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Representing the Richness of Linguistic Structure in Models of Episodic Memory 
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& Michael N. Jones (jonesmn@indiana.edu)1  

1 Department of Psychological & Brain Sciences, Indiana University, Bloomington 
2 Department of Linguistics, University of Tübingen 

Abstract 

The principal aim of a cognitive model is to infer the process 
by which the human mind acts on some select set of 
environmental inputs such that it produces the observed set of 
behavioral outputs. In this endeavor, one of the central 
requirements is that the input to the model be represented as 
faithfully and accurately as possible. However, this is often 
easier said than done. In the study of recognition memory, for 
instance, words are the environmental input of choice—yet 
because words vary on many different dimensions, and 
because the problem of quantifying this variation has long 
been out of reach, modelers have tended to rely on idealized, 
randomly generated representations of their experimental 
stimuli. In this paper, we introduce new resources from large-
scale text mining that may improve upon this practice, 
illustrating a simple method for deriving feature information 
directly from word pools and lists. 

Keywords: recognition memory; word frequency; word 
length; feature frequency; orthographic similarity; semantic 
similarity; corpus analysis; vector space models 

Introduction 
 In cognitive modeling, there is a close interdependence 
between representation and process. A model consists in both a 
data structure (an abstract representation of environmental 
input), and an algorithm (the process that operates over the 
data to simulate behavior). The choice of structure for the 
underlying data is critical, as it can profoundly influence the 
choice of algorithm. Valid representational assumptions are of 
vital importance, in that they reduce the degrees of freedom 
available to the modeler, thereby constraining model selection. 
 Since the inception of memory research, psychologists have 
relied on verbal stimuli to study learning and forgetting 
(Ebbinghaus, 1885). In episodic and semantic memory, the 
majority of data has been—and is still—generated from 
experiments with word lists, and memory models are routinely 
assessed in terms of their ability to fit data on verbal 
remembering (Monsell, 1991). However, when it comes to 
words, the choice of data structure is complicated by the fact 
that words vary on a remarkable number of lexical and 
semantic dimensions (Baayen, Milin, & Ramscar, 2016), which 
may or may not contribute to how they are learned and 
remembered. Historically, it has been impossible to reliably 
quantify all these points of variation. Memory modelers have 
thus tended to rely on randomly generated representations, 
which have been carefully selected to preserve the relevant 
properties of the data. 
 While this practice has been expedient, it is no longer strictly 
necessary. As large-scale corpora—and the technology to mine 
them—have become widely available (Gilquin & Gries, 2009; 
Halevy, Norvig, & Pereira, 2009; Recchia & Jones, 2009), it 
has become not only possible, but relatively straightforward, to 
construct not merely plausible, but accurate representations of 
the stimuli used in a given experiment (Baayen, 2010). This is 
an important advance, as problems can arise when the selected 

representation does not faithfully reflect the environment. For 
instance, global matching models of episodic memory have 
considerably more difficulty reproducing behavioral data when 
supplied with realistic semantic representations (Johns & Jones, 
2010). Improving the quality of our data structures could thus 
improve the quality of our process models. 
 Further, while the words selected for memory experiments 
are commonly assumed to vary randomly, in line with their 
selection procedure, this may not always be the case. For one, 
certain properties — such as semantic similarity — may be 
systematically skewed, and thus poorly represented by a normal 
distribution (Johns & Jones, 2010). For another, there may be 
accidental variation between the word pools used by different 
research groups (van Heuven et al., 2014), which could 
produce conflicting results. Given renewed interest in 
replicability in the psychological and brain sciences (Open 
Science Collaboration, 2015), providing a more detailed 
account of the stimulus properties that produce a given effect 
should be a principal research aim (Ramscar, 2016). 
 The overarching goal of this paper is to enumerate a simple 
technique for investigating the lexical and semantic 
characteristics of a specific word pool, and to discuss how this 
can be fruitfully applied to the interpretation of empirical 
results in episodic memory. 

