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Abstract

Benign Overfitting in Linear Regression and Classification

by

Alexander Tsigler

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Peter L. Bartlett, Chair

Benign overfitting, a phenomenon where deep neural networks predict well despite perfectly
fitting noisy training data, challenges classical statistical intuition, which suggests a tradeoff
between training data fit and prediction rule complexity. This dissertation explores benign
overfitting in the context of linear models in the overparameterized regime, that is, where
the dimension exceeds the number of data points. We study both regression and classifica-
tion settings, focusing on the ridge regression solution, particularly its special case of zero
regularization known as the minimum norm interpolating (MNI) solution.

In regression, we show that for MNI to exhibit benign overfitting, the data must possess a
specific structure: data points should be nearly orthogonal when projected onto a subspace
of small co-dimension. Learning occurs within the low-dimensional subspace, while the
orthogonal complement absorbs noise, providing implicit regularization that adds to the
explicit ridge regularization applied to the problem.

For classification, we study a scenario with two classes sharing the same covariance and
opposite means, assuming the clusters exhibit the “benign structure” identified in regres-
sion. Our findings indicate that benign overfitting can also occur in classification, though
the mechanism is more intricate. The ridge regression solution exhibits different regimes
depending on the distance between the cluster centers.
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Chapter 1

Introduction

1.1 Motivation

Deep learning methodology has revealed a surprising statistical phenomenon: interpolation
can perform well. The classical perspective in statistical learning theory is that there should
be a tradeoff between the fit to the training data and the complexity of the prediction
rule. Whether complexity is measured in terms of the number of parameters, the number of
non-zero parameters in a high-dimensional setting, the number of neighbors averaged in a
nearest-neighbor estimator, the scale of an estimate in a reproducing kernel Hilbert space, or
the bandwidth of a kernel smoother, this tradeoff has been ubiquitous in statistical learning
theory.

Deep learning seems to operate outside the regime where results of this kind are informa-
tive. Deep neural networks can be overparameterized —having more trainable parameters
than data points—and trained to perfectly fit (interpolate) the training data, but still gen-
eralize well to the test sample. We refer to this phenomenon as “benign overfitting.”

As one example of benign overfitting, consider the experiment illustrated in Figure 1(c)
in [61]: standard deep network architectures and stochastic gradient algorithms, run until
they perfectly fit a standard image classification training set, give respectable prediction
performance, even when significant levels of label noise are introduced. The deep networks in
the experiments reported in [61] achieved essentially zero cross-entropy loss on the training
data. In statistics and machine learning textbooks, an estimate that fits every training
example perfectly is often presented as an illustration of overfitting (“... interpolating fits...
[are] unlikely to predict future data well at all.” [23, p37]).

Classical theory suggests that large models overfit the data and require significant reg-
ularization to generalize. In some cases, however, the best value of the regularizer can be
zero [31] or even negative [28] for overparameterized models. Thus, to arrive at a scientific
understanding of the success of deep learning methods, it is a central challenge to understand
the performance of prediction rules that are trained with little or no regularization and can
fit the training data perfectly.
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In this dissertation, we consider perhaps the simplest class of models that can exhibit
overparameterization and interpolation: linear models. The goal of this work is to mathemat-
ically characterize how benign overfitting can occur in such models and to provide high-level
explanations of the mechanisms that allow for it.

1.2 Problem statement

We consider linear regression and classification settings, in which the covariates come as
independent identically distributed (i.i.d.) samples from a distribution on Rp, and the targets
are real-valued. From this data, the learner infers a linear function on Rp, which is then used
for predicting the label of a newly sampled covariate vector.

For a linear model to be able to interpolate the data, the dimension p should be larger
than the number of training data points n. Thus, we always assume that p > n.

Regression

In regression we assume that the covariate-target pairs (xi, yi)
n
i=1 come as i.i.d. samples from

a distribution on Rp × R, and the responses are related to the covariates in the following
way: yi is generated as yi = x⊤

i θ
∗ + εi, where θ∗ ∈ Rp is the vector of coefficients of the

ground truth linear model, and (εi)
n
i=1 are i.i.d. samples from a zero mean noise distribution

with variance σ2
ε . We denote the vector whose coordinates are (yi)

n
i=1 as y ∈ Rn, and the

matrix whose rows are (x⊤
i )ni=1 as X ∈ Rn×p. That is, X = ZΣ1/2, where Z is a matrix

with i.i.d. isotropic rows, and Σ is the covariance matrix of xi.
We consider ridge regression solution, which for a regularization parameter λ ∈ R we

define as follows:
θ̂ := X⊤(XX⊤ + λIn)−1y.

If (xn+1, yn+1) is a new independent sample of a covariate-target pair from the same
distribution, then the excess risk of the prediction rule x → x⊤θ̂ is defined by the following
formula:

Exn+1,yn+1(x
⊤
n+1θ̂ − yn+1)

2 − Exn+1,yn+1(x
⊤
n+1θ

∗ − yn+1)
2.

Here Exn+1,yn+1 denotes expectation over the draw of (xn+1, yn+1). The main technical goal
of our analysis of regression is obtaining sharp non-asymptotic bounds on the excess risk.

An important particular case of the ridge regression solution arises when we set regular-
ization λ to zero. In this case the solution becomes the minimum-norm interpolating solution
(MNI), that is, the minimum norm vector θ such that Xθ = y. Studying generalization of
MNI is our main motivation, but extending the results to ridge regression allows us to make
additional high-level conclusions. For example, we show that in an overparameterized setting
the data itself can introduce “implicit regularization” that adds to the explicit regularization
λ imposed on the problem. One unexpected qualitative conclusion is that somethimes this
implicit regularization is too large, and choosing negative λ is optimal.
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Classification

In classification we assume that first the true labels (yi)
n
i=1 are sampled as i.i.d. Rademacher

random variables (that is, yi = 1 with probability 0.5, and yi = −1 otherwise). Then the
covariates are generated as xi = qi + yiµ, where µ ∈ Rp is the center of the positive cluster
and (qi)

n
i=1 are i.i.d. samples from a centered distribution on Rp. We denote the vector whose

coordinates are (yi)
n
i=1 as y ∈ Rn, and the matrix whose rows are (x⊤

i )ni=1 as X ∈ Rn×p.
That is, X = ZΣ1/2 + yµ⊤, where Z is a matrix with i.i.d. isotropic rows, and Σ is the
covariance matrix of qi. The labels y are not actually known to the learner, and instead
the learner observes the vector ŷ, which is obtained from y by flipping the sign of each
coordinate with some probability η.

As in regression, we consider the following ridge regression solution:

ŵ := X⊤(XX⊤ + λIn)−1ŷ.

If (xn+1, yn+1) is a new independent sample from the same distribution, the misclassifica-
tion probability of the linear classification rule x → sign(x⊤ŵ), is defined as P(sign(x⊤

n+1ŵ) ̸=
yn+1). The main technical goal of our analysis of classification is obtaining sharp bounds for
this misclassification probability.

Even though the regression and the classification setting that we consider look very
similar, there is a fundamental difference. In regression the “signal vector” θ∗ belongs to the
dual space: the matrix X does not depend on θ∗, and only the target vector y depends on
its product with X. In classification, however, the “signal vector” µ belongs to the primal
space: the vectors (yiµ)ni=1 are directly added to (qi)

n
i=1 to obtain (xi)

n
i=1. This distinction

leads to significant differences in the analysis between regression and classification settings
that we consider.

1.3 Covariance structure and technical assumptions

Let us fix the basis in the covariate space to be the eigenbasis of the covariance matrix Σ.
In this basis Σ is diagonal, that is,

Σ = diag(λ1, . . . , λp).

Without loss of generality we can assume that the sequence (λi)
p
i=1 is non-increasing.

So far the elements of the sequence (λi)
p
i=1 are arbitrary parameters of the problem. The

first result of this dissertation is that in the setting of regression, under the assumption that
the data is Gaussian, a certain structure of this sequence is required for MNI to exhibit
benign overfitting. More concretely, if all elements of Z are i.i.d. standard normal random
variables, then for MNI to have small excess risk compared to the amount of noise σ2

ε , there
should exist k which is small compared to n, such that

∑
i>k λi is large compared to nλk+1.

Introduce the following notation:

rk :=
1

λk+1

∑
i>k

λi.
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The quantity r0 is an important complexity parameter for covariance estimation problems,
where it has been called the “effective rank” [56, 30]. Earlier, effective rank of Σ2 was called
the “stable rank” [48] and the ‘numerical rank” [49], although that term has a different mean-
ing in computational linear algebra [20, p261]. A straightforward interpretation of effective
rank is the effective number of dimensions across which the covariates are distributed: in-
deed, we are dividing the energy of the whole covariate vector

∑
i λi by the maximum energy

in a single direction λ1. Thus, the condition for benign overfitting is that after removing the
first k coordinates, the distribution of the covariates should be smeared across many more
directions than the sample size. Throughout the dissertation we refer to such structure (or
its variations) as “benign structure”. The variations of the benign structure arise due to
differences in technical assumptions imposed on the data and due to accounting for ridge
regularization. The main idea, however, remains the same: after throwing out the first k
coordinates, the covariates should have high effective dimension in some sense.

The separation of the first k eigendirections of Σ is in the core of all our results. Because of
it, throughout this whole dissertation we use the following notation: for any k ∈ {0, 1, . . . , p}
and any matrix M ∈ Rn×p we denote M 0:k to be the matrix comprised of the first k columns
of M .1 Analogously, we denote M k:∞ to be the matrix comprised of the last p− k columns
of M . For any u ∈ Rp we denote u0:k to be the vector comprised of the first k components
of u, and uk:∞ — of the remaining components. Finally, we denote Σ0:k = diag(λ1, . . . , λk)
and Σk:∞ = diag(λk+1, . . . , λp). We sometimes refer to the first k components as the “spiked
part of the covariance”2, and to the remaining components as the “tail of the covariance”.

We choose the k : ∞ notation instead of k : p to emphasize that our results don’t depend
on p, and only the notions of effective dimension implicitly given by the sequence {λi}pi=1

matter. For example, if one increases the dimension to p′ > p and pads the sequence {λi}pi=1

with p′ − p zeros, our results will still hold.
The assumption of Gaussianity that we mentioned above is not necessary. The first (and

the most straightforward) generalization of this result is to the case when the elements of Z
are independent and sub-Gaussian, as given by the following definition.

Definition 1. For any centered random variable v we define its sub-Gaussian norm as

∥v∥ψ2 := inf
{
t > 0 : E exp(v2/t2) ≤ 2

}
.

If ∥v∥ψ2 ≤ σ, we say that the distribution of v is σ-sub-Gaussian.

Those assumptions, however, can also be weakened. The main point where our argument
uses the independence of the coordinates is the proof that the matrix Xk:∞X⊤

k:∞ has bounded
condition number with high probability. A geometric interpretation of this fact is that

1When k = 0 this matrix is just empty and all the terms that involve 0 : k index become zero.
2Here we use the word “spiked” as in the “spiked covariance models”, which usually assume that the

eigenvalues of Σk:∞ are all equal and of smaller order than eigenvalues of Σ0:k. One way to interpret
our results is that only spiked-covariance-like models can exhibit benign overfitting, and we derive general
conditions for a model to be spiked-covariance-like.
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since the data has high effective rank in components k : ∞, the rows of Xk:∞ are almost
orthogonal to each other, and their Gram matrix Xk:∞X⊤

k:∞ behaves as a scaled identity
matrix. Because of that, for our main bound on the excess risk in regression we make a direct
assumption on the condition number of Xk:∞X⊤

k:∞ instead of assuming that the components
of Z are independent. We do still assume the rows of Z are sub-Gaussian, as given by the
following definition.

Definition 2. For any random vector v in Rp we define its sub-Gaussian norm as

∥v∥ψ2 := sup
u∈Rp:∥u∥=1

∥u⊤v∥ψ2 .

If ∥v∥ψ2 ≤ σ, we say that the distribution of v is σ-sub-Gaussian.

When it comes to classification, we assume that Σ has the benign structure described
above from the very beginning. Similarly to regression, we make a direct assumption on the
eigenvalues of Zk:∞Σk:∞Zk:∞. Instead of assuming sub-Gaussianity, however, we precisely
describe the event that should happen with high probability in order for our bound to hold.
We prove that that event does hold with high probability under sub-Gaussianity, but argue
that sub-Gaussianity can be relaxed.

1.4 Overview of the next chapters

We study regression in Chapter 2 and classification in Chapter 3.
Chapter 2 starts with deriving the “benign structure” of the covariance, that we introdced

in Section 1.3. We discuss two simple settings first: “essentially high dimensional” and
“essentially low dimensional”. Then we derive general bounds for the variance term of the
excess risk for MNI, which show that the covariance should decompose into an essentially
low-dimensional and an essentially high-dimensional part in order for that term to be small.
Given that decomposition, we proceed with deriving sharp bounds on the full excess risk of
the ridge regression solution under weaker assumptions (as was discussed in Section 1.3). We
show that the learning happens in the first k components, while the rest of the components
absorb the noise and provide implicit regularization to the learning problem in the first k
components. We then study the effect of ridge regularization on the bounds. One interesting
effect happens when the implicit regularization coming from the data is very high: in this case
it can be optimal to use a negative value of the ridge regularization parameter. Chapter 2
is based on the following publications:

1. Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. “Benign
overfitting in linear regression”. In: Proceedings of the National Academy of Sciences
(2020). issn: 0027-8424. doi: 10.1073/pnas.1907378117. eprint: https://www.

pnas.org/content/early/2020/04/22/1907378117.full.pdf. url: https:

//www.pnas.org/content/early/2020/04/22/1907378117

https://doi.org/10.1073/pnas.1907378117
https://www.pnas.org/content/early/2020/04/22/1907378117.full.pdf
https://www.pnas.org/content/early/2020/04/22/1907378117.full.pdf
https://www.pnas.org/content/early/2020/04/22/1907378117
https://www.pnas.org/content/early/2020/04/22/1907378117
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2. Alexander Tsigler and Peter L. Bartlett. “Benign overfitting in ridge regression”.
In: Journal of Machine Learning Research 24.123 (2023), pp. 1–76. url: http :

//jmlr.org/papers/v24/22-1398.html

In Chapter 3 we also start with a discussion of the MNI solution, but with the purpose
of investigating its geometric structure. Then, using the machinery that we developed in
Chapter 2, and assuming that the distribution within the clusters has benign structure,
we provide bounds on the classification accuracy. Furthermore, we study the bounds and
show that the effect of the benign structure of the covariance is different than in regression.
When label-flipping noise is not introduced (that is, η = 0), in components k : ∞ the ridge
regression solution is approximately collinear with µk:∞, but in components 0 : k it approx-
imately recovers the optimal rotation of µ0:k. That is, learning happens in both the spiked
part of the covariance and in the tail, but it is somewhat more efficient in the spiked part.
Introduction of the label-flipping noise (that is, setting η to be a small constant) does not
qualitatively change the performance of the ridge regression solution if the magnitude of µ
is moderate. However, if µ is large in magnitude, the performance of the ridge regression
solution may change significantly, and the mechanism of benign overfitting in that regime
becomes very similar to that in regression. Finally, we study the effect of ridge regularization
in the setting without label-flipping noise. We show that one cannot achieve a significant
gain in accuracy by increasing regularization beyond the point where the benign structure3

appears. For example, just as in regression, if the implicit regularization coming from the
data is large, it may be optimal to set ridge regularization parameter to a negative value.
Chapter 3 is based on forthcoming work by Alexander Tsigler, Luiz Chamon, Spencer Frei
and Peter L. Bartlett, expected to be posted in August 2024.

1.5 Additional notation

We use the symbol := to introduce definitions: for example, b := a + 1 means that we
introduce a new quantity b which is defined as a + 1. We use a ≈ b to denote an informal
statement that a and b are within a constant factor of each other with high probability
(which we abbreviate as w.h.p.). Analogously, we use a ≳ b (a ≲ b) to denote “w.h.p. a is
at least (at most) constant times b ”, and a ≫ b (a ≪ b) to denote “w.h.p. a is much larger
(smaller) than b”.

For any positive integer d we denote 0d ∈ Rd to be the vector of all zeros, Id ∈ Rd×d to
be the identity matrix. We use diag(a1, . . . , ad) to denote the diagonal matrix in Rd×d whose
diagonal elements are a1, . . . , ad.

We use µi(M ) to denote the i-th largest eigenvalue of a symmetric matrix M . For any
square matrix M we denote its spectral norm by ∥M∥, its Frobenius norm by ∥M∥F and
its trace by tr(M). For any u ∈ Rd we denote its Euclidean norm by ∥u∥.

3Here we refer to a modified definition of benign structure, which takes regularization into account.

http://jmlr.org/papers/v24/22-1398.html
http://jmlr.org/papers/v24/22-1398.html
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We abbreviate positive-definite as PD and positive-semi-definite as PSD. For any PSD
matrix M ∈ Rd×d and any u ∈ Rd we denote ∥u∥M :=

√
u⊤Mu. For any matrix M ∈ Rn×p

we denote its pseudo-inverse as M † ∈ Rp×n.
We use P(A ) to denote the probability of an event A and E[ξ] to denote expectation of

a random variable ξ. We use the notation Pξ and Eξ for probability and expectation with
respect to a draw of the random element ξ. We say that a random vector v ∈ Rd is isotropic
if E[vv⊤] = Id. For a vector m ∈ Rd and a PSD matrix M ∈ Rd×d we denote the normal
distribution with mean m and covariance M as N (m,M). If a random vector v has that
distribution, we denote it as v ∼ N (m,M ).
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Chapter 2

Regression

2.1 Introduction

The aim of this chapter is to provide a theoretical understanding of benign overfitting in
the setting of linear regression. As introduced in Section 1.2, our main goal is to bound
and to analyze the excess risk of the ridge regression solution to an overparameterized linear
regression problem.

Despite being a classical statistical methodology, ridge regression and its ridgeless limit
were not completely studied by classical theory in such a regime: when n < p it suggests
that the regularization parameter should be large enough to provide additional capacity
control (see, e.g., [25] and references therein). First, we study the variance term for ridgeless
regression (that is, MNI) with n < p under the additional assumption that the data vectors
have independent components. We discover that the variance term can be small if and only
if there exists k ≪ n such that if one removes the first k largest eigenvalues of the covariance
operator, the remaining tail of the sequence of eigenvalues has large effective rank compared
to n. After that, we start afresh and use the same separation of eigendirections from the
very beginning, which allows us to substitute the independence assumption by a weaker
assumption on the condition number of the Gram matrix of the tails of the data vectors.
Moreover, we show how the same separation of the eigenvalues gives tight bounds for the
bias term too. Finally, by virtue of algebra, our argument extends very easily to the setting
of ridge regression, which allows for comparison with the above mentioned classical results
and investigation of the case when the regularization is even less than zero. We show that
we extend (with different constants) the results of [25] to a larger range of regularization
parameters, and give general conditions under which negative regularization is optimal and
can provide arbitrarily high multiplicative gain in excess risk.

The structure of the chapter is the following. We start by introducing the setup of ridge
regression in Section 2.2, where we also derive the decomposition of the excess risk into
the bias and variance terms. Then, in Section 2.3 we derive the necessity of the existence
of k and provide an intuitive explanation of how its existence helps MNI interpolate the
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data without overfitting. After that we present our main bounds on the excess risk of the
ridge regression solution in Section 2.4. Section 2.5 provides a technical discussion of the
assumptions imposed in Section 2.4, and Section 2.6 provides an outline of the proof and
explains where it uses the assumption that the data is sub-Gaussian. In Section 2.7 we note
that as a side product of the proof an alternative form of the main bound arises, which
makes it convenient to compare our bounds to other results. In Section 2.8, we derive the
sufficient conditions for optimality of negative regularization. In Section 2.9, we provide an
overview of the field of overparameterized ridge regression and explain how our work relates
to others. Finally, we conclude the chapter with Section 2.10.

2.2 Ridge regression setup

The learning problem we consider is ridge regression. Its goal is to learn an unknown real-
valued function on Rp given noisy observations of its values in n points. We operate in the
overparameterized regime, i.e., p > n.

Covariate model

We assume that the data set consists of n i.i.d. vectors sampled from some distribution
on Rp, whose mean is zero. Throughout this chapter x denotes an independent draw from
that distribution. Denote X ∈ Rn×p to be the matrix whose rows are the (transposed) data
vectors.

Our results depend on the spectrum of the covariance matrix Σ. We fix an orthonormal
basis in which Σ is diagonal:

Σ = diag(λ1, λ2, . . . , λp), (2.1)

where λ1 ≥ λ2 ≥ · · · ≥ λp is the non-increasing sequence of eigenvalues of Σ.
We assume sub-Gaussianity: denote Z := XΣ−1/2 (whitened data matrix). Rows of Z

are isotropic centered i.i.d. random vectors. We assume that rows of Z are σx-sub-Gaussian
as defined in Section 1.3.

Sub-Gaussianity is a classical assumption, which provides a convenient framework for
controlling deviations of various quantities of interest (see [55] for an introduction). We
discuss whether it is actually needed in Section 2.6.

Response model

Denote y ∈ Rn to be the vector whose coordinates are noisy measurements of the values of
an unknown function in the corresponding data points. We assume that the true function is
linear with coefficients θ∗ ∈ Rp, i.e.,

y = Xθ∗ + ε,
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where ε is the noise vector. We assume that components of ε are i.i.d. centered random
variables with variance v2ε, and that ε is independent from X.

Learning procedure

Ridge regression with regularization parameter λ is a classical learning algorithm that esti-
mates θ∗ from X,y according to the following formula:

θ̂(y) := X⊤(XX⊤ + λIn)−1y.

See Appendix A.1 for a discussion. The matrix λIn + XX⊤ will play an important role in
our analysis, so we denote

A := λIn + XX⊤.

In the ridgeless case (λ = 0), A is the Gram matrix of the data. Ridge regularization shifts
all its eigenvalues by λ.

Excess risk and its bias-variance decomposition

The quantity of interest is excess risk that we define in the following way: recall that x is a
new data point from the same distribution as rows of X. The error that our predictor incurs
on this data point is x⊤(θ̂(y)− θ∗). We define excess risk as the average squared error over
the population, i.e.,

Ex

[
(x⊤(θ̂(y) − θ∗))2

]
= ∥θ̂(y) − θ∗∥2Σ.

Note that θ̂(y) is linear in y, which allows us to write

θ̂(y) = θ̂(Xθ∗) + θ̂(ε),

Eε

[
∥θ̂(y) − θ∗∥2Σ

]
= ∥θ̂(Xθ∗) − θ∗∥2Σ + Eε

[
∥θ̂(ε)∥2Σ

]
,

∥θ̂(y) − θ∗∥2Σ ≤ 2(∥θ̂(Xθ∗) − θ∗∥2Σ + ∥θ̂(ε)∥2Σ).

The term ∥θ̂(Xθ∗) − θ∗∥2Σ is the error in the noiseless regime; it is caused by rows of

X not spanning the whole space and by regularization. The term ∥θ̂(ε)∥2Σ is the error of
learning the zero function from pure noise. One can see that these two terms nicely decouple
from each other and can be studied separately. Moreover, note that ∥θ̂(ε)∥2Σ is a quadratic
form in ε. Its expectation scales linearly with v2ε (variance of the noise):

Eε

[
∥θ̂(ε)∥2Σ

]
= v2εtr(A−1XΣX⊤A−1).

If the noise is σε-sub-Gaussian, then by Lemma 82 from the appendix for some absolute
constant c and any t > 1, with probability at least 1 − ce−n/c,

∥θ̂(ε)∥2Σ = ε⊤A−1XΣX⊤A−1ε ≤ ctσ2
εtr(A−1XΣX⊤A−1).
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Therefore, both expectation and deviations of the term ∥θ̂(ε)∥2Σ are controlled by the
quantity tr(A−1XΣX⊤A−1). Thus, we define:

B := ∥θ̂(Xθ∗) − θ∗∥2Σ = ∥(X⊤A−1X − Ip)θ
∗∥2Σ — bias,

V := Eε

[
∥θ̂(ε)∥2Σ/v2ε

]
= tr(A−1XΣX⊤A−1) — variance.

(2.2)

These quantities don’t depend on the distribution of the noise. The goal of this chapter
is to provide sharp non-asymptotic bounds for them.

2.3 Deriving the split into the spiked part and the tail

In this section we start by considering simple settings for which B and V are rather straight-
forward to assess. We then do a more involved computation for the term V to derive the
benign covariance structure that we introduced in Section 1.3. The simple settings that we
start with can be seen as building blocks, combining which gives that benign structure.

Essentially high-dimensional linear regression vs. essentially
low-dimensional

Let us develop some intuition by considering two easy scenarios: “essentially low-dimensional”
and “essentially high-dimensional”. For each scenario we will do an informal computation
of the excess risk and give a geometric interpretation.

• Essentially low-dimensional linear regression. Consider least squares regression
in which data lives in Rk and k ≪ n: X ∈ Rn×k with i.i.d. centered rows from a
distribution with covariance Σ ∈ Rk×k and y = Xθ∗ + ε, where ε has i.i.d. centered
components with variances v2ε. Our estimator of choice in this regime is OLS:

θ̂ = arg min
θ

∥Xθ − y∥2 = arg min
θ

∥X(θ − θ∗) − ε∥2.

As θ takes all possible values in Rk, X(θ− θ∗) takes all possible values in the span of
columns of X, which means that

X(θ̂ − θ∗) = ΠXε,

where ΠX is the projection on the span of columns of X. This allows us to write the
following informal computation, which leads to the classical k/n rate:

v2εk = Eε∥ΠXε∥2 = Eε∥X(θ̂ − θ∗)∥2 = Eε

[
(θ̂ − θ∗)⊤ X⊤X︸ ︷︷ ︸

≈nΣ

(θ̂ − θ∗)

]
,

v2ε · k/n ≈ (θ̂ − θ∗)⊤Σ(θ̂ − θ∗) = Ex∼N (0,Σ)⟨x, θ̂ − θ∗⟩2.
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Here we used the informal transition ∥n−1X⊤X−Σ∥ ≈ 0 — the population covariance
matrix is well-approximated by the sample covariance matrix uniformly in all direc-
tions. If k ≪ n this results holds with very few additional assumptions (see [52] and
references therein).

What we have obtained is an example of a classical argument: the training error
∥X(θ̂ − θ∗)∥2 is a good proxy for the population error ∥Σ1/2(θ̂ − θ∗)∥2 uniformly
over all θ̂ ∈ Rk, and the model helps eliminate the noise because it gets projected on
a subspace of low dimension. The larger the model, the more error comes from the
noise.

Such a result leads to a classical bias-variance trade-off: the larger the model is, the
better it can approximate the true dependence, but also the more noise it picks up. A
classical cartoon is shown in Figure 2.1: Figures 2.1b–2.1d show the result of perform-
ing least squares regression with features {cos(mπx)}pm=0. As the number of features
grows, the ability of the model to approximate the signal grows too, but at the cost of
increasing sensitivity to the noise. As the number of features approaches the number
of data points (the “interpolation threshold”), this leads to overfitting.

• Essentially high-dimensional linear regression. Now consider linear regression
in which p ≫ n, but with isotropic data: assume that the matrix X has i.i.d. standard
normal elements and y = Xθ∗ + ε where ε ∼ N (0n, v

2
εIn) — independent from X.

We consider the minimum ℓ2-norm interpolating solution:

θ̂ = argminθ∈Rp:Xθ=y ∥θ∥ = X⊤(XX⊤)−1y = X⊤(XX⊤)−1(Xθ∗ + ε).

According to our definitions of bias and variance from Equation (2.2) with λ = 0,

B =∥
(
Ip −X⊤(XX⊤)−1X

)
θ∗∥,

V =Eε∥X⊤(XX⊤)−1ε∥2/v2ε = tr
((

XX⊤︸ ︷︷ ︸
≈pIn

)−1
)
.

Here we see the following: the matrix X⊤(XX⊤)−1X is the projection on the span of
the data. This is a random n-dimensional subspace in p-dimensional space. Thus, with
high probability ∥X⊤(XX⊤)−1Xθ∗∥2/∥θ∗∥2 ≈ n/p, so the projection only preserves
an n/p fraction of the energy of the signal. When it comes to the variance term, we
can use the same concentration result for the sample covariance as we did in the low-
dimensional case, but for the transposed data matrix, meaning XX⊤ ≈ pIn. Finishing
the computation yields

B ≈ (1 − n/p)∥θ∗∥2, EεV ≈ n/p.

