in 2020 was 714 billion dollars
(https://www.cbo.gov/publication/57170).

2Posselt et al. (2008) use these two factors to evaluate return policies.
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model, in which the consumers make the purchasing decision in the first period, learn the

true valuation, and then decide whether to return the product in the second period (more

details in the next section). However, the return periods vary among sellers, ranging from

a few days to several months.3 Longer return period allows the consumers to learn more

about the product but potentially results in more product returns. This article studies the

return policies by endogenizing the return period.

The two main goals of this article are to explore the relationship between product quality

and contract terms and to study the economic implications of different return policies. In our

study, the return process serves as a tool to reallocate faulty products where the seller can

salvage the defective items while the consumers cannot. We find that lower product quality

generally results in a more extended return period. Moreover, suppose the return process is

cost-effective enough, meaning that the seller can get a relatively high salvage value from the

defective product compared to the cost of the return process. In that case, lower product

quality can even increase the market price. Regarding social welfare, we show that an easy

return policy that allows consumers to return any product (e.g., no-questions-asked return

policy) can lead to a lower consumer surplus compared to a stricter return policy where

conditions apply to receive refunds if the consumers have low price sensitivity.

To conduct our study, we present a monopolist model in continuous time in which consumers

constantly learn about the quality of their purchased products. The key feature of this model

is that each consumer gets an idiosyncratic flow of utility from the product, which can be

enjoyed over a span of time. Thus the consumers can enjoy some utility during the return

period. Consumers observe their utility flows before purchasing. However, they do not know

the exact quality type of the product. Each product can either be a good type, which never

breaks down, or a bad type, which can break at a Poisson rate. The utility flow drops

when the product breaks. Consumers constantly receive signals about the quality type by

3See Posselt et al. (2008) for some evidence.

2



detecting malfunctions. Unlike the consumers, the seller can extract some salvage value

from the defective product because of their recycling or refurbishing ability. However, it is

costly for the seller to accept returns because of the refunds and the returns management.

We reformulate the dynamic model as a static monopoly problem and provide a solution

that fully captures consumer shopping and returning outcomes. This reformulation allows

us to study how product quality affects the seller’s pricing and return policy and conduct

our welfare analysis on different return policies.

We find that if the return process is cost-effective enough in the sense that the salvage value

of the returned item is relatively high compared to the cost of the return process, then

the market price decreases in product quality, which is opposite the classical result in the

literature. If product quality falls, consumers are more price sensitive. The seller resorts to

lowering the markup; otherwise, they would lose too many consumers. This mechanism leads

to the classical result from the literature. In our model, the relationship between product

quality and the market price is more subtle. Given that the return process is cost-effective,

the seller accepts returns to reallocate the faulty items and extract the salvage value. Lower

product quality makes the consumers more price sensitive and raises the chance of a product

being returned to the seller. For each product, it is more costly for the seller to commit

to their return policy. This return effect is analogous to the impact of an increase in the

marginal production cost, both of which tend to increase the market price.

For the welfare analysis, we find that easy return policies (e.g., no-questions-asked return

policy), while most of the time can improve consumer welfare, can also harm consumers

under some conditions. More specifically, accepting all returns can decrease the consumer

surplus if the consumers have low price sensitivity. Much of this finding is due to the result

of our consumer behavior analysis when the no-questions-asked policy is in effect. We find

that consumers are more sensitive to the expected expenditure when the return period is

longer. The reason is that with an extended return period, using the product strictly in

3



the return period and then sending back the item to get a full refund (i.e., wardrobing or

renting) becomes an attractive alternative to consumers. Extending the return period makes

the seller lose some potential consumers who were willing to keep the non-broken products if

the return period was unchanged. With low price sensitivity, consumers are willing to pay a

high markup for the product. Losing consumers is relatively costly to the seller. As a result,

the seller shortens the return period and gives up the ability to salvage broken products. By

forgoing extra surplus from reallocating faulty products, the seller increases the expected

consumer expenditure, reducing the consumer surplus.

When the seller can refund discriminate (i.e., the refund is based on the condition of the

returned item), we show that better product quality generally leads to a shorter period.

To be more specific, we find that an increase in the probability of getting a good-type

product reduces the return period. It is because each product is less likely to be returned.

The return process then becomes less cost-effective. Therefore, the seller invests less in the

return process by shortening the return period. In contrast, we also find that if the bad type

products experience issues at a higher rate, the return period does not necessarily increase.

The reason is that if the breaking down rate is high, the bad type products will encounter

issues more quickly, and more returns will be made shortly after the purchase, which allows

the seller to shorten the return period.

The rest of the article is organized as follows. Section 1.2 reviews the literature and explains

how our work contributes to the literature. Section 1.3 introduces the baseline model. Section

1.4 characterizes the market equilibrium and analyzes the optimal return policy. Section 1.5

provides a set of comparative statics results regarding product quality. Section 1.6 introduces

the model with an easy return policy and analyzes consumer behavior and welfare. Finally,

Section 1.7 offers some concluding remarks. All omitted proofs are in the Appendix.
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1.2 Literature review

The literature has focused on experience goods to study the economic rationale for return

policies. For an experience good, the utility is difficult to observe before purchase, but this

information can be obtained upon consumption. Che (1996) puts forward a model in which

consumers are risk averse and do not observe the utilities before purchase. The return policy

can insure consumers against ex-post loss. He shows sellers can benefit from the return policy

if consumers are highly risk averse.

Courty and Li (2000) study a model in which a monopolist of airplane tickets has a menu

of refund contracts to screen the consumers.4 In their model, the consumer privately knows

the probability distribution of her valuation before purchasing and subsequently learns her

actual valuation before making the return for refund decision. They show that lower return

costs will undermine the ability of the firm to screen the consumers.5 In contrast to Courty

and Li (2000), this article restricts the analysis to a single contract and allows the seller to

salvage the returned items. We show that lower return cost helps facilitate the reallocation of

defective products and therefore increases the profit of the seller and the consumers surplus.6

The literature has also studied the effects of return policies under competitive environments.

Inderst and Tirosh (2015) study a duopoly model in a vertically differentiated industry. They

show that return policies work as “metering devices” to extract more consumer surplus from

infra-marginal customers. The market is segmented, where consumers with lower ex-ante

expected utility go to the low-quality firm. In contrast, consumers with high ex-ante expected

utility go to the high-quality firm. For the high-quality firm, its “marginal” consumers have

the highest marginal valuation for a higher refund. Therefore, the high-quality firm can

4Escobari and Jindapon (2014) define the menu with two specific contracts: one refundable and one
non-refundable. They also show that sellers can use return policies as a tool for price discrimination.

5A similar result is obtained by Krähmer and Strausz (2015) and Arya and Mittendorf (2004).
6Davis et al. (1995) also allow the seller to extract salvage value from the returned products. They show

that accepting returns is more profitable than selling as-is if the seller’s salvage value is higher than the
buyer’s return cost.
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increase both the price and the refund to capture more consumer surplus from its infra-

marginal consumers without affecting the marginal consumers. The opposite holds for the

low-quality firm; a lower price and refund can extract more consumer surplus.

When consumers shop sequentially and are imperfectly informed about the horizontally

differentiated products, the return costs resemble the search costs in consumer search theory,

e.g., Weitzman (1979); Choi et al. (2018). Consumers have to pay these costs every time

they explore another option. Petrikaitė (2018) studies a duopoly model in which consumers

shop sequentially. She shows that higher return costs intensify the price competition, which

consequently leads to a lower symmetric equilibrium price.7 Choi et al. (2018) show that the

symmetric equilibrium price decreases in search costs in a market with any number of sellers.

In a monopoly market, the result that accepting returns leads to higher prices is intuitive

and is obtained by several studies, e.g., Palfrey and Romer (1983), Lutz and Padmanabhan

(1998) and Inderst and Ottaviani (2013) for single-product monopolists, or Anderson et al.

(2009) for multi-product monopolists.

Lastly, the literature has explored different rationales for return policies in a bilateral trade

environment. Inderst and Ottaviani (2013) show that a generous return policy allows the

seller to “cheap talk” at the point of sale.8 The key feature of their model is that before

both parties meet at the point of sale, the seller observes some informative signal about the

utility the consumer will enjoy. The communication of the seller’s observed signal reduces

the loss that the seller endures when the buyer returns the product. Hinnosaar and Kawai

(2020) instead study a bilateral trade model in which only the buyer knows some private

signal about the utility. The key feature of their model is the seller’s uncertainty about the

buyer’s distribution of signals. They show that the seller can use generous return policies as

7As opposed to Petrikaitė (2018), Shulman et al. (2011) allow the consumers to learn about their valuation
for the competing products after experimenting with the first product. They show that the symmetric
equilibrium prices increase when the consumers are less certain about their preferences.

8Grossman (1981) and Moorthy and Srinivasan (1995) show that sellers can use the return policies as a
costly signal for product quality.
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a tool to hedge against uncertainty about the buyer’s signal structure.

1.3 Baseline model

Time is continuous with an infinite horizon. The market starts at time t = 0. The market

consists of one seller and one unit mass of consumers. Each consumer has one unit of demand.

In an arbitrarily short period of time from t to t + dt, the consumer gets a utility flow of

ve−γtdt from using the product.

For each consumer, v is independently and identically drawn from the interval [v, v] according

to a log-concave distribution (distribution function is F , density function is f , and location

parameter is µ).9 We allow v and v to be infinite. The consumers observe their idiosyncratic

v before purchase.

For bounded utility, we assume γ > 0.10 We note that γ is not a future discount factor. For

simplicity, we assume the seller and consumers do not discount future.11 The utility from

not buying the product is normalized to zero.

There are two types of products: good and bad. Good products never break down, whereas

each bad product breaks at a Poisson rate λ. When the product breaks, consumers cannot

use it anymore. From that period forward, the utility flow drops to zero. The product’s

type is not observable unless the product is already broken. At the time of purchase, the

probability that a product is good is α.

The seller can determine the length of the return period, l ≥ 0, in which consumers can

9The hazard rate function, f(v)/[1− F (v)], is then monotone non-decreasing.
10One interpretation of γ can be the depreciation rate of the utility flow. It reflects the fact that products

constantly suffer wear and tear with use. Older products give less utility than the newer ones.
11The time horizon of all payments from buyers and sellers (purchase and refund) is constrained within the

return period, which is relatively short in the sense that it is usually bounded by several months. Common
payment types (e.g., cash, credit cards, debit cards, digital wallets) typically take less than several days to
complete the transactions.
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return a product for a refund. The return period begins right after purchasing. To keep

the contract simple, we restrict the seller issues full refunds. The seller can observe the

condition of the returned product (broken or not) and has the option to decline the non-

broken returns.12 It will later be shown in Section 1.6 that declining non-broken returns is

more profitable for the seller. We will momentarily take this result for granted and let the

seller only accept broken returns.

The seller incurs a marginal cost of c for each new product. The seller gets a salvage value

se−σt for a returned item that has been used up to time t (i.e., salvage value depreciates at

rate σ during use). The salvage value is always less than the marginal cost, i.e., s < c.

Returns management costs the seller an amount of ml to serve each consumer throughout

the return period.13 The seller commits to their contract and maximizes their profit. The

consumers are risk neutral.

Timing. When the market opens at t = 0, the seller announces their contract including

price and return period (p, l). Consumers observe their v, the contract, and decide whether

to buy the product. The seller incurs the production cost and the returns management cost.

Consumers can return their broken products in the return period t ∈ (0, l]. The seller issues

refunds when consumers return the items.

12Because v is observable before purchase, returning a product without any malfunction means that the
consumer sends back the item while it is performing at his highest expectation. This behavior is referred to
as moral hazard in consumption in Davis et al. (1998). In practice, the common names for this behavior are
wardrobing or renting. In our model, the seller can prevent this behavior by declining non-broken returns.

13Return management is a complex process, especially for e-commerce businesses. This process includes
providing a return portal, customer service, logistics, and warehouses. Many direct-to-consumer companies
rely on third-party returns solutions and third-party logistics to manage returns. In our model, all fixed costs
are captured in the marginal production cost c. The remaining variable costs are captured in the returns
management cost ml.
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1.4 Equilibrium

When the market opens, let U0(v) be the expected utility a consumer can get from the

product. Thus,

U0(v) =
αv

γ
+

(1− α)v

γ + λ
. (1.1)

In the first term of U0(v), α is the probability that the product type is good, and v/γ is the

expected utility from a good type product. Similarly, in the second term of U0(v), 1 − α is

the probability that the product type is bad because each bad product breaks at Poisson

rate λ, its expected utility is v/(γ + λ).

Product Quality: As opposed to the product type (good and bad), we let Q0 be the ex-

ante product quality (or product quality for short). More specifically, we define Q0 as U0/v,

which means,

Q0 ≡
α

γ
+

1− α

γ + λ
. (1.2)

We let Ωl be the probability that a random product survives the entire return period. Thus

Ωl ≡ 1− (1− α)

∫ l

0

λe−λtdt. (1.3)

A product breaks only if it is bad, which has a probability of 1− α. The integration is the

probability that a bad product breaks during the return period. Because consumers can get

a full refund if the product breaks during l, the expected expenditure (taking into account

refunds) for the consumers is given by

p̂ ≡ Ωlp. (1.4)
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Because of risk neutrality, the consumer purchases the product if and only if her expected

utility exceeds the expected expenditure, i.e., v > p̂/Q0.

The seller has to issue a full refund for each return and get a depreciated salvage value. For

each sold product at t = 0, the seller expected revenue (taking into returns management

cost but not the marginal production cost c) is given by

r̂ ≡ p− (1− α)

∫ l

0

(p− se−σt)λe−λtdt−ml.

The return process creates a difference between the seller’s expected revenue and the con-

sumer’s expected expenditure for each product. We refer to this difference (r̂ − p̂) as the

seller’s return advantage and denote it by Al. Thus

Al = sλ(1− α)

∫ l

0

e−(σ+λ)tdt−ml. (1.5)

The salvage value and how often a product is returned due to manufacturing issues, reflected

in λ(1 − α), positively affect this advantage.14 The seller can control the return advantage

through the return period l. This advantage is not affected by the price of the product.

Table 1.1: Table of notations

U0(v) ≜ Expected utility formed at time 0

Q0 ≜ Product quality (or ex-ante product quality)

Ωl ≜ Probability that a product survives the return period l

p̂ ≜ Consumer expected expenditure (taking into account refunds)

r̂ ≜ Seller expected revenue on each product

Al ≜ Seller return advantage (r̂ − p̂)

Because p̂ is strictly increasing in p, the seller’s choice variables can technically be changed

14Cf. Davis et al. (1995) find that the profitability of a full-refund policy is positively affected by the
salvage values of return merchandise and the probability of mismatching the product to consumers.
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to p̂ and l and the profit can be described as follows,

Π(p̂, l) =

[
1− F

(
p̂

Q0

)]
(p̂+ Al − c) . (1.6)

If the seller does not accept returns (i.e., l = 0, p̂ = p, Al = 0), the profit function has the

standard monopoly form: [1− F (p/Q0)] (p− c) . However, with a return policy, the seller

can control the return period l and enhance the profit by increasing the return advantage

Al. In fact, the optimal return period l∗ will maximize the seller’s return advantage.

Proposition 1 (Return Period and Price Comparison).

• If sλ(1− α) > m, the equilibrium return period is given by

l∗ =
ln
[
s
m
λ(1− α)

]
σ + λ

and the equilibrium price p∗ is higher than in the standard no-return model p′.

• If sλ(1− α) ≤ m, the equilibrium return period is 0 and p∗ = p′.

Proposition 1 implies that the equilibrium return period increases in the ratio s/m, which

can be interpreted as the cost-effectiveness of the return process, and decreases in σ, which

can be interpreted as the depreciation rate of the salvage value. This result is intuitive. The

more meaningful results lie in product quality parameters α and λ. Proposition 1 suggests

that a lower product quality in the sense of a lower α leads to a longer return period. If the

products are more likely to break, there will be more extra surplus from salvaging the broken

products. The seller will extend the return period to collect more of this extra surplus.

The effect of λ on the equilibrium return period is more subtle and is presented in the

Corollary below.
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Corollary 1. There exists a unique λ̇ > m/[s(1− α)] such that the equilibrium return period

l∗ increases in λ if λ ∈ [m/[s(1− α)], λ̇], and decreases in λ if λ > λ̇.

Similar to α, a higher product quality in the sense of a lower λ can lead to a shorter return

period. However, if λ is high enough, the return period can decrease in λ. It is because each

bad type tends to break sooner if the breaking rate is high. Therefore, the seller can shorten

the return period to save the cost while still does not lose much on extracting salvage value.

Figure 1.1 illustrates simulations of the equilibrium return period l∗ with different α and λ.

The seller accepts the return and has a strictly positive return period if sλ(1−α) > m. The

graph of l∗ decreases in α and has a humped shape in λ.

Figure 1.1: Simulations of return period (l∗) with different product quality (α, λ)

Note. Parameters used: c = 1, s = 0.3, m = 0.1, γ = 0.2, σ = 0.2, v ∼ N (2, 1).

Proposition 1 also shows that if the return process is cost-effective enough (i.e., sλ(1−α) >

m), the seller accepts returns within a certain period l∗. The price will be higher in this

case than in the standard model, where the return channel is unavailable. This result is
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intuitive because the seller does not have to issue refunds in the standard no-returns model.