Word Frequency 
 Word frequency is a measure of a word’s occurrence in the 
language, and a proxy for an individual subject’s experience 
with that word. Frequency has long been a variable of central 
importance in cognitive models, as it is one of the strongest 
predictors of verbal processing and remembering (Baayen, 
Milin, & Ramscar, 2016; Balota et al., 2007). In some models, 
frequency is treated as a causal variable—e.g., in a model of 
visual word recognition, frequency might function as an 
internal counter, in which each occurrence of an item 
increments its baseline activation upward (Coltheart et al., 
2001). In others models, frequency is treated as an informative 
correlational variable, and items of a given frequency class are 
assigned specific feature values (Shiffrin & Steyvers, 1997).  
 Setting the details aside, virtually all models incorporate 
frequency in one respect or another. Given the significance of 
frequency as an explanatory variable, its accuracy of 
measurement, relation to other lexical and semantic variables, 
and instantiation in cognitive models are all matters of some 
theoretical importance. Yet in spite of this, many researchers 
are still working with outdated measurements and methods, 
which are not being updated as the field advances. One 
particularly remarkable example of this is that the Kučera-
Francis norms (1967), collected fifty years ago, are still widely 
used among psychologists to determine word frequency. This is 
the case even though they have been known for decades to be 
unreliable (particularly for lower frequency words), and are, on 
assessment, consistently the worst performing norms across an 
array of lexical processing tasks (Brysbaert & New, 2009). 
Frequency values collected today are derived from corpora 
orders of magnitude larger. 
 Another source of concern is that word frequency itself is 
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routinely treated as a categorical variable, rather than a 
continuous one, even though dichotomizing a random variable 
can seriously jeopardize reliability (MacCullum et al., 2002; 
Hemmer & Criss, 2013). Further contributing to this problem, 
the standard method for binning words into high and low 
frequency bands fails to take into account the skewed nature of 
the distribution. Indeed, in an analysis of several classic 
studies, high frequency items were found to have considerably 
larger standard deviations than their low frequency 
counterparts, and a sizeable percentage of ‘low’ frequency 
items were shown to fall at, or above, what should have been 
the border between the groups (van Heuven et al. 2014).  
 That influential psychometric tests have been predicated on 
such unreliable measures raises serious questions about their 
validity (Ramscar et al. 2014). Nevertheless, this binary 
division remains common in both experimental design and in 
modeling. 

Word Frequency Effects in Recognition 
 One domain in which it is still commonplace to bin 
experimental items into high (HF) and low frequency (LF) 
bands is recognition memory. Models of recognition offer an 
illustrative test case for why representational assumptions are 
important to cognitive modeling, and how they might be 
refined with simple data mining techniques. To clarify this 
example, we first briefly review recognition memory as an 
experimental paradigm and as a modeling domain. 
 In tests of single item recognition, subjects study a list of 
words, and then at test, are asked to discriminate words 
encountered at study (targets) from non-studied words (foils). 
The difficulty of the task lies in the fact that subjects must 
differentiate between words seen at study and words 
encountered in everyday life—i.e., they must distinguish 
between general familiarity with the test items and familiarity 
that is specific to the recognition task. 
 Global matching models have predominated as explanatory 
models of recognition performance (Hintzman, 1988; Murdock, 
1982; Shiffrin & Steyvers, 1997). These models are premised 
on the idea that item recognition depends not only on the 
characteristics of the item itself, but also on other items present 
concurrently in memory. When a specific item is presented at 
test, the available item and context cues form a joint probe of 
memory. This search process yields a match value between the 
test item and the contents of memory. If this value exceeds 
some threshold, the item is recognized as ‘old’; if it fails to 
meet this criterion, the item is rejected as ‘new’. A grounding 
assumption of global matching models is that studied items will 
have higher match values, on average, than unstudied lures. 
However, item recognition is rarely perfect, and much effort 
has been expended in identifying how interference can arise at 
retrieval. Noise sources are frequently categorized into two 
types: item noise (McClelland & Chappell, 1996; Shiffrin & 
Steyvers, 1997) and context noise (Dennis & Humphreys, 
2010). Item noise arises from spurious feature matches with 
other studied items; context noises arises from interference 
from extra-experimental contexts in which the tested item has 
occurred. 
 Among the findings that global matching models are 
designed to capture, one of the hallmarks is the mirror effect 
for word frequency: This is the finding that when HF and LF 
words are present in equal numbers at study, LF items are 
better recognized at test, garnering both more hits and fewer 
false alarms (Glanzer & Adam, 1985). One way to capture this 
frequency effect is to assign different parameter values to HF 
and LF words, thereby generating different distributions of 
feature values, and hence, of featural similarity between items. 