We see that the signal is almost not learned at all in this regime (the bias term is close
to the full energy of the signal), but the noise is also damped by the factor p/n.
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The geometric interpretation is as follows: if p ≫ n, the span of n data points is almost
orthogonal to θ∗ with high probability. The data just does not measure θ∗ in most
directions, so almost the whole signal is lost. On the other hand, despite the noise fully
propagating into in-sample predictions, a new data point x is also almost orthogonal to
all the old data points with high probability, so those noisy predictions don’t influence
the prediction in x. Overall, despite interpolating the data, we effectively learn a zero
estimate out of sample. The zero estimator can be a very good estimator, e.g., if
the true signal is zero. This hints at the possibility of learning via high-dimensional
interpolation: the model can use the directions in which the signal is not learned to
smear the noise over them.

The learning cartoon for this regime is given in Figures 2.2b–2.2c: as the number of
cosine features becomes large compared to the number of data points, the learning pro-
cedure predicts zero out of sample, despite interpolating the values in sample. However,
if we add certain multiplicative weights to the cosine features, down-weighting higher
frequencies, it causes the minimum norm solution to learn the low frequency signal and
interpolate the noise using the high frequency components.

Deriving k

In this section we explain how to derive the structure we introduced in Section 1.3. We only
consider the MNI solution here (that is, we set λ to zero until the end of this section), and
we impose an additional assumption that all the elements of the matrix Z are independent.

Recall that the variance term is defined as follows:

V = tr(A−1XΣX⊤A−1).

The first idea is to represent this quantity as a sum over the columns of matrix X. Denote
the i-th column of matrix Z as zi. Then we can write the following.

V =

p∑
i=1

λ2
iz

⊤
i A

−2zi.

Recall that vectors zi are random with i.i.d. components (as the rows of X are i.i.d.). That
would allow the quantity z⊤

i A
−2zi to be bounded by standard results on concentration of

quadratic forms if the matrix A was independent from zi. This idea leads to the following.
First, we write

A =

p∑
j=1

λjzjz
⊤
j . (2.3)

Since we imposed the simplifying assumption that all the vectors (zi)
p
i=1 are independent

of each other, we see that A is “almost independent” from zi. Indeed, only one term in
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(a) Legend for all the plots. (b) Features {cos(mx)}2m=1: underfitting. A
linear combination of features cannot approx-
imate the true dependence.

(c) Features {cos(mx)}3m=1: the best fit. This
is the minimum number of features that span
the true dependence.

(d) Features {cos(mx)}50m=1: overfitting. As
the number of features approaches the number
of data points, the effect of the noise becomes
stronger.

Figure 2.1: Learning cos(3x) using linear regression with different featurizations. The num-
ber of features is less than the number of data points, and the OLS estimator is used. The
data points (xi, yi)

60
i=1 were generated i.i.d. such that xi have uniform distribution on [0, π]

and yi have normal distribution with mean cos(3xi) and standard deviation 0.4.
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(a) Legend for all the plots. (b) Features {cos(mx)}2000m=1: isotropic overpa-
rameterization. As the number of cosine fea-
tures grows above the interpolation threshold,
the learned solution goes to zero out of sample.

(c) Features {cos(mx)/
√
m}2000m=1: benign over-

fitting. Adding weights to cosine features re-
sults in interpolating the noise with high fre-
quency features and learning the signal with low
frequency features.

Figure 2.2: Learning cos(3x) using linear regression with different featurizations. The num-
ber of data points is lower than the number of features, and the minimum norm interpolating
solution is used. The data points (xi, yi)

60
i=1 were generated i.i.d. such that xi have uniform

distribution on [0, π] and yi have normal distribution with mean cos(3xi) and standard de-
viation 0.4.
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Equation 2.3 is not independent of zi: the one for which j = i. That is, A is a rank
one correction to a matrix that is independent from zi, which gives us the next idea: use
Sherman–Morrison formula to disentangle A and zi for every i. This leads to the following
lemma, whose proof can be found in Appendix A.2.

Lemma 3. For any i ∈ {1, . . . , p} define A−i :=
∑

j ̸=i λjzjz
⊤
j . If A−i is invertible, then

λ2
iz

⊤
i A

−2zi =
λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−izi)

2
.

Now quadratic form concentration gives us that z⊤
i A

−2
−izi ≈ tr(A−2

−i ) and z⊤
i A

−1
−izi ≈

tr(A−1
−i ), and thus the next step is to understand the values of those traces. Since we haven’t

restricted the sequence (λi)
p
i=1 in any way so far, the eigenvalues of all the matrices A−i, as

well as A, can be approached in a completely analogous way. Because of that, let’s focus
on the matrix A. The following lemma is a result of a straightforward application of an
epsilon-net argument to matrix A using Equation (2.3). See Appendix A.2 for the proof.

Lemma 4. Set λ = 0. Suppose all elements of matrix Z are independent and σx-sub-
Gaussian. There is a constant c that only depends on σx such that with probability 1 − 2e−n

µn(A) ≥
p∑
i=1

λi − c

nλ1 +

√√√√n

p∑
i=1

λ2
i

 = tr(Σ) − c(n∥Σ∥ +
√
n∥Σ∥F ),

µ1(A) ≤
p∑
i=1

λi + c

nλ1 +

√√√√n

p∑
i=1

λ2
i

 = tr(Σ) + c(n∥Σ∥ +
√
n∥Σ∥F ).

One can see that Lemma 4 may give sharp bounds for the eigenvalues under the condition
that n∥Σ∥ ≪ tr(Σ). Indeed, since n∥Σ∥2F ≤ n∥Σ∥tr(Σ), that condition would also mean
that

√
n∥Σ∥F ≪ tr(Σ). However, imposing such an assumption on the sequence (λi)

p
i=1

doesn’t seem right for the following reason: our actual goal is to estimate tr(A−1) and
tr(A−2). Large eigenvalues of A give a small contribution to those quantities, so it is only
important to estimate the small eigenvalues. If we change λ1 to some large value, it will
only yield a rank one correction to A and change its spectrum essentially by only changing
the largest eigenvalue. Therefore, this operation would not change tr(A−1) and tr(A−2)
much, but would completely destroy the assumption that n∥Σ∥ ≪ tr(Σ). This is how the
main idea of our work comes up for the first time: since we only really care about the small
eigenvalues of A, we can apply Lemma 4 to a low rank correction to A that has similar
smallest eigenvalues. This is why for every k ∈ {0, . . . , p − 1} we introduce the following
matrix:

Ak :=
∑
j>k

λjzjz
⊤
j . (2.4)
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Now Lemma 4 applied to Ak instead of A would yield sharp bounds on the eigenvalues
under the condition that nλk+1 is much smaller than

∑
i>k λi. This motivates the following

definition:

Definition 5 (Effective Rank). For k ≥ 0, define the effective rank of the sequence (λi)i>k
as

rk :=

∑
i>k λi

λk+1

.

With this definition, we can formulate the following lemma about the eigenvalues of Ak:

Lemma 6. Set λ = 0. Suppose all elements of matrix Z are independent and σx-sub-
Gaussian. There is a constant c that only depends on σx such that the following holds.
Suppose that rk > c for some k. Then with probability 1 − 2e−n

c−1
∑
i>k

λi ≤ µn(Ak) ≤ µ1(Ak) ≤ c
∑
i>k

λi.

Proof. Denote the constant from Lemma 4 as c1. By that lemma, with probability 1− 2e−n

µ1(Ak) ≤tr(Σk:∞) + c1(n∥Σk:∞∥ +
√
n∥Σk:∞∥F ),

µn(Ak) ≥tr(Σk:∞) − c1(n∥Σk:∞∥ +
√
n∥Σk:∞∥F ).

Note that for any scalar w AM-GM inequality yields

√
n∥Σk:∞∥F =≤

√
n∥Σk:∞∥tr(Σk:∞) ≤ wn∥Σk:∞∥ + w−1tr(Σk:∞).

Taking w = 2c1 and plugging in this inequality into the bounds above gives the following:

µ1(Ak) ≤1.5tr(Σk:∞) + (c1 + 2c21)n∥Σk:∞∥ = (1.5 + (c1 + 2c21)n/rk)tr(Σk:∞),

µn(Ak) ≥0.5tr(Σk:∞) − (c1 + 2c21)n∥Σk:∞∥ = (0.5 − (c1 + 2c21)n/rk)tr(Σk:∞).

If c is large enough, then the condition rk > cn implies 0.5 − (c1 + 2c21)n/rk ≥ c−1 and
1.5 + (c1 + 2c21)n/rk ≤ c, which finishes the proof.

To return from the matrix Ak to the matrices A and A−i we can use the following lemma,
whose proof can be found in Appendix A.2.

Lemma 7. 1. for all i ≥ 1,

µk+1(A−i) ≤ µk+1(A) ≤ µ1(Ak),

2. for all 1 ≤ i ≤ k,
µn(A) ≥ µn(A−i) ≥ µn (Ak) ,
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Let’s denote Λk :=
∑

i>k λi. We now know that if rk > cn then the small eigenvalues of
A (and A−i for1 i ≤ k) are around Λ−1

k .
Plugging Lemma 3 into the formula for the variance term gives

V =

p∑
i=1

λ2
iz

⊤
i A

−2zi =

p∑
i=1

λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−izi)

2
.

On the right-hand side of this equation in the denominator either 1 or λiz
⊤
i A

−1
−izi could be

the dominating quantity. Depending on that, one of the following inequalities will be sharp
up to a constant factor:

λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−izi)

2
≤ λ2

iz
⊤
i A

−2
−izi,

λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−izi)

2
≤

λ2
iz

⊤
i A

−2
−izi

(λiz⊤
i A

−1
−izi)

2
.

Now our task is to understand for which i we want to apply the first inequality, and for
which — the second.

Assume that rk > cn for some k which is small compared to n. Plugging in quadratic
form concentration together with our results for eigenvalues gives λiz

⊤
i A

−1
−izi ≈ nλiΛ

−1
k . The

latter quantity decreases with i, and when i = k + 1 it becomes nλk+1Λ
−1
k = n/rk < c−1,

which is small. Therefore, 1 will dominate nλiΛ
−1
k . Thus, we want to apply the second

inequality for all i > k and we only want to apply the first inequality for the first ℓ terms,
where ℓ ≤ k. Doing that together with plugging in z⊤

i A
−1
−izi ≈ nΛ−1

k and z⊤
i A

−2
−izi ≈ nΛ−2

k

yields the following upper bound on V :

Lemma 8. Suppose all elements of matrix Z are independent and σx-sub-Gaussian. There
are constants b, c ≥ 1 that only depend on σx such that if 0 ≤ k ≤ n/c, rk ≥ bn, and l ≤ k
then with probability at least 1 − 8e−n/c,

V ≤ c

(
l

n
+

n
∑

i>l λ
2
i

(λk+1rk)
2

)
.

The formal proof of this lemma requires a few more technical steps, and can be found in
Appendix A.2.

Interestingly, if we are looking for a lower bound, for the first ℓ terms we can obtain it
without assuming that rk > cn. The idea is that the ratio z⊤

i A
−2
−izi/(z⊤

i A
−1
−izi)

2 is lower
bounded by 1/∥zi∥2 ≈ 1/n due to Cauchy-Schwartz inequality. Thus, we can write

λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−izi)

2
=

(
λiz

⊤
i A

−1
−izi

1 + λiz⊤
i A

−1
−izi

)2
z⊤
i A

−2
−izi

(z⊤
i A

−1
−izi)

2
≳ n−1

(
1

1 + 1/(λiz⊤
i A

−1
−izi)

)2

.

To lower-bound this quantity, we only need to bound z⊤
i A

−1
−izi from below, which means

bounding the eigenvalues of A−i from above. Application of Lemma 4 to Ak instead of

1Even though the relation between A−i and Ak is only straightforward for i ≤ k, it turns out to be
enough for the rigorous argument.
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A does the job, and gives a non-vacuous upper bound on eigenvalues even without high
effective rank condition (even though it may not be sharp).

This idea, combined with a few other technical steps gives the following lower bound,
whose proof can be found in Appendix A.2.

Lemma 9. Suppose all elements of matrix Z are independent and σx-sub-Gaussian. There
is a constant c that only depends on σx such that for any 0 ≤ k ≤ n/c and any b > 1 with
probability at least 1 − 10e−n/c,

1. If rk < bn, then V ≥ k+1
cb2n

.

2. If rk ≥ bn, then

V ≥ 1

cb2
min
l≤k

(
l

n
+

b2n
∑

i>l λ
2
i

(λk+1rk)
2

)
.

In particular, if all choices of k ≤ n/c give rk < bn, then rn/c < bn implies that with
probability at least 1 − 12e−n/c, V ≥ (cb)−2—at least a constant.

Note that if rk > cn for some k < n/c then our upper and lower bounds coincide up to a
constant factor. It may be surprising, since the choice of k is somewhat arbitrary: there may
be several choices of k that satisfy those conditions, and each of those choices potentially
gives a new value for the bound. However, the freedom to choose k is somewhat illusory:
Lemmas 7 and 6 show that, for any qualifying value of k, the smallest eigenvalue of A is
within a constant factor of λk+1rk. Thus, any two choices of k satisfying k ≤ n/c and rk ≥ bn
must have values of λk+1rk within constant factors.

This observation helps choose the “right” ℓ and k. Looking at the bound, we see that
decreasing ℓ by one subtracts 1/n but adds nλ2

ℓ/(λk+1rk). Because of that, for the optimal
ℓ, it should hold

nλ2
ℓ

(λk+1rk)2
≳

1

n
≳

nλ2
ℓ+1

(λk+1rk)2
.

That is, ℓ is the place where the ratio nλℓ/(λk+1rk) switches from being more than a constant
to less than a constant. If we try ℓ = k + 1, then the ratio becomes n/rk — smaller than a
small constant, so ℓ ≤ k. Since λk+1rk is approximately the same for all values of k for which
rk is large, however, ℓ should be smaller than all of them. On the other hand, if ℓ + 1 < k,
we can write

1 ≳
nλℓ+1

λk+1rk
≥ nλℓ+1

λℓ+1rℓ
= n/rℓ,

which means that rℓ/n should be larger than a constant. This suggests that ℓ should be
taken to be equal to the minimum value of k for which rk/n is larger than a constant. Taking
such ℓ indeed works and simplifies the bound on V , as the following lemma shows. The proof
is in Appendix A.2.
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Lemma 10. For any b ≥ 1 and k∗ := min {k : rk ≥ bn}, if k∗ < ∞, we have

min
l≤k∗

(
l

bn
+

bn
∑

i>l λ
2
i

(λk∗+1rk∗)2

)
=

k∗

bn
+

bn
∑

i>k∗ λ
2
i

(λk∗+1rk∗)2
=

k∗

bn
+

bn

Rk∗
,

where we introduced Rk :=
(∑

i>k λi
)2

/
(∑

i>k λ
2
i

)
.

Finally, putting everything together yields the final form of the result:

Theorem 11. Put λ = 0 and suppose all elements of matrix Z are independent and σx-
sub-Gaussian. There are constants a, b, c > 1 that only depend on σx for which the following
holds with probability 1 − 20e−n/c. Define

k∗ = min {k ≥ 0 : rk ≥ bn} ,

where the minimum of the empty set is defined as ∞. If k∗ ≥ n/c, then V ≥ 1/a. Otherwise,

V/c ≤ k∗

n
+

n

Rk∗
≤ cV. (2.5)

Proof. Take b to be the constant b from Lemma 8. Take cu to be the constant c from
Lemma 8 and cℓ to be the constant c from Lemma 9.

Suppose that k∗/n < min(cu, cℓ). Then Lemmas 8 and 9 yield that with probability
1 − 12e−n/cℓ − 8e−n/cu

1

cℓb2
min
l≤k

(
l

n
+

b2n
∑

i>l λ
2
i

(λk+1rk)
2

)
≤ V ≤ cu min

l≤k∗

(
l

n
+

n
∑

i>l λ
2
i

(λk+1rk)
2

)
.

Since b > 1, we can weaken the right inequality to obtain the following:

1

cℓb
min
l≤k

(
l

bn
+

bn
∑

i>l λ
2
i

(λk+1rk)
2

)
≤ V ≤ cubmin

l≤k∗

(
l

bn
+

bn
∑

i>l λ
2
i

(λk+1rk)
2

)
.

Now by Lemma 10, we get

1

cℓb

(
k∗

bn
+

bn

Rk∗

)
≤ V ≤ cub

(
k∗

bn
+

bn

Rk∗

)
,

which yields Equation (2.5) for c = b2 max(cℓ, cu).
Now, suppose k∗ > n/c. Take k = ⌊n/c⌋ < k∗. Due to definition of k∗, rk < bn. Thus,

by Lemma 9, V ≥ (k + 1)/(cℓb
2n) ≥ (n/c)/(cℓb

2n) = 1/a for a = ccℓb
2.

Inspection of the proofs shows that the “essentially low-dimensional” rate k/n comes from

the first k components of the vector θ̂(ε),2 and the term
(
n
∑

i>k∗ λ
2
i

)
/
(∑

i>k∗ λi
)2

comes

2Recall the notation θ̂(ε) introduced in Section 2.2.
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from the rest of the components of θ̂(ε) . Note that if one plugs in λi = λj for all i, j > k∗,

then it becomes
(
n
∑

i>k∗ λ
2
i

)
/
(∑

i>k∗ λi
)2

= n/(p− k∗) — exactly the variance term of the
“essentially high-dimensional” regime discussed earlier in Section 2.3. Thus, we can make
a conclusion that the only way that an interpolating solution can damp the noise by more
than a constant factor is the following: the data is such that after removing k components,
it becomes “essentially high-dimensional”, meaning that the effective rank of its covariance
is large compared to the number of data points. The learning only happens in the first k
components, and the corresponding variance in the first k components is the same as for
the classical least squares. The variance in the rest of the components corresponds to the
“essentially high-dimensional” case, where you cannot learn but the noise is still damped.
Note, however, that we haven’t completely justified that story yet, because only the variance
term was bounded sharply so far. We understood when the model doesn’t overfit to the
noise, but we haven’t yet shown what the model actually learns.

Effective rank

The notion of effective rank appears in two different places throughout the derivation Theo-
rem 11: we need large rk to sharply estimate the eigenvalues of Ak and the first place where
rk becomes large turns out to also give the right choice of ℓ. Because of this coincidence, the
final result has such a simple form.

Due to such a prominent role of the effective ranks in the argument, it is informative to
discuss which sequences of (rk)

p
k=1 are possible. The following theorem gives an answer to

this question.

Theorem 12. Consider some positive summable sequence {λi}∞i=1, and for any non-negative
integer i denote

ri := λ−1
i+1

∑
j>i

λj.

Then ri > 1 and
∑

i r
−1
i = ∞. Moreover, for any positive sequence {ui} such that

∑∞
i=0 u

−1
i =

∞ and for every i ui > 1, there exists a positive sequence {λi} (unique up to constant
multiplier) such that ri ≡ ui. The sequence is (a constant rescaling of)

λk = u−1
k−1

k−2∏
i=0

(1 − u−1
i ).

The proof can be found in Appendix A.2.
In Lemma 10 we introduced another quantity: Rk. This quantity can be seen as another

measure of the effective rank of sequence (λi)i>k. Indeed, if we fix the value of
∑

i>k λi, then
under this constraint the value of

∑
i>k λ

2
i will be minimized when all λi are equal to each

other, resulting in Rk = p − k, and it will be maximized when λk+1 is the only non-zero
element in the sequence, resulting in Rk = 1. Thus, Rk can be seen as a measure of how
spread the energy of the covariates is between the coordinates starting from k + 1-st. Let’s
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add dependence on Σ to the notation of ranks, that is, write rk(Σ) and Rk(Σ) instead of rk
and Rk. Then the following lemma shows that the two notions of effective rank are closely
related.

Lemma 13. rk(Σ) ≥ 1, r2k(Σ) = rk(Σ
2)Rk(Σ), and rk(Σ

2) ≤ rk(Σ) ≤ Rk(Σ) ≤ r2k(Σ).

Proof. The first inequality and the equality are immediate from the definitions. Together
they imply Rk(Σ) ≤ r2k(Σ). For the second inequality,

rk(Σ
2) =

∑
i>k λ

2
i

λ2
k+1

≤
λk+1

∑
i>k λi

λ2
k+1

= rk(Σ).

Substituting this in the equality implies rk(Σ) ≤ Rk(Σ).

Further in this chapter we will obtain a sharp bound on the bias term and see that the
signal can only be learned in the first k∗ components, while in the remaining components at
least a constant fraction of the signal will go into prediction error. Because of that, and our
bound on the variance term, we give the following definition.

Definition 14. We say that a sequence of covariance operators Σn is benign if

lim
n→∞

r0(Σn)

n
= lim

n→∞

k∗
n

n
= lim

n→∞

n

Rk∗n(Σn)
= 0,

where k∗
n = min {k ≥ 0 : rk(Σn) ≥ bn} for the constant b from Theorem 11 applied for the

case σx = 1.

In the following theorem, which is proved in Appendix A.2, we study several examples
of covariance sequences and derive for which values of parameters they are benign.

Theorem 15. Define λk,n := µk(Σn) for all k, n.

1. If λk,n = k−α ln−β(k + 1), then Σn is benign if and only if α = 1 and β > 1.

2. If λk,n = k−(1+αn), then Σn is benign if and only if ω(1/n) = αn = o(1).

3. If

λk,n =

{
k−α if k ≤ pn,

0 otherwise,

then Σn is benign if and only if either 0 < α < 1, pn = ω(n) and pn = o
(
n1/(1−α)) or

α = 1, pn = eω(
√
n) and pn = eo(n).

4. If

λk,n =

{
γk + ϵn if k ≤ pn,

0 otherwise,

and γk = Θ(exp(−k/τ)), then Σn is benign if and only if pn = ω(n) and ne−o(n) =
ϵnpn = o(n).
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2.4 Main bounds for ridge regression

In this section, we complete the story of Section 2.3 by providing sharp bounds on the bias
term, extending the results to the setting of ridge regression with nonzero λ, and replacing
the assumption of independence of the components by a much broader sufficient condition.
The notion of k∗ is the main discovery of Section 2.3. Now we start with separation of the
first k eigendirections right away, and show that the same split leads to a bound for the bias
term that is in full alignment with the previously obtained intuitive explanation.

The central object in our analysis is the following matrix:

Ak := Xk:∞X⊤
k:∞ + λIn. (2.6)

Note that (2.6) extends the definition of Ak that we gave in Section 2.3 to the case when λ
is not zero.

The matrix Xk:∞X⊤
k:∞ is the Gram matrix of the data after removing the first k com-

ponents. Ak is obtained from that Gram matrix by shifting all eigenvalues by the ridge
regularization parameter λ.

To take into account the effect of regularization on the notion of effective rank we intro-
duce the following notation: for any k ∈ {0, 1, 2, . . . , p− 1} define

ρk :=
1

nλk+1

(
λ +

∑
i>k

λi

)
.

For λ = 0 we have ρk = rk/n, where rk is the effective rank introduced in Section 2.3.
For example, k∗ from that section is the first index k for which ρk becomes larger than a
constant.

In Section 2.3, the crucial step was to show that the singular values of Ak are within a
constant factor of each other for k = k∗: Lemma 6 showed that when the components of
data vectors are independent, such control over the condition number is a consequence of
high effective rank. In the remainder of this chapter, the roles of effective rank and condition
number of Ak are reversed. We prove sharp bounds assuming that there is some oracle that
guarantees that with high probability all eigenvalues of Ak are within a constant factor of
each other. Independence of components is not needed. Moreover, such control implies that
ρk is at least a constant, which, in turn, implies sharpness of the bounds. In other words,
we provide a more general condition under which the tail of the data is “essentially high
dimensional” — instead of assuming independent components and high effective rank, only
oracle control of condition number of Ak is needed. In Section 2.5 we provide an extensive
discussion of this assumption: we show that a version of a small-ball condition for the tails
of the data is required and that a stronger version of the same condition is sufficient if the
data is sub-Gaussian.

The bound that we obtain for the bias term is given informally by the following expression:

B ≈ ∥θ∗
k:∞∥2Σk:∞

+ ∥θ∗
0:k∥2Σ−1

0:k

(
λ +

∑
i>k λi

n

)2

.
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One can see how it aligns with the intuition of “essentially low-dimensional” and “essentially
high-dimensional” parts: one cannot estimate the signal in the high dimensional part, so
almost all of its energy ∥θ∗

k:∞∥2Σk:∞
goes into the error. When it comes to the low-dimensional

part, the high-dimensional part acts as a ridge regularizer for it, so the bias in the first
k components is the same as that of ridge regression with regularization coefficient λ +∑

i>k λi (i.e., the full regularization is equal to the explicitly imposed part λ plus “implicit
regularization”, which is equal to the energy of the tail of the covariance.)

Our extension of the results to the ridge regression scenario allows us to answer the fol-
lowing question: can it happen that the “essentially high dimensional part” has too much
energy, meaning that it provides too much regularization and negative λ is needed to com-
pensate for that? In Section 2.8, we show that this indeed can happen and that the following
is sufficient for it to be true: the noise and the energy of the signal in the tail (components
k : ∞) are small compared to the signal in the spiked part (components 0 : k), but the
effective rank of the tail abruptly becomes much larger than n.

The central objects in our proof are Ak and ρk. In principle, any control of the spectrum
of Ak leads to some upper bound on B and V (see our Theorem 20), the question is when
that bound is tight. The intuitive answer is the following: the bound is tight when the
condition number of Ak is a constant and k is chosen correctly, meaning that either ρk is a
constant or k is the smallest number such that ρk is larger than a constant (i.e., k = k∗).3

Our arguments, however, only support this intuition when the following technical assumption
holds for some constant γ < 1:

NoncritReg(k, γ) Assume that λ > −γ
∑

i>k λi.

The reason why this assumption is needed is that as λ approaches −
∑

i>k λi, EAk approaches
zero. It still can be possible to bound the eigenvalues of Ak with high probability in such
regime, but their magnitude will be smaller, and some error terms that were dominated
before become significant. We do investigate such a regime in Section 2.8, where we show that
negative regularization may give better rates than any value of non-negative regularization,
but we only provide an upper bound there. For all the results we discuss in this section, we
make Assumption NoncritReg(k, γ).

The focus of our work was to obtain the tight upper bound on the excess risk under
minimal assumptions. Such minimal assumption turns out to be

CondNum(k, δ, L) Assume that with probability at least 1− δ the matrix Ak is positive-
definite (PD) with condition number at most L.

We provide a thorough discussion of this assumption in Section 2.5, for example we derive
sufficient and almost matching necessary conditions for it to hold when the distribution
is sub-Gaussian. The reason why we don’t just assume those sufficient conditions is that
we believe that sub-Gaussianity is not essential for our results to hold, as we discuss in

3Note that there may be several values of k that satisfy these conditions. Applying our upper bound for
any of those k will yield the same result up to a constant factor.
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Section 2.6. Moreover, the matrix Ak is the central object in our argument, and making an
assumption on its condition number explicitly makes presentation easier.

A careful reader will notice that we have just stated that another condition is needed for
the bound to be tight: k should be chosen in the right way. This, however, can be achieved
by shifting k to k∗ if necessary: indeed, assumptions NoncritReg(k, γ) and CondNum(k, δ, L)
imply a constant lower bound on ρk (see Corollary 21). That means that either ρk is a
constant, or it is more than a constant, i.e., k > k∗. In the latter case one can shift from
k to k∗ meaning that Assumption CondNum(k∗, δ′, L′) also holds with modified constants
δ′, L′ (see Lemma 26 for the exact statement). Now applying the upper bound (Corollary
21) with k = k∗ gives tight result, as given by the following.

Theorem 16. Fix any constants b > 0, γ ∈ [0, 1), L > 0. Denote

k∗ = min{κ : ρκ > b}.