However, consumers are still better off when the seller accepts returns. The extra surplus

from salvaging broken products decreases the consumer expected expenditure.

In our model, the return costs are entirely borne by the seller. If these costs increase, the seller

will lose their return advantage, resulting in a lower surplus to both seller and consumers.

This result, however, is independent of which party (or both) has to bear the return costs.

Suppose the consumer incurs a higher cost to return a product. In that case, the difference

between how much the seller expects to get and how much the consumer expects to pay for

each product (seller’s return advantage) also decreases.

1.5 Comparative statics

This section presents a set of comparative statics results regarding product quality and

market price. We analyze the effect of product quality, particularly in respect of α, the

probability that the product is good, and λ, the breaking rate of a bad product.

By equation (1.6), the equilibrium expected expenditure must satisfy

p̂∗ =
1− F ( p̂∗

Q0
)

f( p̂∗

Q0
)

Q0 + c− Al∗ . (1.7)

A decrease in α or an increase in λ not only raises the seller’s return advantage for each sold

product (Al increases) but also has a negative impact on the consumers’ expected utilities

(Q0 decreases). These effects together will decrease the equilibrium expected expenditure

(technical proof is in the Appendix). Figure 1.2a represents simulations of equilibrium ex-

pected expenditure under different product quality.

However, the market price does not necessarily go down with lower product quality (see figure

13



(a) Expected expenditure (b) Market price

Figure 1.2: Simulations of expected expenditure (p̂∗) and market price (p∗) with different
product quality (α, λ)

Note. Parameters used: c = 1, s = 0.3, m = 0.1, γ = 0.2, σ = 0.2, v ∼ N (2, 1).

1.2b). When the return period is 0, i.e., sλ(1−α) ≤ m, the expected expenditure is the same

as the market price. They both increase in α and decrease in λ. When the return period is

strictly positive, the market price is bent upward relative to the expected expenditure. We

find that if the salvage value is relatively higher than the returns management cost, a lower

α can actually increase the market price (see figure 1.3).

Proposition 2 (Effect of Product Quality Regarding α on Market Price). Lower product

quality in the sense of a lower α can lead to a higher price if the salvage value is relatively

higher than the returns management cost. More specifically, for any α̃ ∈ (0, 1) then the

equilibrium price decreases in α for α ∈ (0, α̃) if s/m is higher than some finite threshold.

Proposition 2 says that if the salvage value of the broken product is relatively higher than

the return management cost, lower product quality in the sense that a product is more likely

to break down leads to a higher market price. To understand this outcome, it is helpful

to see when the seller increases their price. By raising the price, the benefit of extracting

more surplus from the infra-marginal consumers comes with the cost of losing the marginal
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Figure 1.3: Simulations of the market price (p∗) with different salvage values (s)

Note. Parameters: c = 1, λ = 1, m = 0.1, r = 0.2, v ∼ N (2, 1). The thin dashed line is the
market price in the standard monopoly model where returns are not accepted.

consumers. This cost is determined by the markup on each product and the price sensitivity

of the marginal consumers.

Without the return channel and given a fixed contract, lower product quality does not affect

the markup but makes the consumers more price sensitive. Raising or keeping the same

price is not optimal for the seller because the cost of losing marginal consumers exceeds the

benefit of extracting surplus from the infra-marginal consumers. As a result, the seller lowers

their price. This mechanism leads to the classical product quality result.

Now, suppose the return channel is available. In that case, lower product quality makes the

consumers more price sensitive and impacts the expected profit from each product. More

specifically, a higher probability that a product is a good type leads to a higher probability

that a product survives the return period (i.e., Ωl increases in α). As a result, if α decreases,
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the expected profit from each product will decrease because it will be more likely to be

returned. We refer to this effect as the return effect.

If the return process is cost-effective enough in the sense that s/m is high enough, the

return period will be long, which intensifies the return effect. If the return effect is dominant

compared to the price sensitivity effect, raising the price can benefit the seller because losing

marginal consumers becomes less costly. In other words, a decrease in α makes each product

more costly for the seller to commit to its return policy. This return effect is analogous to

an increase in the marginal cost, which leads to a higher market price.

Now we look at the other dimension of the product quality: the breaking rate λ of each bad

product. If the product quality drops due to an increase in λ, the market price can also

increase. As shown in Figure 1.2b, the market price increases in λ when λ is slightly higher

than the threshold m/[s(1−α)], that is when the equilibrium return period is short but not

zero.

Proposition 3 (Effect of Product Quality Regarding λ on Market Price). Suppose γ ≥ σ.

There exists a λ̃ > m/[s(1 − α)] such that the equilibrium price increases in λ for λ ∈

[m/[s(1− α)], λ̃].

An increase in λ also has a return effect and a quality effect by making each bad-type

product tend to break sooner. Unlike a decrease in α, an increase in λ only has a minor

return effect when the return period is long. Suppose the return period is long; then, most of

the breakdowns occur during the return period, so an increase in λ will only increase returns

by a minimal amount. Therefore, a shorter return period intensifies the return effect. When

the return period is short enough (i.e., λ is close to m/[s(1 − α)] from above), the market

price increases in λ.
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1.6 Easy return model

In this section, we analyze the model where the consumers can return any product during

the return period. This policy is commonly known as a no-questions-asked return policy.

The seller commits to accepting all returns, no matter the product’s condition, during the

return period. Recall that in the baseline model, we assume that the seller can observe the

condition of the returned items so the seller can prevent wardrobing by declining non-broken

returns. If we relax this assumption, the seller can only implement a no-questions-asked

return policy. In this section, we ask whether this easy return policy improves the consumer

surplus and the conditions under which this policy might harm the consumers. We will

first analyze the effect of this policy on consumer behavior. Then we will derive the market

equilibrium and study the effects of the policy on social welfare.

1.6.1 Consumer belief

In this subsection, we first analyze how a consumer’s subjective belief about their product’s

quality type evolves. Then we derive the consumer’s optimal strategy and provide the

shopping and returning outcomes. We refer to the consumer’s subjective belief about the

probability that her product is a good type as the consumer’s belief. All consumers share

the same prior belief α before purchase. If the product breaks down, this belief immediately

drops to zero. If the product works normally, the consumer updates her belief in a Bayesian

fashion.

Let the belief of a typical consumer with a functioning product at time t be πt ∈ [0, 1].

The consumer updates her belief after every short period of time dt. If the product works

normally at time t + dt, the consumer will update her belief accordingly to πt+dt, and so

on.15 Because dt is arbitrarily small, the probability that a bad-type product breaks during

15This is similar to the learning process in Mason and Välimäki (2011). They develop a model in which
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dt is λdt. Let dπt ≡ πt+dt − πt. By Bayes’ rule,

dπt =
πt

πt + (1− πt) (1− λdt)
− πt.

The rate of change of the belief with respect to time as dt → 0, converges to the following

Riccati equation:

dπt

dt
= πt(1− πt)λ. (1.8)

When the consumer is unsure about her product type (i.e., 0 < πt < 1), her belief will

increase in the following short period if the product works normally. The consumer’s belief

will most rapidly increase when she is most uncertain about the product type (i.e., πt = 0.5).

A signal of having no malfunction in a short amount of time will make the consumer’s belief

lean quickly toward the good type. Because all consumers have the same prior belief before

they purchase, πt can be described explicitly as a function of time.

Lemma 1. The belief of a typical consumer with a functioning product is given by

πt =
α

(1− α)e−λt + α
.

All consumers with a non-broken product share the same belief. It is because the information

they get is the same. The belief converges to 1 (i.e., the product is a good type) if the product

keeps working normally over time.

the seller learns about the arrival rate of buyers.
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1.6.2 Shopping and returning outcomes

Each consumer faces a sequential problem in which she has to make buying and returning

decisions. The consumers first decide whether to buy the product. If they buy it, they can

return it at any time during the return period. It is clear that the consumers will buy the

product if and only if they have v > 0 because they can return the product for a full refund.

If the product has broken, the consumer’s optimal strategy is to return the item before the

return period expires. If the product is still working fine, it is not optimal for them to return

it immediately if they still have some time before the return period expires. By postponing

the return, they can enjoy more utility and still get the full refund.

At the last moment of the return period (t = l), the consumers have to decide whether to

return for a refund or to keep and accept the risk of breaking in the future. The expected

utility from keeping the product depends on the depreciated utility ve−rl and the belief at

that moment πl. More specifically, at time l, the expected utility from keeping the product

is Qlv where

Ql ≡ e−γl

(
1− πl

γ + λ
+

πl

γ

)
. (1.9)

Therefore, the consumer keeps her product if and only if v exceeds the keeping threshold vk

where Qlvk = p. The consumer’s optimal strategy and the shopping/returning outcomes are

described in the following Proposition.

Lemma 2. Suppose consumers can return any product. The consumer’s optimal strategy is

as follows:

(i) at time t = 0, buys if and only if v > 0;

(ii) at time t ∈ (0, l), returns if the product breaks and keeps otherwise;

(iii) at time t = l, returns if the product breaks or if v < vk and keeps otherwise.
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Although the consumer problem is cast in continuous time, the solution can be described in a

static fashion by the two thresholds 0 and vk. For further analysis, we refer to consumers with

v ≥ vk as potential consumers, and consumers with v ∈ (0, vk) as non-potential consumers.

Potential consumers will keep their product if it survives the return period. Non-potential

consumers will return the item eventually.

Because Ωlp = p̂, at the keeping threshold we must have

ΩlQlvk = p̂. (1.10)

Note that Ωl is the probability that the product survives the return period. Therefore, ΩlQlv

represents the expected utility of the product from time l and forward. Loosely speaking,

ΩlQlv is the expected utility the consumer enjoys if she forgoes all the utility during the

return period. Consumers with vk are indifferent between paying the price and keeping the

product that survives the return period. Therefore, these consumers will also be indifferent

between not buying the product and this following contract: (a) deposit the money when

the market opens, (b) forgo all the utility during the return period, (c) receive a refund

if the product breaks during the return period, and (d) keep the product if it survives the

return period. Under this hypothetical contract, the consumer expected utility is ΩlQlvk, and

the expected expenditure is the same as in the actual contract, p̂, which explains equation

(1.10). Clearly, a longer return period will increase the expected forgone utility and affect

the potential consumer sensitivity to the expected expenditure. The following Proposition

provides the effect of the return period on consumer behavior.

Proposition 4 (Consumer Behavior with Easy Return). Suppose the seller accepts all re-

turns. A longer return period makes the potential consumers more sensitive to the expected

expenditure (taking into account refunds) in the sense that the critical expected expenditure

decreases in the length of the return period.
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• Potential consumer: a consumer who keeps the product if it does not break during the

return period.

• Critical expected expenditure: the maximum expected expenditure for a consumer to

remain being a potential consumer.

Even though Ql can increase in l because consumer belief that their product is a good type

increases with l. However, ΩlQl is proved to be decreasing in l. The intuition is that in the

actual contract, consumers also have an option of using the product strictly in the return

period while paying nothing. Consumers with vk are indifferent between this free ride option

and the keeping option. As the return period extends, the free ride option becomes more

attractive, thus making the potential consumers more sensitive to their expected expenditure

with the keeping option.

1.6.3 Welfare

Similar to the baseline model, the expected profit from selling a product to a potential

consumer is p̂ + Al − c. Let Sn
l be the expected salvage value the seller can collect from

selling a product to a non-potential consumer.16 It is clear that if the salvage value does not

depreciate (i.e., σ = 0), Sn
l = s. However, when the salvage value depreciates over time, a

longer return period will decrease Sn
l because the consumers postpone their return as late

as possible. The seller’s profit can be described as follows,

Π(p̂, l) =

[
1− F

(
p̂

ΩlQl

)]
(p̂+ Al − c) +

[
F

(
p̂

ΩlQl

)
− F (0)

]
(Sn

l − c) . (1.12)

16The explicit function of Sn
l is given by

Ωlse
−σl + (1− α)

∫ l

0

sλe−(σ+λ)t. (1.11)
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Because the salvage value is always less than the marginal cost, the second part of the right-

hand side of (1.12) is negative. When the seller is required to accept all returns, they have

to endure the sure loss from selling the product to consumers with a value lower than the

keeping threshold. From Proposition 4, we know that ΩlQl is decreasing in l. This implies

ΩlQl < Q0 for any l ≤ 0. Compared to the seller’s profit of the baseline model, equation

(1.6), it is clear that the seller is better off in the baseline model where they can decline the

non-broken returns.

Given any (p̂, l), the consumer surplus can be derived similarly. The potential consumers

only return the product when it breaks during the return period. Therefore, the expected

consumer surplus for a potential consumer is U0(v) − p̂. The non-potential consumers will

return the product. Their expected surplus strictly comes from the return period. We denote

this expected surplus for a non-potential consumer as Rl(v).
17 Therefore, the total consumer

surplus is given by

∫ vk

0

Rl(v)dF (v) +

∫ v

vk

[U0(v)− p̂] dF (v). (1.14)

The right-hand side of (1.14) is the surplus to non-potential consumers, and the right-hand

side is the surplus to the potential consumers. Because of larger consumer participation,

the total consumer surplus can potentially be higher than the baseline model. However, it

is not always the case. The following Proposition provides the condition under which the

consumer surplus decreases if the seller has a no-questions-asked return policy.

Proposition 5 (Consumer Welfare Comparison). Suppose sλ(1 − α) > m. There exist an

s̃ < c and a finite µ̃ such that accepting all returns decreases the total consumer surplus if

s ≥ s̃ and µ ≥ µ̃ (i.e., consumers are less price sensitive enough).

17The explicit function of Rl(v) is

(1− α)

∫ l

0

(∫ t

0

ve−rτdτ

)
λe−λtdt+Ωl

∫ l

0

ve−rtdt. (1.13)
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We now give an intuition for why the easy return policy can result in a lower consumer

surplus compared to a stricter return policy in the baseline model. When the no-questions-

asked return policy is implemented, the seller faces a trade-off related to the return period.

On the one hand, extending the return period might increase the surplus on each trade

with a potential consumer (i.e., increase the seller’s return advantage) because each product

will be more likely to be salvaged when it breaks. On the other hand, by Proposition 4,

extending the return period makes the potential consumers more sensitive to the expected

expenditure, which eventually becomes the seller’s income. In other words, the seller will

lose some potential consumers if they lengthen the return period while placing the same

expected expenditure (by increasing the market price).

If the consumers are willing to pay a high markup for the product (i.e., they have low

price sensitivity), losing potential consumers will become too costly compared to the gain

in salvaging more broken products. Therefore, the seller will give up the ability to salvage

broken products by choosing a short return period to retain their potential consumers. As a

result, the non-potential consumers will enjoy less surplus. The potential consumer surplus

makes up most of the total consumer surplus. These potential consumers, however, have to

endure a high expected cost because the seller gives up the ability to salvage broken products.

Whereas if the seller can decline non-broken returns, they can extend the return period to

salvage more broken products and offer a contract with lower expected expenditure to the

consumers.

1.7 Conclusion

We develop a continuous time model in which consumers constantly learn about the quality

type of their products during use and can return a product during a certain period. By

deriving a solution that fully captures consumers’ shopping and returning outcomes, we
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characterize the seller’s optimal pricing and return policies, including the return period’s

length. Endogenizing the return period allows us to explore the novel relationship between

product quality and pricing. The model also endorses us to study the economic implications

when the sellers are required to accept returns.

In summary, we find that extending the return period makes the potential consumers more

sensitive to their expected expenditure, provided that they can return any product. Ac-

cepting all returns can decrease consumer surplus if consumers are less price sensitive. The

after-sales returns also reveal some insights about the impacts of product quality on pric-

ing. For instance, a higher market price can imply a lower product quality if the sellers can

extract a high salvage value from a broken product. Product quality also helps explain the

heterogeneity in the return periods among sellers. We show that an increased probability of

getting a good quality product results in a shorter return period. However, the effect of the

breaking down rate on the return period is not monotone.
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Chapter 2

Product Return Policies under

Duopoly: Online and Local Stores

2.1 Introduction

Return policy plays a role in consumers’ purchasing decisions. According to a survey of

1660(US) and 1783(UK) people by the Global Web Index in November 2018, almost 80% of

people check the returns policy on a retailer’s website before purchasing. I develop a duopoly

model in continuous time to study the effect of the return policy under competition. In this

model, an online seller and a local store sell the same products. The setting for each consumer

is based on the previous chapter. When the consumer purchases, she will be matched with

a product. Each consumer gets an idiosyncratic flow of utility. Consumers observe this

information before purchasing but are unsure if they will encounter conflicts in the future.

If the match is reliable, the consumer will not face any conflicts. However, if the match is

unreliable, the match is subject to conflicts at any time. Consumer utility will drop when

the conflict happens. The consumers do not know the type of their match. Consumers can
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return the product during the return period, which the seller determines. The seller issues

a full refund when the consumer sends back the item. The seller can extract some value

from the returned product because of their recycling or refurbishing ability. Compared to

the online store, the local store offers the product hands-on experience to the consumers.

Consumers will receive informative signals about their match type when they visit the local

store. However, obtaining such information is costly, such as traveling to the local store.

Using the reformulation in the previous chapter, I find the closed-form solution for the return

periods when both sellers co-exist and fully characterize the coexistence equilibrium. I find

that accepting returns can provide market power to both firms under price competition.