Such a  representational choice reflects the fact that words are 
comprised of an array of surface and semantic properties that 
are known to vary with frequency, and to affect processing and 
remembering (Landauer & Streeter, 1973; Schulman, 1967).  
 For example, in the Retrieving Effectively from Memory 
(REM) model, the parameter settings generate HF items with 
more common, overlapping features than LF items (Steyvers & 
Shiffrin, 1997). Because these features are less diagnostic, the 
self-match between HF targets and their own memory traces is 
weaker than for LF targets; because they are more common, the 
likelihood of a chance feature match between HF targets and 
HF foils will be greater. This yields the canonical lower hit-rate 
and higher false-alarm rate for HF items. 

Representational Assumptions 
 Global matching models have shown considerable success in 
capturing the relevant empirical data, ranging from word 
frequency effects to differential forgetting (Clark & Gronlund, 
1996). Despite these undisputed successes, there are potential 
drawbacks in how they represent their list items. For one, these 
representations commonly lump together semantic, phonemic, 
and orthographic features into a single, indistinguishable 
feature set, making it impossible to tease apart how each 
dimension contributes to recognition performance. For another, 
representations are randomly generated, rather than empirically 
derived. 

In the influential REM model, for example, a single 
parameter controls the mean and variability of the distribution 
that item features are sampled from (Steyvers & Shiffrin, 
1997). To capture qualitative differences in item similarity 
between word frequency bands, the parameter is adjusted 
separately for high and low frequency items. However, the 
specific parameter settings are unconstrained by the actual 
properties of the stimulus set. Instead, parameters are set either 
by convention or by best fit to the behavioral data.  

Concerns have been raised with this type of practice. In 
particular, such flexibility leaves the resulting models open to 
the criticism that they could be made to fit a wide variety of 
results (Roberts & Pashler, 2000). Conversely, they might 
require significant theoretical adjustments to account for the 
results when supplied with a realistic representation of the list 
items (see Johns & Jones, 2010 for an illustration). Finally, if 
different experiments produce contradictory results, there is no 
straightforward way to trace back these differences to the 
characteristics of the lists.  

The theoretical claims of this class of models could be 
strengthened by deriving the model parameters directly from 
the lexical and semantic characteristics of the experimental 
word pool, or test list. This could be accomplished in a number 
of ways. In the simplest case, the actual feature distribution of 
the stimuli could be used to determine the closest choice of 
parameter settings. Another option would be to generate the 
input representation directly from the stimuli, using either the 
real feature values, or adjusted feature values (which could be 
made more robust by incorporating noise, or various smoothing 
mechanisms; see e.g., Chen & Goodman, 1999). Here, we 
detail a simple procedure for deriving feature information for 
lexical items as a function of their frequency class. 

Corpus Investigation 
 The following investigation was conducted 1) to illustrate 
how various lexical and semantic feature information can be 
derived directly from word pools and recognition lists, 2) to 
examine how these feature values can be expected to vary as a 
function of item frequency, and 3) to assess whether standard 
word pools mimic these differences (and each other). 
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Verbal Properties and Frequency Class 
 In the study of semantic and episodic memory, different 
word pools make use of somewhat different sampling 
procedures and controls. Thus, our first goal was to establish a 
neutral, independent baseline, in which words were sampled 
without any special consideration other than frequency. 

Figure 1: The Zipf scale is a logarithmic scale that divides the 
frequency spectrum into seven discrete classes (van Heuven et al. 
2014). 

Word Frequency Words and their frequencies were extracted 
from the state-of-the-art 51 million word SUBTLEXus corpus 
(Brysbaert & New, 2009). Frequency classes were assigned 
according to the Zipf scale, which is calculated for an 
individual item as log10 (frequency per billion words). The Zipf 
scale has a number of advantages over the typical binary 
division between HF and LF words, namely that it is a 
logarithmic scale reflecting the psychological interpretation of 
frequency, and its divisions are fine-grained, creating seven 
distinct classes rather than  the traditional two (van Heuven et 
al., 2014). For purposes of comparison, a Zipf value of 3 or 
lower corresponds to LF words; 4 or higher to HF words 
(Figure 1). 