There exists a constant c which only depends on σx, b, γ, L such that the following holds:
suppose NoncritReg(k̄, γ) and CondNum(k̄, δ, L) are satisfied for some k̄ < n/c and δ <
1 − ce−n/c. Take k = min(k̄, k∗). Then with probability at least 1 − ce−n/c − δ

B/c ≤∥θ∗
k:∞∥2Σk:∞

+ ∥θ∗
0:k∥2Σ−1

0:k

(
λ +

∑
i>k λi

n

)2

, (2.7)

V/c ≤k

n
+

n
∑

i>k λ
2
i(

λ +
∑

i>k λi
)2 . (2.8)

Moreover ρk ≥ c−1, NoncritReg(k, γ) holds, and there exist L′, c′ that only depend on σx, b, γ, L
s.t. CondNum(k, δ + c′e−n/c

′
, L′) holds.4

Proof. In this proof let’s call any quantities that only depend on σx, γ, b and L “con-
stants”. First of all, if k̄ ≤ k∗ then k = k̄. Since we are given that NoncritReg(k̄, γ)
and CondNum(k̄, δ, L) are satisfied, we immediately get that NoncritReg(k, γ) and Cond-
Num(k, δ + c′e−n/c

′
, L′) are satisfied with L′ = L and any c′ > 0. However, if k̄ > k∗ then

k = k∗ and by Lemma 26 NoncritReg(k, γ) and CondNum(k, δ+c′e−n/c
′
, L′) are still satisfied

for some constants c′, L′. Note that the larger the constants, the looser the assumptions, so
we can take our final choice of c′, L′ to be the maximum over two cases.

Now that we know that NoncritReg(k, γ) and CondNum(k, δ + c′e−n/c
′
, L′) are satisfied,

by Corollary 21, there is a constant c1 such that ρk > 1/c1 and with probability at least

4That is, the assumptions still hold if we substitute k̄ by k, but with different L, δ. Further we will see
that satisfaction of these assumptions implies tightness of the bounds for the chosen k.
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1 − c1e
−n/c1 − c′e−n/c

′ − δ

B/c1 ≤∥θ∗
k:∞∥2Σk:∞

+ ∥θ∗
0:k∥2Σ−1

0:k

(
λ +

∑
i>k λi

n

)2

,

V/c1 ≤
k

n
+

n
∑

i>k λ
2
i(

λ +
∑

i>k λi
)2 .

Taking c ≥ c1 + c′ gives the first part.

Algebraically, under Assumption CondNum(k, δ, L) all eigenvalues of A−1
k are within a

constant factor of each other, so one can pull its operator norm from the expressions and
obtain an upper bound without losing tightness. This strategy, however, doesn’t produce
lower bounds, so we derive them in a different way. Because of that, we impose different
assumptions, namely

IndepCoord Assume that all elements of matrix X are independent (i.e., data
vectors have independent coordinates).5

for the variance term, and

ExchCoord Assume that the sequence of coordinates of Σ−1/2x is exchangeable
(any deterministic permutation of the coordinates of whitened data
vectors doesn’t change their distribution).

PriorSigns(θ̄) Assume that θ∗ is sampled from a prior distribution in the following
way: one starts with vector θ̄ and flips signs of all its coordinates with
probability 0.5 independently.

for the bias term. The reason we introduce them is purely technical: taking expectation
over the prior signs kills the cross-terms in the expression for bias, after which we decompose
bias and variance into sums with respect to individual coordinates of the predictor, and
bound each term in each sum from below. The latter is possible because of the Assumptions
IndepCoord and ExchCoord. We don’t believe those assumptions to be necessary for our
results to be tight, but because of this mismatch in assumptions, our lower bounds don’t
formally show that our upper bound is always tight. What they show is that one needs
some specific knowledge about the distribution to obtain better bounds. We provide a more
detailed discussion of the relations between those assumptions in Section 2.6. The lower
bounds themselves are given by the following

5Recall that we fix the basis to be the eigenbasis of the covariance from the very beginning. Because of
that, Assumption IndepCoord is stronger than the assumption that elements of XΣ−1/2 are independent in
some basis, that is often made in Random Matrix Theory literature.
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Theorem 17. Fix any constants b > a > 0, γ ∈ [0, 1), L > 0. Denote

k∗ = min{κ : ρκ > b}.

There exists a constant c which only depends on σx, a, b, γ, L such that all the following
hold:

1. For any k ∈ {0, 1, . . . , k∗} under assumptions IndepCoord, NoncritReg(k, γ), if ρk > a
then with probability at least 1 − 2δ − ce−c/n

V ≥ 1

c

(
k

n
+

n
∑

i>k λ
2
i(

λ +
∑

i>k λi
)2
)
.

2. For any k ∈ {1, 2, . . . , k∗} under assumptions NoncritReg(k, γ), CondNum(k, δ, L),
PriorSigns(θ̄) and ExchCoord, if ρk > a then with probability at least 1 − 2δ − ce−c/n

Eθ∗B ≥ 1

c

(
∥θ̄k:∞∥2Σk:∞

+ ∥θ̄0:k∥2Σ−1
0:k

(
λ +

∑
i>k λi

n

)2
)
,

where Eθ∗ denotes expectation over a random draw of θ∗ from the distribution described
in assumption PriorSigns(θ̄).6

Proof. Lemma 22 gives a lower bound for V , and Lemmas 23 and 24 give the lower bound
for B. Those lower bounds have the desired probability, but different algebraic form. To
bring them to the same form as the upper bounds one needs the right k to be chosen. We
assumed that ρk > a. Moreover, since k ≤ k∗ by definition of k∗ we either have ρk ≤ b or
k = k∗. In both of those cases Theorem 25 guarantees that these lower bounds are the same
as what we need up to multiplicative constants that only depend on σx, γ, a, b and L.

One can notice from this proof that having separate arguments for the lower bounds
results in a different algebraic form of the same bound. This different form turns out to be
convenient to draw explicit connections between our results and results from earlier works.
We do that in Section 2.7.

2.5 Effective ranks and control of the spectrum of Ak

The central assumption that we need to compute the excess risk is Assumption Cond-
Num(k, δ, L), which provides control over condition number of Ak. In this section we discuss
when this assumption is known to be satisfied and what are the necessary conditions for it
to happen.

6Note that under this distribution ∥θ̄k:∞∥Σk:∞ = ∥θ∗
k:∞∥Σk:∞ and ∥θ̄0:k∥Σ−1

0:k
= ∥θ∗

0:k∥Σ−1
0:k

almost

surely.
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Effect of λ on the condition number

Recall that Ak = Xk:∞X⊤
k:∞ + λIn, so its spectrum is the shift by λ of the spectrum of

Xk:∞X⊤
k:∞, the random matrix that is equal to the Gram matrix of the projected data.

There are therefore three ways of establishing a constant upper bound on the condition
number of Ak:

1. Establish an upper bound µ̄ on µ1(Xk:∞X⊤
k:∞) and take λ > µ̄/c for some constant

c > 0. In this case, the singular values of Ak are all equal to λ (and greater than µ̄)
up to a constant multiplier.

2. Establish upper and lower bounds µ̄ and µ on µ1(Xk:∞X⊤
k:∞) and µn(Xk:∞X⊤

k:∞)
respectively, such that µ̄/µ is a constant. Then take λ > −µ/c for some constant
c > 1. In this case, the singular values of Ak are all equal to µ̄ (or µ) up to a constant
multiplier.

3. Establish upper and lower bounds µ̄ and µ on µ1(Xk:∞X⊤
k:∞) and µn(Xk:∞X⊤

k:∞)
respectively, and take λ = −µ + ♢, where ♢ ≥ c(µ̄ − µ) for a constant c > 0. In this
case, the singular values of Ak are all equal to ♢ up to a constant multiplier. This
case can be substantially different from the previous case when the singular values of
Xk:∞X⊤

k:∞ are very well concentrated, i.e., the gap µ̄ − µ is of smaller order than µ
itself. In this case ♢ can be a smaller order term.

Our bounds are sharp when assumption NoncritReg(γ) is satisfied for some γ < 1, i.e.,
in the first and the second case above. The third case is quite rare because it requires
very good concentration of the spectrum of Xk:∞X⊤

k:∞. Moreover, in this case λ is very
close to the critical negative value under which it is impossible to even guarantee that Ak

is PD as it becomes negative definite in expectation. We use this regime to investigate how
negative regularization can improve excess risk by more than a constant factor in Section
2.8. However, we don’t expect our bounds to always be sharp in this regime.

Therefore, we focus our attention on the first two cases. In Section 2.5 we discuss in-
formally what conditions on the distribution are necessary to bound µ1(Xk:∞X⊤

k:∞) and
µn(Xk:∞X⊤

k:∞), and show how notions of high effective rank and norm concentration condi-
tion arise. In Section 2.5 we combine those bounds for sub-Gaussian data with the choice of
λ to provide necessary and almost matching sufficient conditions for the condition number
of Ak to be constant under sub-Gaussianity. In Section 2.5 we show that sub-Gaussianity is
not actually required for the condition number of Ak to be controlled with high probability:
Theorem 19 states that norm concentration condition and a modified version of high effective
rank condition are sufficient even if the data only has bounded 4 + ε moments.

Informal necessary conditions

There are several easy observations that help understand what is needed for the condition
number of Ak to be bounded. In the following we use notation U ⪰ V to denote that the
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matrix U −V is PSD, we use M [i, i] to denote the i-th diagonal element of the matrix M ,
and we denote

1. The first observation is that Xk:∞X⊤
k:∞ ⪰ λk+1zk+1z

⊤
k+1, where zk+1 is the first column

of Zk:∞ —a vector with n i.i.d. coordinates with unit variance. By the law of large
numbers, ∥zk+1∥2 ≈ n, meaning that ∥λk+1zk+1z

⊤
k+1∥ ≈ λk+1n. Therefore, µ̄ ≳ λk+1n.

2. The second observation is that the diagonal elements of Xk:∞X⊤
k:∞ are squared norms

of the tails of data vectors. That is, (Xk:∞X⊤
k:∞)[i, i] are i.i.d. random variables.

Once again, by the law of large numbers, tr(Xk:∞X⊤
k:∞) ≈ n

∑
i>k λi, which implies

that µ̄ ≳
∑

i>k λi ≳ µ. Combining it with the first observation shows that µ̄ and µ can
only be within a constant multiplier of each other when

∑
i>k λi ≥ cλk+1n for some

constant c. This is exactly the high effective rank condition ρk > c for λ = 0.

3. The third observation is that the diagonal elements of a PD matrix themselves provide
bounds on the singular values:

µn(Xk:∞X⊤
k:∞) ≤ min

i∈[n]
(Xk:∞X⊤

k:∞)[i, i] ≤ max
i∈[n]

(Xk:∞X⊤
k:∞)[i, i] ≤ µ1(Xk:∞X⊤

k:∞).

Therefore, to control condition number of Xk:∞X⊤
k:∞ by a constant L with probability

1 − δ, it is necessary to guarantee that

max
i

(Xk:∞X⊤
k:∞)[i, i]2 ≤ Lmin

j
(Xk:∞X⊤

k:∞)[i, i].

Recall that we denote an independent draw of a covariate vector as x. We see that
n independent random draws of the random variable ∥xk:∞∥2 should all lie within a
constant factor of some value, meaning that the norm of the tail of a covariate vector
should be within a constant factor of a fixed value with probability (1 − δ)1/n.

Controlling condition number under sub-Gaussianity

Sub-Gaussianity of the data implies an upper bound on µ1(Ak), but doesn’t help with
µn(Ak). To see this one can consider a well-known construction: take a sub-Gaussian dis-
tribution and construct another distribution in the following way: to sample from this new
distribution take a vector from the old distribution and multiply it by

√
2 with probability

1/2 and by zero otherwise. The new distribution is still sub-Gaussian with the same co-
variance, but the Gram matrix of n i.i.d. samples from it is degenerate with probability at
least 1− 2−n. Therefore, an additional assumption is needed to lower bound µn(Ak). As we
already mentioned in Section 2.5, we need norm concentration. Since sub-Gaussianity allows
to bound the norm from above, it reduces to a version of the small-ball condition: ∥xk:∞∥
should be lower-bounded with high probability. The formal result is given by the following
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Lemma 18 (Controlling µ1(Ak)/µn(Ak) under sub-Gaussianity). For any γ ∈ [0, 1) and
σx > 0 there exists c > 0 that only depends on σx and γ such that under Assumption
NoncritReg(k, γ) the following holds: for any L ≥ 1

• If ρk ≥ L2 and with probability at least (1 − δ)1/n

λ + ∥xk:∞∥2 ≥ c

L

(
λ + E∥xk:∞∥2

)
,

then with probability at least 1 − δ − ce−n/c

µn(Ak) ≥ L−1µ1(Ak).

• Suppose that it is known that with probability at least ce−n/c µn(Ak) ≥ L−1µ1(Ak).

Then ρk ≥ 1
cL

and with probability at least
(
1 − ce−n/c

)1/n
λ + ∥xk:∞∥2 ≥ 1

cL

(
λ + E∥xk:∞∥2

)
.

The proof is given in Appendix A.4. One can see that both the necessary and the sufficient
conditions are that ρk is lower bounded by a constant and a version of small-ball condition
that says that the regularized squared norm of the data exceeds a constant fraction of its
expectation with probability (1 − δ)1/n. There is, however, a gap in those constants.

Heavy-tailed case

The following is a direct corollary of Theorem 2.1 from [21]

Theorem 19. Suppose that the distribution of the tail satisfies the following two assump-
tions:

1. Norm concentration: For some δ ∈ (0, 1/n), L > 1 and M > 0

P(L−1 ≤ ∥xk:∞∥/M ≤ L) ≥ 1 − δ.

2. Heavy-tailed effective rank: for some h > 4 denote rh,k > 0 to be the maximum
number such that for any a ∈ Sp−k−1 and t > 0

P

(√
rh,k

∣∣a⊤xk:∞
∣∣

M
> t

)
≤ t−h.

There exists a constant c that only depends on h such that with probability at least 1 −
cn1−h/4 − nδ

µ1(Xk:∞X⊤
k:∞) ≤M2

(
L2 + cL2

(
n1−h/4 +

√
n

rh,kL2
+

n

rh,kL2

))
,

µn(Xk:∞X⊤
k:∞) ≥M2

(
L−2 − cL2

(
n1−h/4 +

√
n

rh,kL2
+

n

rh,kL2

))
.
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Proof. First, note that by union bound with probability at least 1 − nδ all the diagonal
elements of the matrix Xk:∞X⊤

k:∞ belong to the segment [L−2M2, L2M2]. Next, take the
bound on Bk from the Case 1 of Theorem 2.1 from [21] with the following choice of their
parameters: k = N , τ = 1, λ = p, σ = 1 + p/4, t =

√
n. Use that bound for vectors√

rh,kx
i
k:∞/M . Note that that Bk is exactly the operator norm of the off-diagonal part of

rh,kXk:∞X⊤
k:∞/M2.

The quantity rh,k that we introduced in Theorem 19 can be interpreted as a notion of
effective rank for heavy tailed distributions. Indeed, one can write

√
rh,k =

M

inf {τ : ∀a ∈ Sp−k−1∀t > 0 P (|a⊤xk:∞| /τ > t) ≤ t−h}
,

— the ratio of the typical norm of the random vector to the scale of the worst case deviations
of its one-dimensional projection. This is completely analogous to our usual definition of the
effective rank: rk = λ−1

k+1

∑
i>k λi. Indeed, in sub-Gaussian case

√∑
i>k λi is the typical value

of the norm of the vector xk:∞, and
√

λk+1 is up to constant the largest sub-Gaussian norm
of its one-dimensional projection. We see that the conditions under which the eigenvalues of
Xk:∞X⊤

k:∞ are within a constant factor of each other with high probability remain the same
even in the heavy-tailed case: the norm of ∥xk:∞∥ concentrates within a constant factor of
a fixed quantity, and the heavy-tailed effective rank rh,k should be large compared to the
number n of data points.

2.6 Structure of the proof and role of sub-Gaussianity

Upper bound

The core of our argument is Theorem 20 given below. There are two important things to note
about it: first, it only requires sub-Gaussianity and matrix Ak being positive semidefinite
(which always holds with probability 1 for non-negative λ). Second, its proof decomposes
very clearly into two parts: an algebraic part, which only requires Ak being PD and holds
with probability 1 conditionally on this event, and a probabilistic part, where standard
concentration results are directly plugged into the algebraic bounds. Because of this decom-
position, it is straightforward to track how the sub-Gaussianity is used and how it can be
relaxed. We provide the sketch of the proof to show these details.

Theorem 20. There exists a (large) constant c, which only depends on σx, s.t. for any
k < n/c with probability at least 1 − ce−n/c, if the matrix Ak is PD, then
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B/c ≤∥θ∗
k:∞∥2Σk:∞

(
1 +

µ1(A
−1
k )2

µn(A−1
k )2

+ nλk+1µ1(A
−1
k )
(
1 + max(0,−λ)µ1(A

−1
k )
))

+∥θ∗
0:k∥2Σ−1

0:k

(
1

n2µn(A−1
k )2

+
λk+1

n

µ1(A
−1
k )

µn(A−1
k )2

(
1 + max(0,−λ)µ1(A

−1
k )
))

,

V/c ≤µ1(A
−1
k )2

µn(A−1
k )2

k

n
+ nµ1(A

−1
k )2

∑
i>k

λ2
i .

Proof sketch. The full proof of Theorem 20 can be found in Section A.9 of the appendix.
The following is a sketch of its derivation.

Recall the following notation: for any y

θ̂(y) = X⊤(λIn + XX⊤)−1y.

In Section 2.3 we introduced the notion of k∗ for which the behaviour of the variance term
in the first k∗ coordinates is qualitatively different than in the rest of the coordinates. The
argument from that section, however, relied crucially on independence of the components of
the data. The main idea that allowed us to get rid of that assumption and to obtain the
tight bound for the bias term was to separate the first k coordinates from the very beginning
and to use some sort of uniform convergence argument in that low-dimensional subspace.

The crucial tool that allowed us to realise this idea turned out to be the following algebraic
identity that we prove in Section A.6 of the appendix:

θ̂(y)0:k + X⊤
0:kA

−1
k X0:kθ̂(y)0:k = X⊤

0:kA
−1
k y.

This identity allows convenient access to the error in the first k coordinates (the spiked part).
The argument decomposes clearly into two parts: algebraic and probabilistic. The alge-

braic part is to decompose the excess risk (up to a constant multiplier) into four terms and
show that the following inequalities hold on the event that the matrix Ak is PD:
(1) Bias error in the spiked part:

∥θ̂(Xθ∗)0:k − θ∗
0:k∥Σ0:k

≤µ1(A
−1
k )

µn(A−1
k )

µ1

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)1/2
µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

) ∥Xk:∞θ∗
k:∞∥

+
∥θ∗

0:k∥Σ−1
0:k

µn(A−1
k )µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

) .
(2) Variance error in the spiked part:

Eε∥θ̂(ε)0:k∥2Σ0:k
≤ µ1(A

−1
k )2tr(X0:kΣ

−1
0:kX

⊤
0:k)

µn(A−1
k )2µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)2 .
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(3) Variance error in the tail:

Eε∥θ̂(ε)k:∞ − θ∗
k:∞∥2Σk:∞

≤ µ1(A
−1
k )2tr(Xk:∞Σk:∞X⊤

k:∞).

(4) Bias error in the tail:

1

3
∥θ̂(Xθ∗)k:∞ − θ∗

k:∞∥2Σk:∞

≤∥θ∗
k:∞∥2Σk:∞

+ λk+1

(
1 + max(0,−λ)µ1(A

−1
k )
)
µ1(A

−1
k )∥Xk:∞θ∗

k:∞∥2

+λk+1

(
1 + max(0,−λ)µ1(A

−1
k )
) µ1(A

−1
k )

µn(A−1
k )2

µ1(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )

µk(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )2

∥Σ−1/2
0:k θ∗

0:k∥2.

The probabilistic part of the argument is to control the quantities that arise in the
algebraic bound with high probability. Namely, we plug in

• Concentration of k-dimensional sample covariance with n samples: w.h.p.

µk

(
1

n
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
≈ µ1

(
1

n
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
≈ 1.

• Concentration of norm of vectors with i.i.d. components: w.h.p.

1

n
tr(X0:kΣ

−1
0:kX

⊤
0:k) ≲k,

1

n
tr(Xk:∞Σk:∞X⊤

k:∞) ≲
∑
i>k

λ2
i ,

1

n
∥Xk:∞θ∗

k:∞∥2 ≲∥θ∗
k:∞∥2Σk:∞

.

After plugging in the probabilistic bounds, the final result is obtained by a straightforward
computation. □

Note that the only probabilistic statements that are used in this proof are concentration of
sample covariance in dimension k and concentration of the sum of n i.i.d. random variables.
The same concentration results hold with weaker assumptions, but with larger probability.
For example, under rather weak moment assumptions only a linear in dimension number of
samples is needed for the sample covariance matrix to concentrate within a constant factor of
the population covariance, see [52] and references therein. It is also interesting to point out
that the “uniform convergence” result that we mentioned in the beginning of the proof sketch
is nothing but the convergence of the empirical covariance matrix n−1Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

to its expectation Ik, which is exactly the uniform convergence result that gives the bound
in the “essentially low-dimensional” regime from Section 2.3.
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Despite the fact that the bounds of Theorem 20 apply under very general assumptions,
we don’t expect them to be tight if the condition number of Ak is not bounded by a constant.
When some oracle control of the condition number of Ak is provided, the bound becomes
the following.

Corollary 21. Fix any constants γ ∈ [0, 1) and L > 0. There exists a constant c that
only depends on σx, γ, L s.t. for any k < n/c and δ < 1 − ce−n/c under assumptions
NoncritReg(k, γ) and CondNum(k, δ, L), it holds that ρk > c−1, and with probability at least
1 − δ − ce−n/c,

B/c ≤∥θ∗
k:∞∥2Σk:∞

+ ∥θ∗
0:k∥2Σ−1

0:k

(
λ +

∑
i>k λi

n

)2

,

V/c ≤k

n
+

n
∑

i>k λ
2
i(

λ +
∑

i>k λi
)2 .

Proof sketch. Assumptions NoncritReg(k, γ) and CondNum(k, δ, L) imply that all the eigen-
values of Ak are equal to λ+

∑
i>k λi up to a multiplicative constant that depends on L, γ, σx.

Plugging it into Theorem 20 gives the result. The full proof is given in Appendix A.9. □

The sub-Gaussianity is used in Corollary 21 to ensure that tr(Ak) concentrates around
n
(
λ +

∑
i>k λi

)
. Since the diagonal elements of Ak are i.i.d. random variables, the same

concentration would also hold under weaker assumptions with lower but still high probability.
It is also worth mentioning that the story about “essentially high-dimensional” and “es-

sentially low-dimensional” parts is not just an interpretation of the final result: the whole
proof strategy is in accordance with it, as we explicitly separate the two parts and bound
errors in them separately.

Lower bounds

Our lower bounds have a different form from the upper bounds. We show separately that
they match if the condition on effective rank is satisfied. One benefit of this approach is
that the lower bounds provide a different form of the same result, which allows for different
analysis. We employ it in Section 2.7.

The lower bound for the variance term is given by the following lemma, whose proof is
given in Appendix A.5:

Lemma 22 (Lower bound for the variance term). Fix any constant γ ∈ [0, 1). There
exists a constant c that only depends on σx and γ s.t. for any k < n/c under assumptions
NoncritReg(k, γ) and IndepCoord w.p. at least 1 − ce−n/c

V ≥ 1

cn

∑
i=1

min

{
1,

λ2
i

λ2
k+1(ρk + 1)2

}
.
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One can see that the assumptions under which the lower bound is proved are different
from the assumptions required for the upper bound: we require independent components
here. On the one hand, it means that there could be a gap between upper and lower
bounds in some particular cases where one can control the condition number of Ak without
independence of components. On the other hand, it means that even such strong additional
assumption as independence of components does not allow the upper bounds to be improved,
which suggests that those specific cases for which the bound is not tight are rare and require
even stronger additional assumptions.

The most general lower bound for the bias term that we prove requires the following
assumption

StableLowEig(k, δ, L) Assume that for any j ∈ {1, 2, . . . , p} with probability7 at least 1 − δ

µn(A−j) ≥ µn(EAk)/L =

(∑
i>k

λi + λ

)
/L,

and that λ > −
∑

i>k λi.

Then the bound is given by the following lemma, whose proof is given in Appendix A.5

Lemma 23 (Lower bound for the bias term). Fix any constant L > 0. There exists c that
only depends on σx and L s.t. for any k ∈ {1, 2, . . . , p} under assumptions PriorSigns(θ̄)
and StableLowEig(k, δ, L) w.p. at least 1 − 2δ − ce−n/c

Eθ∗B ≥ 1

c

∑
i

λiθ̄
2
i(

1 + λi
λk+1ρk

)2 ,
where Eθ∗ denotes the expectation over the random draw of θ∗ from the prior distribution
described in assumption PriorSigns(θ̄).

Assumptions StableLowEig(k, δ, L) and CondNum(k, δ, L) are formally incomparable, but
informally if k ≥ 1 then StableLowEig(k, δ, L) is weaker: indeed, the matrix A−i is obtained
from the matrix A by subtracting λiz

⊤
i zi, while the matrix Ak is obtained from A by

subtracting
∑k

i=1 λiz
⊤
i zi, i.e., the sum of k “largest” of the terms λiz

⊤
i zi. Therefore, the

matrix A−i is “larger” than Ak, and controlling its lowest singular value should be easier.
The following lemma, whose proof is given in Appendix A.5, formalizes this argument under
Assumption ExchCoord:

Lemma 24. For any γ < 1 there exists a constant c that only depends on γ and σx such
that if assumptions CondNum(k, δ, L), NoncritReg(k, γ) and ExchCoord are satisfied for some
L ≥ 1 and k ∈ {1, 2, . . . , p}, then StableLowEig(k, δ + 2e−n/c, cL) is also satisfied.

7Note that the condition on probability is separate for every j, i.e., we don’t assume that events hold
simultaneously for all j.
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When it comes to averaging over the prior given by the assumption PriorSigns(θ̄), it just
means that it is impossible to obtain a better lower bound without some specific knowledge
of how signs of components of θ∗ interact with the probability distribution of the data.

Connecting upper and lower bounds

One slight inconvenience with our approach of imposing oracle control over the spectrum of
Ak via Assumption CondNum(k, δ, L) is the following: what if the oracle provides control for
the wrong value of k? There can in principle be many values of k for which such oracle control
is possible, with not all of them giving the right point where the behaviour changes from
“essentially low-dimensional” to “essentially high-dimensional”. As an example, consider
the isotropic setting with p ≫ n: one can exclude any number k of components such that
p− k ≫ n and still be able to control the condition number.

First of all, in accordance with the result of [3], the following theorem shows that the
“right k” is the k that is not larger than k∗.

Theorem 25 (The lower bound is the same as the upper bound). Denote

B :=
∑
i

λi|θ∗i |2(
1 + λi

λk+1ρk

)2 ,
B := ∥θ∗

k:∞∥2Σk:∞
+ ∥θ∗

0:k∥2Σ−1
0:k

(
λ +

∑
i>k λi

n

)2

,

V :=
1

n

∑
i

min

{
1,

λ2
i

λ2
k+1(ρk + 1)2

}
,

V :=
k

n
+

n
∑

i>k λ
2
i(

λ +
∑

i>k λi
)2 .

Fix constants a > 0 and b > 1/n. There exists a constant c > 0 that only depends on a, b,
s.t. the following holds: if either ρk ∈ (a, b) or k = min{κ : ρκ > b}, then

c−1 ≤ B / B ≤ 1, c−1 ≤ V / V ≤ 1.

Proof. The proof is a rather straightforward comparison of pairs of sums term by term. It
is given in Appendix A.9.

Secondly, if the data is sub-Gaussian, then oracle control for any k < n results in tight
bounds, but with worse constants. This happens because of the following lemma.

Lemma 26 (k can be taken to be k∗). Fix any constants γ ∈ [0, 1), b > 0, L > 0. Denote

k∗ = min{k : ρk > b}.
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There exist constants c, L′ that only depend on σx, γ, b, L s.t. the following holds: sup-
pose assumptions NoncritReg(k, γ) and CondNum(k, δ, L) hold for some k ∈ [k∗, n]. Then
assumptions NoncritReg(k∗, γ) and CondNum(k∗, δ + ce−n/c, L′) hold too.