The local store can strategically target consumers with lower utility by offering informative

signals. Since returning a product is a hassle1, these consumers are willing to pay the

information cost at the local store to save them from returning the products when they

encounter conflicts. On the other hand, the online store has an advantage over the consumers

with higher utility. Those consumers are more likely to buy the product, no matter what

signal they get. Therefore, they prefer buying from the online store to the local store. These

two groups of consumers are not only different in utility but also in the probability of getting

a well-matched product. I find that the online store offers a more extended return period and

higher prices than the local store. The local store’s return period decreases in the precision

of the signal they provide.

Among other findings, I show that costly informative signals at the local store are necessary

to maintain the market power for both stores. An increase in information costs will disperse

the market prices of the two sellers. This change reduces the local store’s market power

but relatively increases the online store’s competitiveness. The local store has to reduce the

price to keep their consumers, while the online store can charge a higher price. This pricing

1Davis et al. (1998) show that sellers can control the moral hazard return behavior by imposing hassles
on returns. Hess et al. (1996) show that sellers can also impose non-refundable charges, such as shipping or
handling fees, to decrease this behavior.
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strategy also gives the online store more market share while reducing the local store’s market

share.

Under duopoly, Inderst and Tirosh (2015) find that high-quality sellers offer a more generous

return policy. This result was also found by Grossman (1981) and Moorthy and Srinivasan

(1995). In the previous chapter, I introduced a monopolistic model and studied the effect

of product quality on return policy in a more general dimension. I find that sellers can

offer more generous terms with lower product quality. I also find that lower product quality

can lead to a higher price if the consumers are less patient. Petrikaitė (2018) studies a

single-product duopoly where consumers shop sequentially. She finds that a decrease in the

cost of return leads to a higher symmetric equilibrium price. The results that accepting

returns leads to a higher price can also be found in the previous chapter for single-product

monopolists or Anderson et al. (2009) for the multi-product monopolist.

The literature has studied other effects of accepting returns. Che (1996) shows sellers can

use return policies as insurance for risk-averse consumers. Escobari and Jindapon (2014)

demonstrate that return policy can be served as a tool for price discrimination. Hinnosaar

and Kawai (2020) show that return policy can be used to reduce seller uncertainty about

the buyer’s signal structure.

The rest of the paper is organized as follows. Section 2.2 introduces the model. Section 2.3

provides consumer shopping and returning outcomes. Section 2.4 characterizes the equilib-

rium where both sellers are active. Section 2.5 analyzes each seller’s optimal return period

and price. Section 2.6 provides a set of comparative statics results regarding match quality,

signal precision, and information cost. Finally, Section 2.7 offers some concluding remarks.

All omitted proofs are in the Appendix.
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2.2 Model

The market consists of local and online sellers and one unit mass of consumers. Time is

continuous with an infinite horizon. The market starts at time t = 0. Each consumer has

one unit of product demand and gets an idiosyncratic utility flow v from using it. The utility

flow depreciates at rate δ, universal to all consumers. For each consumer, v is independently

and identically drawn from the interval [v, v] according to a distribution function F with a

density function f . Consumers observe their v before purchase.

Each consumer gets matched with a product when she purchases. The match can be reliable

(R) or unreliable (U). Consumers do not know their match type before purchasing. I denote

θ as the state of nature for each consumer, θ ∈ {θR, θU}. If the match is reliable, consumers

get the utility flow of ve−δt at any time t without conflicts. Unreliable match experiences

conflict at a Poisson rate λ. When the conflict occurs, the utility flow drops to zero from

that period forward. The probability that a match is reliable is α. The utility of not buying

the product is zero. Consumers are risk-neutral.

Each consumer receives a binary signal σ that can be R or U when they visit the local

store. There is a cost of T to obtain such information (e.g., traveling cost). The signal σ

is the realization of a random variable that depends on the true state. Table 2.1 illustrates

the signal structure. If the match is reliable, the probability of receiving signal R is qR. If

PPPPPPPPPStates
Signal

σ = R σ = U

θ = θR qR 1− qR
θ = θU 1− qU qU

Table 2.1: Signal structure

the match is unreliable, the probability of receiving signal U is qU . The signal structure is

informative if and only if qR ̸= 1− qU , or qR + qU ̸= 1. Without loss of generality, I assume

qR > 1 − qU , or qR + qU > 1, so that signal R increases the belief in state R and signal U
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increases the belief in state U .

Consumers can return the product for a full refund within the return period l, which the

seller determines. However, there is a return hassle h for consumers to return their products.

The sellers can verify if the consumer has encountered any conflicts or not. Therefore, the

sellers can impose extra hassle he if the consumer returns a product without evidence of

conflict. The sellers incur a production cost of c for each product and get a salvage value of

s < c for each returned item. To serve each unit of consumers throughout the return period

l, the customer service costs the sellers an amount of ml.

Timing. When the market opens at t = 0, the sellers announces their contracts (p, l, he).

Consumers see the contracts and decide whether to visit a local store or buy from an online

store or not to buy the product. They can decide where to buy the product if they visit

the local store. The seller incurs the retail cost and customer service cost. The buyers can

return the product anytime during the return period (0 < t ≤ l). Seller issues full refunds

when consumers return the items.

2.3 Consumer behavior

I refer to the consumer’s subjective probability that her match is reliable as the consumer’s

belief. As a direct result of the previous chapter, the belief of a typical consumer who has

not experienced any conflict is

πt =
α

(1− α)e−λt + α
. (2.1)

When the market opens (t = 0), each consumer has to decide whether to get the signal from

the local store or go straight to the online option or not to buy the product. Once they buy
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the product, they must decide whether to keep it or keep using it during the return period.

If they encounter a conflict, they should return the product before the return period expires.

The previous chapter provides the solution to the consumers’ dynamic problem in a monopoly

setting. The solution can be described in a static fashion by the two thresholds vb and vk.

A consumer buys the product if and only if v > vb and commits moral hazard return if and

only if v < vk. The contract determines these two thresholds.

In the duopoly setting, each seller has a pair of thresholds vb and vk if their contracts differ.

For each seller, vb and vk do not determine the entire consumer shopping and returning

outcome. However, if a consumer buys the product from the seller, her utility v has to be

higher than vb. Otherwise, this buying option is dominated by the outside option. Also, she

will keep the product with no conflict at the end of the return period if and only if v > vk.

For those who decide to buy the product, if their v > vk, their expected utility, and net

refund will not be affected if the seller increases the extra hassle he. Their decision to buy

from this seller will remain the same if the seller increases h2. It is because they will not

exercise the moral hazard return. The number of consumers who buy and keep the products

after the return period will not decrease. An increase in extra hassle does not make these

consumers leave the seller for another seller or opt out.

If vb < vk, some consumers buy the product with v falls into this range. An increase in extra

hassle can make these consumers give up the moral hazard return option. The following

proposition provides the optimal level of extra hassle for each seller.

Proposition 6. For each seller, it is optimal for them to set the extra hassle cost he such

that their corresponding buying threshold vb is greater than or equal to their corresponding

keeping threshold vk.

In equilibrium, consumers will not have the incentive to return a product without a conflict.
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Their expected utility from buying the product is

U(v, π) = (1− π)

∫ ∞

0

[∫ y

0

ve−δxdx

]
λe−λydy + π

∫ ∞

0

ve−δxdx

=
(1− π)v

δ + λ
+

πv

δ

=
v(δ + πλ)

δ(δ + λ)
.

(2.2)

If the consumer buys the product from the online store without visiting the local store, her

expected utility will be Uα = v(δ+αλ)
δ(δ+λ)

.

The consumer only buys the product if the expected utility and net refund are higher than

the price. In other words, opting out is dominated if the expected utility is higher than the

effective price p̂, which is the price minus the expected net refund,

p̂ := p− (p− h)(1− π)

∫ l

0

λe−λtdt. (2.3)

The consumer will buy from the seller that has the highest U − p̂. For further analysis, I

denote subscript ”o” for the online store and ”l” for the local store. For example, p̂o is the

online store effective price, and p̂l is the local store effective price.

Suppose the consumer visits the local store and decides where to buy the product. In this

case, the consumer must pay T upfront. If the consumer receives the ”good” signal (i.e.,

σ = R), her belief about the match type will then increase from α to

πR =
αqR

α(qR + qU − 1) + 1− qU
. (2.4)

Her expected utility from using the product now increases to UR = v(δ+πRλ)
δ(δ+λ)

. She will choose

to buy from a seller that offers the lowest expected price or opt out if both expected prices

are higher than the expected utility. In this case, the online effective price p̂o(α) will increase

to p̂o(πR). It is because the match is more likely to be reliable, and the chance of return will
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decrease. It makes the expected refund decrease and leads to a higher effective price.

Similarly, if the consumer receives the ”bad” signal (i.e., σ = U), her belief about the match

type will decrease from α to

πU =
α(1− qR)

qU − α(qR + qU − 1)
. (2.5)

Her expected utility from using the product now decreases to UU = v(δ+πUλ)
δ(δ+λ)

. The online

effective price will decrease from p̂o(α) to p̂o(πU). In the following analysis, I will go through

all of the possible decisions after the consumer visits the local store:

Case 1: Good signal - local store; Bad signal - local store

If a consumer chooses this option, no consumer buys from the online store. It is because the

consumer buys from the local store no matter what signal she gets. The expected utility is

the same if the consumer buys from the online store or visits a local store and buys from it,

which is Uα. Since this consumer buys from the local store, it must be true that

[αqR + (1− α)(1− qU)] p̂l(πR) + [α(1− qR) + (1− α)qU ] p̂l(πU) + T < p̂o. (2.6)

The expected cost they pay from the local store is lower than the effective price of the online

store. It means buying from the online store is strictly dominated by going to the local store

and buying from them no matter what signal is received.

After receiving the signal, the expected utility from the product will be the same between

the online store and the local store, which is either UR or UU . Since there exists a consumer

that chooses the local store over the online store, it must be true that p̂l(πR) < p̂o(πR) and

p̂l(πU) < p̂o(πU). It means consumers will never choose to buy from the online store after

visiting the local store, no matter what signal they get. Combined with the previous result,

in this case, no consumer will end up buying from the online store.
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Case 2: Good signal - local store; Bad signal - online store

The expected utility from visiting a local store and following this option or from buying

straight from the online store are the same, which is Uα. If a consumer chooses to visit the

store and follow this strategy, it must be true that

[αqR + (1− α)(1− qU)] p̂l(πR) + [α(1− qR) + (1− α)qU ] p̂o(πU) + T < p̂o. (2.7)

The left-hand side of the inequality is the expected cost of visiting the local store and follow-

ing the given strategy. It means buying straight from the online store is strictly dominated

by this strategy. Therefore, all of the consumers who purchase choose to pay for the cost T

to get the information. The following equilibrium is that both sellers set the lowest prices

possible and get zero profit. However, this is not an equilibrium because the inequality (2.7)

will not hold.

Case 3: Good signal - online store; Bad signal - online store

This strategy is strictly dominated by buying straight from the online store. Because by

doing that, consumers can save the traveling cost of T to the local store.

Case 4: Good signal - online store; Bad signal - local store

Similar to case 2, all consumers who purchase will get the signal information, which is not

an equilibrium.

Case 5: Good signal - online store; Bad signal - opt out

If a consumer chooses to buy from the online store after receiving the good signal, then p̂o(πR)

has to be lower than p̂l(πR). It means consumers will never buy from local stores if they get

a good signal. Since the strategies in case 3 and case 4 cannot happen in equilibrium, if a

consumer chooses to buy from the online store after receiving the good signal, no consumer
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will buy from the local store. The following proposition sums up the findings.

Proposition 7. In the equilibrium where both sellers make a positive profit, consumers who

visit the local store buy from the local store if they receive a good signal (i.e., σ = R) and opt

out if they receive a bad signal (i.e., σ = U).

2.4 Market equilibrium

In the equilibrium, each seller sets the extra hassle cost high enough for vb > vk. To find

the equilibrium price and return period for each term, it is sufficient to consider p and l

as the only two control variables for each seller. Let Πl(pl, ll) and Πo(po, lo) be the local

and online store profits, respectively. The combination (p∗l , l
∗
l , p

∗
o, l

∗
o) is an equilibrium if

Πl(p
∗
l , l

∗
l ) ≥ Πl(pl, ll) for all pl, ll ≥ 0 given po = p∗o, lo = l∗o; and Πo(p

∗
o, l

∗
o) ≥ Πo(po, lo) for all

po, lo ≥ 0 given pl = p∗l , ll = l∗l .

Since in the equilibrium, consumers who visit the local store will only buy from the local

store if they receive a good signal and opt out otherwise, I denote p̂l be the effective local

price corresponding with σ = R. Therefore,

p̂l(pl, ll) = pl − (pl − h)(1− πR)

∫ ll

0

λe−λtdt. (2.8)

The expected payoff of going to the local store (denoted by Bl) will then become

Bl = [αqR + (1− α)(1− qU)] (UR − p̂l)− T. (2.9)

If consumers buy from the online store, their belief will remain at π = α, and the effective
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online price will be

p̂o(po, lo) = po − (po − h)(1− α)

∫ lo

0

λe−λtdt. (2.10)

Therefore, the expected payoff of buying from the online store is Bo = Uα − p̂o.

The consumer will choose to go to the store that has the highest expected payoff or not go

to any store if both of the expected payoffs are less than zero. Figure 2.1 illustrates the

consumer buying outcome.

Figure 2.1: Consumer expected payoff

I denote vl, vo,vx be the values such that Bl(vl) = 0, Bo(vo) = 0, and Bl(vx) = Bo(vx). In

Figure 2.1, the consumer will buy from the online store without visiting the local store if

v > vx and visit the local store if v ∈ (vl, vx).

The slope of Bl(v) is smaller than Bo(v) because the expected utility of using the product

from visiting the local store is smaller than the online store. The consumer only buys the
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product at the local store if she receives a good signal. However, the consumer will purchase

the product if she chooses the online option. It is the key factor that raises a coexistence

equilibrium, where both sellers can get positive profit.

The local store can only sell the products if they can make the consumers who receive good

signals buy them. It means their effective price p̂l has to be lower than the effective online

price with good signal (denoted as p̂os). Otherwise, consumers will just showroom the local

store for more information and make the purchase at the online store. In this case, the

expected payoff from visiting the local store becomes

Bshowroom = [αqR + (1− α)(1− qU)] (UR − p̂os)− T, (2.11)

which is strictly greater than Bl. Figure 2.2 illustrates this case where p̂l > p̂os. When

Figure 2.2: Consumer expected payoff with showrooming

p̂l > p̂os, no consumer will end up buying from the local store. I denote vs and vxs be the

values such that Bshowroom(vs) = 0 and Bshowroom(vxs) = Bo(vxs). Consumers with v > vxs
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will buy from the online store without visiting the local store. Consumers with v ∈ (vs, vxs)

will visit the local store but not buy the products there. They will buy the products from

the online store if they receive a good signal.

For each product, the consumer is expected to pay the effective price. However, this is

different from what the seller expects to get. Together with the service cost, for each product,

the seller is expected to get

p− (p− s)(1− α)

∫ l

0

λe−λtdt−ml.

The difference between what the firm expects to get and the effective price is mentioned in

the previous chapter as the seller’s return advantage and denoted as

A(l) := (s− h)(1− α)

∫ l

0

λe−λtdt−ml. (2.12)

The local store’s profit can be described as follows,

Πl(pl, ll) =


β [F (max{vo, vx})− F (min{vl, vo})] (p̂l + Al − c) if p̂l < p̂os

0 if p̂l ≥ p̂os,

where β := [αqR + (1− α)(1− qU)] is the probability of getting a good signal at the local

store.

If p̂l < p̂os, consumers will not showroom. The local store only gets some consumers if and

only if vl < v0, or equivalently vo < vx. Otherwise, consumers will only visit the local store.

Therefore, F (max{vo, vx})− F (min{vl, vo}) represents how many consumers visit the local

store. Among them, only a fraction of β receive a good signal and make the purchase. The

expected profit of each product sold upfront is p̂l+Al− c. If p̂l ≥ p̂os, all consumers will end

up showrooming, and the local store will not have any sales.
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The online store’s profit can be described as follows,

Πo(po, lo) =



[1− F (max{vo, vx})] (p̂o + Ao − c) if p̂l < p̂os

[1− F (max{vo, vxs})] (p̂o + Ao − c)+

β [F (max{vo, vxs})− F (min{vs, vo})] (p̂os + Aos − c)

if p̂l ≥ p̂os.

If p̂l < p̂os, there will be no showrooming. Buying from the online store strictly dominates

visiting the local store if v > vx, but is strictly dominated by not buying from anywhere if

v < vo. Therefore, 1−F (max{vo, vx}) represents how many consumers buy from the online

store.

If p̂l ≥ p̂os, there will be two groups of consumers that buy the product online. The first

group is the consumers that do not visit the local store. For these consumers, showrooming

is strictly dominated by buying straight from the online store. Therefore, the number of

these consumers are 1 − F (max{vo, vxs}). The other group of consumers is from the local

store. The number of consumers that visit the local store with the intention of showrooming

is F (max{vo, vxs}) − F (min{vs, vo}). Only those with a good signal will purchase at the

online store among these consumers.

In the coexistence equilibrium, the local store has to be able to make the consumers who

visit their store receive a good signal to buy from them. The following proposition describes

the coexistence equilibrium.