Recognition Lists To create recognition lists, 10 items were 
selected at random (without replacement) from a given 
frequency bin. Half of these items were labeled targets, and the 
other half foils, replicating the standard list construction 
procedure. This sampling procedure was repeated until there 
were 1000 such lists for each frequency class.  
 The aim was to compare lists created in each band on four 
dimensions: word length, feature frequency, and orthographic 
and semantic similarity of targets to foils. These particular 
dimensions were chosen to be illustrative, and because they are 
known to be important contributing factors to item recognition. 
For word length and feature frequency, counts were computed 
for each item, and averaged over the entire list. For 
orthographic and semantic similarity, the similarity of each 
target to the distractors present at test was computed, and 
similarly averaged.  
 To preface, these analyses successfully replicate well-
established findings on each of these dimensions, while 
providing a straightforward method for determining the actual 
empirical trends of a given frequency range, or item set. 

Methodology Notably, the comparatively small number of 
types in the higher frequency ranges placed constraints on the 
construction of recognition lists (Figure 2). Specifically, list 
length was necessarily kept small, and while lists were created 
for Zipf values 1-6, 7 was excluded, as it comprised only 13 
distinct word types, all of them function words. 
 This type distribution is a consequence of the universal 
scaling law for word frequencies, commonly known as Zipf’s 
Law (1949). The idea is this: Say, an English text is selected, 
and each of the word types that occur in the text are arranged in 
order of their frequency, from most to least common, and 
assigned a numerical rank. Then, the full contents of the text – 
that is, all of its word tokens – are thrown into a bag, shook, 

and one word is selected at random. Zipf’s Law states that the 
probability of drawing a given word is inversely proportional to 
that word’s rank ordering. The law formalizes the notion that 
while a few words in a language are very common, the greater 
part are exceedingly rare. 

Figure 2: The number of distinct word types in the SUBTLEXus 
corpus for each value of the Zipf scale. 

Word Length Word length, whether computed in terms of 
letters or phonemes, has an inverse relationship with frequency, 
with word lengths tending to increase as frequency declines 
(Piantadosi et al., 2011; Sigurd, Eeg-Olofsson, & Van Weijer, 
2004; Wright, 1979; see Figure 3). 

Figure 3: Average word length of list items increases as frequency 
declines. 

Feature Frequency Feature frequencies represent the 
empirical n-gram frequencies of individual letters and letter 
combinations, and can be conceptualized as a measure of 
orthographic distinctiveness (Figure 4). 
 Feature frequency is known to vary with word frequency. On 
average, rarer words contain both more unusual letters, and 
more unusual combinations of letters (Malmberg et al. 2002; 
Zechmeister, 1969). 

Orthographic similarity Orthographic similarity was 
computed as Levenshtein edit distance, a string metric that 
calculates the minimum number of edits (such as insertions, 
deletions, or substitutions) required to transform one word into 
the other (Figure 5). 

Given that rare words are more orthographically distinctive 
(Landauer & Streeter, 1973; Andrews, 1992), it stands to reason 
that in a recognition list context, they should be less 
orthographically similar to frequency-matched distractors than 
more common words (Hall, 1979). 
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Figure 4: The five panels depict the average feature frequencies of list 
items in SUBTLEXus as a function of their Zipf value. The overall 
trend indicates that higher frequency items are comprised of higher 
frequency features. Moreover, the larger the n-gram, the greater the 
separation between frequency classes. For unigrams, a more 
pronounced pattern of separation between Zipf bands is observable 
when minimum (rather than average) feature frequency is used. 

Figure 5: Average orthographic similarity between targets and 
distractors declines as a function of frequency. 

Semantic similarity Semantic similarity values were obtained 
from word2vec trained on the 300 billion word Google News 
corpus. word2vec is a two-layer neural network that produces 
word embeddings (Mikolov et al., 2013), and is considered 
state of the art in semantic space modeling (Baroni, Dinu, & 
Kruszewski, 2014). word2vec was implemented with gensim, a 
Python framework for vector space modeling (Řehůřek & 
Sojka, 2010), which adopts the continuous skip-gram 
architecture. The skip-gram model weights proximate context 
words more highly than distant ones, yielding better results for 
lower frequency words. 