Proof sketch. Since k ≥ k∗, µn(Ak) provides a lower bound for µn(Ak∗). When it comes
to µ1(Ak∗), it can be bounded with high-probability because the data is sub-Gaussian. The
full proof is given in Appendix A.4. □

The role of sub-Gaussianity

As can be seen from the proof of Theorem 16, the strategy to obtain a tight bound is the
following: ask the oracle to control the condition number of Ak, if that k is too large, shift
it to k∗, and then apply the bound from Corollary 21. In Section 2.5 we showed that if
the norm ∥xk:∞∥ concentrates, and the effective rank rh,k is high enough, then the control
over the condition number of Ak is possible even if we have very weak moment assumptions
instead of sub-Gaussianity. Moreover, as we have discussed in the proof sketches, if we
didn’t shift from k to k∗, we would only need the usual concentration results such as the
law of large numbers or concentration of k-dimensional empirical covariance matrix with n
samples, which also hold under weak moment assumptions. Therefore, sub-Gaussianity is not
essential to obtain the bound in the form given in Corollary 21, one just needs to substitute
the sub-Gaussian concentration results with their heavy-tailed analogues. However it may
not necessarily give a tight result unless the oracle is guaranteed to choose the appropriate
k (e.g., k = k∗). To shift from k to k∗ we also need an upper bound on ∥Ak∗∥, which we
derive from sub-Gaussianity. According to Section 2.5, an analogous bound is still possible
under weak moment assumptions, but additional work is required: to use Theorem 19 for
k = k∗ one would need to obtain a high-probability upper bound on ∥xk∗:∞∥ under moment
assumptions and to relate rk which we use in definition of k∗ to rh,k, which is introduced in
Theorem 19.

2.7 Alternative forms of the bounds and effect of

increasing regularization

Alternative form of the bound and its relation to classical
in-sample analysis

Theorem 25 reveals an alternative form of the bounds: when ρk is lower- and upper-bounded
by constants or when k = k∗, the bounds on the bias and variance respectively become equal
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to the following up to a constant multiplier:

B̃ :=

p∑
i=1

λi|θ∗i |2
ρ2kλ

2
k+1

(ρkλk+1 + λi)
2 , (2.9)

Ṽ :=
1

n

p∑
i=1

λ2
i

(ρkλk+1 + λi)
2 . (2.10)

These expressions closely resemble the classical expressions for the in-sample bias and
variance of ridge regression. Indeed, a straightforward computation gives

1

n
Eε∥Xθ̂ −Xθ∗∥2

=
1

n
∥(XX⊤(XX⊤ + λIn)−1 − In)Xθ∗∥2 +

v2ε
n
∥XX⊤(XX⊤ + λIn)−1∥2F

=

p∑
i=1

λ̂i⟨vi,θ∗⟩2 (λ/n)2(
λ/n + λ̂i

)2
︸ ︷︷ ︸

in-sample bias

+v2ε
1

n

p∑
i=1

λ̂2
i(

λ/n + λ̂i

)2
︸ ︷︷ ︸

in-sample variance

,

where {λ̂i}pi=1 are eigenvalues of the empirical covariance n−1X⊤X and {vi}pi=1 are the
corresponding eigenvectors. Recall that ρkλk+1 =

(
λ +

∑
i>k λi

)
/n. One can see that Equa-

tions (2.9)–(2.10) can be obtained from the classical equations for the in-sample risk by
substituting the empirical eigenvalues with population eigenvalues and increasing the regu-
larization level λ by

∑
i>k λi — the energy in the tail of the covariance.

Similarly, B̃ has an interpretation as the bias term of ridge regression with infinite data:
for λ̄ > 0 denote θ∗

λ̄ to be the solution to the following “population ridge regression” problem:

θ∗
λ̄ = argminθ

[
E∥Xθ − y∥2 + λ̄∥θ∥2

]
=

(
Σ +

λ̄

n
Ip

)−1

Σθ∗.

A straightforward computation gives

∥θ∗
λ̄ − θ∗∥2Σ =

∑
i

λi|θ∗i |2
(λ̄/n)2

(λi + λ̄/n)2
,

which is equal to B̃ when λ̄ = nλk+1ρk = λ +
∑

i>k λi.

Dependence on λ

The alternative form of the bounds presented in Section 2.7 provides a convenient way to
investigate the dependence on λ, which is cumbersome in the initial form because increasing
λ may decrease k∗. This effect, however, is negligible when Equations (2.9)–(2.10) are
considered, as demonstrated by the following lemma that we prove in Appendix A.9.
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Lemma 27. Suppose k < n/c for some c > 1 and k∗ < k. Then

λk+1ρk ≤ λk∗+1ρk∗ ≤ λk+1ρk/(1 − b−1c−1).

Because of this lemma, any k ∈ [k∗, n/c] gives the same result (up to a constant factor) in
Equations (2.9)–(2.10). One can, therefore, start with some λ and the corresponding k = k∗

and then consider larger values of λ without decreasing k in Equations (2.9)–(2.10). The
result will give sharp (up to a constant factor) bounds, which depend on λ as follows:

B̃ =
∑
i

λi|θ∗i |2
n−2

(
λ +

∑
i>k λi

)(
n−1

(
λ +

∑
i>k λi

)
+ λi

)2 ,
Ṽ =

1

n

∑
i

λ2
i(

n−1
(
λ +

∑
i>k λi

)
+ λi

)2 ,
which are obtained by simply plugging in the definition of ρk into (2.9)–(2.10).

A particularly interesting case arises when λ is large enough that it dominates
∑

i>k λi
and all eigenvalues of Ak are equal to λ up to a constant multiplier. The corresponding
result is given by the following corollary.

Corollary 28. There is a large positive constant c that only depends on σx such that if

λ > cnλ⌊n/c⌋ + 2
∑

i>⌊n/c⌋

λi,

then

B/c ≤
∑
i

λi|θ∗i |2
(λ/n)2

(λ/n + λi)
2 ,

V/c ≤ 1

n

∑
i

λ2
i

(λ/n + λi)
2 .

Proof sketch. The full proof is given in Appendix A.9; the following is its outline:

1. Use Lemma 18 to control the eigenvalues of A⌊n/c⌋.

2. Use Theorem 16 to obtain the bounds for k = k∗.

3. Use Theorem 25 to convert the bounds into the form given in Equations (2.9)–(2.10).

4. Use Lemma 27 to substitute k∗ back with ⌊n/c⌋.

5. Since λ > 2
∑

i>k λi, λ/n is equal to ρkλk+1 up to a multiplicative constant.

□

Note that the statement of Corollary 28 does not require the notion of k∗.
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Comparison with other results

As we saw in the previous section, the alternative form given by Equations (2.9)–(2.10)
has milder dependence on the choice of k∗ than our main bounds (2.7)–(2.8) and allows to
compare to other results for in-sample error of ridge regression. In this section we use it to
compare with more recent developments: the non-asymptotic bounds in [25] and [22].

First of all, we follow [25] and introduce the following notion of effective dimension of the
problem:

d(λ̄) :=
∑
i

λi
λ̄ + λi

,

where λ̄ is a parameter which can informally be understood as effective level of regularization.
[25] provide non-asymptotic bounds for B and V in the regime when

n ≥ cd(λ/n) log(1 + d(λ/n)), (2.11)

(see their Theorem 2).8 The simplified version of their results given in Remark 17 gives the
following bounds:9

B ≤
(

1 +
c(1 + d(λ/n))

n

)∑
i

λi|θ∗i |2
(λ/n)2

(λ/n + λi)
2 ,

V ≤ c

n

∑
i

λ2
i

(λ/n + λi)2
,

where c is some constant that depends on the concentration properties of the data. This is
the same as the result of Corollary 28, but with different constants. However, our Corollary
28 covers a wider range of λ if n is large enough. This follows from the following lemma,
which is proven in Appendix A.9:

Lemma 29. Suppose that n ≥ c2 + c for some c > 0 and take

λ = cnλ⌊n/c⌋ + 2
∑

i>⌊n/c⌋

λi.

Then
d(λ/n) ≥ n

2 max(2, (c + 1)2)
.

Indeed, d(λ/n) is a decreasing function of λ, and due to Lemma 29 the range of λ for
which Corollary 28 is applicable when d(λ/n) = O(n), while Equation (2.11) restricts to the
range d(λ/n) = O(n/ log n).

8Note that in [25], the scaling of the regularization parameter is different from ours: to express their
results in our terms one needs to substitute their λ by λ/n in our notation.

9Note that under our assumptions, approx(x) = 0, where approx(x) is defined in Equation (7) in [25].
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After we first posted our results, the following non-asymptotic bound for the interpolating
regime (i.e., λ = 0) appeared in [22]: informally

|V − VS| ≤
c

n1/7
, |B −BS| ≤

c∥θ∗∥2

n
,

where c is a constant, VS and BS are defined as10

VS :=λ̃−1

∑
i

λ2i
(1+λ̃−1λi)2∑

i
λi

(1+λ̃−1λi)2

, (2.12)

BS := (1 + VS)
∑
i

λi|θ∗i |2

(1 + λ̃−1λi)2
, (2.13)

and λ̃ is the solution to the equation n = d(λ̃). See their Definition 1 and Theorem 2 for the
exact statement.11

Note that because of the equation for λ̃

∑
i

λ2
i

(λ̃ + λi)2
+
∑
i

λ̃λi

(λ̃ + λi)2
=
∑
i

λi(λi + λ̃)

(λ̃ + λi)2
= d(λ̃) = n.

This allows us to rewrite (2.12)–(2.13) as

VS :=
1

1 − 1
n

∑
i

λ2i
(λ̃+λi)2

· 1

n

∑
i

λ2
i

(λ̃ + λi)2
, (2.14)

BS := (1 + VS)
∑
i

λi|θ∗i |2
λ̃2

(λ̃ + λi)2
. (2.15)

Comparing these equations with (2.9)–(2.10) reveals that they are the same up to a
constant multiplier whenever Ṽ ≤ 1−1/c for some constant c and ρkλk+1 is up to a constant
equal to λ̃. In the following, we show that this is indeed the case.

Recall that these results from [22] are for the interpolating regime, i.e., λ = 0. Let’s see
how λ̃ is related to λk+1ρk. The connection is given by the following lemma.

Lemma 30. Suppose that k < n/c and ρk > c for some constant c > 1 . Then

λ̃

λk+1ρk
∈
(

1 − 1

c
,

1

1 − 1
c

)
.

10Here we introduce the notation λ̃ := (γc0)
−1, where γ and c0 are parameters used in [22].

11Note that there is a typo in their definition of V : a multiplicative factor of c0 is missing.
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Proof. Denote a = λ̃
λk+1ρk

. Then we can write

n =
∑
i

λi
λi + aλkρk

≥
∑
i>k

λi
λk+1(aρk + 1)

=
nρk

aρk + 1
,

which implies aρk + 1 ≥ ρk, so a ≥ 1 − 1/ρk > 1 − 1/c.
For the upper bound on a we write

n =
∑
i

λi
λi + aλkρk

≤ k +
∑
i>k

λi
aλk+1ρk

= k +
n

a
,

which gives a ≤ n/(n− k) < c/(c− 1).

The similarity of Equations (2.14)–(2.15) with our results should not be taken for granted,
and it is actually quite surprising. As we explain in Section 2.9, the regime considered in [22]
is significantly different, so it is rather unclear why the results would have the same form.

2.8 Negative regularization

The aim of this section is to find a family of regimes in which the optimal level of ridge
regularization is negative. Since we are comparing different values of λ in this section, the
following notation will be useful: recall that for any k

ρk(0) :=
1

nλk+1

∑
i>k

λi,

the value of ρk for λ = 0. Intuitively, the components of the tail of the covariance provide
regularization for the first k components, and the larger ρk is, the more is that regularization.
Thus, one could expect that if there is an abrupt jump in the sequence {ρk(0)}pk=0, then that
additional regularization is too large and negative λ may be optimal.

As we investigate further, a jump in ρk(0) is indeed one of the sufficient conditions for
optimality of negative regularization, but not the only one: the strength of the noise and how
the signal is distributed among the principal components of the data also play an important
role.

We start the discussion with several informal observations. The first observation is that V
is a decreasing function of λ: indeed, V = tr(Σ1/2X⊤A−2XΣ1/2) and increasing λ increases
all eigenvalues of A. Thus, negative regularization cannot help with damping the noise
compared to non-negative regularization, and the noise should be sufficiently small in order
for negative regularization to be beneficial.

Now let’s look at the role of the signal in the tail. It contributes to error in two ways:
first — the components in the tail are not getting estimated themselves, second — the signal
that comes from those components acts as additional noise for estimation of the first k
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components. When λ is non-negative, the error of the first type dominates the error of the
second type, but negative λ can amplify the noise and result in error of the second type
dominating. Therefore, the signal in the tail also needs to be sufficiently small in order for
negative regularization to be optimal.

The final observation is the following: since we only compute the bounds up to a constant
multiplier, the bound in Theorem 16 cannot distinguish between negative and zero regular-
ization. To see this, consider the form of the bound given in Section 2.7: up to a constant
factor the bound is a weighted combination in each component with weight λ+

∑
i>k λi, and

as λ increases there is no need to change k. Now it is easy to see that for all λ in range
from −γ

∑
i>k λi to zero, that weight is the same up to a constant factor. Thus, negative

regularization can only decrease the excess risk by more than a constant factor in the critical
regime, i.e., λ = −

∑
i>k λi +♢ where ♢ is of smaller order than

∑
i>k λi. To consider such λ

and have Ak PD we need tight concentration of eigenvalues of Xk:∞X⊤
k:∞ around

∑
i>k λi.

To ensure such tight control we restrict ourselves to the case of independent components,
i.e., when Assumption IndepCoord is satisfied. In this case, the eigenvalues of Xk:∞X⊤

k:∞
can be bounded according to Lemma 4, which we restate below in a slightly different form.

Lemma 31. Under assumption IndepCoord there exists a constant c that only depends on
σx s.t. with probability at least 1 − ce−n/c,

µ1(Xk:∞X⊤
k:∞) ≤

∑
i>k

λi + c

nλk+1 +

√
n
∑
i>k

λ2
i

 ,

µn(Xk:∞X⊤
k:∞) ≥

∑
i>k

λi − c

nλk+1 +

√
n
∑
i>k

λ2
i

 .

The fluctuations nλk+1 +
√
n
∑

i>k λ
2
i will be of smaller order than

∑
i>k λi if ρk(0) is

larger than a constant, which is shown by the following bounds:

nλk+1 =
1

ρk(0)

∑
i>k

λi, (2.16)√
n
∑
i>k

λ2
i ≤

√
nλk+1

∑
i>k

λi =
1√
ρk(0)

∑
i>k

λi. (2.17)

Using this lemma allows us to obtain following two lemmas. See Appendix A.10 for the
proofs.

Lemma 32 (Lower bound on the bias for any non-negative regularization). There exist
constants b, c that only depend on σx such that the following holds: suppose that assumptions
IndepCoord and PriorSigns(θ̄) hold. Take k = min{κ : ρκ(0) > b} and suppose that k > 0.
Then with probability at least 1 − ce−n/c for any λ ≥ 0

Eθ∗B ≥ 1

c
∥θ̄0:k∥2Σ−1

0:k

(∑
i>k λi

)2
n2

.
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Lemma 33 (Upper bound on excess risk for some negative regularization). There exists a
constant c that only depends on σx such that the following holds: suppose that assumptions
PriorSigns(θ̄) and IndepCoord hold and that ρk(0) > c for some k < n/c. Assume also that

v2ε ≤ 1

c
∥θ̄0:k∥2Σ−1

0:k

(∑
i>k λi

)2
n3
(∑

i>k λ
2
i

)2 . (2.18)

Then there exists such λ < 0 that with probability at least 1 − ce−n/c

Eθ∗B + v2εV ≤c

(
v2ε

k

n
+ vε∥θ̄0:k∥Σ−1

0:k

√∑
i>k λ

2
i

n
+ ∥θ̄0:k∥2Σ−1

0:k

λk+1

∑
i>k λi

n
+ ∥θ̄k:∞∥2Σk:∞

)
.

Lemma 32 provides a lower bound on the expected (over noise and θ∗) excess risk which
holds w.h.p. uniformly over all non-negative λ. Lemma 33 provides an upper bound that can
be achieved by some negative λ. Combining these two lemmas gives a sufficient condition
for the optimal λ to be negative, which is given by the following theorem.

Theorem 34. There exist constants b and c that only depend on σx such that the following
holds. Suppose that assumptions PriorSigns(θ̄) and IndepCoord hold. Take k = min{κ :
ρκ(0) > b} and suppose that k < n/c. The value of λ that minimizes Eθ∗B + vεV will be
negative with probability at least 1 − ce−n/c if the following conditions are satisfied:

small noise: v2ε ≤
∥θ̄0:k∥2Σ−1

0:k

c
min

((∑
i>k λi

)2
nk

,

(∑
i>k λi

)4
n3
∑

i>k λ
2
i

)
,

jump in effective rank: ρk(0) >c,

small signal in the tail: ∥θ̄k:∞∥2Σk:∞
≤1

c
∥θ̄0:k∥2Σ−1

0:k

(∑
i>k λi

n

)2

.

Proof. It is easy to see that by taking c large enough, the conditions of Lemmas 33 and 32
are satisfied, and the upper bound in Lemma 33 becomes lower than the lower bound in
Lemma 32.

We see that the conditions indeed align with the intuition outlined in the beginning of this
section: we need small variance, small signal in the tail, and a sharp jump in effective rank.
However, we do not have matching lower bounds in the critical regime when Assumption
NoncritReg(k, γ) is not satisfied for a constant γ > 1. Thus, we don’t know whether these
conditions are also necessary.
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2.9 Comparison to related works

Motivated by the empirical success of overparametrized models, there has recently been a
flurry of work aimed at understanding theoretically whether the corresponding effects can
be seen in overparametrized linear regression; see, e.g., [33, 43, 5, 6, 44, 60, 62, 46] and other
references in this section.

The results that aim at characterizing the generalization performance of linear methods
can be split roughly into three categories. The first category is results that give exact
expressions of the excess risk in the asymptotic setting with ambient dimension and the
number of data points going to infinity, while their ratio goes to a constant, and the spectral
density of the covariance operator converges weakly to some limiting distribution [15, 24, 59,
47].

The second category is results that make strong assumptions on the distribution of data
(e.g., that data vectors have i.i.d. components or come from a uniform distribution on a
sphere) and derive bounds on excess risk of linear regression with some specific features, or
kernel regression with a kernel that has some specific properties [41, 18, 38, 17, 32]. Some
of these results are also asymptotic, and some are non-asymptotic.

The third category is results that prove non-asymptotic bounds depending on the arbi-
trary structure of the covariance of the data. This is the category to which our work belongs.
The other works in this category are [28], [12], [14] and [13].

There have been many related works since our results were first posted on arXiv [53], for
example, [36, 37, 19, 39, 4, 9, 42, 45, 35, 50, 29, 7, 11] etc. [22] obtained a finite sample version
of the asymptotic results of the old version of their paper [24]. In Section 2.7 we provide
an explicit comparison with our results. More recently, [36] obtained generalization bounds
for kernel ridge regression under similar assumptions to those we consider here (see their
Assumption 1). [29] used the idea of separating the first k eigendirections of the covariance
to study excess risk of minimum norm interpolators with arbitrary norms and Gaussian data.
[4] obtained results which belong to the intersection of the first and the second categories
which we described in Section 2.9 (see their Theorem 4.1). [50] constructed an example of
a misspecified setting (i.e., the noise is not independent from the data) in which our results
don’t hold even though the condition number of the matrix Ak is a constant (see their
Example 1).

Next, we provide more detailed comparison with other works and discuss some technical
aspects.

Results from the first category [15, 24, 59, 47] compute exact asymptotic expressions
for the excess risk assuming that p/n goes to some constant as p, n go to infinity, and that
the spectral distribution of Σ converges to some limiting distribution. From the point of
view of our approach, such distributions are indistinguishable from isotropic: indeed, the
very existence of limiting spectral measure implies that almost all eigenvalues are within a
constant factor of each other. Many of those works even assume explicitly that the spectrum
of Σ is upper- and lower-bounded by two constants [47, page 7], [59, Assumption 1], [24,
Theorem 3]. Our results don’t need any asymptotic set up, and apply to p = ∞ with some
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fixed summable sequence λi, which has no meaningful notion of limiting distribution, and
no separation from zero is needed. For example, our setup covers kernel regression with a
fixed kernel and increasing number of data points. On the other hand, when all λi are within
a constant factor of each other, our lower bounds become B ≥ ∥θ∗∥Σ/c and V ≥ 1/c, so
the constant part of the whole signal doesn’t get learned and the variance term is at least
a constant, i.e., the asymptotic expressions obtained in the works from this category are all
just different constants and our approach cannot distinguish them. Therefore, we answer
significantly different questions: while the asymptotic work distinguishes between constant
error rates, we investigate when the error can be less than a constant. The final difference
with our work is rather technical but quite strong: all the works in this category assume that
the coordinates of the data become independent if multiplied by the inverse square root of
the covariance. This assumption stems from asymptotic random matrix theory techniques,
on which these papers are based. To the best of our knowledge, it is not known how to
extend these techniques beyond random matrices with independent elements. Our approach,
however, does not require the coordinates to be independent.

When it comes to the second category, featurized or kernel regression [41, 18, 38, 17,
32], the difference from our approach is that we do not assume any particular mechanism for
data generation or how the features are constructed, but we directly make assumptions about
feature vectors. Our results can in principle be applied in this setting if one computes the
spectrum of the population covariance for particular features or kernels and the corresponding
sub-Gaussian norms. The major difficulty that precludes such a direct comparison is that
that computation is not straightforward. The works from this category operate in a more
particular setting and circumvent the computation of the spectrum of Σ. On the other hand,
it is not hard to trace strong similarities with our approach on the level of the proof. First
of all, all the papers in this category that we are aware of assume that the data comes from
a very regular distribution: either d-dimensional isotropic data with i.i.d. coordinates [32,
Assumption 1], or data from the uniform distribution on the sphere [38, 17, abstracts], [41,
Section 3.2], or data from the product of two uniform distributions on spheres [18, Section
2.1]. Second, in all those papers the kernel is either spherically symmetric [18, Section 2.2],
[32, Equation 4] or close to being spherically symmetric due to isotropic initialization of the
neural network or isotropic choice of random features [17, Assumption 1], [38, Thorem 2], [41,
Section 3.2]. After that, they consider the regime where n is large compared to dα for some α
[41, Assumption 1], [18, Theorem 1], [38, 17, 32, abstracts]12. Finally, all those papers derive
that kernel regression works effectively as ridge regression with polynomial features up to
degree α [41, 17, abstracts], [18, Theorem 1], [32, Proposition 1 and Section 2.3]. The only
exception is [38], who derive asymptotic expressions for excess risk when the true function
is affine (i.e., a polynomial of degree 1) plus Gaussian misspecification. The connection
with our results is that in such a regime (uniform distribution on the sphere, spherically
symmetric kernel) polynomials are exactly the eigenfunctions of the kernel operator, which
plays the role of the covariance operator, and there are k ≈ dα of polynomials of degree at

12In [38] α = 1.



CHAPTER 2. REGRESSION 47

most α. Thus, their approach is similar to ours: separate the first k eigendirections (or their
approximations) and show that other directions act as regularization.

The third category is where our work belongs, so a more concrete comparison to other
results is possible. [28] proved that negative ridge regularization is optimal in a spiked
covariance model with one spike, which is a simple particular case with k = 1 of our results.
In Section 2.8, we showed that negative regularization is optimal under a rich set of covariance
structures, and gave general sufficient conditions. [12] obtain non-asymptotic bounds for bias
and variance in the ridgeless setting. They assume Gaussian data and the existence of k∗,
which means that our results apply in their setting. Our bound for the bias term is tight, so
it cannot be worse than theirs by more than a constant multiplier. At the same time, their
bound on the bias term can be much worse than ours: note that their bound depends on
∥θ∗∥, while our bound scales with ∥θ∗∥Σ, therefore their bound can be arbitrarily close to
infinity while our bound stays finite. When it comes to the variance term, the bound of [12]
is larger but holds with smaller probability, as they discuss when they compare their results
to those in [3]. [14] start with an arbitrary covariance matrix and construct a specific data
distribution for which the approximation error E∥θ̂ − θ∗∥2 has an explicit expression. We
provide bounds for the excess risk ∥θ̂ − θ∗∥2Σ, so our results are not directly comparable to
theirs. [13] consider expectation of the projector on the orthogonal complement to the span
of i.i.d. data with arbitrary covariance and derive tight upper and lower bounds for it with
respect to Loewner order. The bias term in our setting is exactly such a projection of θ∗,
but measured in ∥ · ∥Σ. Because of this mismatch in the norm, the results of [13] do not
translate into our results directly, even if we consider the expectation of the bias term.

2.10 Conclusions

Our results characterize when the phenomenon of benign overfitting occurs in high dimen-
sional linear regression, with gaussian data and more generally. We give finite sample excess
risk bounds that reveal the covariance structure that ensures that the minimum norm inter-
polating prediction rule has near-optimal prediction accuracy. The characterization depends
on two notions of the effective rank of the data covariance operator. It shows that overpa-
rameterization, that is, the existence of many low-variance and hence unimportant directions
in parameter space, is essential for benign overfitting.

We then studied the excess risk of ridge regression and showed how geometry of the data
can influence both which part of the signal is learned and how the noise is damped. For a
range of values of the regularization parameter we showed that learning can be seen as the
composition of two parts: classical ridge regression in the first k components (the “essentially
low-dimensional part”) and learning the zero estimator in the rest of the components (the
“essentially high-dimensional part”). We introduced a general assumption under which the
data is “essentially high-dimensional”, and provided geometric sufficient conditions for its
satisfaction. Moreover, we investigated the regime in which the “essentially high-dimensional
part” has too much energy, and derived general sufficient conditions for negative regulariza-
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tion to be optimal: small noise, small energy of the “essentially low-dimensional part”, but
an abrupt jump in the effective rank.

On the technical side, our proof decouples cleanly into an algebraic part, which holds
with probability 1 for non-negative regularization,13 and the probabilistic part, where we
plug in well-known concentration results from high-dimensional probability. This makes it
easy to trace how different terms in the bound correspond to the parts of the estimator, and
supports the geometric interpretation given above.

We provided a thorough overview of the related papers, and explained how our results
are significantly different from them despite some optical similarities. Those similarities,
however, are intriguing, and hint at the task of developing a unified treatment of different
regimes of overparameterized linear regression as a promising direction of future work.

13For the case of negative regularization we need to condition on the event that all the necessary symmetric
matrices are PD.
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Chapter 3

Classification

3.1 Introduction

In this chapter we turn our attention to binary classification. Our main goal is to study how
benign overfitting can happen in this setting.

Binary classification problem setting

We consider a mixture of two classes with the same covariances Σ ∈ Rp×p and symmetric
(with respect to the origin) centers {−µ,µ} ⊂ Rp. Both classes have the same probabilities.
More precisely, the matrix whose rows are the data points is given as

X := yµ⊤ + ZΣ1/2 ∈ Rn×p,

where y ∈ {−1, 1}n is the vector of class labels, whose components are i.i.d. Rademacher
random variables, and Z ∈ Rn×p is a matrix with i.i.d. isotropic rows. We also denote
Q := ZΣ1/2 — the matrix of covariates with centers of clusters subtracted. We always
consider the overparameterized regime, that is p > n.

We consider linear classifiers which assign label sign(w⊤x) to a point x ∈ Rp. Here
w ∈ Rp is the weight vector of the classifier.

Imagine1 that we had some control over the deviations of the rows of Z in all directions,
namely, imagine that there is some function ϕ : R≥0 → R such that, for any v ∈ Sp−1 and
t > 0

P(z⊤v < −t) ≤ ϕ(t),

where z⊤ is a random draw from the same distribution as the rows of Z. Then the probability
of an error for the classifier x → sign(w⊤x) could be bounded as

P
(
w⊤(µ + Σ1/2z) < 0

)
= P

(
w⊤Σ1/2

∥w∥Σ
z < − w⊤µ

∥w∥Σ

)
≤ ϕ

(
µ⊤w

∥w∥Σ

)
.

1We don’t actually impose any assumptions on ϕ throughout the chapter.
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That is, the quantity µ⊤w/∥w∥Σ provides control over the probability of predicting the
wrong label on a new data point. Moreover, if rows of Z have Gaussian distribution, then
by the same argument the probability of an error is exactly Φ(−µ⊤w/∥w∥Σ), where Φ is
the normal CDF.

The main quantitative results of this chapter are bounds on µ⊤wridge/∥wridge∥Σ, where
wridge is the solution to the ridge regression problem defined as follows. First, we assume
that we are given a vector of labels ŷ, which contains some label-flipping noise, that is, ŷ is
obtained from y by flipping the sign of each of its coordinates independently with probability
η. Then, for a given regularization parameter λ ∈ R we define

wridge := X⊤(XX⊤ + λIn)−1ŷ, (3.1)

where In ∈ Rn×n is an identity matrix. An interesting particular case of this solution arises
when λ = 0. In that case Xw = ŷ, that is, this solution exactly interpolates labels ŷ. When
λ = 0 we introduce separate notation for wridge — wMNI. Here MNI stands for the Minimum
Norm Interpolating solution.