Proposition 8. (p∗o, l
∗
o, p

∗
s, l

∗
s) is a coexistence equilibrium if and only if it satisfies all of the

following

• l∗o = argmax
lo≥0

Ao(lo)
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• l∗l = argmax
ll≥0

Al(ll)

• p̂∗o = argmax
p̂o>c−Ao(l∗o)

[1− F (max{vo, vx})] (p̂o + Ao(l
∗
o)− c)

• p̂∗l = argmax
p̂l>c−Al(l

∗
l )

[F (max{vo, vx})− F (min{vl, vo})] (p̂l + Al(l
∗
l )− c)

• p̂∗s < p̂∗os

It is not a unique equilibrium but a unique coexistence equilibrium.

2.5 Optimal return periods and prices

In the monopoly setting, the previous chapter finds that the return period will maximize

the seller’s return advantage. I show that this result still holds under a duopoly between

online and local sellers. The reason is that by offering more information, such as hands-on

experience at the local store, the local store can obtain some loyal customers with lower

utility. Returning a product is relatively costly to these consumers. They appreciate the

option of knowing that they might get an unreliable match so that they will not buy the

product and endure the return hassle. They are more willing to pay for the information

to reduce the risk of return. The return process allows the local seller to attract this type

of consumer. On the other hand, consumers will higher utility will find the online seller a

better option. These consumers are more likely to buy the product no matter what signal

they get.

The after-sales returns provide the two sellers with two different types of consumers. The

return policy and the local store’s ability to provide more information are the keys to market

power. Therefore, the return period maximizes the return advantage for each seller. The

following Corollary provides each seller’s closed-form solution for the return period.
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Corollary 2. In the coexistence equilibrium, the return periods of the online store and local

store are:

l∗o =


1
λ
ln
(

(s−h)(1−α)λ
m

)
if (s− h)(1− α)λ > m

0 if (s− h)(1− α)λ ≤ m

l∗l =


1
λ
ln
(

(s−h)(1−πR)λ
m

)
if (s− h)(1− πR)λ > m

0 if (s− h)(1− πR)λ ≤ m.

In the previous chapter setting, the online store return period will remain the same if it is the

only store in the market. However, if consumers showroom the local store in the equilibrium,

the online store becomes the only store to sell their product, and their return period might

differ. Besides the consumers with the belief α, another group of consumers with a higher

chance of getting a reliable match to make the online purchase.

Corollary 3. In the coexistence equilibrium, if (s− h)(1− α)λ > m, the online store offers

a longer return period than the local store.

For the local store, their targeted consumers are the ones that receive the good signal.

Therefore, their consumers are more likely to get a reliable match. Their marginal return

advantage from each product is lower than the online store. The local store will invest less

in the return process and offer a shorter return period compared to the online store.

Corollary 4. In the coexistence equilibrium, the local store offers a lower price than the

online store.

The local store targets consumers with lower utility, and they also need to keep these con-

sumers from showrooming. Given that their optimal return period is shorter than the online

store, the local store has to offer a lower price to make the consumers buy from them after

visiting.
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2.6 Comparative statics

2.6.1 Match quality

Match quality is measured in two dimensions: probability α that a match is reliable and the

Poisson rate λ that an unreliable match encounters conflicts.

Proposition 9. Suppose that (s− h)(1− πR)λ > m and the coexistence equilibrium exists.

Then both the return periods of online and local stores decrease in α.

This result is intuitive. When the match is more reliable, the consumers who buy from the

online store are less likely to return their products. The consumers who visit the local store

will be even more sure that their match is reliable if they receive a good signal. Therefore,

both sellers will invest less in the return process and offer a shorter return period.

Since the return period maximizes the seller’s return advantage, a result regarding λ from

the previous chapter will still hold in this model.

Proposition 10. Effect of λ on the return periods in the coexistence equilibrium.

• Suppose that (s − h)(1 − πR)λ > m. Then the local store’s return period l∗l increases

in λ if λ < em
(1−πR)(s−h)

, and decreases in λ if λ > em
(1−πR)(s−h)

.

• Suppose that (s − h)(1 − α)λ > m. Then the online store’s return period l∗o increases

in λ if λ < em
(1−α)(s−h)

, and decreases in λ if λ > em
(1−α)(s−h)

.

An increase in λ has two effects on the marginal return advantage from each product. The

first effect is that it increases the chance of return of any unreliable match in any given

period. However, the second effect is that conflicts tend to happen quicker. The number of

remaining unreliable matches that have not encountered any conflicts decreases at any time.
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This reduction goes at an exponential rate λ. Therefore, if λ is large, an increase in λ will

reduce each product’s marginal return advantage and result in a shorter return period.

2.6.2 Signal precision

Corollary 2 shows that the online return period is not affected by the signal structure of the

local store. However, by affecting the posterior belief of the consumers who visit the local

store, the signal structure impacts the return period of this store.

Proposition 11. Suppose that (s− h)(1− πR)λ > m and the coexistence equilibrium exists.

Then the local store’s return period l∗l decreases in qR and qU .

Proposition 11 shows that if the signal is more accurate, the local store will invest less in

the return process. If the signal is a symmetric binary (qR = qU), the local store will reduce

the return period if there is an increase in the precision of the signal.

2.6.3 Local store’s information cost

Theoretically, without the information cost, all consumers will visit the local store before

making decisions. It will eliminate the market power of both sellers, and no firm will get a

positive profit in the equilibrium. However, with a positive information cost, the local store

will become less competitive.

Proposition 12. Suppose that (s− h)(1− πR)λ > m, the coexistence equilibrium exists and

v = argmax
v

[1− F (v)] [p̂l(v) + Al(l
∗)− c] .

If f
1−F

is monotone non-decreasing and f
F
is monotone non-increasing, then local store price

p∗l and local store’s market share decrease in traveling cost T , while online store price p∗o their
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market share increase in T .

An increase in the information/traveling cost will make the local store lose its competitiveness

and give the online store more market power. Therefore, the local store has to reduce their

price to keep their consumers while the online store can charge a higher price. A higher

information/traveling cost will increase the price dispersion and reduce the market share of

the local store while improving the online store’s market share.

2.7 Conclusion

I developed a duopoly model of online and local store sellers. The setting is based on

the previous chapter. Both sellers have the advantage of extracting value from returned

products. This advantage can be the ability to recycle or refurbish the products. I find the

closed-form solution for the return periods when both sellers co-exist and fully characterize

the coexistence equilibrium. I show that the comparative statics results regarding the return

period in the previous chapter are robust under competition.

By considering the after-sales returns, I find that the return policy can provide market power

to both firms under price competition. By offering an informative signal, the local store will

target consumers with lower utility. These consumers are willing to pay the information cost

at the local store to save them from returning the products when they encounter conflicts.

On the other hand, online store consumers have higher utility. Those consumers are more

likely to buy the product, no matter what signal they get. Therefore, they prefer buying

from the online store to the local store. These two groups of consumers are not only different

in utility but also in the probability of getting a well-matched product. I find that the online

store offers a more extended return period and higher prices than the local store. The higher

precision of the signal, the lower the local store’s return period.
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I show that an increase in the information cost, such as the traveling cost to the local store,

will make the market prices of the two sellers more dispersed. This change reduces the local

store’s market power but relatively increases the online store. The local store has to reduce

the price to keep their consumers, while the online store can charge a higher price. It also

gives the online store more market share while reducing the local store’s market share.
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Chapter 3

Consumer Search, Collusion, and

Artificial Intelligence

3.1 Introduction

Internet and technological advancements have been transforming our lives. Besides the

apparent aspects that enhance the quality of life, new technology can affect market com-

petitiveness in a less transparent way. This paper will look at how technological advances

impact consumer shopping behavior and eventually affect the firms’ incentive to collude and

raise markups.1 Our research involves two factors that are transforming many markets. (1)

A reduction in search friction on both the demand and supply sides. For example, in e-

commerce, consumers can easily find product information, such as prices, product details,

and ratings. It is common nowadays for consumers to check and compare prices online be-

fore purchasing. Sellers can also monitor their competitors’ prices and adjust their actions

1In the past four decades, there has been a rising in markups in the U.S. economy. De Loecker, Eeckhout,
and Unger (2020) find that aggregate markups start to rise from 21% above marginal cost in 1980 to 61%
in 2020.
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quickly. Less friction usually relates to higher market competition. However, its effect on

sellers’ incentive to collude is not translucent. (2) The use of algorithmic pricing is becoming

common.2 These pricing software help sellers react quickly to competitors’ actions (e.g.,

changing prices) and market dynamics. It is a natural choice for sellers in high-frequency

markets such as e-commerce, trading, and transportation. Algorithmic pricing powered by

AI can autonomously monitor the market and develop its pricing strategy with little initial

input. At first glance, adopting algorithmic pricing may improve price competition because

it creates high-frequency price matching. However, scholars and policymakers have raised

concerns that algorithmic pricing can foster collusion and raise prices.3

This paper asks how search friction reduction affects collusion; and what implications it

has on market prices and consumer welfare. We tackle this question both theoretically and

experimentally. We conduct our experiments by simulating sellers’ interactions with AI-

powered pricing algorithms. We then investigate if the algorithms learn to collude in the

frictional market and compare the theoretical and experimental results.

To lay out the framework, we present an oligopoly model in which consumers sequentially

search for the best product with advertised prices. A consumer’s payoff from purchasing a

product from seller i is zi−pi where pi is the price, and zi is only revealed when she incurs a

search cost. Firms can influence consumer search behavior by coordinating prices. Through

this mechanism, we study the sustainability of collusion among firms. The consumer search

framework is similar to Choi, Dai, and Kim (2018). Our paper analyses collusion outcomes

in repeated settings when sellers use a price-trigger strategy (Green and Porter, 1984) as

2Chen, Mislove, and Wilson (2016) estimated that in 2015, there were over 500 among 1,641 most popular
products on Amazon involving algorithmic pricing.

3In their empirical study about Germany’s retail gasoline market, Assad, Clark, Ershov, and Xu (2020)
find that adoption of algorithmic pricing increases margins by 9%. Brown and MacKay (2022) conduct
an empirical analysis of the online allergy drugs market in the U.S. and estimate that algorithmic pricing
increases average prices by 5.2% relative to the simulated counterfactual Bertrand competition. Calvano,
Calzolari, Denicolò, and Pastorello (2020) and Klein (2021) provide experimental evidence that pricing algo-
rithms can maintain high prices by collusive strategies. Concern about collusion when sellers use algorithmic
pricing has been raised in OECD (2017) and a remark from the U.S. Department of Justice (Delrahim, 2018).
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opposed to static Bertrand-Nash competition in Choi, Dai, and Kim (2018).

Our model is most related to e-commerce because it captures some essential features of

online shopping behavior and the mechanism by which firms can collude. Online shopping

typically involves typing the product name or a keyword into the search box of an e-commerce

platform. The website will then show the list of related products or sellers with prices and

brief descriptions for each option. Consumers can click on any option to learn more detailed

information about that product. Our model can speak to this shopping behavior well.

Building from this demand structure, we show how the cartel can coordinate their prices to

maximize the joint profit and how a firm can deviate from collusion by manipulating the

consumer search order.

Weitzman (1979) provides an optimal search strategy for each consumer, including the search

order and the stopping rule. Utilizing this elegant solution, we find that the lower search costs

make it easier for firms to collude. This finding is distinctive because it differs from existing

consumer search literature results and raises attention to antitrust policies, especially for

e-commerce marketplaces.

We show that lower search costs make undercutting the cartel price less profitable. This

outcome is opposite to classical results in the literature, which stem from Wolinsky (1986)

sequential search framework with unobservable prices. More consumers happen to visit the

deviating firm as the search costs decrease. The profit obtained by the undercutting firm

will then increase as consumers are more willing to search. In our model, with observable

prices, the deviating firm can manipulate consumers to visit them first by undercutting the

collusive price. As the value of searching for another option increases, consumers are more

likely to leave the seller to explore other options and eventually reduce the demand for the

deviating firm. Lower search costs make deviation less tempting and collusion relatively

more sustainable.
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On the other hand, higher search costs can reduce the price even when sellers collude. This

result aligns with Choi, Dai, and Kim (2018), which suggests price falls with search costs

in static Bertrand competition. The reason is that higher search cost makes being visited

first more valuable and increases price competition among sellers. Even if sellers collude, the

cartel still needs to compete with consumer non-search options (outside options), leading the

lower price with higher search costs. However, we find that this price reduction is insufficient

to offset the search burden on consumers if the collusion sustains. Therefore, higher search

costs decrease consumer surplus when sellers collude.

For our experimental approach, we follow Calvano, Calzolari, Denicolò, and Pastorello (2020)

to simulate sellers’ interactions with reinforcement learning algorithms. Agents in Calvano,

Calzolari, Denicolò, and Pastorello (2020) are symmetric and engage in a repeated Bertrand

competition. Each period, agents simultaneously place prices, and consumers purchase their

best products with no friction. We take a similar setup to Calvano, Calzolari, Denicolò, and

Pastorello (2020) and plug the frictional demand structure on top. We find that Q-learning,

a simple AI algorithm, can adopt a punishment scheme similar to the trigger-price strategy

to maintain prices above the competitive level in the frictional market. However, AI price

and consumer surplus both decrease with higher search costs. These experimental results

are consistent with our theoretical results, which suggest that higher consumer search costs

can lower the price and consumer surplus if collusion sustains.

The above finding raises an important question on regulating consumer search friction. Low-

ering search costs can increase consumer surplus per se; however, the sellers can collude

more easily, and the cartelized market becomes more sustainable, eventually harming the

consumers. It is crucial to characterize the collusion equilibrium that realizes in practice to

find an optimal policy that prevents cartel formation. Theoretically, this task is difficult be-

cause collusion models typically have a large equilibrium set. However, with our experiment

results, we can refine the equilibrium and make a tighter prediction on market outcomes.
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We find that markets with AI pricing algorithms have a similar outcome to half-collusive

equilibrium, where sellers randomize between fully collusive pricing and competitive pricing.

This result can be especially beneficial in determining the optimal policy for markets where

sellers prominently use AI-powered pricing software. For example, it can be used to find the

optimal level of search friction that maximizes consumer surplus.

Our experimental results also amplify recent policy concerns about AI pricing algorithms and

collusion (Mehra, 2016 and Ezrachi and Stucke, 2017). The issue is that these algorithms

may autonomously learn to collude without having any explicit communication or agreement

to establish a violation of Section 1 of the Sherman Act.4 To address this policy issue, we

must look at collusion from different angles and discuss what unlawful collusion is when

sellers use algorithmic pricing.

The rest of the article is organized as follows. Section 2 reviews the literature and explains

how our work contributes to the literature. We then introduce the baseline model in Section 3

and characterize the fully collusive equilibrium in Section 4. Symmetric collusive equilibrium

is characterized in Section 5. We introduce our experiment design in Section 6 and present

our experimental results in Section 7. Finally, we conduct the robustness check in Section 8

and offer some concluding remarks in Section 9. All omitted proofs are in the Appendix.

3.2 Literature review

On the theoretical aspect, our paper is related to a rich set of literature that studies the roles

of market transparency on collusion. In particular, the literature focuses on market trans-

parency from the sellers’ viewpoint, such as Abreu, Pearce, and Stacchetti (1986), Compte

(2002), Green and Porter (1984), Matsushima and Kandori (1998). Typically, it involves

4Harrington (2018) proposes a legal approach to prosecuting collusion by algorithms.
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imperfect public monitoring where firms cannot observe each other actions perfectly.5 The

literature has shown that collusion is less sustainable when sellers’ actions are not directly

observable. As the sellers’ actions become less transparent, the punishment for a deviation

from collusion is milder.

Our paper is more related to market transparency from the consumer’s point of view and

how it affects the sustainability of collusion. The literature on this topic is much less than

on the supply side. We are only aware of four articles that are related to this topic: Nilsson

(1999), Campbell, Ray, and Muhanna (2005), Schultz (2005), and Petrikaitė (2016). These

four papers focus on price transparency for consumers. In their models, some consumers

either cannot observe the price or have to incur a positive search cost to explore it. Instead,

our paper studies a different notion of transparency. In our model, consumers can observe

the price but are uninformed about the match values.

Building on the non-sequential consumer search model of Burdett and Judd (1983), Nilsson

(1999) studies the roles of consumer search costs for prices on the sellers’ incentive to collude.

In his model, two firms are selling homogeneous products. Some consumers perfectly observe

the prices, while the rest have to incur a search cost to learn the prices. Nilsson (1999)

shows that collusion becomes more stable as the search cost for the price decreases. In a

similar setting, when consumers are paired with sellers in a certain way, Campbell, Ray, and

Muhanna (2005) also show that lower search costs for prices can facilitate collusion.

By developing a duopoly model in the framework of Hotelling (1929), Schultz (2005) also

studies how price transparency on consumers affects collusion. In his model, a fraction of

consumers can observe both prices, and the rest are uninformed. The ratio of informed

fraction measures price transparency. When the products are differentiated, Schultz (2005)

finds collusion is less sustainable with more price transparency because a higher share of price-

5See Abreu, Pearce, and Stacchetti (1990) and Fudenberg, Levine, and Maskin (1994) for a comprehensive
set of techniques for this class of problems.
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informed consumers makes undercutting the collusive price more profitable. This finding

differs from our results. In our model, consumers can observe the price but are uninformed

about the match value. We show that sellers have less incentive to deviate from collusion

when the search cost for match value decreases.