In a recognition task in which list items are randomly 
sampled from a given frequency band, the semantic similarity 
between targets and distractors should tend to decrease with 
frequency (Figure 6). This outcome is all but assured by the 
distributional properties of the lexicon: In the SUBTLEXus 
corpus, LF words comprise 80% of word tokens (van Heuven 
et al., 2014) and fully 94% of word types (Figure 2). The 

semantic spread from which LF words are sampled will thus be 
far greater than that for HF items. 

Figure 6: Average semantic similarity between targets and distractors 
declines across the HF range of the Zipf scale, implying that a set of 
randomly sampled words will be less semantically similar, on average, 
the lower their frequency class.  

Figure 7: Average semantic similarity between targets and distractors 
across the LF range of the Zipf scale. While a slight (ns) trend in the 
opposite direction is observable in the lower range of the scale, this is 
almost certainly a methodological artifact. If the missing data in Figure 
8 is included as 0-counts, the apparent trend reverses, and the pattern 
resembles that seen in Figure 6. 

In making these calculations, there is an important 
methodological issue to consider—in particular, the problem, 
well-known to linguists, of data sparsity (Sinclair, 1997): 
While any given sample of language will provide ample 
evidence about its common words and phrases, it will provide 
little or none about its rarer, more informative elements 
(Church & Gale, 1995). Not only will many perfectly 
legitimate words (and word co-occurrences) fail to occur in 
even very large swaths of text, but even most of those that do 
will occur only a few times, making their estimation unreliable. 
This is the basic problem of data sparsity and it is one that 
plagues semantic similarity analyses in the lower frequency 
ranges (Figures 7, 8).  

Figure 8: Data loss for the semantic similarity analyses as a function 
of frequency class. Semantic similarity values were not available for 
all the words sampled, and the proportion of words with no data points 
grew as frequency decreased. For Zipf rank 1, fully 25% of data was 
lost. 
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Figures 6 and 7 show the similarity distributions for item 
pairs that were known to our word2vec model. However, given 
the significant data loss for LF items, looking solely at returned 
values constitutes selection bias, as it implies that unobserved 
pairs—for which the model cannot supply a score—likely have 
the same distributional properties as observed pairs. In fact, it is 
reasonable to assume that unobserved pairs are much less 
similar, on average. One way of addressing this issue is to 
assign item pairs with null values a similarity score of 0. When 
these scores are included, the trend observable in the HF range 
(Figure 6) is also clearly observable in the LF range.  

In the absence of knowledge, assigning 0-counts is a useful 
heuristic. However, given that problems with data sparsity 
increase as frequency declines, this solution may 
disproportionately penalize the lowest frequency words. In 
future work, similarity-based smoothing techniques might be 
used to better estimate similarity values for unobserved pairs 
(c.f. Yarlett, 2007). 

Interim Summary Our analyses of words in the SUBTLEXus 
corpus replicates and extends a number of well-known findings 
on the relationship between a word’s frequency and its lexical 
and semantic features, including that: 

1) word length increases as word frequency declines,  
2) feature frequency increases with word frequency, with 
the rate of increase dependent on feature length,  

3) orthographic similarity between targets and foils 
increases with word frequency, 

4) semantic similarity between targets and foils increases 
with word frequency (though the calculation of similarity 
scores for LF item pairs requires careful consideration). 