Assumptions on the distribution of the covariates

When it comes to the assumptions that we impose on the data distribution, we follow the
steps of Chapter 2.

First of all, let’s denote the eigenvalues of Σ in non-increasing order as {λi}pi=1 and fix
the basis to be the eigenbasis of Σ, that is, Σ = diag(λ1, . . . , λp). For the remainder of the
chapter we will work in this basis. We assume that for some k, which is small compared to
n, removing the first k columns of the matrix Q makes the “effective rank” of its rows large
compared to n. The exact notion of large effective rank that we use is somewhat technical,
and we postpone its introduction to Section 3.3. When the data is Gaussian (or, more
generally, if the matrix Z has independent sub-Gaussian elements), that condition would be

λ +
∑
i>k

λi > c

nλk+1 +

√
n
∑
i>k

λ2
i

 , (3.2)

where c is a large constant. Note that the regularization parameter λ adds to the energy of
the tail of the covariance spectrum

∑
i>k λi in the left hand side of the expression. That is,

the notion of effective rank depends not only on Σ, but also on the regularization applied.
In Chapter 2 we showed that for λ = 0 the condition (3.2) is necessary for benign overfitting
to happen in linear regression.

Apart from the “large effective rank” condition described above, we also need several
concentration inequalities to hold. Those inequalities, however, are rather standard (such as
law of large numbers for i.i.d. random variables or sample covariance concentration in low
dimensions), so we opt with assuming that those inequalities hold directly, instead of deriving



CHAPTER 3. CLASSIFICATION 51

them from assumptions on the distribution of the data. We introduce those inequalities in
Section 3.3.

When we began this work on classification, our motivation to consider such a regime was
rather technical: we just believed that the quantities of interest can be accurately evaluated
in this regime using existing techniques. However, our results suggest that such a structure
of the data is necessary for benign overfitting to occur. We elaborate on that point in Section
3.8.

First result: recovering the geometry in the noiseless setting

Even though our goal is to study benign overfitting, the first result that we obtain is actually
for the “noiseless” setting, that is, η = 0 and y = ŷ. In this setting, our bounds show that
wridge performs effectively as Q⊤A−1y + (Σ + n−1ΛIp)

−1µ, where Λ = λ +
∑

i>k λi, and

A = λIn +QQ⊤. Let’s look at those two terms separately. First of all, the vector Q⊤A−1y
has symmetric distribution and has no dependence on µ, so it plays the role of a noise term.
The vector µ should be large enough in order for that noise term not to dominate. On
the other hand, the term (Σ + n−1ΛIp)

−1µ can be seen as a “ridge regularized version” of
the optimal classifier. Indeed, the direction w that minimizes µ⊤w/∥w∥Σ is Σ−1µ — µ is
multiplied by the inverse of the covariance. In the expression (Σ+ n−1ΛIp)

−1µ we multiply
µ by inverse of the regularized version of the covariance, and the energy of the tail of the
covariance

∑
i>k λi adds to the explicit ridge regularization λ. Another way to think about

it is to introduce k∗ as it was done in Chapter 2:

k∗ := min

{
k : nλk+1 < λ +

∑
i>k

λi

}
, Λ∗ := λ +

∑
i>k∗

λi.

Then the direction above can be rewritten up to a constant factor as

(nΛ−1Σ + Ip)
−1µ ≈

(
n−1Λ∗Σ

−1
0:k∗µ0:k∗

µk∗:∞

)
.

We see that the ridge regression solution performs the optimal linear transform in the first
k∗ coordinates, but is proportional to µ without any transformation in the remaining coor-
dinates. Throughout this chapter we refer to this effect as “recovering the geometry” in the
first k∗ components.

Therefore, we show that there are 3 regimes for the noiseless setting: when µ is small
in magnitude, the “noise term” Q⊤A−1y will dominate in terms of both µ⊤wridge and
∥wridge∥Σ, and the quantity µ⊤wridge will be negative with probability close to 50%, resulting
in no meaningful bound on classification performance. As the magnitude of µ grows, the term
(Σ+n−1ΛIp)

−1µ will start dominating in terms of the scalar product with µ, while the term
Q⊤A−1y will still dominate in terms of the norm in Σ. This regime already yields a non-
vacuous classification guarantee, but still does not exhibit the full “recovery of the geometry”.
Finally, as µ becomes even larger, wridge performs effectively as (Σ + n−1ΛIp)

−1µ.
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It is also worth noting that the direction (Σ + n−1ΛIp)
−1µ approaches Σ−1µ as Λ de-

creases, which suggests that one should always use the smallest possible (perhaps even neg-
ative) regularization to achieve the best classification performance. This conclusion is not
straightforward, however, since decreasing Λ also increases the noise term Q⊤A−1y. Never-
theless, we show that it is indeed the case, and one cannot gain a significant (in a certain
sense) increase in performance by increasing λ beyond the point at which the data has high
effective rank in the tail of the covariance when η = 0.

Second result: benign overfitting

When it comes to the case with label-flipping noise, we show that the structure of the solution
vector may change significantly compared to the case without that noise, depending on the
magnitude of µ. In the case of MNI, adding label flipping noise multiplies the solution vector
by a certain scalar, and it also picks up an additional “noise component” in the orthogonal
direction, which has no dependence on µ. As µ becomes large, that multiplicative scalar
becomes close to zero-mean, that is, it flips the direction of the noiseless solution with
probability close to 50%. Moreover, the new orthogonal “noise component” becomes much
larger in magnitude than the noiseless solution.

Nevertheless, even though the solution vector for the noisy case may look very different
from the noiseless case, the bounds on µ⊤wridge and ∥wridge∥Σ remain rather similar. The
bound on µ⊤wridge remains practically the same, while the bound on ∥wridge∥Σ only picks
up one additional term, corresponding to the norm in Σ of that additional orthogonal “noise
component” that we mentioned above.

As a result, our bounds suggest2 that the noisy solution goes through the same regimes
as the noiseless one, but picks up an additional regime when µ is very large in magnitude.
In that regime, our bound completely loses dependence on µ and becomes just a function
of the covariance. Interestingly, the conditions under which the bound becomes small (that
is, the conditions under which we obtain benign overfitting in this regime) are exactly the
same as the conditions for benign overfitting from the Chapter 2.

Comparison of classification and regression

Let us recap the main conclusions of Chapter 2 and highlight some connections and differ-
ences with our classification setup.

In Chapter 2 we considered the minimum-norm interpolating solution for an overparam-
eterized linear regression problem. In the notation of this chapter, it can be formulated as
follows:

θ̂ := argminθ∈Rp ∥θ∥ s.t. Qθ = Qθ∗ + ε,

2Unfortunately, we only provide a lower bound on µ⊤wridge/∥wridge∥Σ for the case with label-flipping
noise without a matching upper bound, so we can only make a statement about the bound itself, not the quan-
tity µ⊤wridge/∥wridge∥Σ here. We do believe, however, that this statement applies to µ⊤wridge/∥wridge∥Σ,
and we speculate why in Section 3.8.
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where we introduced θ∗ ∈ Rp — the coefficients of the ground truth linear model, and
ε ∈ Rn — a noise vector, which has independent centered components with variances vε.
The random noise ε is independent from Q.

The solution for θ̂ has a closed form expression:

θ̂ = Q⊤A−1(Qθ∗ + ε),

and thus the mean squared error on a test point can be bounded as∥∥∥θ∗ − θ̂
∥∥∥
Σ
≤
∥∥(Ip −Q⊤A−1Q)θ∗∥∥

Σ
+
∥∥Q⊤A−1ε

∥∥
Σ
. (3.3)

The first term in the right-hand side of Equation (3.3) constitutes the bias of the MNI
solution to regression, while the second term constitutes the variance. The main result of
Chapter 2 is that under the structure that we introduced in Section 1.3, the variance term
becomes small for the following reason: in the first k components, the noise vector ε gets
projected from dimension n onto a small dimension k, and thus its energy gets damped by a
factor k/n. The remainder of that noise vector, however, gets smeared over the components
k : ∞. Since the tail of the covariance has high effective rank, a newly sampled data point
will be almost orthogonal to θ̂ in those components, so it doesn’t matter that they absorbed
the noise. When it comes to the bias term, we showed in Chapter 2 that in components
k : ∞ no learning happens, that is, almost all the energy of the signal ∥θ∗

k:∞∥Σk:∞ goes into
the bias term. All the learning happens in the first k components, and the corresponding
part of the bias term behaves like a bias term of classical ridge regression in dimension k with
regularization

∑
i>k λi. In short, the tail of the covariance provides implicit regularization

to the low-dimensional linear regression in the first k components. The signal is not learned
in the tail at all, but at the same time it doesn’t matter that it absorbs the noise.

On the one hand, the classification setting that we consider in this chapter is fundamen-
tally different from the regression setting. Indeed, in regression the “signal vector” θ∗ is
an element of a dual space. The data matrix Q measures θ∗ through evaluating the cor-
responding linear function. In our classification setting the “signal vector” µ is baked into
the design matrix X = Q + yµ⊤, and the matrix Q obscures µ instead of helping to mea-
sure it. Because of that, it is not clear how to apply the high-level conclusions of the work
on regression to the classification setting. For example, a naive application would suggest
that if µ is supported on the tail of the covariance (i.e. if ∥µ0:k∥ = 0), that should result
in high classification error, because no learning happens in the tail. This is not correct,
as our bounds can imply arbitrarily high classification accuracy in this setting. Since µ is
baked into X, a plausible interpretation could be to say that the “useful space” in which the
learning happens is the span of the first k eigendirections of the covariance together with µ
itself. Unfortunately, we did not find such a decomposition of the space useful in terms of
obtaining a clear argument.

On the other hand, our argument shows very strong connections to the regression setting.
In Section 3.1 we stated that in the setting without label-flipping noise, wridge behaves as
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Q⊤A−1y + (Σ + n−1ΛIp)
−1µ, and one can immediately see that the first term in that

expression is almost exactly the variance part of the regression solution. Moreover, the vector
(Σ + n−1ΛIp)

−1µ arises as an approximation to the vector nΛ−1(Ip − Q⊤A−1Q)µ, which
is directly analogous to the bias part of the regression solution. Therefore, for the setting
without the label-flipping noise, the bound on ∥wridge∥Σ has almost the same expression as

the bound on ∥θ∗− θ̂∥Σ. Since the quantity of interest in this chapter is µ⊤wridge/∥wridge∥Σ,
we see (at least on a technical level) that having high classification accuracy is strongly related
to having small prediction error in regression. Furthermore, in Section 3.1 we talk about “an
additional noise component in the orthogonal direction”. As it turns out, this component also
has a very similar structure to Q⊤A−1y (see Section 3.2 for the precise derivation). Because
of that, in the large µ regime with the label-flipping noise, our bound on µ⊤wridge/∥wridge∥Σ
becomes something like 1/∥Q⊤A−1y∥Σ. That is, if µ is large, the conditions under which
the classification accuracy is high are exactly the same as the conditions under which the
variance of regression is low. This suggest that the mechanism by which the regression
solution “hides” the noise it interpolates is very similar to that used by the classification
solution.

Overall, even though there are very concrete connections between our classification results
and the regression results, identifying either a clear unifying picture of these two settings or
a fundamental difference between them remains an intriguing open question.

Structure of the chapter

We start in Section 3.2 by considering MNI and providing a geometric picture explaining the
structure of the solution vector. After that, in Section 3.3, we introduce the assumptions
that we impose on the distribution of the data to obtain quantitative bounds. Section 3.4
gives those quantitative results, and explains the regimes they go through depending on
the magnitude of µ. We put almost all the technical steps of the proofs of those bounds
in the Appendix, while Section 3.5 in the main body provides their outline and points to
the Appendix for those particular steps. In Section 3.6 we study the influence of ridge
regularization on the error of the classifier. Finally, in Section 3.7 we provide detailed
comparisons with the previous literature, and Section 3.8 concludes the chapter.

Additional notation

For any scalars a, b we denote min(a, b) by a ∧ b and max(a, b) by a ∨ b. We denote a ∨ 0 as
a+. For any i ∈ {1, 2, . . . , p} we denote the i-th coordinate vector in Rp as ei.

For any u,v ∈ Rd we write u ≥ v to denote that all the components of u − v are non-
negative. We use diag(v) to denote the diagonal matrix in Rd×d whose diagonal elements
are coordinates of v. For any positive integer d we denote 1d ∈ Rd to be the vector of all
ones.

For a linear space A ⊆ Rp we denote its orthogonal complement by A⊥.
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There is a slight collision with notation because we use µ for the centers of the clusters,
and we use µi to denote the i-th component of µ, but we also use µi(M ) to denote the i-th
largest eigenvalue of a symmetric matrix M .

We say that a random element V of some real vector space has symmetric distribution
if V has the same distribution as −V .

3.2 Geometric picture for minimum norm

interpolation

In this section, we present a geometric view on binary classification. We restrict the dis-
cussion to MNI, that is, the ridge solution wridge with zero regularization λ = 0. We do
that because minimum norm interpolation is easier to think about geometrically, while ridge
regularization is a more algebraic construct.

The minimum norm interpolating solution (MNI) can be defined as

wMNI := arg min
Rp

∥w∥ s.t. Xw = ŷ,

that is, the vector with minimum Euclidean norm that interpolates the given labels. There
is an explicit formula for it, namely wMNI = X†ŷ, where X† denotes the pseudo-inverse of
X. Unfortunately, that formula is not convenient to use since we want to decouple µ from
Q. There is, however, an alternative definition: to obtain the direction of MNI, one can
simply find the vector with the smallest norm in the affine span of the columns of X⊤Dŷ,
where we define Dŷ := diag(ŷ). That is, we define

w̃MNI := X⊤Dŷα, where α = argminα∈Rn ∥X⊤Dŷα∥ s.t. α⊤1n = 1.

In other words, w̃MNI is the projection of 0p onto the affine span of the columns of X⊤Dŷ

(recall that affine span is defined as the set of linear combinations, whose coefficients sum to
one, that is, {X⊤Dŷα s.t. α⊤1n = 1}).

The precise result is given by the following proposition.

Proposition 35. The vectors wMNI and w̃MNI have the same direction, but different norms.
They are related to each other as follows:

wMNI =
w̃MNI

∥w̃MNI∥2
, w̃MNI =

wMNI

∥wMNI∥2
. (3.4)

Proof. First, we can rewrite the definition of MNI as

wMNI = arg min
Rp

∥w∥ s.t. DŷXw = 1n.

We see that wMNI has the same scalar products with all the columns of X⊤Dŷ, which implies
that it has the same scalar product with all elements of the affine span of those columns.
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Therefore, it must be perpendicular to that affine span. Note that it also lies in their linear
span, and there is only one direction in that linear span that is perpendicular to the affine
span: the direction of the projection of zero onto the affine span. Thus, we already obtained
that wMNI and w̃MNI have the same direction.

When it comes to the norm, since w̃MNI belongs to the affine span, wMNI
⊤w̃MNI = 1. On

the other hand, these vectors are colinear. This yields Equation 3.4.

Since both those vectors have the same direction, they result in the same classification
rule. We are going to start our discussion in Section 3.2, where we consider the case without
label-flipping noise. As it turns out, looking at w̃MNI is more convenient in that case. After
that, in Section 3.2, we add label-flipping noise. There it will be more convenient to return
back to wMNI.

MNI without label-flipping noise

We start the discussion with the case without label-flipping noise, that is η = 0 and ŷ = y.
Introduce the following notation for the two notions of the MNI direction for clean labels:

wc
MNI := arg min

Rp
∥w∥ s.t. Xw = y,

w̃c
MNI :=X⊤Dyα, where α = argmin ∥X⊤Dyα∥ s.t. α⊤y = 1.

Here the superscript c stands for “clean”. Plugging in the expression for X gives

X⊤Dŷ = (Q + yµ⊤)⊤Dy = Q⊤Dy + µ1⊤
n .

We see that changing µ simply shifts all the columns of X⊤Dŷ by the same vector, which
gives an easy way to derive the formulas for the solution. For convenience, for the rest of
this section we will explicitly track the dependence on µ in the notation, that is, we will
write wc

MNI(µ) and w̃c
MNI(µ) instead of just wc

MNI and w̃c
MNI.

Let’s start with the case µ = 0p, and then see how adding µ changes things. When
µ = 0p the matrix X coincides with Q, so

wc
MNI(0p) =Q†y = Q⊤A−1y,

w̃c
MNI(0p) =

wc
MNI(0p)

∥wc
MNI(0p)∥2

=
Q⊤A−1y

y⊤A−1y
.

Note that ∥w̃c
MNI(0p)∥2 = (y⊤A−1y)−1.

As we add µ, it shifts all the columns of X⊤Dŷ, and thus also their affine span. Denote
the linear span of the columns of Q⊤Dŷ as Q, and the linear space that is parallel to the
affine span of those columns as QA. Note that QA is orthogonal to w̃c

MNI(0p), and that
Q = QA⊕⟨w̃c

MNI(0p)⟩ — the direct sum of QA and the line spanned by w̃c
MNI(0p). Thus, we

can decompose µ into 3 orthogonal components: µ⊥ — a component perpendicular to Q,
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µ∥QA
— a component lying in QA, and µ∥w(0) — a component in the direction of w̃c

MNI(0p).
That is,

µ = µ⊥ + µ∥QA
+

µ⊤w̃c
MNI(0p)

∥w̃c
MNI(0p)∥2

w̃c
MNI(0p)︸ ︷︷ ︸

µ∥w(0)

. (3.5)

Recall that w̃c
MNI(µ) is the projection of the origin onto the affine span of the columns

of X⊤Dŷ. Note that µ∥QA
does not change that affine span (it shifts the affine span by a

vector parallel to it). The component µ∥w(0) does not change the linear span, but it shifts
the affine span orthogonally, so it just gets added to that projection. Finally, µ⊥ shifts the
linear span orthogonally, so it also just gets added to that projection. Therefore, we get

w̃c
MNI(µ) = w̃c

MNI(0p) + µ⊥ +
µ⊤w̃c

MNI(0p)

∥w̃c
MNI(0p)∥2

w̃c
MNI(0p).

Plugging in the expressions for everything we get the formula:

w̃c
MNI(µ) =

Q⊤A−1y

y⊤A−1y
+ (Ip −Q⊤A−1Q)µ︸ ︷︷ ︸

µ⊥

+
ν⊤A−1y

y⊤A−1y
Q⊤A−1y, (3.6)

where we introduced ν := Qµ.
Now that we have this decomposition, we can discuss the quantitative implications. Recall

that we are interested in the quantity µ⊤w̃c
MNI(µ)/∥w̃c

MNI(µ)∥Σ. Thus, we compare the scalar
product with µ and the norm in Σ for the terms above.

Interestingly, our bounds show that the second term, µ⊥, always dominates the third
term in terms of both scalar product with µ and the norm in Σ in the regime that we
consider.

In Section 3.1 we claimed that in absence of label-flipping noise the solution behaves as
Q⊤A−1y + (Σ + n−1ΛIp)

−1µ. In the case of MNI, this happens because µ⊥ behaves like
(nΛ−1Σ + Ip)

−1µ, while y⊤A−1y ≈ nΛ−1. More concretely, Lemma 103 from Appendix
B.7 gives µ⊤µ⊥ ≈ µ⊤(nΛ−1Σ + Ip)

−1µ and ∥µ⊥∥Σ ≲ ∥(nΛ−1Σ + Ip)
−1µ∥Σ. Moreover,

tightness of the latter bound was shown in Chapter 2, since the same quantity (up to the
change of notation) arises there as the bias term. We have already seen this connection to
the regression setting in Section 3.1, where we also discussed that the vector Q⊤A−1y is
directly analogous to the variance part of the minimum interpolating solution for regression.

MNI with label-flipping noise and benign overfitting

Now let’s see what happens when labels are not clean and contain label-flipping noise. Recall
that we denoted the linear span of the columns of Q⊤ as Q. For any v ∈ Rp denote the
projection of v on Q as v∥ and the projection of v on Q⊥ as v⊥. Note that Qv⊥ = 0n for
any v ∈ Rp.
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MNI interpolates labels ŷ, that is, (Q + yµ⊤)wMNI = ŷ. Let’s consider which labels are
interpolated by wMNI⊥ and wMNI∥:

(Q + yµ⊤)wMNI⊥ =yµ⊤wMNI⊥ = αy,

(Q + yµ⊤)wMNI∥ =ŷ − αy,

QwMNI∥ =ŷ − αy − yµ⊤wMNI∥ = ŷ − βy,

where we introduced two scalar quantities: α and β.
Note that there is a unique vector w ∈ Q such that Qw = ŷ − βy, namely w =

Q†(ŷ − βy). Thus,
wMNI∥ = Q†(ŷ − βy) = Q⊤A−1(ŷ − βy).

On the other hand, wMNI always lies in the span of the columns of X⊤, and projections of
those columns onto Q⊥ are ±µ⊥. Thus, wMNI⊥ must be collinear with µ⊥. Therefore, for
some scalars a, b

wMNI = Q⊤A−1ŷ + aQ⊤A−1y + bµ⊥,

which reduces the problem to two dimensions. The next simplifying step is to move to an
orthogonal basis. Since µ⊥ is already orthogonal to Q⊤A−1ŷ and Q⊤A−1y, we just need to
find such ξ that Q⊤A−1(ŷ − ξy) is orthogonal to Q⊤A−1y. We write

y⊤A−1QQ⊤A−1(ŷ − ξy) = 0,

y⊤A−1(ŷ − ξy) = 0,

ξ =
y⊤A−1ŷ

y⊤A−1y
.

Note that Ey,ŷ[y⊤A−1ŷ] = (1 − 2η)tr(A−1) and Ey[y⊤A−1y] = tr(A−1), so informally
ξ ≈ 1 − 2η. Now denote ỹ := ŷ − ξy, and we get that

wMNI = Q⊤A−1ỹ + ∆w,

where ∆w belongs to the span of µ⊥ and Q⊤A−1y. Since ∆w is orthogonal to Q⊤A−1ỹ
and wMNI is the minimum norm solution that interpolates labels ŷ, ∆w is the minimum
norm vector that interpolates the following labels:

ŷ − (Q + yµ⊤)Q⊤A−1ỹ = (ξ − ν⊤A−1ỹ)y.

These labels are just the scaling of the clean labels y. Thus, ∆w is a scaled noiseless
solution, that is,

wMNI = Q⊤A−1ỹ + (ξ − ν⊤A−1ỹ)wc
MNI. (3.7)

In this expression, Q⊤A−1ỹ acts as a “noise vector”: it has no dependence on µ and it
has a symmetric distribution. The term ξwc

MNI is a scaling of the noiseless solution. Recall
that ξ ≈ 1 − 2η, which is close to 1 when the noise level η is small. Therefore, the term



CHAPTER 3. CLASSIFICATION 59

ξwc
MNI is close to the noiseless solution wc

MNI. The last term −ν⊤A−1ỹwc
MNI is also a scaling

of the noiseless solution, but the scaling factor ν⊤A−1ỹ has symmetric distribution, as it is
a linear function of ỹ. That is, with probability 0.5 this term points in the opposite direction
from the noiseless solution, and also seems like a “noise vector”.

Now let’s consider how large these terms are in Euclidean norm. To do this, it is infor-
mative to consider the scale of µ as a parameter and to see how changing it from zero to
infinity affects those Euclidean norms.

The first term, Q⊤A−1ỹ, does not depend on µ, so its Euclidean norm stays the same.
When it comes to wc

MNI, however, when ∥µ∥ = 0 it is equal to Q⊤A−1y. It is very similar to
the first term, with the only difference that we substitute the “noise” part of the labels ỹ by
the clean labels y. If we take the noise to be a small constant, those two vectors should have
Euclidean norms of the same order. As µ grows, however, the vector wc

MNI starts changing,
and asymptotically its norm decreases inversely proportional to the scale of µ. The third
term, −ν⊤A−1ỹwc

MNI starts at zero because ν scales with µ. However, because of that same
scaling, as µ grows, the vector −ν⊤A−1ỹwc

MNI converges to a vector of finite length. Recall
that this vector is equally probable to point in the same direction as wc

MNI as in the opposite
direction.

Overall, we see that adding a small constant amount of label-flipping noise makes the
solution look significantly different compared to the noiseless one. First, it picks up an
additional scaling factor, which may potentially flip the sign of the projection on the direction
of the noiseless solution when µ is large enough. Second, it picks up an additional noise
component in the orthogonal direction, whose magnitude can be comparable to or even
much larger than the magnitude of the noiseless solution.

However, despite those differences, the bound for the noisy case is surprisingly similar
to the bound in the noiseless case. Recall that we need to estimate two scalar quantities:
∥wMNI∥Σ and µ⊤wMNI. When it comes to the first of them, our bounds suggest3 that the
sum of ∥Q⊤A−1ỹ∥Σ and ∥wc

MNI∥Σ dominate |ν⊤A−1ỹ|∥wc
MNI∥Σ, so ∥wMNI∥Σ only picks up

one term compared to ∥wc
MNI∥Σ, and that term is ∥Q⊤A−1ỹ∥Σ. When it comes to the scalar

product with µ, even more cancellations occur. First, recall that for the clean solution we
obtained that

wc
MNI =

w̃c
MNI

∥w̃c
MNI∥2

, w̃c
MNI =

Q⊤A−1y

y⊤A−1y
+ µ⊥ +

ν⊤A−1y

y⊤A−1y
Q⊤A−1y.

Denote S := y⊤A−1y∥w̃c
MNI∥2. Plugging in the formulas results in

Sµ⊤wMNI =S(ξµ⊤wc
MNI + ν⊤A−1ỹ(1 − µ⊤wc

MNI))

=ξSµ⊤wc
MNI + (1 + ν⊤A−1y)ν⊤A−1ỹ,

3We can only make an informal statement here, since our formal arguments work with slightly different
expressions: instead of ỹ we use the formulas involving ∆y := ŷ − y, because it has i.i.d. components. We
also don’t have a proof of tightness for the case with label-flipping noise.
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which already suggests that Sµ⊤wMNI is similar to Sµ⊤wc
MNI. To see that even more clearly,

however, we can plug in the formula for Sµ⊤wc
MNI, that is

Sµ⊤wc
MNI = y⊤A−1y∥µ⊥∥2 + (1 + ν⊤A−1y)ν⊤A−1y.

Plugging that in together with the definition of ξ gives

Sµ⊤wMNI = y⊤A−1ŷ∥µ⊥∥2 + (1 + ν⊤A−1y)ν⊤A−1ŷ,

so the formula for the scalar product in the noisy case turns out to be almost the same as
in the noiseless case, and the bound doesn’t change.

A part of the reason for this cancellation can be seen from our derivation of the formula:
we started by saying that we need the component Q⊤A−1ỹ to interpolate the “noise part of
the labels” ỹ. When multiplied by Q + yµ⊤, this vector picks up additional labels propor-
tional to y because of the scalar product with µ. We then say that the job of the additional
term ∆w is to kill those additional labels. However, the labels that ∆w interpolates them-
selves come largely from its scalar product with µ. In the end, this leads to the cancellation
when we compute the scalar product of µ and the sum of Q⊤A−1ỹ and ∆w. However,
this only explains why some of the terms disappear. Finding an intuitive explanation why
the resulting formulas for the scalar product are so similar in the noisy and noiseless cases
remains an intriguing question.

3.3 Assumptions on the data

So far we have seen how MNI behaves geometrically and which terms arise in the expressions
of interest. To make a quantitative statement about classification, however, one needs to
bound those terms. In their turn, those bounds require assumptions.

In this section we explain which assumptions we impose on the distribution of the rows
of Z and on the sequence {λi}pi=1 in order to obtain our results.

Gram matrix of the tails

The central object in our analysis is the (regularized) Gram matrix of the covariates projected
onto the tail of the covariance, which we denote as follows:

Ak := Qk:∞Q⊤
k:∞ + λIn. (3.8)

Just as in Section 2.4 of Chapter 2 the main assumption under which our argument works
is that the condition number of the matrix Ak is bounded by some constant. Therefore, we
introduce the following event:

Definition 36. For any k ∈ {0, 1, . . . , p − 1} and L ≥ 1 we define by Ak(L) the following
event:

Ak(L) :=

{(
λ +

∑
i>k

λi

)
/L ≤ µn(Ak) ≤ µ1(Ak) ≤ L

(
λ +

∑
i>k

λi

)}
. (3.9)
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Note that EAk = In ·
(
λ +

∑
i>k λi

)
, so on Ak(L) the eigenvalues of Ak are within a

constant factor of eigenvalues of its expectation.
Throughout the chapter we will also always impose assumptions of the following form:

λ +
∑
i>k

λi > c

nλk+1 +

√
n
∑
i>k

λ2
i

 , (3.10)

where c is some large constant. It is closely related to saying that the event Ak holds with
high probability, and also to the notions of effective ranks used in Chapter 2. Indeed, the
following lemma follows directly from Lemma 4 from Section 2.3.