Among the abovementioned papers, our paper is most related to Petrikaitė (2016). She

presents two oligopoly models with different consumer search frameworks and studies the

roles of search costs on collusion. She first analyses collusion in the sequential search frame-

work of Wolinsky (1986) with horizontally differentiated products. This framework is closest

to ours because consumers in our models sequentially search for the best products. The dif-

ference is that in Wolinsky’s framework, prices are not observable to consumers. Whereas in

our model, consumers observe the price but have to search for the match values. Petrikaitė

(2016) finds that in Wolinsky’s framework, the cartel is more stable with higher search costs.

The mechanism behind this result is that as search costs increase, fewer consumers happen

to visit a deviating firm, leading to lower deviation profit. This finding is opposite to our re-

sult, which suggests deviation is more profitable with higher search costs. The reason is that

consumers can observe the price in our model and search sequentially based on the prices

they see, whereas, in Wolinsky’s framework, consumers search randomly without knowing

the price. The deviating firm in our model will get the consumer’s attention and be visited

first; in Petrikaitė (2016), consumers visit the deviating firm by chance.

Petrikaitė (2016) also studies collusion in the consumer search framework of Stahl (1989)

with homogeneous products. In her model, a positive fraction of consumers is fully informed

about the prices. The rest of the consumers observe one price and incur a search cost to learn

other prices. Petrikaitė (2016) shows that search costs do not influence the deviation profit.

Therefore, higher search costs make collusion less easy to sustain. This finding is along

the line with our results even though our models are built on different consumer search

frameworks and aspects of search.
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The price-directed search framework that we use in our model has been studied extensively

in the context of static price competition (e.g., Armstrong and Zhou, 2011, Haan, Moraga-

Gonzalez, and Petrikaite, 2018, Choi, Dai, and Kim, 2018, and Obradovits and Plaickner,

2022). The literature has shown that market prices fall with search costs. This result is

similar to what we find in the repeated setting, which suggests that the collusive price also

decreases with higher search costs. The reason for these results has been discussed in the

previous section. A higher search cost generally increases the price competition whether the

sellers collude or not.

Besides the theoretical literature, our paper contributes to the ongoing discussion about al-

gorithmic pricing and collusion. This strand of literature draws the attention of scientists

from different disciplines, legal scholars, and policymakers. Notably, recent studies have

conducted experiments with AI-powered pricing algorithms to study their collusive strate-

gies. Waltman and Kaymak (2008) put forward a study of repeated Cournot competition

with reinforcement learning algorithms. They find that algorithms manage to reduce out-

put, leading to a price higher than the Nash equilibrium price in a one-shot game. Calvano,

Calzolari, Denicolò, and Pastorello (2020) study a Bertrand competition where pricing al-

gorithms (Q-learning) interact repeatedly. They find that algorithms adopt a punishment

scheme to keep the price above the competitive level. The collusive scheme is similar to the

price-trigger strategy. Punishment is followed by a gradual return to the price before devia-

tion. They also find that algorithms adopt this collusive scheme under imperfect monitoring

(Calvano et al., 2021).

In our paper, we take a similar setup to Calvano et al. (2020) and incorporate search friction

into the model. We also find that algorithms maintain non-competitive prices by collusive

strategies in the frictional market. However, the reward-punishment scheme differs from

Calvano et al. (2020), where the market has no friction. In both markets, punishment is

followed by a gradual increase in prices. As opposed to a frictionless market, where algorithms
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return to the previous collusive price, in a frictional market, they converge to a lower price

than before the deviation.

With a similar experimental design to Calvano et al. (2020), Johnson, Rhodes, and Wilden-

beest (2022) study the effects of different platform designs on the market price and consumer

surplus. Using the same reinforcement learning algorithms, Klein (2021) analyses the model

of Maskin and Tirole (1988), where agents take turns to price sequentially. He analyses

how algorithms coordinate with different the number of discrete prices. He finds that when

the number of discrete prices is limited, Q-learning algorithms coordinate on a stable high

price; when the number of discrete prices increases, Q-learning algorithms converge to a

supra-competitive Edgeworth price cycling pattern.

3.3 Model

There are n sellers, each indexed by i ∈ {1, . . . , n}. Each seller sells one differentiated

product with the same constant marginal cost c. In each period t = 0, 1, . . . , each seller

simultaneously announces a price pti. The price history is observable to all sellers. The

sellers interact repeatedly and discount the future at rate δ ∈ (0, 1).

In each period t, one unit mass of consumers enter the market and exit before the next

period starts. New consumers come in the next period. Each consumer has one unit demand

of the product and obtains utility vi from seller i’s product. For each consumer, vi is an

independent random variable of type I extreme value distribution with scale parameter σ

and location parameter µ.

Consumers learn their vi only if they visit seller i. They must visit seller i to be able to

purchase product i. They can leave the market and take the outside option at any point.

The outside option has the value u0 for all consumers.
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Each consumer has to incur a search cost of s ≥ 0 when they visit a seller. The recall is

costless (i.e., consumers can purchase from any previously visited seller without incurring

the search cost again).

The maximum number of sellers a consumer can visit is k < n. The ex-post utility for a

representative consumer who buys product i after visiting m sellers is equal to

U(vi, pi,m) = vi − pi − sm.

If she takes the outside option after visiting m sellers, then her ex-post utility is U(m) =

u0 − sm. Consumers are risk neutral and follow a strategy that maximizes their expected

utility.

Denote the prices of all sellers in period t by
−→
pt ≡ {pt1, pt2, . . . , ptn}. The demand for seller i in

period t is denoted by Di(
−→
pt ) Seller i’s profit in period t is then given by πt

i = (pti−c)Di(
−→
pt ).

Each seller maximizes their discounted expected flow of profit:

E

[
∞∑
t=0

δtπi(
−→
pt )

]
.

The equilibrium concept that we focus on is the subgame-perfect Nash equilibrium.

3.3.1 Consumer behavior

After observing the prices, each consumer faces a classic sequential search problem. Before

she reaches the maximum observation, she has to decide which seller to visit next or to stop

searching and take the best available option. Weitzman (1979) provides a general solution

for this problem with k ≥ n. The solution consists of a search order and a stopping rule.

Each seller has a “reservation” value zi based on the prior distribution of their product utility
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realization. Weitzman (1979) shows that for consumers, it is optimal to visit sellers with a

descending reservation value order and stop searching when the best available option exceeds

the reservation values of unvisited sellers.

With k < n, F , and f being the c.d.f. and p.d.f. of random variable v, the optimal strategy

is presented as follows.

Proposition 13 (Optimal search strategy). Let vs be the value such that

s =

∫ ∞

vs

(1− F (v)) dv. (3.1)

Define the reservation value for the seller i by zi ≡ vs−pi and the reward of choosing product

i by xi ≡ vi − pi. Consumer optimal strategy is characterized as follows.

1. Selection Rule: rank all sellers in a non-ascending reservation value order and visit

them by this order. If there is more than one non-ascending reservation value order,

randomly select one of them.

2. Stopping Rule: stop searching and take the best available option if the maximum reward

among visited sellers or u0 exceeds the reservation value of every unvisited seller or if

k sellers have been visited.

Proposition 1 applies even when products are ex-ante different from sellers (i.e., sellers have

different cumulative distribution functions F (v). In our model, sellers are ex-ante symmetric

and share the same vs. The search order, therefore, only depends on prices. Sellers will be

visited in a non-descending price order.

If the maximum number of observations is non-binding (i.e., k ≤ n), an elegant result of the

Weitzman solution is that we can express the consumer’s final decision in a discrete choice

fashion. By assigning a new index wi ≡ min{zi, xi} to each seller and w0 = u0 to the outside
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option, it can be shown that the chosen option has to have the highest index (see Theorem

1 in Choi et al. (2018) and Armstrong (2017)).

If the maximum number of observations is binding (i.e., k ≤ n), the eventually chosen option

cannot be pinned down entirely by the index w. However, the index w can still help narrow

down the chosen seller, as shown in the following Corollary.

Corollary 5. For a given optimal search order, let K be the set of k first sellers and wi ≡

min{zi, xi} ∀i ∈ K. A consumer buys from seller i ∈ K if and only if:

• wi ≥ wj ∀j ∈ K−i and wi ≥ u0 and

• seller i is ranked before seller j in the search order if wj = wi.

Proof. Let W ≡ {w1, w2, . . . , wk}. The set of all realizations of W can be divided into two

subsets: S1, where only one seller has the highest w, and S2, where two or more sellers share

the same highest w. The probability that a realization of W is in S2 is strictly positive if

a group of sellers (more than one) in K has the same price. Suppose W ∈ S1, corollary 1

holds by the eventual purchase theorem in Choi et al. (2018).

Suppose W ∈ S2.

→: Suppose wi ≥ wj ∀j ∈ K−i and wi ≥ u0 and seller i is ranked before seller j if wj = wi.

Because the realization is in S2, besides seller i, another seller j has the same wj = wi.

Because the probability that xi = xj or xi = zj or xj = zi is zero, sellers i and j have to have

the same reservation values (i.e., zi = zj) and the rewards are higher than the reservation

values (i.e., xi > zi and xj > zj). Because seller i is ranked before seller j, all other sellers

before i have to have w lower than wi. By Proposition 1, seller i will be visited. Because

xi > zi, the consumer will stop and buy the product from seller i.

←: Suppose the consumer buys the product from seller i. Therefore, wi = maxW . Because
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W ∈ S2, there exists j ̸= i and j ∈ K such that wj = maxW . If by contradiction, seller

j is ranked before seller i in the search order. By Proposition 1, the probability that the

consumer buys from product i is zero.

3.3.2 Demand structure

Denote by p(k) the kth order statistic price among all sellers. By Proposition 1, all sellers

with prices > p(k) will get demand of zero. Divide all sellers with prices ≤ p(k) into groups

such that sellers have the same price in the same group. Denote by G be the set of all groups.

For each group i ∈ G, denote by

• Pi, Ni the price and number of sellers in that group, respectively;

• |Ni| the number of sellers in group i that will get visited if a consumer visits all k

sellers, meaning |Ni| = Ni if Pi < p(k), and |Ni| = k −
∑

j∈G−i
Nj if otherwise;

• Fwi
(x) the CDF of wi, meaning Fwi

(x) = Fxi
(x) for x < vs − Pi and Fwi

(x) = 1 for

x ≥ vs − Pi.

By Corollary 1, the eventual demand for each seller can be derived by discrete choice fashion

and is presented in the following Corollary.

Corollary 6. The total demand for each group i ∈ G, denoted by DGi
, is

|Ni|
∫ vs−Pi

−∞
F |Ni|−1
wi

(x)
∏

j∈G−i

F |Nj |
wj

(x)dFwi
(x)+

|Ni|∑
i′=1

(1−F (vs))F
i′−1(vs)

∏
j∈G−i

F |Nj |
wj

(vs−Pi).

(3.2)

All sellers in group i have the same demand of DGi
/Ni.
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We define the competitive market equilibrium as an equilibrium in which no seller can gain

profit in any period by a one-shot deviation. In each period, sellers choose prices the same

as the one-shot Bertrand-Nash equilibrium price. If the one-shot Bertrand-Nash equilibrium

price exists at all periods, this price also is the subgame-perfect Nash equilibrium price. It

is simple to show that under a competitive market equilibrium, k lowest prices equal the

marginal cost.

3.3.3 Collusive strategy

We consider the price-trigger strategy similar to Green and Porter (1984) as follows.

(a) Collusion phase: sellers place collusive price according to −→pc for 1 period.

(b) Punishment phase: sellers place punishment price at marginal cost (i.e., competitive

price level) for L periods, which can be infinite.

The collusion phase is assigned initially and proceeds with the following rules:

1. If a phase ends with no deviation, go to a new collusion phase in the next period.

2. If a deviation happens during any phase, go to a new punishment phase in the next

period.

The collusion is considered sustainable if no seller has the incentive to make a one-shot

deviation. To illustrate the sustainable condition more formally, we denote the profit per

period for each firm as follows:

• πc is the profit when all sellers collude,
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• πd is the maximum profit to the deviating firm when all other sellers place the collusive

price,

• πp is the profit when all sellers place punishment price (πp = 0),

• πdp is the maximum profit to the deviating firm when other sellers place the punishment

price (πdp = 0).

In the collusive phase, there is no profitable one-shot deviation if

∞∑
t=0

δtπc ≥ πd +
L∑

t=1

δtπp +
∞∑

t=L+1

δtπc. (3.3)

In the punishment phase, if deviate, it is best for the seller to deviate at the beginning

period. There is no profitable one-shot deviation if, in the initial period of the punishment

phase, no seller has the incentive to deviate,

L−1∑
t=0

δtπp +
∞∑
t=L

δtπc ≥ πdp +
L∑

t=1

δtπp +
∞∑

t=L+1

δtπc. (3.4)

The collusion is sustainable if both conditions (3.3) and (3.4) are satisfied.

3.4 Full collusion

In this section, we consider the case where all firms choose the price as if they are a monopoly

with n product lines.
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3.4.1 Market outcomes

Thus sellers will maximize the joint profit in each period. Sellers can obtain the highest joint

profit if its k lowest prices are similar to prices of a k-product monopoly. For simplicity,

the following analysis is about the k-product monopoly. Let π(p⃗) be the profit to the k-

product monopoly where p⃗ = {p1, p2, ..., pk}. Let Di(p⃗) be the demand for seller i for all

i ∈ {1, 2, ..., k}. The k-product monopoly is then given by

π(p⃗) =
k∑

i=1

(pi − c)Di(p⃗).

When s = 0, the reservation value of each seller will be arbitrarily large, and each consumer

will visit all k sellers. Consumers buy from seller i if and only if the reward from i exceeds all

other sellers and the outside option. If the reward from seller i exceeds the outside option,

vi has to be larger than u0 + pi. If the reward from seller i exceeds seller j, vj has to be

smaller than pj − pi + vi. Therefore, the demand for seller i is given by

Di(p⃗)
∣∣
s=0

=

∫ ∞

u0+pi

(
k∏

j ̸=i

F (pj − pi + v)

)
f(v)dv.

Lemma 3. Suppose s = 0. For any p⃗ with pi < pj then

∂π

∂pi
>

∂π

∂pj

A direct result from Lemma 3 is that if there is no search cost, the k-product monopolist

will set all prices the same. This result significantly reduces the complexity of finding the

k-monopolist prices by focusing on symmetric prices only. When all k sellers are visited and

have the same price, a consumer will buy a product if at least one seller has a reward higher

than the outside option value. Therefore, given the symmetric price p, the joint profit is
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π(p) =
(
1− F k(u0 + p)

)
(p− c). (3.5)

Because F is log-concave, by Prekopa Theorem, π(p) has a unique maximizer p∗ (technical

details are in the Appendix). Therefore, for s = 0, k-product monopoly would set all prices

equal to the unique p∗.

When s > 0, we cannot use Lemma 3 to simplify the profit-maximizing problem. We also

have to consider the case where k prices are different. It is now helpful to introduce two

new notations as follows. When considering between visiting a seller with the advertised

price p and taking the outside option, it is convenient to introduce a new value sp as the

maximum search cost that the consumer is willing to visit that seller. That is to say, sp =

Emax{v − p− u0, 0}.6 Therefore, seller i will not get visited if s > spi . Similarly, let ps be

the maximum price for a given search cost. That means if pi > p, visiting seller i is always

dominated by taking the outside option, and seller i will not get visited.

Lemma 4. Let pmax = max{p1, . . . , pk} and pmin = min{p1, . . . , pk}.

• If pmax > pmin, then π is strictly decreasing in s for s ≤ spmax and is monotone

non-increasing in s for s ≥ spmax.

• If pmax = pmin, then π is constant in s for s ≤ spmax and is zero for s > spmax.

The first part of Lemma 4 states that if the prices are not uniform, the joint profit will

decrease with a higher search cost. The intuition is that consumers will search for fewer

6We can express sp more explicitly as

sp =

∫ ∞

u0+p

(1− F (v)) dv

where F (v) is the cumulative distribution function of the random variable vi.
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sellers when the search cost is high. High-price sellers will be less likely to be visited as they

are at the last of the search order. Therefore, the demand shifts toward low-price sellers,

leading to a lower joint profit.

However, the second part of Lemma 4 shows that the monopoly can hedge against losing

profit by placing a uniform price profile, provided that the search cost is not too high. In this

case, higher search cost reduces the consumer surplus but does not affect the cartel profit.

The loss in consumer surplus is partly due to the increase in search cost per se and partly

due to the inability to explore more options.

Previously, we show that in the most favorable situation (i.e., no search cost), the monopoly

will choose a uniform price (p∗) to obtain the maximum profit. This profit is also the upper

limit profit that the monopoly can obtain when the search cost is positive. The reason is

that with a nonuniform price, Lemma 2 shows that joint profit is maximized with no search

cost. On top of that, Lemma 1 shows that under no search cost, no nonuniform price can

yield higher collective profit than the uniform price p∗.

Lemma 4 indicates that if the search cost becomes positive but sufficiently low (s ≤ sp∗),

the upper limit profit is still obtainable if all prices remain equal to p∗. When the search

cost is sufficiently high (s > sp∗), the monopoly would choose the closest price to p∗ with the

constraint that at their price, the reservation value is not dominated by the outside option.

That means the monopoly would choose a price such that it is equivalent to vs − u0.

To sum up, the monopoly would place uniform prices for all sellers, called pM .

• pM = p∗ for s ≤ sp∗ and

• pM = vs − u0 for s > sp∗ .