Available Analyses In the analyses reported here, pure lists 
were created for each frequency class, average feature 
information was extracted, and similarity measures were 
computed as a function of the mean similarity of a target to its 
foils. The purpose of this was largely illustrative; many 
variations on this procedure are possible, depending on the 
requirements of the model, or the empirical task.  
 One obvious choice point is the sampling method. For 
example, word selection could be constrained by specific 
lexical properties (e.g., limited to nouns, or words of length n), 
as is common practice in the design of word pools. Similarly, 
list composition could be varied by sampling specific 
proportions of words from different frequency bands.   
 Another matter of some importance concerns the choice of 
comparisons and statistical measures. Similarity can be 
computed relative to other targets, distractors, or both; it can 
also be calculated as an average, or in terms of “max” 
similarity (e.g., the top 10% of most confusable items). 
Likewise, when assessing the use of rare letters and rare letter 
combinations, it may be more useful to know the minimum 
feature frequency, or the median, rather than the mean.  
 Finally, while we chose to delimit our focus to just a few 
dimensions, there are many more lexical properties that 
systematically vary with frequency. For instance, rare words 
are more likely to be judged as abstract (Galbraith & 
Underwood, 1973; Pavio, Yuille, & Madigan, 1968), to be 
acquired later (Carroll & White, 1973), and to be regular 
(Bybee & Hopper, 2001).  

Word Pools 
 In the study of semantic and episodic memory, different 
word pools make use of somewhat different sampling 
procedures and controls. One concern is that different word 

lists may vary in systematic ways from each other,  producing 
variability in results; another is that they may have distinctly 
different properties from the language ‘at large’. To check the 
validity of these worries, we compared the word pools of two 
representative cognitive memory labs, with an average h-index 
among the principle investigators of 20, and published 
theoretical disagreements. These word pools were compared 
against a recognition word list devised by Dye, Jones, & 
Shiffrin (2017) (Figures 9, 10). 
 The Dye et al. (2017) word list was deliberately constructed 
to increase the semantic and orthographic similarity of LF 
items, as reflected in Figures 9 and 10. In a recognition list 
experiment, this had the predicted effect of diminishing the 
standard mirror effect for word frequency, by bringing the false 
alarm rate for low and high frequency items into line. 

Figure 9: A comparison of average semantic similarity of  targets to 
foils across three word pools. 

 Notably, while the Dye et al. word list clearly differs from 
the two standard word pools, these word pools are not identical 
to each other either. In particular, though both pools are 
similarly distributed in terms of frequency and semantic 
similarity among items, in Word Pool 2, orthographic similarity 
among items is substantially increased compared to Word Pool 
1, and is matched across HF and LF items. This may produce 
differences in reported results, as orthographic similarity is 
known to modulate false alarm rates (Malmberg, Holden, & 
Shiffrin, 2004).  
 Finally, it is worth noting that none of these ‘controlled’ 
word pools reflect the properties expected from random 
sampling, as illustrated in our exploration of the SUBTLEXus 
corpus. In particular, while the distribution of orthographic and 
semantic similarity values for LF and HF items are largely 
overlapping for the standard word pools (Figures 9, 10), a truly 
random selection of these items shows significant separation 
between frequency bands (Figures 5, 6). 

These examples illustrate how the properties of word lists 
can be readily and fruitfully compared both to each other, and 
to larger corpora. In future work, we plan to expand this 
analysis to include more widely used word pools, such as the 
Toronto word pool (Friendly, Franklin, Hoffman, & Rubin, 
1982), a modified version of the Kucera & Francis word pool 
(1967), and a categorized word pool (Murdock, 1976). 
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Figure 10: A comparison of average orthographic similarity of  targets 
to foils across three word pools. 

General Discussion 
While work in text mining and natural language processing 

has considerably refined our understanding of the statistical 
nature of language, not all of these insights have successfully 
crossed over to memory research. This problem is not without 
remedy. In this paper, we have taken seriously the problem of 
furnishing an adequate description of the linguistic 
environment, in keeping with the roboticist Rodney Brook’s 
famous injunction that “the world is its own best model”. 
Analyses such as those reported here are useful in a number of 
different dimensions: they can be employed to deliberately 
control the properties of episodic word lists; they can yield a 
principled means for adjusting model parameter settings to 
reflect the properties of the specific stimulus set; and they may 
be useful in explaining discrepancies in published empirical 
results, aiding replicability. Our broader hope is that integrating 
more realistic representations of verbal stimuli into models of 
episodic memory may inform the design and interpretation of 
experiments and constrain the choice of process model. 
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Notes 
The density plots presented in Figures 3-7 are generated by the 
ggplot2 library in R, and visualize the distribution of items in 
each frequency class over specific dimensions of interest, using 
a kernel smoothing function. 
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