Lemma 37. Suppose that elements of Z are σx-sub-Gaussian and independent. There exists
a constant c that only depends on σx s.t. with probability at least 1 − ce−n/c,

µ1(Ak) = λ + µ1(Qk:∞Q⊤
k:∞) ≤λ +

∑
i>k

λi + c

nλk+1 +

√
n
∑
i>k

λ2
i

 ,

µn(Ak) = λ + µn(Qk:∞Q⊤
k:∞) ≥λ +

∑
i>k

λi − c

nλk+1 +

√
n
∑
i>k

λ2
i

 .

Lemma 37 shows that if components of the data are independent and sub-Gaussian, then
Equation (3.10) implies that Ak(L) holds with high probability for some constant L. The
reason why we introduce event Ak(L) instead of assuming independence of the components
is that we don’t believe that independence to be necessary for Ak(L) to hold. The same
logic was followed in Section 2.4 of Chapter 2. Moreover, in Section 2.5 we explained that
much weaker conditions, such as sub-Gaussianity and a version of a small-ball condition, are
sufficient for the event Ak(L) to hold with high probability. We even showed that Ak(L)
can hold with high probability for some heavy-tailed distributions. Note, however, that
the strategy in Chapter 2 was slightly different: we imposed Assumption CondNum(k, δ, L)
which directly controls the condition number of Ak. Then we showed that under additional
Assumption NoncritReg(k, γ) and sub-Gaussianity the eigenvalues of Ak are within a con-
stant factor of λ +

∑
i>k λi (see Lemma 85 in Appendix A.4). In this chapter we put direct

bounds on the eigenvalues of Ak in Definition 36, which simplifies the presentation.

Algebraic assumptions

Similarly to our results on regression, our argument for the main lower bound cleanly decom-
poses into an algebraic and a probabilistic part. Because of that, we don’t need to formulate
that bound with some probability over the draw of Q, but we can just specify the exact
event on which our results hold. We have already introduced the event Ak(L). Another
event that we need is as follows.
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Definition 38. For any k ∈ {0, 1, . . . , p− 1} and cB > 0, we define by Bk(cB) the event on
which all the following hold:

1. µ1(Z
⊤
0:kZ0:k) ≤ cBn and µn(Z⊤

0:kZ0:k) ≥ n/cB.

2. ∥Qk:∞µk:∞∥2 ≤ cBn∥µk:∞∥2Σk:∞
.

3. tr(Qk:∞Σk:∞Q⊤
k:∞) ≤ cBn

∑
i>k λ

2
i .

4. tr(Z⊤
0:kZ0:k) ≤ cBnk.

5. ∥Qk:∞Σk:∞Q⊤
k:∞∥ ≤ cB

(∑
i>k λ

2
i + nλ2

k+1

)
.

It is easy to see that the event Bk(cB) holds with high probability if the constant cB is
large enough. For the case of sub-Gaussian data this can be stated more precisely:

Lemma 39. Suppose the distribution of the rows of Z is σx-sub-Gaussian. One can take the
constant cB large enough depending only on σx such that for any k < n/cB the probability of
the event Bk(cB) is at least 1 − cBe

−n/cB .

Proof. We need to show that all 5 bounds from the definition of Bk(cB) hold with probability
at least 1 − ce−n/c, where c only depends on σx. The first 4 of these bounds were shown
in Appendix A.9 up to the change of notation; see the display (A.18). One just needs to
substitute X by Q and θ∗ by µ in that display to get the result of the lemma. The last
statement follows directly from Lemma 84 by plugging in ZΣ instead of X.

As with the definition of the event Ak, we introduce the event Bk(cB) instead of assuming
sub-Gaussianity because we believe that sub-Gaussianity is not necessary for Bk(cB) to hold
with high probability. This was also discussed in Section 2.6. Indeed, the first condition in
the definition of Bk(cB) is just concentration of sample covariance in dimension k with n
data points, which is known to hold for heavy-tailed distributions (see [52] and references
therein). The inequalities 2–4 are just the law of large numbers (concentration of the sum of
n i.i.d. random variables). Only the inequality number 5 (bound on the norm of the Gram
matrix) is somewhat less standard. Note however, that the Gram matrix has the same
spectral norm as the sample covariance matrix multiplied by n. Therefore, that inequality
could be obtained as a direct corollary of a dimension-free bound on the spectral norm of a
sample covariance matrix. An example of a heavy-tailed result of this type can be found in
[1], see their Theorem 2.

3.4 Main results

In order to formulate the results more succinctly throughout the chapter we introduce ad-
ditional notation. First of all, we denote the bound on the sub-Gaussian constant of the
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label-flipping noise as

ση := 1/

√
ln

3 + η−1

2
. (3.11)

Next, for a given k we will use the following notation:

Λ :=λ +
∑
i>k

λi,

V :=n−1tr
((

Λn−1Σ−1
0:k + Ik

)−2
)

+ Λ−2n
∑
i>k

λ2
i ,

∆V :=
1

n
∧ nλ2

1

Λ2
+

nλ2
k+1 +

∑
i>k λ

2
i

Λ2
,

B :=n−2Λ2
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 + ∥µk:∞∥2Σk:∞
,

♢2 :=nΛ−2B,

M :=
Λ

n

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥2 + ∥µk:∞∥2,

N :=nΛ−1M.

Note that we don’t track the dependence on k in the notation. We always introduce k before
using it.

To explain how these quantities arise, let’s consider the ridgeless case (i.e., λ = 0) and
return to the geometric picture from Section 3.2. First of all, note that Λ is just the energy
of the tail of the covariance, and as we already mentioned in Section 3.1, Λ is just implicit
regularization that the tail imposes on the learning problem. Next, the term V corresponds
to Ey∥Q⊤A−1y∥2Σ, which, as discussed in Section 3.1, is nothing but the variance term from
the regression setting of Chapter 2. As in that chapter, V is bounded by a constant, but
can be arbitrarily small. The quantity ∆V controls deviations of ∥Q⊤A−1y∥2Σ with respect
to the randomness in y.

The terms B and M arise as B ≈ ∥µ⊥∥2Σ and M ≈ µ⊤µ⊥. Once again, one can notice
that ∥µ⊥∥2Σ is exactly the bias term from Chapter 2. Interestingly, ♢, which is a rescaling
of

√
B, also controls the magnitude of ν⊤A−1y.

One may notice that our expressions for V and B are somewhat different from the main
bounds in Chapter 2 (see Sections 2.4 and 2.7). This is because we choose a different
presentation strategy: while Chapter 2 gives bounds in a simpler form, they are only tight
for the right choice of k. The way we formulate the bounds in this chapter makes them tight
for any choice of k under which the assumptions are satisfied, at the cost of worse-looking
expressions. We elaborate more on differences in techniques with Chapter 2 in Section 3.5.
A formal connection can be established by the following proposition:
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Proposition 40.

V ≤k

n
+ Λ−2n

∑
i>k

λ2
i ,

B ≤n−2Λ2 ∥µ0:k∥
2
Σ−1

0:k
+ ∥µk:∞∥2Σk:∞

.

Proof.

V = n−1tr
((

Λn−1Σ−1
0:k + Ik

)−2
)

+ Λ−2n
∑
i>k

λ2
i ≤

≤ n−1tr (Ik) + Λ−2n
∑
i>k

λ2
i =

k

n
+ Λ−2n

∑
i>k

λ2
i ,

B = n−2Λ2
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 + ∥µk:∞∥2Σk:∞
≤

≤ n−2Λ2
∥∥∥Σ−1/2

0:k µ0:k

∥∥∥2 + ∥µk:∞∥2Σk:∞
= n−2Λ2 ∥µ0:k∥

2
Σ−1

0:k
+ ∥µk:∞∥2Σk:∞

.

The fact that the bounds are the same up to a constant multiplier for the right choice of
k can be seen from Lemma 47.

When it comes to noisy labels, informally, V also controls ∥Q⊤A−1ỹ∥2Σ and ♢ controls
ν⊤A−1ỹ. These statements are only informal because in our proof we don’t deal with the
vector ỹ directly. It is more convenient to work with the vector ∆y := ŷ − y as it has i.i.d.
coordinates.

Finally, by virtue of algebra, our results extend to ridge regression, not just MNI. How-
ever, among the quantities defined above, only Λ has explicit dependence on the regulariza-
tion parameter λ, all the other quantities depend on λ through Λ. Thus, explicit regulariza-
tion simply adds to the implicit regularization from the data, without qualitatively changing
the results.

When it comes to the interpretation from Section 3.1, it is not hard to see that N is
within a constant factor of µ⊤(Σ + Λn−1Ip)

−1µ, while n♢2 is within a constant factor of

∥(Σ + Λn−1Ip)
−1µ∥2Σ (see Lemma 48 for a precise statement).

Some useful relations between those quantities are shown by the following lemma, whose
proof can be found in Appendix B.3.

Lemma 41 (Relations between the main quantities). Suppose that

k ≤ n and Λ > nλk+1 ∨
√
n
∑
i>k

λ2
i . (3.12)

Then

n♢2 ≤ N, n♢2 ≤ N
√
n∆V , V ≤ 2, ∆V ≤ 3

n
, ∆V ≤ 4V.
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Lower bound

Our main lower bound on the quantity µ⊤wridge/∥wridge∥Σ is given by the following theorem.

Theorem 42 (Main lower bound). For any cB > 0, L > 1 there exists a constant c that only
depends on cB and L, such that the following holds. Assume that η < c−1, k < n/c, and

Λ > cnλk+1 ∨
√

n
∑
i>k

λ2
i .

For any t ∈ (0,
√
n/c), conditionally on the event Ak(L) ∩ Bk(cB), with probability at

least 1 − ce−t
2/2 over the draw of (y, ŷ), the following inequalities hold for a certain scalar

S > 0:

Sµ⊤wridge ≥c−1N − ct♢, (3.13)

S∥wridge∥Σ ≤c
(

[1 + Nση]
√
V + t2∆V + ♢

√
n
)
. (3.14)

That is, if N > 2c2t♢, then on the same event,

µ⊤wridge

∥wridge∥Σ
≥ 1

2c2
N

[1 + Nση]
√
V + t2∆V + ♢

√
n
.

It is informative to explain how this result relates to the expressions we derived in
Section 3.2. Recall that we restrict ourselves to the case λ = 0 in that section, that is,
wridge = wMNI. First of all, for λ = 0, S = y⊤A−1y∥w̃c

MNI∥2. As in Section 3.2, let’s start
with the noiseless case, that is, η = ση = 0 and y = ŷ.

Swc
MNI =y⊤A−1yw̃c

MNI

=y⊤A−1yµ⊥ + (1 + ν⊤A−1Q)Q⊤A−1y.

We need to bound Sµ⊤wc
MNI from below and S∥wc

MNI∥Σ from above, so we write

Sµ⊤wc
MNI =y⊤A−1y∥µ⊥∥2 + (1 + ν⊤A−1y)ν⊤A−1y,

S∥wc
MNI∥Σ ≤y⊤A−1y∥µ⊥∥Σ + (1 + |ν⊤A−1y|)∥Q⊤A−1y∥Σ.

The bound from Theorem 42 can now be obtained by plugging in the following:

y⊤A−1y ≈nΛ−1,

∥µ⊥∥2 ≈M,

|ν⊤A−1y| ≲t♢,

∥µ⊥∥Σ ≲
√
B,

∥Q⊤A−1y∥Σ ≲
√
V + t∆V .
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As was stated in Section 3.2, the contribution of the term µ⊥ dominates the contribution of
ν⊤A−1y,Q⊤A−1y in both those bounds, that is

nΛ−1M ≳ t2♢2, nΛ−1
√
B =

√
n♢ ≳ t♢

√
V + t∆V .

Overall, we get the bounds

Sµ⊤wc
MNI ≳ N − ct♢, S∥wc

MNI∥Σ ≲
√
V + t∆V +

√
n♢.

Now let’s consider the case with label-flipping noise. As we already mentioned in Section
3.2, due to certain algebraic cancellations the formula for the scalar product in the noisy
case is very similar to the formula in the noiseless case:

Sµ⊤wMNI = y⊤A−1ŷ∥µ⊥∥2 + (1 + ν⊤A−1y)ν⊤A−1ŷ.

Since the vector ŷ is just a noisy version of the vector y, the quantities y⊤A−1ŷ and ν⊤A−1ŷ
are close to y⊤A−1y and ν⊤A−1y correspondingly, which yields the same bound on the scalar
product as in the noiseless case.

When it comes to the denominator, as we already stated in Section 3.2, only one extra
term survives compared to the noiseless case, the other terms get dominated. To show
exactly how that happens, write

S∥wMNI∥Σ ≤ S∥Q⊤A−1ỹ∥Σ + (ξ + |ν⊤A−1ỹ|)S∥wc
MNI∥Σ.

We already have the upper bound on S∥wc
MNI∥Σ. The other bounds come from the following

inequalities:

S =(1 + ν⊤A−1y)2 + y⊤A−1y∥µ⊥∥2

≲(1 + t♢)2 + N,

∥Q⊤A−1ỹ∥Σ ≲ση
√
V + t∆V ,

ξ ≈1,

|ν⊤A−1ỹ| ≲σηt♢.

Combining everything together yields

S∥wc
MNI∥Σ ≲

(
(1 + t♢)2 + N

)
ση
√
V + t∆V + (1 + σηt♢)

(√
V + t∆V +

√
n♢
)
.

By Lemma 41 and since t <
√
n, N dominates t2♢2. Moreover, σηN

√
V + t∆V dominates

σηt♢ ·
√
n♢, Dropping those dominated terms leaves us with

S∥wc
MNI∥Σ ≲ (3t♢ + N)ση

√
V + t∆V +

√
V + t∆V +

√
n♢.

Finally, the term 3t♢ση
√
V + t∆V is dominated by

√
n♢, which gives us the final bound:

S∥wc
MNI∥Σ ≲ (1 + Nση)

√
V + t∆V +

√
n♢.

Recall, however, that this derivation is only informal, as our proof does not give rigorous
bounds on quantities involving ỹ, as we deal with ∆y = ŷ − y instead.
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Upper bound

Even though a lower bound on µ⊤wridge/∥wridge∥Σ is more important than the upper bound
(since a lower bound provides a guarantee for high classification accuracy), obtaining an
upper bound turns out to be more technically challenging. We elaborate on that in Section
3.5, where we explain what additional assumptions and tricks we needed to prove the upper
bound and why.

Because of those technical difficulties, we only provide the upper bound for the regime
without label-flipping noise. It is given by the following:

Theorem 43 (Main upper bound). Suppose that η = 0 — there is no label-flipping noise,
and the rows of Z are σx-sub-Gaussian. For any L > 1 there are large constants a, c that
only depend on σx and L and an absolute constant cy such that the following holds. Suppose
that k < n/c and

Λ > c

nλk+1 +

√
n
∑
i>k

λ2
i

 .

Assume that Qk:∞ is independent from Q0:k, and the distribution of Qk:∞ is symmetric.

1. If N < a−1♢ then with probability at least c−1
y (P(Ak(L)) − ce−n/c)+,

µ⊤wridge < 0.

Here u+ denotes u ∨ 0 for any u ∈ R.

2. If N ≥ a−1♢ then for any t ∈ (0,
√
n/cy) the probability of the event{

µ⊤wridge

∥wridge∥Σ
≤ c(1 + t)

N√
V + n♢2

}
is a least

(c−1
y − cye

−t2/cy − cye
−n/c)+(P(Ak(L)) − ce−n/c)+.

Tight bound for a quantile

Theorems 42 and 43 give lower and upper bounds on the quantity µ⊤wridge/∥wridge∥Σ cor-
respondingly. That quantity, however, is random, and the bounds depend on the parameter
t which controls the probability with which the bound holds. We don’t expect those bounds
to be sharp for all possible values of t, but we show that they are sharp for the case when t
is a constant.

Definition 44. For any ε ∈ (0, 1) we denote by αε the following ε-quantile of the distribution
of µ⊤wridge/∥wridge∥Σ:

αε := inf

{
α ∈ R : P

(
µ⊤wridge

∥wridge∥Σ
< α

)
> ε

}
. (3.15)
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The following theorem shows that our upper and lower bounds on αε are within a constant
factor of each other when ε is set to a certain absolute constant.

Theorem 45 (Tightness of the bounds). Suppose that the distribution of the rows of Z is
σx-sub-Gaussian. Suppose that η = 0 — there is no label-flipping noise. For any L > 1
there exist constants a, c that only depend on L, σx and absolute constants ε, δ such that the
following holds. Suppose that n > c, k < n/c,

Λ > c

nλk+1 ∨
√
n
∑
i>k

λ2
i

 ,

and the probability of the event Ak(L) is at least 1 − δ. Assume that Qk:∞ is independent
from Q0:k, and the distribution of Qk:∞ is symmetric.

Then

αε ≤ c
N√

V +
√
n♢

.

If additionally N ≥ a♢, then

αε ≥ c−1 N√
V +

√
n♢

.

Regimes of the lower bound

In this section we discuss which form the bound from Theorem 42 can take depending on
which terms dominate in the expressions.

First of all, the bound depends on the choice of t and η. We put t to be a large constant,
and η to be a small constant. That is, the bound will hold with high constant probability,
and the probability of label-flipping noise will be a small constant.

Let’s think about the classification problem in the following way: treat the covariance
Σ, the number of data points n and the direction of µ as fixed, and treat the magnitude of
vector µ as a parameter.

The bound on Sµ⊤wridge from Equation (3.13) has two terms (up to constant multipliers):
N and −♢. The term N is quadratic in µ, while ♢ is linear. Thus, for small µ the second
term will dominate and the bound will be negative, but when µ becomes large, N will
dominate.

When it comes to the bound on S∥wridge∥Σ from Equation (3.14), it has three terms:√
V , ♢

√
n, and N

√
V . The first term doesn’t scale with µ, the second is linear in µ and the

third is quadratic. Thus, when µ is small, the term V will dominate the bound, and when
it is large, N

√
V will dominate. Note that in the noiseless case (η = 0), there is no term

N
√
V , and for large magnitude of µ the term ♢

√
n will dominate in the bound.

Now, let’s investigate how those transitions relate to each other. According to Lemma
41,

√
n♢2 ≤ N

√
∆V ≤ 2N

√
V , which implies

√
V

♢
√
n
≥ ♢

2N
.
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That is, if ♢ is at least a constant times N , then
√
V is at least a constant times ♢

√
n.

Moreover,

N
√
V ≤ N2

n♢2

√
V ,

so if ♢ dominates N , then
√
V dominates N

√
V (and even nN

√
V ). Thus we see that the

transition in the bound for µ⊤wridge happens first: N starts dominating ♢ earlier than
√
V

stops dominating ♢
√
n and N

√
V .

Another question is whether for a constant value of η, the term ♢
√
n can dominate in the

bound on S∥wridge∥Σ. As turns out, it may or may not happen depending on the relation
between Σ and the direction of µ. To see this, consider two examples: first, assume that
µ = me1 — a vector supported on the first coordinate. For such choice of µ we have

♢
√
n =

√
λ1m

λ1 + Λ/n
, N =

m2

λ1 + Λ/n
.

We see that if λ1 ≫ Λ/n and 1 ≫ V , then for m =
√
λ1 we will get ♢

√
n ≫ (1 + N)

√
V .

On the other hand, consider µ = mep — a vector supported on the last coordinate. Then

♢
√
n = nΛ−1

√
λpm, N = nΛ−1m2.

If it so happens that V ≫ nλp/Λ (which is possible as λp can be arbitrarily small), then we
can write

(1+N)
√
V = (1+nΛ−1m2)

√
V ≫ (1+nΛ−1m2)

√
nΛ−1λp ≥ 2

√
nΛ−1m2

√
nΛ−1λp = 2♢

√
n.

That is, for such choice of covariance and µ, the term ♢
√
n cannot dominate in the bound

for ∥wridge∥Σ for any choice of m.
Table 3.1 summarizes the discussion of the regimes we had so far.

Magnitude of µ small medium large very large

Bound on µ⊤wridge/∥wridge∥Σ −♢/
√
V N/

√
V N/(

√
n♢) 1/

√
V

Occurs in noiseless case η = 0 yes yes yes no
Occurs in noisy case η = c−1 yes yes sometimes yes

Table 3.1: Regimes of the main bound

Finally, recall the transition that happens in the structure of the noisy solution, namely in
Equation (3.7) from Section 3.2, which was derived for the MNI solution with label-flipping
noise:

wMNI = Q⊤A−1ỹ + (ξ − ν⊤A−1ỹ)wc
MNI.

We see that the clean solution is multiplied by a scalar ξ − ν⊤A−1ỹ. As discussed in
Section 3.2, ξ ≈ 1−2η ≈ 1, while ν⊤A−1ỹ is a random variable with symmetric distribution,
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which is also linear in µ. As the magnitude of µ grows, the magnitude of the zero-mean
term ν⊤A−1ỹ also grows, and at some point it starts dominating the term ξ. At that point
the contribution of the clean solution to the noisy solution becomes “washed out”, and the
component of wMNI in the direction of wc

MNI becomes close to zero mean instead of being
positive (recall ỹ ⊥ wc

MNI).
Let’s investigate how this qualitative transition in the structure of the noisy solution

is related to other transitions that we discussed previously. Unfortunately, as we already
mentioned before, our arguments don’t provide a rigorous bound on ν⊤A−1ỹ. Because of
that we can only speculate about the magnitude of ν⊤A−1ỹ, and here we will assume that
for constant noise level we have |ν⊤A−1ỹ| ≈ |ν⊤A−1y|, with the magnitude of the latter
term being controlled by ♢. Thus, the transition happens when ♢ becomes larger than 1. In
this case, however, we can write using Lemma 41

♢ ≳ 1, N ≥ n♢2 ≳ n ≫ 1, N
√
V ≫

√
V , N

√
V ≥ N

√
∆V /2 ≥

√
n♢2 ≳

√
n♢.

Thus, in this regime, the term N
√
V is the largest (up to a constant multiplier) in the bound

on ∥wridge∥Σ.
To conclude, let’s tie the regimes we discussed in this section to the geometrical pictures

of Section 3.2.
For the case without label-flipping noise, Equation (3.6) shows that the vector wMNI is

proportional to
Q⊤A−1y

y⊤A−1y
+ µ⊥ +

ν⊤A−1y

y⊤A−1y
Q⊤A−1y.

The term µ⊥ dominates the last term, and acts effectively as (nΛ−1Σ+Ip)
−1µ. As a result,

as stated in Section 3.1, wMNI performs as Q⊤A−1y+(Σ+n−1ΛIp)
−1µ. When µ is small in

magnitude, and ♢ dominates N , the “noise term” Q⊤A−1y will dominate in terms of both
µ⊤wMNI and ∥wMNI∥Σ, and the quantity µ⊤wMNI, resulting in a negative bound. As the
magnitude of µ grows, N will become larger than ♢, but V will still dominate over

√
n♢,

so the term (Σ + n−1ΛIp)
−1µ dominates in terms of the scalar product with µ, while the

term Q⊤A−1y will still dominate in terms of the norm in Σ. The bound in this regime is
N/

√
V up to a constant factor. Finally, as µ becomes even larger, wMNI performs effectively

as (Σ + n−1ΛIp)
−1µ, and the bound becomes N/(

√
n♢) up to a constant factor.

The noisy case is harder to explain without an intuitive explanation why the formula
for µ⊤wMNI is so similar to the formula for µ⊤wc

MNI (end of Section 3.2). Nevertheless,
that similarity yields that the condition when the bound becomes positive is the same: µ
should be large enough so that N dominates ♢. After that, the bound for the noisy case
goes through the same regimes: from N/

√
V to N/(

√
n♢), and then through a new regime:

1/
√
V . The regime N/(

√
n♢) may or may not appear, depending on how the energy of µ is

distributed across the eigendirections of Σ.
Now let’s explain geometrically how those transitions happen. Equation (3.7) from Sec-

tion 3.2 states
wMNI = Q⊤A−1ỹ + (ξ − ν⊤A−1ỹ)wc

MNI.
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In that section we also explained that the noisy solution is very similar to the noiseless
solution in terms of scalar product with µ, while it’s norm in Σ only picks up one additional
term: the norm of Q⊤A−1ỹ. That is

µ⊤wMNI ≈ µ⊤wc
MNI, ∥wMNI∥Σ ≈ ∥Q⊤A−1ỹ∥Σ + ∥wc

MNI∥Σ.

For small µ and constant η we have

∥wc
MNI∥Σ ≈ ∥Q⊤A−1y∥Σ ≈ ∥Q⊤A−1ỹ∥Σ ≈

√
V .

That is, for small µ not only the scalar product in µ, but also the norm in Σ is similar for the
noisy and the noiseless solution. Thus, the first regime that the bound goes through is the
same as the initial regime for the clean solution, with the bound N/

√
V . As µ grows further,

∥wc
MNI∥Σ may grow and start dominating over ∥Q⊤A−1ỹ∥Σ, so the bound may go over the

second regime of the clean solution: N/(
√
n♢). Eventually, however, wc

MNI converges to zero
as µ goes to infinity, so ∥Q⊤A−1ỹ∥Σ dominates ∥wc

MNI∥Σ. So it becomes

µ⊤wMNI

∥wMNI∥Σ
≈ µ⊤wc

MNI

∥Q⊤A−1ỹ∥Σ
.

Recall that we are in the regime when µ is large, and wc
MNI has high classification accuracy.

Recall also that wc
MNI is defined as an interpolator of labels ±1, and µ⊤wc

MNI is the label
that it assigns to the center of the positive cluster. Thus, µ⊤wc

MNI ≈ 1. Since for constant η
we have ∥Q⊤A−1ỹ∥Σ ≈

√
V , we get the final regime, when the bound becomes 1/

√
V . Note

that this quantity loses dependence on µ completely, and the only condition that makes the
bound large is that V has to be small. In Section 3.1, as well as the beginning of Section
3.4, we’ve seen that V is (up to a multiplicative constant) equivalent to the bound on the
variance term obtained by Chapter 2. Because of that, the sufficient condition for benign
overfitting that we get in the large µ regime is equivalent to the benign overfitting condition
in linear regression.

Benign overfitting

One interesting phenomenon that Theorem 42 implies is that the misclassification error can
be arbitrarily close to zero even if we have a small constant level of label-flipping noise. One
can see that it happens for t ≪

√
n, V ≪ 1, and N ≫

√
V + t/

√
n+♢

√
n (which is a form of

an SNR condition). In order to simplify the presentation, we formulate a rigorous corollary
for Gaussian distribution:

Corollary 46. Suppose the rows of matrix Q come as i.i.d. samples from a Gaussian
distribution. Take λ = 0 (that is, wridge coincides with wMNI). There exists a large absolute
constant c such that the following holds for any C > 1.
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Assume all the following:

the noise is bounded by a constant: η < c−1, (3.16)

the spiked part of the covariance has low dimension: k < n/(cC2), (3.17)

the tail of the covariance has high effective rank:
∑
i>k

λi > cnλk+1 ∨ cC

√
n
∑
i>k

λ2
i ,

(3.18)

the scale of µ is large enough: N ≥ 1 + cC
(√

V + ♢
√
n
)
. (3.19)

Then with probability at least 1 − ce−n/(cC)2,

µ⊤wMNI

∥wMNI∥Σ
≥ C. (3.20)

Proof. First of all, due to Equation (3.18), if c is large enough, by Lemma 37, for absolute
constants cA, L the probability of the event Ak(L) is at least 1 − cAe

−n/cA . Moreover, due
to Equation (3.17) and Lemma 39, for an absolute constant cB the event Bk(cB) holds with
probability at least 1 − cBe

−n/cB .
Next, by Theorem 42, for an absolute constant c1 on the event Ak(L) ∩ Bk(cB) we have

for a certain scalar S > 0 for any t ∈ (0,
√
n/c1), with probability at least 1 − c1e

−t2/2,

Sµ⊤wMNI ≥c−1
1 N − c1t♢, (3.21)

S∥wMNI∥Σ ≤c1

(
[1 + Nση]

√
V + t2∆V + ♢

√
n
)
. (3.22)

Since t <
√
n/c1, if c is large enough, due to Equation (3.19), for an absolute constant c2

Equation (3.21) implies Sµ⊤wMNI ≥ c−1
2 N .