This result leads us to our proposition about the fully collusive outcomes.
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Proposition 14 (Full Collusion Outcome). Suppose δ and L are high enough that full collu-

sion is sustainable. Fully collusive price and corresponding consumer surplus weakly decrease

in the search cost.

An increase in the search cost can reduce the fully collusive price. It is because the monopoly

has to ensure consumers are willing to search for their products. However, the price reduction

is insufficient to increase the consumer surplus if the collusion sustains.

3.4.2 Sustainability of collusion

We then look at the sustainability of the monopoly when sellers use a punishment scheme

to maintain the monopoly price. That means when a seller deviates, for example, by under-

cutting the price, other sellers will punish the deviating seller’s future profit by lowering the

prices and competing more severely. Deviation from the cartel can bring the seller some in-

stant profit gain but will also jeopardize returns in future periods. Therefore, if the sellers are

forward-looking, meaning the discount factor δ is high, the cartel becomes more sustainable.

Full collusion is sustainable with the largest set discount factor when punishment length

L =∞. In this case, condition (3.4) is always binding, and the right-hand side of condition

(3.3) is the lowest. This strategy is also known as the Nash-reversion (because marginal cost

pricing is a Bertrand-Nash equilibrium). We denote by δ̂ the critical discount factor under

the Nash-reversion strategy (i.e., pc = pM , pp = c, L =∞). Condition (3) must bind at the

critical discount factor.

To pin down the critical discount factor, we must study the one-shot deviation profit πd when

other sellers place the full collusion price pM . Placing a price higher than pM is not desirable

because the deviating firm will end up with no demand. Slightly lowering the price makes

the seller be visited first and get a discrete jump in demand. To guarantee the existence of
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the best one-shot deviation, we assume the deviating price pd ≤ pM . By Corollary 1, the

demand for the deviating firm can be written as

D̃ =

∫ ∞

vs+pd−pM
f(v)dv +

∫ vs+pd−pM

u0+pd

F k−1(v − pd + pM)f(v)dv (3.6)

The first integration is the probability that a consumer stops searching after visiting the

deviating store and buys the product from them. It happens if and only if the reward from

the deviating seller v− pd exceeds the reservation value of other sellers vs− pM . The second

integration represents the probability that a consumer buys from the deviating firm but not

during the first visit. It only happens if and only if (1) the reward from the deviating seller

does not exceed the reservation value of other sellers, (2) the reward from the deviating seller

is higher than the outside option, and (3) the deviating seller has the highest reward among

all k visited sellers.

The role of consumer search cost is illuminating in equation (3.6). Recall that pM is constant

in s for s ≤ sp∗ while vs is strictly decrease in s at all s. That means given any pd ≤ pM , D̃

is strictly increasing in s for s ≤ sp∗ . The intuition is contained within equation (3.6). The

consumers who are indifferent between continuing searching and buying from the first seller

(who have v = vs + pd − PM from the deviating seller) will switch to buying from the seller

when the search cost increases.
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(a) Monopoly price and best deviation price

(b) Fully collusive profit and best deviation profit

Figure 3.1: Sustainability of full collusion

Because the demand for the deviating seller increases with a higher search cost, the direct

result is that the maximum profit to the deviating firm is also strictly increasing in search

cost. As a result, deviation becomes more tempting, and collusion is less sustainable. To

formalize the result of the sustainability of the full collusion, we study how search cost affects
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the critical discount factor. At the critical discount factor δ̂, condition (3.3) is binding, which

means

πc(p
M)

1− δ̂
= πd. (3.7)

For s ≤ sp∗ , fully collusive profit πc(p
M) is constant in s while deviation profit πd increases

in s. Therefore the critical discount factor δ̂ increases in search cost when s ≤ sp∗ . In fact,

the critical discount factor increases with the search cost for the entire range. The technical

proof is in the appendix.

Proposition 15 (Sustainability of Full Collusion). Full collusion is easier to sustain with

lower search cost in the sense that the critical discount factor δ̂ increases in search cost s.

As opposed to a market with a high price-transparency makes collusion easier to maintain

because it is easier for sellers to punish deviation; a market with low consumer search cost

makes collusion easier to maintain because it is less tempting for the sellers to deviate.

3.5 Symmetric collusion

In this section, we study a broader range of collusion. We allow sellers to collude at any

price pc above the competitive level (i.e., marginal cost).

3.5.1 Sustainability

Proposition 16 (Sustainability of Symmetric Collusion 1). Symmetric collusion is easier to

maintain with lower search costs in the sense that the sustainable price set becomes smaller

with higher search costs.
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Figure 3.2: Sustainable collusion price set

Note. Simulations with marginal cost c = 1, discount factor δ = 0.95, punishment length

L =∞, match value vi ∼ Gumbel(2, 0.25), n = 3 and k = 2.

In general, the coordinated collusive price pc can be considered as a random variable from a

distribution F (can be degenerate). For example, one mechanism for sellers to coordinate on

pc is using a public randomization device. Full collusion is a special case when F degenerates

at the monopoly price pM . When F is not degenerate, pc is a random variable, and the

corresponding critical δ̂ is also a random variable. The collusion is fully characterized by the

distribution F . The following Proposition shows that F collusion is also harder to maintain

with a higher search cost if the distribution F does not change with search cost.

Proposition 17 (Sustainability of Symmetric Collusion 2). Suppose F is the same for

s ∈ {sl, sh} and sl < sh. F collusion is easier to sustain with a lower search cost in the

sense that the critical discount factor δ̂ increases in the first order stochastic dominance with

higher search cost:

Fδ̂(x|s = sl) ≥ Fδ̂(x|s = sh)
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for all for all x, with strict inequality at some x, and sl < sh.

To sum up, we have shown that the sustainability of collusion increases with lower search

costs in various criteria. The critical factor to this result is that seller has more motivation

to undercut the cartel price with higher search cost. Consumers will search less and tend to

stay with the first seller they visit, leading to a higher demand for the deviating firm. In

the following section, we will introduce our experiment design with AI pricing algorithms to

study the effect of search cost on market outcomes and compare them with our theoretical

results.

3.6 Experiment design

3.6.1 Q-learning

We simulate our model where each seller is equipped with independent reinforcement learning

to help them price at each period. The reinforcement learning we use is Q-learning. This

type of algorithm was first introduced by Watkins (1989) and has been used widely in the

computer science literature.7

Q-learning is a reinforcement learning algorithm used widely due to its simplicity and the

clear economic interpretations of its parameters. The algorithm involves iteratively updating

a Q-value table, which maps state-action pairs to their expected rewards. This algorithm

allows an agent to learn how to behave optimally in a given environment by selecting actions

that maximize its expected reward.

Despite its simplicity and popularity, Q-learning is known to be slow to converge. This issue

can be problematic in complex environments where the number of possible states and actions

7See Sutton and Barto (2018) for a comprehensive overview on Q-learning.
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is large. However, convergence time is not typically an issue in our experiments with simpler

setups. Therefore, Q-learning is often a good choice for these types of scenarios.

It is important to note that the choice of algorithm can have a significant impact on the out-

come of an experiment. More complex algorithms may be able to adopt more sophisticated

strategies. However, the choice of Q-learning can be appropriate to emphasize the results

that even simple algorithms can exhibit collusive-like behavior, as will be shown in the next

section.

To understand how Q-learning works, consider a dynamic programming problem in which,

at every period, an agent observes a state s ∈ S and can choose an action a ∈ A where S

and A are finite sets. For any state s and action a, the agent gets a payoff π and moves to

a new state s′. The transition from (s, a) to (π, s′) is a stationary Markov decision process,

meaning the transition probability F (π, s′|s, a) is time-invariant. The agent’s problem is to

find an optimal policy a∗(s) that maximizes the expected discounted payoffs.

Instead of working directly with Bellman’s value function V (s), Q-learning works with Q-

function Q(s, a), which is the discounted payoff of taking action a in state s. The connection

is V (s) ≡ maxa∈A Q(s, a). Therefore,

Q(s, a) = E(π|s, a) + δE

[
max
a′∈A

Q(s′, a′)|s, a
]
. (3.8)

The optimal policy is then a∗(s) = argmaxa∈AQ(s, a).

Q-learning is a method to estimate the Q-function through iteration. For each particular

pair of s and a, Q-learning starts with an initial estimation value Qe(s, a) and then updates

it iteratively over time (subscript e to represent that it is an estimation). It is convenient to

think of Q-function as a matrix with one state dimension and one action dimension. There

are |S|.|A| cells in the Q-matrix.
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Suppose the system is in state s and chooses action a. It then gets a payoff π and moves to

state s′ (s′ can be the same as s). In this case, the value in the cell (s, a) of the Q-matrix

will get updated from Qe(s, a) to Q′
e(s, a) as following:

Q′
e(s, a) = (1− α)Qe(s, a) + α

[
π + δmax

a′∈A
Qe(s

′, a′)

]
. (3.9)

For this period, only the value in cell (s, a) gets updated. Other cells remain the same. The

learning rate is α ∈ (0, 1). After an action is made in a state, one cell in the Q-matrix gets

updated.

For the system to estimate the true Q-function, it needs to update all cells, meaning some

degree of exploration is necessary. We specify the experimentation probability ϵt as a time-

declining function

ϵt = e−βt (3.10)

with β > 0. The algorithms choose a random action with probability ϵt and choose the

action with the highest estimation value with probability 1− ϵt.

3.6.2 Model simulation

We constructed n independent Q-learning agents and let them repeatedly interact in period

t = 0, 1, 2, . . . . Each agent chooses an action (price) from an action set in each period. We

discretize the interval [p, p] to get 15 equally spaced price points, including the boundaries,

where p is lower than marginal cost c, and p is higher than the monopoly price when search

cost is zero pMs=0. To be more specific, we set p = c−0.05(pMs=0−c) and p = pMs=0+0.1(pMs=0−c).

After agents choose their prices, the payoff (profit) to each agent in that period is given by

πi = (pi − c)Di, where the demand Di is determined by Corollary 6.
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We use the set of all price permutations from n sellers {p1, p2, . . . , pn} as the state set. The

state of a period is determined by the chosen price permutation of the last period. Hence,

the state set contains 15n elements. The Q-matrix is then a 15× 15n matrix.

For the initial Q-matrix at t = 0, we set the value of each cell Qe(s, a) = π0(s)/(1 − δ)

where π0(s) is the expected payoff to the agent in one period when all other sellers uniformly

randomize their actions. To start the simulation, we randomly choose the initial state at

t = 0.

When the simulation runs, the Q-matrix is updated, cell by cell. The optimal strategy from

estimation ae(s) = argmaxa∈A Qe(s, a) will also change (not necessarily after each period)

during the learning process. We say the simulation converges when the optimal strategy

from estimation for each agent does not change for 100,000 consecutive periods. When a

simulation converges, we stop the simulation and study adopted actions and the relevant

outcomes upon convergence. For each experiment (a fixed set of parameters), we run 1000

independent simulations.

In our baseline specification, the number of agents n = 3, the maximum number of visits

k = 2, and the outside option value u0 = 0. For other parameterization, we take a similar

setup to Calvano et al. (2020) with quality index µ = 2, product differentiation σ = 0.25,

discount factor δ = 0.95, and learning specification α = 0.15 and β = 10−5.

3.7 Experiment results

In this section, we study the roles of consumer search cost by doing experiments with a

sequence of s. We first present a set of results upon convergence regarding prices, welfare,

and other metrics. We then compare the experimental results with our theoretical results.

This comparison includes testing our comparative statics results regarding market price and
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AI simulations by cycle length

1 2 3 ≥ 4 All

s = 0.01

Frequency 0.049 0.241 0.172 0.538 1

s = 0.3

Frequency 0.049 0.323 0.204 0.424 1

Average price change (%) -2.46 -5.76 -4.72 -4.34 -4.36

Average search time change (%) -40.01 -42.46 -42.10 -42.14 -42.12

Average consumer surplus change (%) -51.07 -44.70 -43.23 -43.31 -44.59

Average seller surplus change (%) -7.14 -12.90 -9.97 -7.48 -8.68

Average total surplus change (%) -33.70 -31.46 -30.98 -30.49 -31.10

Table 3.1: Descriptive Statistics

consumer surplus and matching AI-simulated results with a theoretical equilibrium.

Upon convergence, agents rarely end up choosing the same price repeatedly. Only around

5% of all simulations for s ∈ [0, 0.3] that agents adopt the same price in every period. For

the majority of simulations, agents loop over a set of prices. When the simulation converges,

the algorithms update a cycle of cells in the Q-matrix. We refer to the number of cells in

the loop as the price cycle of the simulation. More than 50% of the simulations have a price

cycle length of 2 or 3 (for s is at the middle of our experiment range).

Figure 3.4 shows the AI average price compared to the fully collusive and competitive prices.

The thin box plots show the distribution of AI prices. There is a clear downward-slopping

trend of AI prices with consumer search costs. Compared to no search cost, average AI

prices decrease by 4.36% when s = 0.3 and decrease by 7.41% when s = 0.5 We also find

that AI agents manage to choose non-competitive prices in a frictional market. They adopt

a reward-punishment scheme to keep their price above the competitive level. This scheme is

similar to the price-trigger strategy in Green and Porter (1984), as punishment immediately

follows a deviation. All algorithms reduce the price right after one algorithm undercuts the
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Figure 3.3: AI prices, consumer search time and welfare

long-run price and then gradually increases the price. However, we find that AI algorithms

do not return to the previous long-run price in the frictional market. They end up with

a lower price than before the deviation. This result contrasts with Calvano et al. (2020),

where algorithms in a market with no friction manage to return to the original price after a

deviation.
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Figure 3.4: AI impulse response to deviation

Note. Market is frictional with s = 0.2. After AI strategies stabilize, we force one
algorithm to deviate to the best static response. Then we let all algorithms respond to the
deviation by letting them run with their optimal strategies in the following periods.

With a higher search cost, AI agents are less likely to maintain the high prices. This ex-

perimental result is consistent with our theoretical results in two dimensions: (1) collusion

is harder to maintain with higher search costs, and (2) collusive prices decrease with higher

search costs.

As search costs increase, consumers are less willing to visit new stores. This change in

consumer behavior has two effects: it reduces the demand for the sellers at the end of
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the order and increases the demand for front sellers, as consumers are more likely to stop

searching and choosing them. That means undercutting the price to improve position in the

consumer search order becomes more tempting. A slight reduction in the price could earn

the seller a discrete jump in profit if they move the front of the search order. Therefore,

a higher search cost makes the market as a whole become more competitive and brings

down the price. Figure 3b shows the consumer average search time, which reflects that price

competition intensifies as search cost increases.

Even though AI prices decrease with a higher search cost, it is not enough to offset the cost it

incurs to consumers (figure 3c). This result is consistent with our theoretical results, which

predict that consumer surplus reduces with higher search costs if collusion sustains. The

experiment results match our theoretical comparative static results regarding the market

price and social welfare. In the following analysis, we will look at how well the market

outcome with AI agents fits into a certain equilibrium.

3.8 Half collusion comparison

This section compares our experiment results with the half-collusive equilibrium. In the half-

collusive equilibrium, sellers uniformly randomize between fully collusive price and marginal

cost. Figure 6 shows how the AI price fits into our theoretical equilibrium set, the shaded

area, and the average half-collusive price.
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Figure 3.5: Price and consumer surplus comparison with different search costs

Note. Simulations with marginal cost c = 1, discount factor δ = 0.95, punishment length

L =∞, match value vi ∼ Gumbel(2, 0.25), n = 3 and k = 2.
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The AI price fits well in our theoretical equilibrium set and is close to the half-collusive price.

Regarding welfare outcome, consumer surplus under half collusion matches AI simulations

better than the randomized collusion, especially for s ∈ [0, 0.3]. We continue to compare our

AI simulation results with half-collusion outcomes in different dimensions, including product

quality, product differentiation, and production cost.

The simulation results confirm several theoretical predictions. First, higher product quality

increases both price and consumer surplus. The extra utility from the better quality product

is shared between sellers and consumers. It allows sellers to increase the price while still im-

proving consumer surplus. Higher product differentiation increases both price and consumer

surplus. When the products are more heterogeneous, the price competition will subside,

leading to a higher price. On the other hand, with higher differentiated products, the search

value for the consumer increases leading to higher consumer expected utility. Finally, higher

production cost leads to higher price and lower consumer surplus. This result is intuitive.

In all cases, both price and consumer surplus under AI pricing simulations resemble the

half-collusive equilibrium.
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Figure 3.6: Price and consumer surplus comparison with different product quality, differen-
tiation, and costs

3.9 Robustness

In this section, we will conduct robustness checks on the following hypotheses:
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• Price decreases with higher search costs.

• Consumer surplus decreases with higher search costs.

• Price and consumer surplus with AI pricing algorithms resemble half-collusive equilib-

rium.

3.9.1 Product quality

We run our experiment with different product quality indexes µ for the robustness exercise.

Taking the baseline specification as the middle point, we set µ = 1.5 for the low product

quality and µ = 2.5 for the high product quality.
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Figure 3.7: Product quality robustness

With a high product quality, our experiment shows both AI price and consumer surplus

increases. These results are intuitive and consistent with classical theory results, which

predict that price and surpluses increase with higher product quality. The AI price still

fits well in our theoretical equilibrium set under different product qualities. When the

theoretical equilibrium set is narrow (under low product quality and high search cost), the

AI price remains mainly within the theoretical equilibrium set. At s = 6, the AI price slightly

exceeds the equilibrium upper boundary. However, this does not come as a surprise because

of the discretization of the price action set. Under the low product quality specification,

only one price (1.018) is higher than c and lower than p. All other prices are below marginal
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cost or are too high that the consumer will never visit. If the agents fully colluded, they

would all choose 1.018 as their price, and the price cycle has a length of one. However, AI

agents generally cannot obtain such a price in practice. If yes, it is by chance. AI agents

generally end up with a price cycle with the price of 1.018 as a part of it, meaning they can

earn positive profit only sometimes in the cycle.