So far, for an absolute constant c3 we have with probability at least 1 − c1e
−t2/2,

µ⊤wMNI

∥wMNI∥Σ
≥c−1

3

N

[1 + Nση]
√
V + t2∆V + ♢

√
n

≥ 1

2c3

(
N

♢
√
n +

√
V + t2∆V

∧ 1

ση
√
V + t2∆V

)
.

For simplicity, we use Lemma 41 to bound ∆V < 3/n. We see that to achieve the bound
(3.20), we can show the following two conditions:

N ≥ 2Cc3

(
♢
√
n +

√
V +

√
3t2/n

)
, ση(

√
V +

√
3t2/n) ≤ (2c3C)−1.

Recall that η < c−1, so ση < 1. The two conditions above can be achieved by first taking
t2 = n/(c4C

2) for a large enough absolute constant c4. Then, Equation 3.19 implies the first
condition, while Equations (3.17) and (3.18) imply the second due to Proposition 40.

We believe these sufficient conditions for benign overfitting in classification to be novel.
For example, in a recent paper, [58] obtain similar conditions only for the case of isotropic
data (i.e., Σ = Ip); see their Theorem 7.
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3.5 Proof outline and different forms of the main

quantities

Lower bound proof sketch

On a high level we follow the same logic as in Section 2.6 of Chapter 2: use algebraic formulas
for the solution to disentangle the contribution of components 0 : k from the components
k : ∞, then plug in concentration inequalities. It is, however, a more difficult task in the
case of the mixture model because clusters are not zero-mean, and have centers ±µ. Alge-
braically, we have X = Q+yµ⊤, and the rank-one correction yµ⊤ prohibits straightforward
application of the machinery from Chapter 2. Thus, the first step in the proof is to transform
the expression for wridge = X⊤(XX⊤ + λIn)−1ŷ into a form that operates with the inverse
of A = QQ⊤ + λIn instead of XX⊤ + λIn. The corresponding formula is obtained in
Appendix B.1 Lemma 89.

After obtaining the formula in Lemma 89, we derive sharp bounds on all the terms that
appear in it. Note that we have two independent sources of randomness in our setting:
randomness from the matrix Q and randomness from the labels (y, ŷ). We start by ad-
dressing the second source, making the high probability statements over the draw of (y, ŷ)
conditionally on Q in Lemma 98, Appendix B.4.

As a result of Lemma 98 we reduce the problem to bounding expressions that only depend
on Q. At this point we can apply the ideas developed in Chapter 2 to bound those quanti-
ties, which we do with some modifications. As in Section 2.6, we start by deriving algebraic
bounds that hold almost surely on the event that the matrix Ak is PD. Those bounds can be
found in Lemma 99, Appendix B.5. Some of the terms that we bound there have already ap-
peared in Section 2.6, namely ∥µ⊥∼∥2Σ and tr(A−1QΣQ⊤A−1) are exactly bias and variance
of the regression problem. We could, in principle, reuse the results of that chapter, but we do
a new slightly different derivation to obtain them in a different form. Namely, we directly use
the Sherman-Morrison-Woodbury (SMW) identity (Lemma 100), the most important em-

bodiment of which is A−1Q0:k = A−1
k Q0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
, to obtain our algebraic de-

compositions. After that, we use Lemma 101 to substitute Σ
1/2
0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
Σ

1/2
0:k

by α−1(β−1Σ−1
0:k + Ik)

−1, where α, β are scalars that concentrate within a constant factor of
their typical value. The alternative strategy from Section 2.6 would be to say that the matrix(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
is dominated by Ik for k = k∗. Because of that, our results are sharp

for any choice of k and we obtain upper bounds in the same form as lower bounds right
away, while in Chapter 2 we obtained them in different forms and needed to do a separate
conversion to show that they coincide for k = k∗. We pay for that, however, with a bulkier
form of the bounds in this chapter.

The bounds from Lemma 99 are formulated in terms of quantities that we assume to be
concentrated around their typical values on the events Ak(L) and Bk(cB). Plugging those
values into the bounds is done in Lemma 102, Appenxix B.6. Finally, we finish the proof
of Theorem 42 in Appendix B.7: first, we combine the bounds from Lemmas 98 and 102 in
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Lemma 103. Then we plug the result into the formulas from Lemma 89.

Upper bound proof sketch

When we deal with the bounds within a constant factor, it is usually more difficult to obtain
a bound from below than from above. This is because to bound a sum from above one can
use a triangle inequality |a+ b| ≤ |a|+ |b| to reduce the problem to bounding separate terms
from above. If, however, we want to bound a sum |a+ b| from below, the triangle inequality
yields |a+ b| ≥ (|a| − |b|)∨ (|b| − |a|), which is only sharp when one term dominates another
in magnitude.

In our case, we want to bound the fraction µ⊤wridge/∥wridge∥Σ. To bound it from below
we bound µ⊤wridge from below and ∥wridge∥Σ from above. Moreover, it turns out that there
is only one term in the expression for µ⊤wridge that we actually need to bound from below,
other terms play the role of noise and can be bounded from above in absolute value. Because
of that, bounding µ⊤wridge/∥wridge∥Σ from below is a much more straightforward task than
bounding it from above.

Two problems arise when we bound µ⊤wridge/∥wridge∥Σ from above: first, we need to
bound ∥wridge∥Σ from below, and there is no one dominating term in its expression. Second
problem is to show that the numerator µ⊤wridge will be negative with constant probability
if N is not large enough compared to ♢, for which we also need to bound the magnitude of
the noise terms in the numerator from below.

To alleviate the problem with the triangle inequality we resort to the following trick:
we assume that Qk:∞ has a symmetric distribution and is independent from Q0:k. This
means that the joint distribution of (Q0:k,Qk:∞,y) is the same as that of (Q0:k, εqQk:∞, εyy),
where we introduced two new Rademacher random variables (εq, εy), which are independent
of all previously defined random variables and from each other. The basic idea behind the
introduction of these random variables is as follows: suppose ε is a Rademacher random
variable, which is independent of random variables a, b. Then, conditionally on a, b, with
probability 0.5 over the draw of ε, |a+ εb| = |a|+ |b|. If we now have high-probability lower
bounds on |a| and |b|, then we get a constant probability lower bound on |a + b|.

To explain how this idea applies to the quantities that we need to bound, we will need
to look at their exact expressions. Denote

Q̄ := [Q0:k, εqQk:∞], ȳ := εyy, w̄ridge := (Q̄ + ȳµ⊤)⊤(Q̄Q̄
⊤

+ λIn︸ ︷︷ ︸
=A

)−1ȳ.

(Recall that for the upper bounds we only consider the case with no label-flipping noise, i.e.,
y = ŷ.) The expression for the numerator is now

S̄µ⊤w̄ridge = ȳ⊤A−1ȳµ⊤µ̄⊥∼ + (1 + ν̄⊤A−1ȳ)ν̄⊤A−1ȳ,

where ν̄ = Q̄µ, µ̄⊥∼ = (Ip − Q̄
⊤
A−1Q̄)µ, and S̄ is a scalar, which is non-negative with high

probability. The proof of Theorem 42 already provides sharp high-probability bound on the
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term ȳ⊤A−1ȳµ⊤µ̄⊥∼, as well as the upper bound on |ν̄⊤A−1ȳ|. Thus, the difficulty is only in
proving a lower bound on |ν̄⊤A−1ȳ| to say that the term ν̄⊤A−1ȳ will make the numerator
negative with constant probability unless N is large compared to ♢. The random variable
εq helps as follows: with probability 0.5 over the draw of εq,

∥A−1ν̄∥2 = ∥A−1(Q0:kµ0:k + εqQk:∞µk:∞)∥2 ≥ ∥A−1Q0:kµ0:k∥2 + ∥Qk:∞µk:∞∥2.

We bound the terms ∥A−1Q0:kµ0:k∥2 and ∥Qk:∞µk:∞∥2 from below in Lemma 104. We then
use them in Lemma 105 to get the full upper bound on the numerator S̄µ⊤w̄ridge.

When it comes to the denominator ∥S̄w̄ridge∥Σ, the expression that we use is

S̄w̄ridge = (1 + ν̄⊤A−1ȳ)Q̄
⊤
A−1ȳ + ȳ⊤A−1ȳµ̄⊥∼.

The term |ν̄⊤A−1ȳ|∥Q̄⊤
A−1ȳ∥Σ is dominated by others, so we can reuse an upper bound

on it from the proof of Theorem 42. When it comes to the remaining terms, note that

Q̄
⊤
A−1ȳ = εyQ̄

⊤
A−1y, while ȳ⊤A−1ȳµ̄⊥∼ = y⊤A−1yµ̄⊥∼, which does not depend on εy.

Thus, with probability 0.5 over εy, the cross-term that arises from those two terms is non-
negative and can be ignored for the purposes of obtaining a lower bound. Next, note that

∥Q̄⊤
A−1y∥Σ = ∥Q⊤A−1y∥Σ does not depend on εq, thus with probability 0.5 over the draw

εq we can ignore the cross terms that arise from interaction between components 0 : k and
k : ∞ in µ̄⊥∼. Overall, with probability at least 0.25 over the draw of (εq, εy) we can ignore
a few terms in the expression for ∥S̄w̄ridge∥Σ to obtain a lower bound on it. The precise
statement is given in Lemma 106.

The strategy for the remainder of the proof of the upper bound is the same as in the
proof of the lower bound: in Lemma 107 we make high-probability statements with respect
to the draw of y, and in Lemma 108 we make high probability statements with respect to
the draw of Q. We put together the lower bound on the denominator in Lemma 109 and
combine it with the upper bound on the numerator in Theorem 43, whose proof is given in
Appendix B.8.

Note that due to the nature of the proof, we only obtain the upper bounds with constant
probability.

3.6 Effect of regularization

In this section we discuss the effects of the regularization on the accuracy on the learned
classifier in the noiseless setting (i.e., η = 0). We will touch on the noisy setting in Section 3.6,
but we can only talk about the dependence of the lower bound on regularization there since
we don’t provide a matching upper bound.

The main result that we have for the noiseless case is Theorem 45, which proves tight-
ness of the bound for a quantile αε. Throughout this section we will study how changing
regularization affects that quantile.
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Before we start, however, let’s introduce two alternative forms of the bound on that
quantile, that are somewhat more useful in terms of tracking the effect of λ. As we already
pointed out, these bounds are closely related to the bounds for the regression problem studied
in Chapter 2, but have somewhat different form. In the next two lemmas we show how
definitions of our quantities of interest could be alternatively defined to have similar form to
the quantities from that chapter.

The following lemma gives a form of the bounds using the notion of k∗ introduced in
Section 2.3. This form corresponds to the form of the main results obtained in Section 2.4.

Lemma 47 (Bounds via k∗). Suppose that

k ≤ n/2 and Λ > nλk+1.

Define

k∗ := min

{
κ ∈ {0, 1, . . . , k} : λ +

∑
i>κ

λi ≥ nλκ+1

}
,

Λ∗ :=λ +
∑
i>k∗

λi,

V∗ :=
k∗

n
+ Λ−2

∗ n
∑
i>k∗

λ2
i ,

♢2
∗ :=n−1 ∥µ0:k∗∥

2
Σ−1

0:k∗
+ nΛ−2

∗ ∥µk∗:∞∥2Σk:∞
,

N∗ := ∥µ0:k∗∥
2
Σ−1

0:k∗
+ nΛ−1

∗ ∥µk∗:∞∥2.

Then

2N∗ ≥ N ≥ N∗/2, 2♢∗ ≥ ♢ ≥ ♢∗/2, 4V∗ ≥ V ≥ V∗/4, Λ∗ ≥ Λ ≥ Λ∗/2.

The next lemma gives an alternative form of the bounds, which makes their dependence
on k less pronounced. They are analogous to the bounds from Section 2.7.

Lemma 48 (Alternative form of the bounds). Suppose that k < n and Λ > nλk+1. Denote

Na :=
∑
i

µ2
i

λi + Λ/n
, Va :=

∑
i

λ2
i /n

(λi + Λ/n)2
, ♢a

2 :=
∑
i

λiµ
2
i /n

(λi + Λ/n)2
.

Then

N ≥ Na ≥ N/2, V ≥ Va ≥ V/4, ♢2 ≥ ♢a
2 ≥ ♢2/4.

Note that this form of the results already appeared in our discussion in Section 3.1.
Now we are in position to return to studying the effect of regularization. To track

changing values of regularization parameter λ, for the rest of this section we add it explicitly
to the notation, i.e., in this section we will write αε(λ),Λ(λ), N(λ), V (λ),♢(λ),Ak(L, λ) etc.
Note that if L > 1 and λ′ > λ, then Ak(L, λ) ⊆ Ak(L, λ

′), that is, we always only need to
assume that Ak(L, λ) holds for the smallest value of the regularization parameter that we
consider.
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Increasing regularization never helps in the noiseless case

Due to Theorem 45, the main quantity of interest in the setting without label-flipping
noise is N(λ)√

V (λ)+
√
n♢(λ)

. According to Lemma 48, this quantity is within a constant factor

of Na(λ)√
Va(λ)+

√
n♢a(λ)

. The first interesting observation is that Na(λ)/♢a(λ) is a non-increasing

function of λ. To see this denote

t := Λ/n, v := Σ−1/2µ, w := (Σ + tIp)
−1Σ1/2µ = (Ip + tΣ−1)−1v.

With this notation, it becomes
Na(Λ)√
n♢a(Λ)

=
v⊤w

∥w∥
,

which is non-increasing by the following lemma, whose proof can be found in Appendix B.9.

Lemma 49. Consider a non-zero vector v ∈ Rp and a PD symmetric matrix M ∈ Rp×p.
Introduce the function f : Rp → R as f(w) = v⊤w/∥w∥. Then f ((Ip + tM )−1v) is a
non-increasing function of t on [0,+∞).

This observation already suggests that increasing regularization should not lead to an
increase in the bound. The only way that it could happen is when the term

√
V (λ) dominates√

n♢ in the denominator. As it turns out, however, in this case the vector µ cannot be large
enough for the bound to be larger than a constant. A formal statement is given by the
following lemma, which is proven in Appendix B.9.

Lemma 50 (Increasing the regularization cannot make the bound large). Suppose that k < n
and Λ(λ) > nλk. Then for some absolute constant c > 0 and any λ′ > λ

N(λ′)√
V (λ′) +

√
n♢(λ′)

≤ c

(
1 +

N(λ)√
V (λ) +

√
n♢(λ)

)
.

Combining this with Theorem 45 gives the following.

Corollary 51. Suppose that the distribution of the rows of Z is σx-sub-Gaussian. For any
L > 1 there exist constants a, c that only depend on L and σx and absolute constants δ, ε such
that the following holds. Assume that n > c, k < n/c, P(Ak(L, λ)) > 1 − δ, N(λ) ≥ a♢(λ),
and

Λ(λ) > c

nλk+1 ∨
√

n
∑
i>k

λ2
i

 .

Suppose that Qk:∞ has a symmetric distribution and is independent from Q0:k.
For every λ′ ≥ λ

αε(λ
′) ≤ c (1 + αε(λ)) .
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Proof. Take a, δ, ε the same as in Theorem 45. Denote the constant c from that theorem as
c1. Note that P(Ak(L, λ

′)) ≥ P(Ak(L, λ)) > 1− δ, which means that Theorem 45 applies for
all values of the regularization parameter λ′ > λ. Thus,

αε(λ
′) ≤ c1

N(λ′)√
V (λ′) +

√
n♢(λ′)

, αε(λ) ≥ c−1
1

N(λ)√
V (λ) +

√
n♢(λ)

.

Combining it with Lemma 50 and taking c large enough depending on c1 yields the
result.

Note, however, that our argument only works if the probability of the event Ak(L, λ) is
high for some constant L, and that Λ(λ) is large compared to nλk+1. Increasing λ increases
both Λ(λ) and the probability of Ak(L, λ). Therefore, the results above don’t say that
smaller values of regularization are always better. A more precise interpretation would be
“if λ is large enough so that Λ(λ) ≫ nλk+1 and Ak(L, λ) holds with high probability, then
there is no benefit from increasing it further”.

Increasing regularization does nothing in some regimes

Even though we showed that there is not much use (in a certain sense) in increasing regular-
ization, we haven’t yet shown that it is harmful. For example, the following question arises:
can decreasing regularization increase µ⊤wridge(λ)/∥wridge(λ)∥Σ by more than a constant
factor? As it turns out, it depends on how µ is spread across the eigendirections of Σ. For
example, increasing regularization will always preserve the bound within a constant factor
if µ is supported on the tail of the covariance or µ is an eigenvector of the covariance, and
µ is large enough so that V (λ) is dominated by n♢(λ)2. The formal statement is given by
the following corollary, which is proven in Appendix B.9.

Corollary 52 (Regularization doesn’t matter for certain µ). Suppose that the distribution of
the rows of Z is σx-sub-Gaussian. For any L > 1 there exist constants a, c that only depend
on L, σx and absolute constants ε, δ such that the following holds. Suppose that n > c,
k < n/c, P(Ak(L, λ)) > 1 − δ, N(λ) ≥ a♢(λ), and

Λ(λ) > c

nλk+1 ∨
√
n
∑
i>k

λ2
i

 .

Suppose that Qk:∞ has a symmetric distribution and is independent from Q0:k.
If either for some i ≤ k

µ = µiei, and
nλiµ

2
i

(1 + nλi/Λ(λ))2
≥
∑
i

λ2
i ,
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(here ei is the i-th eigenvector of Σ), or

∥µ0:k∥ = 0 and
∑
i

λ2
i ≤ n∥µk:∞∥2Σk:∞

,

then for any λ′ ≥ λ,
αε(λ

′)/c ≤ αε(λ) ≤ cαε(λ
′).

The results that we obtained so far seem to contradict the conclusion made by [58], who
considered a particular case of our model with Gaussian data and k = 0 and concluded
that increasing regularization always decreases the classification error (see their Section 6.1),
and checked that empirically in simulations. According to our results, increasing λ does not
change µ⊤wridge(λ)/∥wridge(λ)∥Σ by more than a constant factor in this regime. There is no
actual contradiction, because [58] only proved that their bound is decreasing. They neither
proved that the bound is sharp, nor that it can decrease by more than a constant factor. We
provide a detailed comparison with their results in Section 3.7.

Increasing regularization may cause harm by breaking the balance
between the tail and the spiked part

Now let’s investigate for which µ having regularization as small as possible actually provides
more than a constant factor gain. Lemma 47 gives, perhaps, the most convenient formulas
to look at. For simplicity let’s restrict ourselves to the case where µ is large enough, so the
term

√
V (λ) is dominated in the denominator. Let’s write out the quantity of interest:

N∗√
n♢∗

=
∥µ0:k∗∥

2
Σ−1

0:k∗
+ nΛ−1

∗ ∥µk∗:∞∥2√
∥µ0:k∗∥

2
Σ−1

0:k∗
+ n2Λ−2

∗ ∥µk∗:∞∥2Σk∗:∞

.

Increasing regularization does two things: it changes the value of Λ∗, which serves as a
scaling factor in front of the contribution of the tail, and it decreases k∗, therefore recovering
the geometry in fewer components. We are going to look at those effects separately.

First, consider the case when k∗ doesn’t change from changing λ. Note that if the term
∥µ0:k∗∥

2
Σ−1

0:k∗
dominates in both the numerator and the denominator, then the ratio becomes

just ∥µ0:k∗∥Σ−1
0:k∗

up to a constant factor, that is, it is not sensitive to the changes in Λ∗.

The same happens if the term ∥µ0:k∗∥
2
Σ−1

0:k∗
is dominated in both the numerator and the

denominator: the ratio becomes ∥µk∗:∞∥2/∥µk∗:∞∥Σk∗:∞ , and again it is not sensitive to the
changes in Λ∗. Moreover, since we always assume Λ∗ > nλk∗+1 we have

nΛ−1
∗ ∥µk∗:∞∥2 ≥ nΛ−1

∗ λ−1
k∗+1∥µk∗:∞∥2Σk∗:∞

≥ n2Λ−2
∗ ∥µk∗:∞∥2Σk∗:∞

.

Thus, the case in which changing λ can change the bound by more than a constant in
this regime is

nΛ−1
∗ ∥µk∗:∞∥2 ≥ ∥µ0:k∗∥

2
Σ−1

0:k∗
≥ n2Λ−2

∗ ∥µk∗:∞∥2Σk∗:∞
.
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In this case the bound becomes equal to nΛ−1
∗ ∥µk∗:∞∥2/ ∥µ0:k∗∥Σ−1

0:k∗
up to a constant

factor, so the dependence on Λ∗ is inversely proportional. Recall, however, that in order to
not change k∗ we need to always have Λ∗ ≤ nλk∗ . Putting it together with Λ∗ ≥ nλk∗+1 we
see that changing regularization in this regime can change the bound by at most λk∗/λk∗+1.
Thus, there should be a big relative gap between λk∗ and λk∗+1 for that quantity to be large.

The discussion above reveals a recipe for constructing regimes in which increasing reg-
ularization can significantly impair the classification accuracy. The formal statement is as
follows, its proof can be found in Appendix B.9.

Lemma 53. For any σx ≥ 1, L > 1 there exist constants a, c that only depend on σx and
absolute constants ε, δ such that the following holds. Suppose that n > c, 0 < k < n/c. Take
any C > 1 and construct the classification problem as follows:

1. Take Zk:∞ with σx-sub-Gaussian rows and the sequence {λi}i>k and regularization
parameter λ such that P(Ak(L, λ)) ≥ 1 − δ and

Λ(λ) ≥ c

nλk+1 ∨
√
n
∑
i>k

λ2
i

 .

2. Take Z0:k with σx-sub-Gaussian rows independent from Zk:∞, and {λi}ki=1 such that
nλk ≥ CΛ(λ).

3. Take µk:∞ whose most energy is spread among the eigendirections of Σ with small
eigenvalues, that is,

∥µk:∞∥2Σk:∞
≤ C−1n−1Λ(λ)∥µk:∞∥2.

4. Take4 µ0:k which balances µk:∞ in the following sense:

nC−1Λ(λ)−1∥µk:∞∥2 ≥ ∥µ0:k∥2Σ−1
0:k

≥ n2Λ(λ)−2∥µk:∞∥2Σk:∞
. (3.23)

5. Scale µ up5 if needed, so it holds that

n♢2(λ) ≥ V (λ) and N(λ) ≥ a♢(λ).

Then for any λ′ such that Λ(λ′) ≥ CΛ(λ)

αε(λ) ≥ C

c
αε(λ

′).

The following corollary, whose proof can be found in Appendix B.9, shows a particular
example when the optimal regularization is negative:

4Note that such µ0:k exists because of how we chose µk:∞.
5Note that the previous conditions were homogeneous in µ, so multiplying it by a scalar does not break

them.
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Corollary 54. There exists absolute constants a, b such that the following holds. Take p =
∞, n > a and 1 ≤ k < n/a. Consider the following classification problem with Gaussian
data (in infinite dimension) and no label-flipping noise (η = 0):

λi =

{
2b, i ≤ k,

e−(i−k)/(bn), i > k.
, µi =

{
4
√
b/k, i ≤ k,

4
√
b · 2−(i−k)/2, i > k.

Then the value of λ that maximizes αε(λ) is negative.

Increasing regularization can harm by destroying “recovery of the
geometry”

Now let’s consider a scenario where k∗ changes all the way to zero because of increase
in regularization. That is, we stop “recovering the geometry” of the first k∗ components
because of it. For simplicity, consider the case with no tail, that is, ∥µk∗:∞∥ = 0. Infor-
mally, increasing regularization will change the classifier from (wridge(λ))0:k∗ ∝ Σ−1

0:k∗µ0:k∗

to (wridge(λ
′))0:k∗ ∝ µ0:k∗ and the value of µ⊤wridge/∥wridge∥Σ will go from ∥µ0:k∗∥Σ−1

0:k∗
to

∥µ0:k∗∥2/∥µ0:k∗∥Σ0:k∗ , which may be much smaller depending on µ0:k. This results in the
following lemma, whose proof can be found in Appendix B.9:

Lemma 55. For any σx > 1, L > 1 there exist constants a, c that only depend on L, σx and
absolute constants ε, δ such that the following holds. Suppose that n > c, 0 < k < n/c. Take
any C > 1 and construct the classification problem as follows:

1. Take Zk:∞ with σx-sub-Gaussian rows and the sequence {λi}i>k and regularization
parameter λ such that P(Ak(L, λ)) ≥ 1 − δ and

Λ(λ) > c

nλk+1 ∨
√
n
∑
i>k

λ2
i

 .

2. Take Z0:k with σx-sub-Gaussian rows independent from Zk:∞, and {λi}ki=1 such that
nλk ≥ Λ(λ).

3. Take µ that is only supported on the first k coordinates (i.e., ∥µk:∞∥ = 0) such that

∥µ0:k∥Σ0:k
∥µ0:k∥Σ−1

0:k
≥ C∥µ0:k∥2. (3.24)

4. Scale µ up if needed, so that

n♢2(λ) ≥ V (λ) and N(λ) ≥ a♢(λ).
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Then for any λ′ such that Λ(λ′) ≥ nλ1

αε(λ) ≥ C

c
αε(λ

′).

A natural question is when one can choose such µ0:k that Equation (3.24) is satisfied.
The answer is given by the following.

Lemma 56. For any µ0:k ̸= 0k

1 ≤
∥µ0:k∥Σ0:k

∥µ0:k∥Σ−1
0:k

∥µ0:k∥2
≤ λ1 + λk

2
√
λ1λk

.

The upper bound is achieved for µ0:k = e1 + ek.

Proof. Without loss of generality we can put ∥µ0:k∥
2 = 1. Now the numbers {µ2

i } act as
weights: ∥µ0:k∥

2
Σ−1

0:k
is the weighted average of {λ−1

i }ki=1 with weights {µ2
i }, while ∥µ0:k∥

−2
Σ0:k

is inverse of the weighted average of {λi}ki=1. Thus, for the convex function f(x) = 1/x we
can write

∥µ0:k∥2Σ0:k
∥µ0:k∥2Σ−1

0:k
=

∑k
i=1 µ

2
i f(λi)

f
(∑k

i=1 µ
2
iλi

) .
Thus, the lower bound follows from Jensen’s inequality. Moreover, if f is a non-negative con-
vex function and X is a random variable with a support [a, b], then the ratio E[f(X)]/f(E[X])
is maximized by a distribution of X is supported on {a, b}. That is, we should have
µ2
k = 1 − µ2

1 and µi = 0 for i ̸∈ {1, k}. Now we only need to find the scalar µ2
1 that

maximizes the following:

∥µ0:k∥2Σ0:k
∥µ0:k∥2Σ−1

0:k

∥µ0:k∥4
=
(
λk + (λ1 − λk)µ

2
1

) (
λ−1
k + (λ−1

1 − λ−1
k )µ2

1

)
.

Putting the derivative equal to zero yields:

0 = (λ1 − λk)
(
λ−1
k + (λ−1

1 − λ−1
k )µ2

1

)
+
(
λk + (λ1 − λk)µ

2
1

)
(λ−1

1 − λ−1
k ),

µ2
1 = 0.5.

The maximum value is equal to (λ1+λk)
2

4λ1λk
.

The following corollary, whose proof can be found in Appendix B.9, shows another ex-
ample when the optimal regularization is negative:

Corollary 57. There exist absolute constants b > c such that the following holds. Take
p > bn, and b ≤ k < n/b. Consider the following classification problem with Gaussian data
(in dimension p) and no label-flipping noise (η = 0):

λi =

{
k−4i/k, i ≤ k,
cn
pk4

, i > k.
, µi =

{
b ln(k)
k5

(
k
n

+ n
p

)
, i ≤ k,

0, i > k.

Then the value of λ that maximizes αε(λ) is negative.
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Regularization with label-flipping noise

Since we don’t have a matching upper bound for the case with label-flipping noise, we can
only consider the effect of the regularization on the lower bound given in Theorem 42. That
bound, up to a constant factor, is given by the following formula:

N − ct♢(
[1 + Nση]

√
V + t2∆V + ♢

√
n
) .

Let’s look at it in the simple regime when t is a constant and µ is large enough so that ct♢
is dominated by N . Thus, we are going to consider the formula

N(
[1 + Nση]

√
V + ♢

√
n
) .