Regarding the comparative statics result, our experiment shows that, in general, AI prices

and consumer surplus decrease with higher search costs. This result is consistent with our

main theoretical results. However, we observe a zigzag shape on both price and consumer

surplus under low product quality and high search cost, around 0.4-0.6. The uneven shape

is pronounced with consumer surplus when the AI line abruptly increases several times. We

believe this is due to the discretization of the price grid. The number of prices higher than c

and lower than ps change rapidly from 5 to 1 from s = 0.4 to s = 0.6. When a price becomes

higher than ps as the search cost increases, the profit from choosing that price becomes 0

every time because consumers will not visit the store at such a price. Each sudden drop in

AI price and each jump in consumer surplus corresponds with each time ps goes lower than

one more price when search cost increases.

3.9.2 Product differentiation

In this robustness experiment, we run the simulations with different product differentiation

σ = 0.05 and σ = 0.5 (in baseline specification, σ = 0.25). Figure 8 shows that AI price is

lower with lower product differentiation. This result is intuitive because price competition

is more intense when products are close substitutes. On the other hand, consumers are

better of with higher product differentiation because of the higher search value. Consumers

generally search more with high product differentiation (Figure 9).
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Figure 3.8: Product differentiation robustness

Regarding the comparative statics, our experimental result is consistent with our theoretical

results, which show that both price and consumer surplus decrease with a higher search cost.

The AI price fits well in our theoretical equilibrium set. The price and consumer surplus

from experiments are close to half-collusive equilibrium.
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Figure 3.9: Consumer average search time

3.9.3 Production cost

In this robustness exercise, we conduct our experiment with different production costs. The

low production cost takes the value of 0.5, and the high production cost takes the value of

1.5 (in baseline specification, c = 1).
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Figure 3.10: Production cost robustness

Regarding the comparative statics, our experiments show that AI price and consumer sur-

plus generally decrease with a higher search cost, which is consistent with our theoretical

results. However, consumer surplus with AI agents has several slight jumps when search

cost increases. We believe that this is due to the discretized price grid. Each dip of AI price

and each jump of consumer surplus corresponds to each time a price in a price grid becomes

lower than ps.

Our experiment shows that AI price increases and consumer surplus decreases with a higher

production cost. The AI price generally fits well in our theoretical equilibrium set, except
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for high production cost and search cost (s =∈ [0.55, 0.6]), the AI price is slightly above

the equilibrium range. This outcome is similar to the low product quality case. The reason

is the same in both cases and is discussed in subsection 9.2. The half-collusive equilibrium

price and consumer surplus match the simulation outcome relatively well.

3.10 Conclusion

This article studies the roles of consumer search friction on collusion; and implications on

market prices and consumer welfare. We tackle these questions theoretically by revisiting

collusion model of Green and Porter (1984) with search friction and experimentally by sim-

ulating sellers’ interactions with AI-powered pricing algorithms.

We find that lower search costs make it easier for firms to collude. This finding is distinctive

because it differs from existing consumer search literature results and should probably ring

an alarm to antitrust policies, especially for e-commerce marketplaces. The mechanism is

that when prices are observable, lower search costs make undercutting the cartel price less

profitable. Therefore, the sellers have less incentive to deviate, and the cartel becomes more

sustainable. On the other hand, we also show that higher search costs can reduce market

prices. However, this price reduction cannot offset the search burden on consumers if the

collusion sustains.

With decreasing search costs due to new technological advancement, our findings raise an

important question on how we should regulate consumer search friction. Lowering search

costs can increase consumer surplus per se; however, the sellers can collude more easily. This

change in collusion incentive puts the consumers at the stake of being worse off eventually.

Our paper also puts a step forward to characterize the collusion equilibrium that can realize in

practice. This task is challenging if done only theoretically because of a large equilibrium set.
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However, our experiment results show that markets with AI pricing algorithms have a similar

outcome to half-collusive equilibrium, where sellers randomize between fully collusive pricing

and competitive pricing. This result can help determine the optimal policy for markets where

sellers use AI-powered pricing software.

Last but not least, we find that Q-learning, a simple reinforcement learning algorithm, can

adopt a collusive strategy to maintain prices above the competitive level in the frictional

market. The punishment scheme is similar to a price-trigger strategy in which a deviation

is followed by punishment with lower prices from all agents. Prices gradually increase after

the first hard punishment period. However, they converge to a lower price than before the

deviation. This finding joins the policy concern on how to prosecute collusion when sellers

use algorithmic pricing. These algorithms may autonomously learn to collude without having

any overt communication or agreement.
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Appendix A

Supplementary material for Chapter 1

Proof of Proposition 1. The explicit function of l∗ comes from the fact that l∗ maximizes

Al∗ . Let p̂∗ be the equilibrium expected expenditure. The following argument is to show

p̂∗ < p′ < p∗ if sλ(1− α) > m. Recall that

p̂∗ =
1− F

(
p̂∗

Q0

)
f
(

p̂∗

Q0

) Q0 + c− Al∗ , (A.1)

p′ =
1− F

(
p′

Q0

)
f
(

p′

Q0

) Q0 + c. (A.2)

Given sλ(1− α) > m and 1−F
f

is monotone non-increasing, then Al∗ > 0, p̂∗ < p′, and

1− F
(

p̂∗

Q0

)
f
(

p̂∗

Q0

) ≥
1− F

(
p′

Q0

)
f
(

p′

Q0

) . (A.3)
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By (A.1), the definitions of p̂ and Al, we have

p∗ − (1− α)

∫ l∗

0

(p∗ − se−σt)λe−λtdt−ml∗ =
1− F

(
p̂∗

Q0

)
f
(

p̂∗

Q0

) Q0 + c. (A.4)

By contradiction, suppose p∗ ≤ p′. By (A.2) and (A.4), we have

1− F
(

p̂∗

Q0

)
f
(

p̂∗

Q0

) Q0 + c < p∗ ≤ p′ =
1− F

(
p′

Q0

)
f
(

p′

Q0

) Q0 + c,

which violates (A.3). We conclude by contradiction that p∗ > p′.

Proof of Corollary 1. From the explicit function of l∗ (Proposition 1), the partial deriva-

tive ∂l∗/∂λ is given by

λ+ σ − λ ln
[
(1−α)sλ

m

]
λ(λ+ σ)2

.

By contradiction, suppose there exist λ1 < λ2 such that ∂l∗/∂λ
∣∣
λ=λi

= 0 for all i ∈ {1, 2}.

Therefore,

λi + σ = λi ln

[
sλi(1− α)

m

]
∀i ∈ {1, 2},

which implies ln [sλi(1− α)/m] > 1. Because ln [sλi(1− α)/m] is increasing in λi and λ1 +

σ = λ1 ln [sλ1(1− α)/m], we must have λ2+σ < λ2 ln [sλ2(1− α)/m], which is contradictory.

Proof: p̂ increases in α and decreases in λ. Because f/(1−F ) is monotone non-decreasing

and Q0 increases in α and decreases in λ, by (1.7), we only need to show that Al∗ decreases

in α and increases in λ. It is clear that Al∗ decreases in α. The following is to show that Al∗

increases in λ.

• Suppose m/[(1 − α)s] < λ < λ̇. By Corollary 1, ∂l∗/∂λ > 0. By (2.12), we have
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∂Al∗/∂l
∗ = sλe−(λ+σ)l∗ > 0. Thus ∂Al∗/∂λ > 0.

• Suppose λ > λ̇. By (2.12), we can represent Al∗ as following

Al∗ = s(1− α)
λ

λ+ σ

(
1−

∫ ∞

l∗
(λ+ σ)se−(λ+σ)tdt

)
−ml∗. (A.5)

Let l∗1 and l∗2 be the two equilibrium return periods corresponding to λ1 and λ2 such

that λ̇ ≤ λ1 < λ2. Thus l∗2 < l∗1 by Corollary 1. By the explicit function of l∗ in

Proposition 1, we have s(1− α)λe−(λ+σ)l∗ = m. Thus

s(1− α)

∫ l∗1

l∗2

λ2e
−(λ2+σ)tdt < m (l∗1 − l∗2) (A.6)

and λ2e
−(λ2+σ)l∗1 < λ1e

−(λ1+σ)l∗1 . Note that e−(λ2+σ)t/e−(λ1+σ)t decreases in t. Therefore,

s(1− α)

∫ ∞

l∗1

λ2e
−(λ2+σ)tdt < s(1− α)

∫ ∞

l∗1

λ1e
−(λ1+σ)tdt. (A.7)

Thus A(l∗1) < A(l∗2) is a direct result from (A.5), (A.6), and (A.7).

Proof of Proposition 2. Let p∗1 and p∗2 be the two corresponding equilibrium prices for

α1 and α2 such that 0 < α1 < α2 < α̃. Consider the case where s/m is high enough such

that sλ(1− α̃) > m and

λ

γ
<
[
(1− α̃)λ

s

m

] λ
σ+λ − 1. (A.8)

We will prove that p∗1 > p∗2.
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From the explicit function of l∗ in Proposition 1, the inequality (A.8) implies

λ

γ
< eλl

∗(α) − 1 =
1− e−λl∗(α)

e−λl∗(α)
∀α ∈ [α1, α2].

Because l∗(α) decreases in α, we have

∂

∂α

[
α
(
1− e−λl∗(α)

)
+ e−λl∗(α)

αλ+ γ

]
> 0 ∀α ∈ [α1, α2]. (A.9)

Note that Ωl = 1 − (1 − α)
∫ l∗(α)

0
λe−λtdt = α

(
1− e−λl∗(α)

)
+ e−λl∗(α), the inequality (A.9)

implies

1− (1− α1)
∫ l∗1
0
λe−λtdt

Q1

<
1− (1− α2)

∫ l∗2
0
λe−λtdt

Q2

, (A.10)

where Q1 = Q0

∣∣
α=α1

, Q2 = Q0

∣∣
α=α2

, l∗1 = l∗(α)
∣∣
α=α1

, and l∗2 = l∗(α)
∣∣
α=α2

.

By contradiction, suppose p∗1 ≤ p∗2. Because p̂ = Ωlp, we have the following inequalities

p̂∗1
Q1

<
p̂∗2
Q2

, (A.11)

(p∗1 − s)
[
1− (1− α1)

∫ l∗1
0
λe−λtdt

]
Q1

<
(p∗2 − s)

[
1− (1− α2)

∫ l∗2
0
λe−λtdt

]
Q2

. (A.12)

Note that l∗1 > l∗2 and Q1 < Q2, we also have the following inequalities

s− c−ml∗1
Q1

<
s− c−ml∗2

Q2

(A.13)
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and

−s(1− α1)
∫ l∗1
0
(1− e−σt)λe−λtdt

Q1

<
−s(1− α2)

∫ l∗2
0
(1− e−σt)λe−λtdt

Q2

. (A.14)

By adding (A.12), (A.13), and (A.14) all together, we get

p̂∗1 + A(l∗1)− c

Q1

<
p̂∗2 + A(l∗2)− c

Q2

. (A.15)

Given (1− F )/f is monotone non-increasing, then (A.11) and (A.15) lead to a violation to

(1.7). We conclude from the contradiction that p∗1 > p∗2.

Proof of Proposition 3. By the explicit function of l∗ in Proposition 1, we note that

∂
[
(λ+ σ)e−λl∗

]
/∂λ < 0 for all λ > m/[s(1− α)]. Because γ ≥ σ, we have

∂
[
(λ+ γ)e−λl∗

]
∂λ

< 0 for all λ >
m

s(1− α)
. (A.16)

Because l∗
∣∣
λ=m/[s(1−α)]

= 0, there exists a λ̈ > m/[s(1− α)] such that

(λ+ σ)e−λl∗ > σ for all λ ∈
[

m

s(1− α)
, λ̈

]
. (A.17)

By Corollary 1, there exists a λ̇ such that l∗ increases in λ if λ ∈ [m/[s(1 − α)], λ̇]. We

will prove the Proposition 3 by choosing λ̃ equal to min{λ̇, λ̈}. Let p∗1 and p∗2 be the two

corresponding equilibrium prices for λ1 and λ2 such that m/[s(1 − α)] < λ1 < λ2 < λ̃. We

will show that p∗1 < p∗2.

By (A.16) and (A.17), we have

(λ1 + σ)e−λ1l∗1 > (λ2 + σ)e−λ2l∗2 > σ (A.18)
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where l∗1 = l∗
∣∣
λ=λ1

and l∗2 = l∗
∣∣
λ=λ2

. The inequality chain (A.18) yields

(1− α)e−λ1l∗1 + α
1−α
λ1+γ

+ α
γ

>
(1− α)e−λ2l∗2 + α

1−α
λ2+γ

+ α
γ

. (A.19)

Note that Ωl = 1 − (1 − α)
∫ l∗(λ)

0
λe−λtdt = (1 − α)e−λl∗(λ) + α, the inequality (A.19) is

equivalent to

1− (1− α)
∫ l∗1
0
λ1e

−λ1tdt

Q1

>
1− (1− α)

∫ l∗2
0
λ2e

−λ2tdt

Q2

, (A.20)

where Q1 = Q0

∣∣
λ=λ1

and Q2 = Q0

∣∣
λ=λ2

.

By contradiction, suppose p∗1 ≥ p∗2. Because p̂ = Ωlp, we have the following inequalities

p̂∗1
Q1

>
p̂∗2
Q2

, (A.21)

(p∗1 − s)
[
1− (1− α)

∫ l∗1
0
λ1e

−λ1tdt
]

Q1

>
(p∗2 − s)

[
1− (1− α)

∫ l∗2
0
λ2e

−λ2tdt
]

Q2

. (A.22)

Because l∗1 < l∗2 and Q1 > Q2, we also have the following inequality

s− c−ml∗1
Q1

>
s− c−ml∗2

Q2

. (A.23)

Finally, we will show that

−s(1− α)
∫ l∗1
0
(1− e−rt)λ1e

−λ1tdt

Q1

>
−s(1− α)

∫ l∗2
0
(1− e−rt)λ2e

−λ2tdt

Q2

. (A.24)

Note that ∂l∗/∂λ
∣∣
λ=λ̇

= 0 implies that λ̇ = 1/l∗
∣∣
λ=λ̇

. Because l∗ increases in λ for λ ∈

[m/[s(1−α)], λ̇], we have λ < 1/l∗ for λ ∈ [m/[s(1−α)], λ̇]. Therefore, λ1 < λ2 < 1/l∗1 < 1/l∗2.
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Thus λ1 < λ2 < 1/t for all t ∈ (0, l∗1). Hence λ1e
−λ1t < λ2e

−λ2t for all t ∈ (0, l∗1). The

inequality (A.24) is then a direct result.

By adding (A.22), (A.23), and (A.24) all together, we get

p̂∗1 + A(l∗1)− c

Q1

>
p̂∗2 + A(l∗2)− c

Q2

. (A.25)

Given (1− F )/f is monotone non-increasing, then (A.21) and (A.25) lead to a violation to

(1.7). We conclude from the contradiction that p∗1 < p∗2.

Proof of Lemma 1. By (1.8), dt/dπt = 1/[πt(1− πt)λ]. Let πt

∣∣
t=T

= β. Because πt

∣∣
t=0

=

α, we have
∫ β

α
1/[πt(1− πt)λ]dπt = T. Thus

Tλ =

∫ β

α

1

πt

dπt +

∫ β

α

1

1− πt

dπt

= ln

[
β(1− α)

(1− β)α

]
.

Therefore, we have πt

∣∣
t=T

= β = α/[(1− α)e−λT + α].

Proof of Proposition 4. From the definitions of Ωl, equation (1.3), and Ql, equation

(1.9), and the explicit function of πl, equation (??), we have

ΩlQl =
γ + λα

(1−α)e−λl+α

(γ + λ)γ
e−γl

[
α + (1− α)e−λl

]
.

Thus ∂(ΩlQl)/∂l = −
[
α
(
eλl − 1

)
+ 1
]
e−(γ+λ)l, which is strictly negative, so by equation

(1.10), the critical expected expenditure decreases in l.

Proof of Proposition 5. Let p̂∗l be the expected expenditure that maximizes the seller’s
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profit for a given l. Thus

p̂∗l =
1− F

(
p̂∗l

ΩlQl

)
f
(

p̂∗l
ΩlQl

) ΩlQl − Al + Sn
l . (A.26)

Note that Al=0 = 0, Sn
l=0 = s, and Ωl=0 = 1. Given any l ≥ 0, we have limµ→∞ p̂∗l =∞ and

limµ→∞Π(p̂∗l ) = p̂∗l + Al − c. For any τ > 0:

• Suppose Al=τ ≤ 0. It is clear that Π(p̂|l = τ) < Π(p̂|l = 0) for all p̂.

• Suppose Al=τ > 0. Because Ωl=τQl=τ < Q0 and Sn
l=τ < s, there exists a finite µ̃ such

that if µ > µ̃, then p̂∗l=τ < p̂∗l=0 − Al=τ . This implies, there exists a finite µ̃ such that

if µ > µ̃, then Π(p̂∗l=τ ) < Π(p̂∗l=0).

Therefore, there exist a finite µ̃, such that if µ > µ̃ then Π(p̂, l) is maximized only if l = 0.

Let p̂∗B be the equilibrium expected expenditure in the baseline model. By equation (1.7),

we have

p̂∗B =
1− F

(
p̂∗B
Q0

)
f
(

p̂∗B
Q0

) Q0 −max
l≥0

Al + c. (A.27)

Because maxl≥0Al > 0, there exists a s̃ < c such that c−maxl≥0Al < s for s > s̃. Note that

(1− F )/f is monotone non-increasing. Thus p̂∗B < p̂∗l=0 if s > s̃ and µ > µ̃.
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Appendix B

Supplementary material for Chapter 2

Proof of Proposition 6.

Part 1: It is clear that vk is strictly decreasing in he and vb is non-decreasing in he. I

claim that if he = p − h, then vb > 0. Indeed, suppose by contradiction vb ≤ 0 then

max
(
U(vbe

−δl, πl), p− h− he

)
= 0. Because B(vb) = p, then

p− (p− h)(1− α)

∫ l

0

λe−λtdt =(1− α)

∫ l

0

∫ y

0

vbe
−δxdxλe−λydy

+
[
(1− α)e−λl + α

] [∫ l

0

vbe
−δxdx

]
.

(B.1)

This is contradictory as the left hand side of (B.1) is positive whereas the right hand side

is negative. Hence, vb|he=p−h > 0. Note that vk|he=p−h = 0. Therefore, if vb|he=a < vk|he=a,

then there exists a unique b > a such that vb|he=b = vk|he=b.

Part 2: If he ≤ b, then vb ≤ vk. The seller’s profit is

Π = [1− F (vk)] Π1 + [F (vk)− F (vb)] Π2
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where

Π1 ≡ p− (1− α)

∫ l

0

(p− se−δt)λe−λtdt−ml − c

Π2 ≡ p− (1− α)

∫ l

0

(p− se−δt)λe−λtdt−
[
α + (1− α)e−λl

] (
p− se−δl

)
−ml − c.

Because p > c (otherwise, Π < 0) and c > s (by assumption), then p > s. Hence, Π1 > Π2

and Π2 < 0. Because vk is decreasing in he and vb is increasing in he, then F (vk) is decreasing

in he and F (vb) is increasing in he. Therefore, Π increases in he.

Part 3: If he ≥ b, then vb ≥ vk. The seller’s profit is Π = [1− F (vk)] Π1. Because vb ≥ vk

and B(vb) = p, then

p = U(vb, α) + (p− h)(1− α)

∫ l

0

λe−λtdt,

which shows that vb is constant in he. Therefore, Π is constant in he.

By results of the three parts, we conclude that Π|he≥b = max
he≥0

Π(he).

Proof of Corollary 2. By the definition of A(l), ∂A(l)
∂l

= (1 − α)(se−δl − h)λe−λl − m.

Because l∗ maximizes A(l), then l∗ > 0 if and only if ∂A(l)
∂l

∣∣∣
l=0

> 0. Therefore, l∗ > 0 if and

only if (1− α)(s− h)λ−m > 0.
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Appendix C

Supplementary material for Chapter 3

Proof. (Proposition 13) For k = n, the proof can be found in Weitzman (1979). For k < n,

suppose the policy is optimal if each consumer can only visit m more sellers (m ≤ k). To

use the induction in the Weitzman proof, we only need to show that the policy is optimal

when m = 1.

If m = 1, the optimal option is to choose the seller with the highest reservation value (the

lowest price) or the outside option. From the definition of the reservation value, it is optimal

to choose the outside option if and only if u0 exceeds the highest reservation value. Therefore,

the policy is optimal when m = 1.

Proof. (Lemma 3) Convert to standard Type I Extreme Value:

Let ϵi ≡
vi − µ

σ
. Therefore, the c.d.f. and p.d.f. of ϵi have the standard form: G(ϵi) =

exp (− exp (−ϵi)), and g(ϵi) = exp (−ϵi) exp (− exp (−ϵi)). Consider seller i against the out-

side option. The consumer purchases i if vi − pi > u0, which is equivalent to

ϵi >
u0 − µ

σ
+

pi
σ
.
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Consider seller i against seller j. The consumer purchases i if vi − pi > vj − pj, which is

equivalent to

ϵj <
pj
σ
− pi

σ
+ ϵi.

For simplicity, let ρ ≡ p

σ
and b ≡ u0 − µ

σ
. The demand for seller i is

Di =

∫ ∞

ρi+b

k∏
j ̸=i

G(ρj − ρi + ϵi)g(ϵi)dϵi. (C.1)

Substitute G(ϵj) and g(ϵi) we can simplify the inner product to

Di =

∫ ∞

ρi+b

k∏
j=1

exp (− exp (− (ρj − ρi + ϵi))) exp(−ϵi)dϵi

=

∫ ∞

ρi+b

exp

(
−

k∑
j=1

exp(−(ρj − ρi + ϵi))

)
exp(−ϵi)dϵi

=

∫ ∞

ρi+b

exp

(
− exp(−ϵi)

k∑
j=1

exp(−(ρj − ρi))

)
exp(−ϵi)dϵi.

(C.2)

Set t = − exp(−ϵi). This means dt = exp(−ϵi)dϵi. The demand for seller i can be rewritten

to

Di =

∫ 0

− exp(−ρi−b)

exp

(
t

k∑
j=1

exp(−(ρj − ρi))

)
dt

=
exp

(
t
∑k

j=1 exp(ρi − ρj)
)

∑k
j=1 exp(ρi − ρj)

∣∣∣∣∣
0

− exp(−ρi−b)

.

(C.3)

102



Because
1∑k

j=1 exp(ρi − ρj)
=

exp(−ρi)∑k
j=1 exp(−ρj)

, then

Di =
exp(−ρi)∑k
j=1 exp(−ρj)

−
exp

(
− exp(−ρi − b)

∑k
j=1 exp(−ρj)
exp(−ρi)

)
exp(−ρi)∑k

j=1 exp(−ρj)

=
exp(−ρi)

[
1− exp

(
− exp(−b)

∑k
j=1 exp(−ρj)

)]
∑k

j=1 exp(−ρj)

=
exp(−ρi) (1− exp (−ηΣ))

Σ

(C.4)

where

η = exp(−b),

Σ =
k∑

j=1

exp(−ρj).
(C.5)

By the quotient rule,

∂Di

∂ρi
=

[− exp(−ρi)(1− exp(−ηΣ))− exp(−ηΣ)η exp(−2ρi)] Σ

+ exp(−2ρi)(1− exp(−ηΣ))
Σ2

= Di

(
−1− η exp(−ηΣ)

1− exp(−ηΣ)
exp(−ρi) +

exp(−ρi)
Σ

) (C.6)

For m ∈ {1, 2, ..., k} and m ̸= i, by the quotient rule,

∂Dm

∂ρi
=

[− exp(−ηΣ)η exp(−ρi − ρm)] Σ + exp(−ρi − ρm)(1− exp(−ηΣ))
Σ2

= Di

(
− η exp(−ηΣ)
1− exp(−ηΣ)

exp(−ρm) +
exp(−ρm)

Σ

) (C.7)
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Since π =
∑k

i=1(pi − c)Di, therefore,

∂π

∂pi
= Di +

∂Di

∂ρi
· pi − c

σ
+
∑
m ̸=i

∂Dm

∂ρi
· pm − c

σ

= Di

[
1− pi − c

σ
+

(
η exp(−ηΣ)

exp(−ηΣ)− 1
+

1

Σ

) k∑
j=1

exp(−pj)
pj − c

σ

] (C.8)

The third part in the large bracket is a constant. If pi < pj where i, j ∈ {1, 2, ..., k} then,

Di > Dj. Therefore,
∂π

∂pi
>

∂π

∂pj
.

Proof. (Uniqueness of p∗) Let ω be the random variable with the cumulative distribution

function G(ω) = F k(ω). The probability density function of ω is then g(ω) = kf(ω)F k−1(ω).

Note that the product of log-concave functions is also log-concave. Since f and F are log-

concave, g is also log-concave. The joint profit can be written to

πr(p) = (1−G(u0 + p))(p− c). (C.9)

At p∗, the first order condition is

p∗ − c =
1−G(u0 + p∗)

g(u0 + p∗)
(C.10)

Because g is log-concave, g
1−G

is monotone non-decreasing. The left-hand side of (C.10)

strictly increases in p∗ while the right-hand side is monotone non-increasing. Therefore, the

maximizer of πr(p) is unique.

By Prekopa’s Theorem, 1 − G is also log-concave. Therefore, πr is also log-concave, which

means πr is quasi-concave. Note that π
′
r(p) = 0 has one unique solution. Therefore, if u ≤ p∗,

then u is the unique maximizer of πr(p | p ≤ u).

Proof. (Lemma 4) This proof has two parts. The first part is to show that π(p⃗) is monotone
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non-increasing in s for s ≥ 0. The second part is to show that π(p⃗) strictly decreases in s

for s ∈ [0, s′] where pk = p(s′).

Part 1: For any fixed p⃗ with p1 < pk, consider 2 scenarios: A = {p⃗, s = sa} and B

= {p⃗, s = sb} with 0 ≤ sa < sb.

Step 1. The probability that a consumer does not buy any product under A and buys some

product under B is zero.

Suppose a consumer ends up not buying any product in scenario A. For this consumer, the

rewards from sellers he visited are all lower than u0. We can safely ignore the case where the

reward is equal to u0 because the probability of that event is infinitesimally small. Let SA

be the set of sellers that this consumer visited under scenario A and SB be the set of sellers

that he will visit under scenario B. By Corollary 1, SB ⊆ SA. Therefore the rewards from

SB are also lower than u0, and the consumer will also not buy any product under scenario

B.

Step 2. Probability a consumer buys a product with pl under A and buys a product with

ph > pl under B is zero.

Let l and h be any two prices among p⃗ with pl < ph. Therefore, zl > zh. Consider a consumer

who buys product l under scenario A. Let wi ≡ min{zi, xi} for each i. By Proposition 2, the

consumer must have wl(sa) > wh(sa) 1○. We can safely ignore the equality because zl > zh,

the probability that wl(sa) = wh(sa) is arbitrarily small. We will show that the consumer

will not purchase from seller h under scenario B by using proof by contradiction. Suppose

this consumer purchases h under scenario B. By Corollary 1, wl(sb) ≤ wh(sb) 2○. Since w(s)

is non-increasing in s, then wh(sb) ≤ wh(sa) 3○. By 1○, 2○ and 3○, wl(sa) < wl(sb). Since

the reward xi is constant in 2 scenarios, we must have wl(sb) = zl(sb) Then by 2○ we have

zl(s2) < min{xh, zh(s2)}. However, zl(s2) > zh(s2) because pl < ph. By contradiction, the

proof is complete.
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Hence, π(p⃗) is monotone non-increasing in s for s ≥ 0.

Part 2: For any fixed p⃗ with p1 < pk, consider 2 scenarios: A = {p⃗, s = sa} and B

= {p⃗, s = sb} with 0 ≤ sa < sb ≤ s′ where pk = p(s′). Consider consumers with the following

properties:

1. x1 ∈ (zk(sb), zk(sa)) ⇐⇒ v∗(sb) + p1 − pk < v1 < v∗(sa) + p1 − pk

2. x2, x3, ..., xk−1 < zk(sb) ⇐⇒ vi < v∗(sb) + pi − pk ∀i ∈ {2, 3, ..., k − 1}

3. xk > zk(sa) ⇐⇒ vk > v∗(sa)

The probability that a random consumer has those three properties is

[F (v∗(sa) + p1 − pk)− F (v∗(sa) + p1 − pk)] [1− F (v∗(sa))]
k−1∏
i=2

F (v∗(sb) + pi − pk),

which is strictly positive when sa < sb. Let wi ≡ min{zi, xi}. Then wk(sa) = zk(sa) >

wj(sa) ∀j ̸= k. Note that sa < sb ≤ s′ where pk = p(s′). Therefore, zk(sa) > zk(sb) ≥ u0.

By Corollary 1, these consumers eventually buy from seller k under scenario A.

Because p1 < pk, then z1(sb) > zk(sb). From property 1, x1 > zk(sb). We must have w1 >

zk(sb). Therefore, w1(sb) > wj(sb) ∀j ̸= 1 and w1(sb) > u0. By Corollary 1, these consumers

eventually buy from seller 1 under scenario B. There is a strictly positive probability that

a consumer buys from seller k with sa but switch to seller 1 with sb. Note that we have

already shown in part 1 that if s increases, the probability that a consumer ends up buying

from a higher price is 0. Therefore, for any fixed p⃗ with p1 < pk, π(p⃗) strictly decreases in s

for s ∈ [0, s′] where pk = p(s′).

Lemma 5. Given any p⃗ with pk > p(s) where s < s, then π(p⃗) < π(p′) where p′i =

min{pi, p} ∀i ∈ {1, 2, ..., k}.
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Lemma 3 technically shows that for any price profile, if the highest price, pk exceeds the

upper limit p in equilibrium, the cartel can be better off by reducing the price of seller k to

p given all other prices stay the same. It implies that in the equilibrium, the cartel will not

set any of the k prices higher than p. All k firms will get some consumers visited.

Proof. (Lemma 5) For a fixed p⃗ with pk > p(s) where s < s

Step 1: Probability that a consumer buys from some seller under p⃗ and buys from a lower

price seller under p′ is zero.

Proof: Consider consumers who buy from seller j with the price profile p⃗. Let pj− (if exists)

be a lower price than pj in p⃗. Note that pj = p′j and pj− = p′j−. Let wi ≡ min{zi, xi} and

w′
i ≡ min{z′i, xi} for each i. By Corollary 1, these consumers must have wj ≥ wj− if the

cartel prices are p⃗. Since zj < z−j, the probability that wj ≥ wj− is infinitesimally small.

Given wj > wj−, then w′
j > w′

j−, by Proposition 2, these consumers will also not buy from

seller j− under profile p′.

Step 2: Probability that a consumer buys from some seller under p⃗ and takes the outside

option under p′ is zero.

Proof: Consider consumers who buys from seller j under price profile p⃗. These consumers

must have xj > u0 and wj ≥ u0. We can safely ignore the case xj = u0 because of its

infinitesimally small probability. Under p′, a consumer opts to outside option only if xj ≤ 0

given w′
j ≥ u0. Because wj = w′

j, the probability that a consumer buys from seller j under

p⃗ and takes the outside option under p′ is zero.

Step 3: Probability that a consumer takes the outside option under p⃗ but buys the product

with the price p under p′ is strictly positive.

Proof: Probability that a consumer does not buy any product under p⃗
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Let m ≥ 0 be the number of prices in p⃗ that are not higher than p. That means pm ≤ p and

pm+1 > p. Consider consumers with the following properties

1. xi < u0 ∀i ≤ m

2. ∃i > m | xi > u0 .

The probability that a consumer has these properties is strictly positive for all m ≥ 0.

Consumers with these properties take an outside option under p⃗ but buy the product with

the price p under p′.

Proof. (Proposition 15) For s > sp∗ , p
M = vs − u0. For any deviation price pd ≤ pM , the

one-shot deviation profit can be written by

(1− F (u0 + pd)) (pd − c). (C.11)

Because F (pd) is log-concave, (C.11) is strictly quasi concave. Denote by p̂ the unique

maximizer of (C.11). It can be shown that p̂ < p∗. For s ∈ (sp∗ , sp̂), the maximum one-shot

deviation profit πd is constant in s while the full collusion profit decreases in s. Therefore,

critical discount factor δ̂ increases in search cost when s ∈ (sp∗ , sp̂)

For s ≥ ssp̂ , the one-shot deviation profit is maximized when the deviating price is closest

to the monopoly price: pD = pM = vs − u0. In this case,

πc =
1

n

(
1− F k(vs)

)
(vs − u0 − c)

πd = (1− F (vs)) (vs − u0 − c)

πc

πd

=
1

n

(
1 + F (vs) + · · ·+ F k−1(vs)

)
.

Because πc

πd
decreases in s, by equation (3.7), δ̂ increases in search cost.
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Proof. (p̂ < p∗) By definitions, p∗ is the maximizer of (1 − F k(u0 + p))(p − c) and p̂ is the

maximizer of (1− F (u0 + p))(p− c). Therefore,

p∗ − c =
1− F k(u0 + p∗)

kF k−1(u0 + p∗)f(u0 + p∗)
(C.12)

p̂− c =
1− F (u0 + p̂)

f(u0 + p̂)
. (C.13)

Note that for k ≥ 2

1− F k

kF k−1f
=

1− F

f

(
1

k
+

1

kF
+

1

kF 2
+ ...+

1

kF k−1

)
>

1− F

f
(C.14)

By contradiction, suppose p̂ ≥ p∗. By (C.12) and (C.14), p∗−c > 1−F (u0+p∗)
f(u0+p∗)

. Because f is log-

concave, by Prekopa’s Theorem, 1−F
f

is monotone non-increasing, which implies 1−F (u0+p∗)
f(u0+p∗)

≥
1−F (u0+p̂)
f(u0+p̂)

. Therefore, p̂− c > 1−F (u0+p̂)
f(u0+p̂)

, which contradicts to equation (C.13).
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