We can rewrite it up to a constant as a minimum of 2 terms:

1

ση
√
V

∧ N√
V + ♢

√
n
,

and the second term is just the bound for the case η = 0. We’ve already seen this in
Section 3.4, where we stated that the bound for the case with label-flipping noise goes over
the same regimes, and only picks up a new regime for large µ. We already know that
increasing λ “doesn’t help” in the noiseless regime. It does, however, increase the first term
(V (λ) is obviously a decreasing function of λ). Thus, regularization can only provide a
significant benefit in that new “large µ” regime. Since we don’t have a proof of tightness for
this bound, however, we leave a more careful study of this effect to future work.

3.7 Related work

Despite the fact that the literature on linear classification in high dimensions is vast, only a
few papers studied cases with general covariance structure and the impact of that structure
on the prediction accuracy. Here we only review those works, while referring the reader to
[34] and [57] for a more broad review of related literature.

Existing results can be split into asymptotic and non-asymptotic. We start with the
asymptotic literature. The most common asymptotic regime is the “proportional asymptotic
regime,” that is, both p and n go to infinity, while their ratio goes to a constant. The results
obtained in this regime always require some assumptions on the spectral decay of covariances
of the clusters, for example, that all eigenvalues of covariances are bounded from above and
below by fixed constants.

[40] consider i.i.d. data xi from a centered Gaussian distribution with covariance Σ in
the proportional asymptotic regime. There are two classes, and the probability that a point
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x belongs to the first class is a function of x⊤θ∗ for some true parameter vector θ∗. They ex-
press the asymptotic classification error of the maximum margin classifier through a solution
to a certain system of non-linear equations. [34] consider a problem of multi-class classifi-
cation of Gaussian mixtures with generic covariances and means in the proportional asymp-
totic regime. They express asymptotic in-sample and out-of-sample classification errors of
a generic convex-loss-minimization algorithm through a solution to a system of non-linear
equations under the condition that that solution exists and is unique.

Asymptotic methods often stem from analytical methods from statistical physics, which,
even though being mathematically non-rigorous, can accurately predict properties of cer-
tain large stochastic systems. [27] consider a binary linear classification problem in which
classes have arbitrary means and covariances, and use a non-rigorous computation based on
replica-symmetry trick to obtain expressions for the distribution of the solution to a generic
loss minimization problem. Interestingly, for the case of symmetric clusters with the same
covariance, the empirical mean of that distribution is (αIp +βΣ)−1µ, where scalars α, β are
a solution to a certain system of non-linear equations. Because of this form of the result, one
can say that they observed what we call “recovering the geometry”. However, the number
of components in which the geometry is recovered is hidden behind the system of non-linear
equations.

[51] considers a data structure that is very similar to ours. The main result of that paper
can be formulated as follows: in an asymptotic setting in which the rows of Xk:∞ become very
close to orthonormal, the maximum margin solution to the classification problem effectively
minimizes hinge loss on the first k components. This paper was an important motivation
for our work as it suggested that the regime considered in the regression literature may also
lead to fruitful results in classification.

The results of the papers mentioned above are substantially different from ours. All of
those papers either consider the maximum margin solution instead of the ridge regression
solution, or obtain the result in the form of a solution to a system of equations that is difficult
to approach analytically. Because of that, we do not provide more detailed comparisons
between our results and the results of those papers. The papers we discuss in the remainder
of this section, however, turn out to be directly comparable to ours.

To finish with asymptotic literature, [42] consider a model similar to that of [40], but with
a different choice of the covariance structure. Their main result is given for a certain “bi-
level” covariance, whose eigenvalues can only take one of two values: there is a small number
of eigenvalues with a large value, and a large number of eigenvalues of small value. One can
immediately see the similarity between that structure and the structure we introduced in
Section 3.1. Even though the goal of [42] was to study the maximum margin solution, the
approach they took was motivated by a recent observation that under certain assumptions
maximum margin solution coincides with the minimum norm interpolating solution [26, 2].
This phenomenon is known as “support proliferation”. Because of that, the main result of
[42] is actually derived for the minimum norm interpolating solution, which makes it possible
to compare it to our result.

When it comes to non-asymptotic literature, motivated by the same support prolifera-
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tion idea, [8] studied the classification error minimum norm interpolating solution and [58]
studied the ridge regression solution. Finally, [10] obtained a bound on the misclassification
probability of maximum margin solution in binary classification. To approach maximum
margin solution they utilized its characterization for separable data as the limit of gradient
descent on logistic loss. As it turns out, however, assumptions that they consider imply that
support proliferation must happen on the event when their proof works.

We will give detailed comparisons with [8, 58, 10, 42]. Before we do that, however, it is
worth talking about some similarities that all those papers possess. All four of them had
studying the maximum margin solution as their aim. In our notation, the maximum margin
solution (MM) is defined as

wMM = argminw∈Rp ∥w∥ s.t. DŷXw ≥ 1n, (3.25)

where Dŷ = diag(ŷ). A standard argument with Lagrange multipliers shows that the
solution to the optimization problem (3.25) is a conic combination of the columns of the
matrix X⊤Dŷ, and strictly positive coefficients in that conic combination correspond to
the inequalities on the right hand side of Equation 3.25 that are saturated, i.e., they are
satisfied with equality. The data points (columns of X⊤) which correspond to those strictly
positive coefficients are called support points. One of the core ideas of [42, 8, 58] is that
in some cases “support proliferation” happens with high probability, which means that all
points are support points. In this case all inequalities in the constraints become equalities,
i.e., DŷXw = 1n, and MM coincides with MNI. Motivated by this observation, those
papers actually study MNI under support proliferation or in a certain vicinity of that regime.
Because of that, our results can be directly compared to the results of those papers.

When it comes to [10], they don’t explicitly rely on support proliferation to study MM,
but, as we explain in Section 3.7, their proof implies that support proliferation must happen,
and thus we can compare our results to theirs too.

Interestingly, one of the conditions under which support proliferation happens is that the
whole data distribution has high effective rank. Because of that, most of the results from
the above mentioned papers correspond to our results with k = 0.

The remainder of this section has the following structure. First, we show that our results
generalize the results of [8] and [58]. Then we discuss the relation between our results and
those of [10], and show that their bound is weaker then ours for the case of Gaussian data.
Finally, we explain how the model considered in [42] is related to ours, and show that some
of the conclusions of that paper can be recovered from our analysis too, even though our
results do not strictly generalize theirs.

Comparison with “Risk Bounds for Over-parameterized
Maximum Margin Classification on Sub-Gaussian Mixtures”

[8] study the same data generating model as ours. Their main result, reformulated in our
notation, is given by the following theorem.
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Theorem 58 (Theorem 3.1 and Proposition 4.1 from [8]). Suppose the elements of matrix
Z are independent and σx-sub-Gaussian, and η = 0. There are constants C,C ′ that only
depend on σx such that the following holds. Assume that

tr(Σ) ≥ C max
{
n3/2∥Σ∥, n∥Σ∥F , n

√
log(n)∥µ∥Σ

}
, (3.26)

and ∥µ∥2 ≥ C∥µ∥Σ. Then, with probability at least 1 − n−1, wMM = wMNI and

(µ⊤wMNI)
2

∥wMNI∥2Σ
≥ C ′ n∥µ∥4

n∥µ∥2Σ + ∥Σ∥2F + n∥Σ∥2
. (3.27)

Note that if we take k = 0 and λ = 0, the assumption imposed in Equation (3.26) implies
that Λ ≥ n3/2λ1 ≫ n. Moreover, since the data is assumed to be sub-Gaussian, the events
Ak(L) and Bk(cB) hold with high probability for constants L, cB that only depend on σx,
due to Lemmas 37 and 39. Therefore, our Theorem 42 is applicable and gives the following
bound with probability 1 − ce−t

2/2 (up to a constant factor):

N − ct♢√
V + t2∆V +

√
n♢

.

Thus, the following proposition, whose proof can be found in Appendix B.10, shows that
our bound is at least as good as the bound from [8].

Proposition 59. Take k = 0 and some c > 1. Suppose that nλ1 < Λ and ∥µ∥2 ≥ 2c∥µ∥Σ.
Then for t <

√
n,

N − ct♢√
V + t2∆V +

√
n♢

≥ 1

4

n∥µ∥2

n∥µ∥Σ +
√
n∥Σ∥F + n∥Σ∥

. (3.28)

Note that the resulting bound does not depend on λ. We have already observed that
in Corollary 52: indeed, since k = 0, µ is supported on the tail of the covariance, and
regularization does not change the bound by more than a constant factor. Moreover, since
they effectively considered k = 0, [8] did not observe the effect of “recovering the geometry.”

Comparison with “Binary Classification of Gaussian Mixtures:
Abundance of Support Vectors, Benign Overfitting and
Regularization”

The next paper we compare ours with is [58]. They consider Gaussian Q. When it comes
to Σ, they consider two ensembles, which they call “balanced” (see their Definition 2.1) and
“bi-level” (see their Definition 2.2). Translating to our terminology, for a balanced ensemble,
k∗ = 0, and for bi-level, k∗ = 1.

Their result for the balanced ensemble is as follows.
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Theorem 60 (Theorem 3 from [58]). There are large absolute constants a, b, c such that the
following holds. Assume that rows of Q come from a Gaussian distribution, k = 0 and

nλ1 < b
∑
i

λi. (3.29)

Take λ ≥ 0. Assume that ∥µ∥2 ≥ a (nΛ−1∥µ∥2Σ + ∥µ∥Σ). Then with probability at least
1 − e−n

2/c

µ⊤wridge

∥wridge∥Σ
≥ c−1 ∥µ∥2 − a (nΛ−1∥µ∥2Σ + ∥µ∥Σ)

(1 ∨ nΛ−1∥µ∥Σ)
√∑

i λ
2
i + ∥µ∥Σ

. (3.30)

We see that their bound is at most within a constant factor of

∥µ∥2

∥Σ∥F + ∥µ∥Σ + ∥µ∥Σ n∥Σ∥F
λ+tr(Σ)

.

Comparing to our bound from Equation 3.28, we see that the bound from [58] has ∥Σ∥F
in the denominator, which is larger (up to a constant) than ∥Σ∥F/

√
n + ∥Σ∥ that stands

in the denominator of Equation 3.28 (after dividing both numerator and denominator by

n). Moreover, it picks up an additional term ∥µ∥Σ n∥Σ∥F
λ+tr(Σ)

in the denominator. Thus, the
bound from Theorem 60 is worse than the one from Equation 3.28. Note that, just as in
the previous section, Equation (3.29) implies that our Theorem 42 is applicable with high
probability. That is, Proposition 59 shows that our result generalizes the result for balanced
ensembles from [58].

When it comes to the bi-level ensemble, the result of [58] translated to our notation is
given by the following theorem.

Theorem 61 (Theorem 5 from [58]). There are large absolute constants a, b, c such that
the following holds. Assume that rows of Q come from a Gaussian distribution. Take µ
that is supported on one coordinate, i.e., µ = µjej for some j, and j > 1. Assume that
∥µ∥2 ≥ a (nΛ−1∥µ∥2Σ + ∥µ∥Σ). Assume that k = 1, λ ≥ 0 and

bnλ1 >
∑
i>1

λi and bnλ2 <
∑
i>2

λi. (3.31)

Denote

A = λ1
Λ + n∥µ∥Σ
nλ1 + Λ

, B = (1 + nΛ−1∥µ∥Σ)

√∑
i ̸=1,j

λ2
i .

Then with probability at least 1 − e−n/c,

µ⊤wridge

∥wridge∥Σ
≥ c−1∥µ∥2(1 − cnΛ−1λj) − c∥µ∥Σ

A + B + λj + ∥µ∥Σ
. (3.32)
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Note that for k = 1 the second part of Equation (3.31) yields Λ > bλk+1. Thus, if
b is large enough, under that assumption, the events Ak(L) and Bk(cB) hold with high
probability for absolute constants L, cB, due to Lemmas 37 and 39. Therefore, our Theorem
42 is applicable just as it was in Section 3.7. So, the following proposition, whose proof
can be found in Appendix B.10, shows that our bound generalizes the bound for bi-level
ensembles from [58].

Proposition 62. Take k = 1 and some c > 1. Assume that λ > 0, nλk+1 ≤
∑

i>k λi,
∥µ0:k∥ = 0, and ∥µ∥2 ≥ 2c∥µ∥Σ. Take any j > 1 and define A,B as in Theorem 61. Then
for t ≤

√
n

N − ct♢√
V + t2∆V +

√
n♢

≥ 1

6

∥µ∥2

A + B + λj + ∥µ∥Σ
.

Overall, we see that the bounds from [58] are not sharp. Moreover, since they considered
either k = 0 or k = 1 and µ supported on a single coordinate, they did not observe the effect
of “recovering the geometry.”

Comparison with “Finite-sample analysis of interpolating linear
classifiers in the overparameterized regime”

[10] consider almost the same data generating model as ours: two clusters with symmetric
means and the same covariances. Only their definition of the noise is different: they consider
arbitrary corruptions of the distribution of (x, y) that preserve the marginal distribution
of x and have bounded total variation distance with the initial distribution. Label-flipping
noise can be seen as a particular case of such corruption.

Nevertheless, comparing our results with those of [10] is not straightforward for two
reasons. First, they consider the MM solution, while we consider the ridge and MNI solutions.
Second, [10] impose assumptions that are incomparable with ours, for example they assume
that elements of Q have bounded sub-Gaussian norms, while we only have proofs that the
events Ak(L) and Bk(cB) hold with high probability when elements of Z are sub-Gaussian
(see our Lemmas 37 and 39).

Regarding the first potential issue, we note that they in fact consider a regime where the
max-margin solution coincides with MNI. To see this, note that by Lemma A.2 of [16], for
max-margin to coincide with MNI, it suffices for the training data to be ‘nearly-orthogonal’

in the sense that ∥xk∥2 ≫ nmaxi,j
∥xi∥2
∥xj∥2 maxi ̸=j |x⊤

i xj| for every training sample (xk, yk).

One can verify this property holds in their setting by using their Lemma 10 together with
their assumption (A.3).

To alleviate the problem with the differences in the assumptions, we compare the results
for the case of Gaussian distributions, where both our and their results are directly applicable.
We also only consider the label-flipping noise here, since it is a particular case of the noise
considered in [10]. When translated into our notation, that result is given by the following.
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Theorem 63 (Theorem 1 from [10], Gaussian case). Fix some constant κ ∈ (0, 1). Suppose
rows of Q are i.i.d. samples from a Gaussian distribution. Suppose that λi ≤ 1 for every
i ∈ {1, . . . , p} and

∑
i λi ≥ κp. There is a constant c that only depends on κ and an absolute

constant b such that the following holds.
Take δ ∈ (e−n/c, c−1). Assume that p ≥ cn2 log(n/δ), p/(cn) ≥ ∥µ∥2 ≥ c log(n/δ), and

η ≤ 1/c. Then with probability 1 − δ over the draw of X, ŷ

P(x,ŷ)(ŷx
⊤wMM < 0) ≤ η + exp

(
−b

∥µ∥4

p

)
, (3.33)

where (x, ŷ) is a new data point from the data distribution with label-flipping noise.

Note that assumptions of Theorem 63 yield for n > e/c:∑
i

λi ≥ κp ≥ cn2 log(nc) ≥ cnλ1.

Thus, for k = 0 we have Λ > cnλk+1. According to Lemmas 37 and 39, if c is a large enough
absolute constant, both events Ak(L) and Bk(cB) hold with probability at least 1 − ce−n/c

for some absolute constants L and cB. Thus, Theorem 42 is applicable for k = 0, and
yields the result with probability 1 − ce−n/c − ce−t

2/2. To match the probability of 1 − δ
from Theorem 63 we should take t =

√
2 log(1/δ). Finally, in Section 3.1 we saw that in

the Gaussian case the error probability on a new noiseless point (x, y) is Φ(−µ⊤w/∥w∥Σ).
Since Φ(−z) ≤ e−z

2/2 for every z > 0, to recover the result of Theorem 63 we just need to
show that µ⊤w/∥w∥Σ ≳ ∥µ∥2/√p. Thus, the following proposition, whose proof can be
found in Appendix B.10, shows that our result is stronger than Theorem 63.

Proposition 64. Assume that λi ≤ 1 for any i and
∑p

i=1 λi ≥ κp for some constant κ ∈
(0, 1]. Take k = 0, λ = 0 and some c > 1. Suppose additionally that κp/n ≥ ∥µ∥2 ≥
(2ct)2/(κ2n), and t2 < nκ.

Then
N − ct♢

[1 + Nση]
√
V + t2∆V + ♢

√
n
≥ 1

10

∥µ∥2
√
nκ

√
p

.

That is, our lower bound picks up an additional factor of
√
n compared to the bound

from Theorem 63.

Comparison with “Classification vs regression in
overparameterized regimes: Does the loss function matter?”

Apart from the data generating model considered in this chapter, there is another model
that was recently considered in the literature on linear classification. Consider a centered
Gaussian distribution with covariance Σ. When a point ξ is generated from this distribution,
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it gets assigned the label sign(ξ⊤α) for some vector α ∈ Rp. Thus, the domain is split into
two clusters. It is easy to see that the centers of the clusters are

E[sign(ξ⊤α)ξ] = E[sign(z⊤Σ1/2α)Σ1/2z] = Σ1/2 ·
√

2

π

Σ1/2α

∥Σ1/2α∥
=

√
2

πα⊤Σα
Σα =: m,

where we used z to denote a vector from the isotropic Gaussian distribution, and denoted
the centers of the clusters as ±m, which plays the role of µ. The covariance within a cluster
is not Σ, but a rank-one correction to it, namely

Σ′ = E
[
(ξ sign(ξ⊤α) −m)(sign(ξ⊤α)ξ)⊤

]
= E[ξξ⊤] −mE[sign(ξ⊤α)ξ]⊤ =

= Σ−mm⊤ = Σ− 2Σαα⊤Σ

πα⊤Σα
= Σ1/2

(
Ip −

2

π
PΣ1/2α

)
Σ1/2,

where we denoted the projection on the direction of Σ1/2α as PΣ1/2α. Because of the factor
2/π < 1 in front of it, the matrix Ip − 2

π
PΣ1/2α is still within a constant factor of identity,

so the covariance of a cluster is within a constant factor of Σ.
Moreover, for a classifier ξ → sign(ξ⊤w), the probability to assign a wrong label is

P
(

sign(z⊤Σ1/2w) ̸= sign(z⊤Σ1/2α)
)

=
∠(Σ1/2w,Σ1/2α)

π
=

1

π
arccos

(
α⊤Σw

∥α∥Σ∥w∥Σ

)
,

where we used ∠(·, ·) to denote the angle between two vectors. Note that the argument
of arccos is almost the same as the quantity µ⊤w/∥w∥Σ studied in this chapter: indeed,
plugging in the formulas for the mean and the covariance of the cluster we obtain

m⊤w√
wΣ′w

=

√
2

π

α⊤Σw√
α⊤Σα

√
wΣ′w

,

and we saw that (1 − 2/π)wΣw ≤ wΣ′w ≤ wΣw.
Thus, in principle, our results can apply directly to this model. The caveat, however, is

that our bounds are only defined up to a constant multiplier, while the quantity α⊤Σw
∥α∥Σ∥w∥Σ

is always between minus one and one. For example, our bounds cannot distinguish between
perfect classification and some constant probability of error that is less than 0.5.

Now let’s compare our results with the result of [42], who consider such a model. The
main result of [42] is their Theorem 13, which considers the following construction: there
are three non-negative real-valued parameters q, r, s such that r < 1 < s, q < s − r. The
covariance is diagonal, that is, Σ = diag(λ1, . . . , λp), and p = ns. The spectrum of Σ has a
bi-level structure, that is

λi =

{
ns−q−r, for i ≤ nr,

(1 − n−q)/(1 − nr−s) for i > nr.
(3.34)
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Finally, [42] consider α = e1 (note that, similarly to [58], taking such α hides the effect of
“recovering the geometry,” since α has the same direction as Σ−1α). For this choice of α,

the mean of the positive cluster becomes m =
√

2
πα⊤Σα

Σα =
√

2λ1
π
e1.

[42] consider the asymptotic setting with n approaching infinity, and compute the classi-
fication error of the MNI. Namely, their Theorem 13 shows that if q+ r < (s+ 1)/2 then the
misclassification probability approaches zero, while for q + r > (s + 1)/2 it approaches 0.5.

That is, the quantity α⊤Σw
∥α∥Σ∥w∥Σ

approaches 1 when q+r < (s+1)/2, and 0 if q+r > (s+1)/2.
Proposition 65 below shows that one can see the same phase transition in our results.

However, as our bounds are only defined up to a constant multiplier, we do not recover the
result of [42] precisely.

Proposition 65. Take real q, r, s such that 0 ≤ r < 1 < s, 0 ≤ q < s− r. Consider p = ns,
Σ = diag(λ1, . . . , λp), and µ =

√
2λ1/πe1, where {λi}pi=1 are given by Equation (3.34). Take

λ = 0, k = nr, and c to be any constant that doesn’t depend on n.
Then, as n goes to infinity, for t < n0.499r the following holds:

N − ct♢√
V + t2∆V +

√
n♢

= (1 + on(1))
N√

V +
√
n♢

=


on(1), 2q + 2r − 1 − s > 0,
1+on(1)√

2π
2q + 2r − 1 − s = 0,√

2
π

+ on(1) 2q + 2r − 1 − s < 0.

Here we use on(1) to denote quantities that converge to zero as n goes to infinity.

3.8 Conclusions and further directions

In this chapter we studied classification accuracy of the ridge regression solution in a binary
classification problem. We derived tight bounds for the case without label-flipping noise, and
a lower bound for the case with label-flipping noise. Our bounds are additionally supported
by geometric derivations for the minimum norm interpolating solution, which explain the
structure of the solution vector. Even though we don’t provide a matching upper bound for
the case with label-flipping noise, the geometric derivations show that the vector QA−1ỹ
plays an important role, thus suggesting that the term ση

√
V should indeed appear in the

bound for ∥wridge∥Σ, and that our bound is indeed tight.
Our bounds yield several novel qualitative conclusions. We discover the effect of “recov-

ering the geometry” in the first k∗ components, which was seemingly missed in the previous
literature. For the setting without label-flipping noise, we show that there is no benefit
(in a certain sense) of increasing regularization beyond the point where the (regularized)
covariance obtains a tail of high effective rank, and that the optimal regularization can even
be negative. When it comes to the case with label flipping noise and benign overfitting,
we discover that the bound for this case exhibits the same behavior as the bound for the
noiseless case, unless µ is large in magnitude. In the latter case, our bound loses dependence
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on µ completely, and the conditions for benign overfitting in this regime coincide with the
conditions from the regression setting considered in Chapter 2.

Despite all the above mentioned progress, there are still gaps in our understanding of
benign overfitting in this model, which we leave for future work. The most obvious task is to
obtain the matching upper bound for the case with label-flipping noise. As explained above,
we believe that our bound should be tight, at least when η is a constant. The dependence of
the bound on η, however, is probably not sharp when η becomes small. This is because our
argument relies on sub-Gaussianity of a Bernoulli random variable with parameter η, but
when that parameter is small, the Bernoulli random variable behaves as a heavy-tailed one.
Thus, the argument using sub-Gaussianity may not be sharp.

Next, our argument only works if there exists k for which the tail of the covariance has
high effective rank. However, the bound that we obtained suggests that this structure may
be necessary for benign overfitting to occur. Indeed, as we explained above, the sufficient
conditions for benign condition that we obtain are very similar to those for regression, and
we showed in Section 2.3 that high effective rank in the tail of the covariance is necessary
for benign overfitting in regression. Proving the necessity of this regime in classification is
another direction of future work.

Finally, even though we use a very similar regime for both regression and classification,
and there are a lot of technical similarities between the results, we do not have a high-level
explanation of benign overfitting that would unify the regression and classification settings.
Resolving this, and understanding when and how the noise that is interpolated in training
does not impact classification accuracy, are important directions for future work.
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Appendix A

Proofs for Chapter 2

A.1 Ridge regression

We are interested in evaluating the MSE of the ridge estimator. For positive regularization
parameter λ that estimator is defined as

θ̂(y) = θ̂(y) = argminθ

{
∥Xθ − y∥22 + λ∥θ∥22

}
=
(
λIp + X⊤X

)−1
X⊤y.

In the overparametrized case (i.e., p > n), however, the latter expression has a singularity
at zero, because the matrix X⊤X does not have full rank. If λ = 0 the solution to the
minimization problem above is not unique. Moreover, if λ < 0, no solution exists at all
because we are minimizing a quadratic form whose matrix has negative singular values. To
alleviate these issues and extend the definition of the solution to non-positive values of λ,
we propose the following: since the matrix X⊤X doesn’t have full rank, we can apply the
Sherman-Morrison-Woodbury formula:(

λIp + X⊤X
)−1

= λ−1Ip − λ−2X⊤(In + λ−1XX⊤)−1X.

So, (
λIp + X⊤X

)−1
X⊤ =λ−1X⊤ − λ−2X⊤(In + λ−1XX⊤)−1XX⊤

=λ−1X⊤ − λ−1X⊤(In + λ−1XX⊤)−1(λ−1XX⊤ + In − In)

=λ−1X⊤(In + λ−1XX⊤)−1,

θ̂(y) =X⊤(λIn + XX⊤)−1y.

The matrix XX⊤ has full rank, and the expression above is continuous in λ as long as
XX⊤+λIn stays PD. When λ = 0, X⊤(λIn+XX⊤)−1y is the minimum norm interpolating
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solution. Therefore, we use the expression

θ̂(y) := X⊤(λIn + XX⊤)−1y

to define the ridge regression solution for any λ > −µn(XX⊤).
Note that θ̂(y) is linear in y. Since we have y = Xθ∗ + ε we can also write

θ̂(y) = θ̂(Xθ∗) + θ̂(ε).

The first term is the noiseless estimate; its error gives the bias term. The second term is the
estimate obtained when the signal is pure noise. It gives the variance term.

For the full MSE we have

∥θ̂(y) − θ∗∥2Σ =∥θ̂(Xθ∗) + θ̂(ε) − θ∗∥2Σ
≤2∥θ̂(Xθ∗) − θ∗∥2Σ + 2∥θ̂(ε)∥2Σ
=2(B + Vε),

where we introduced bias B and variance Vε:

B := ∥θ̂(Xθ∗) − θ∗∥2Σ = ∥(Ip −X⊤(λIn + XX⊤)−1X)θ∗∥2Σ,
Vε :=∥θ̂(ε)∥2Σ = ∥X⊤(λIn + XX⊤)−1ε∥2Σ.

Finally, since Vε is a quadratic form in ε, by Lemma 82 if the noise is sub-Gaussian, then
its value is controlled by its expectation with high probability. That expectation, in its turn,
scales linearly with the variance v2ε of the noise. Therefore, we can decouple the effect of the
noise and only study the following purified variance term:

V :=
1

v2ε
EεVε

=tr((λIn + XX⊤)−1XΣX⊤(λIn + XX⊤)−1)

=tr(ΣX⊤(λIn + XX⊤)−2X).

The main aim of our work is to give sharp non-asymptotic bounds for B and V .

A.2 Proofs for the ridgeless derivation

Algebraic decompositions

Lemma 66. Suppose k < n, A ∈ Rn×n is an invertible matrix, and V ∈ Rn×k is such that
V V ⊤ + A is invertible. Then

V ⊤(V V ⊤ + A)−2V = (Ik + V ⊤A−1V )−1V ⊤A−2V (Ik + V ⊤A−1V )−1.
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Proof. We use the Sherman–Morrison–Woodbury formula to write

(V V ⊤ + A)−1 = A−1 −A−1V (Ik + V ⊤A−1V )−1V ⊤A−1. (A.1)

Denote M 1 := V ⊤A−1V and M 2 := V ⊤A−2V . Applying (A.1), we get

V ⊤(V V ⊤ + A)−2V

= V ⊤
(
A−1 −A−1V (Ik + V ⊤A−1V )−1V ⊤A−1

)2
V

= V ⊤
(
A−1 −A−1V (Ik + M 1)

−1V ⊤A−1
)2
V

= V ⊤
(
A−2 −A−2V (Ik + M 1)

−1V ⊤A−1 −A−1V (Ik + M 1)
−1V ⊤A−2

+ A−1V (Ik + M 1)
−1V ⊤A−2V (Ik + M 1)

−1V ⊤A−1
)
V

= M 2 −M 2(Ik + M 1)
−1M 1 −M 1(Ik + M 1)

−1M 2

+ M 1(Ik + M 1)
−1M 2(Ik + M 1)

−1M 1

= M 2 −M 2(Ik + M 1)
−1M 1 −M 1(Ik + M 1)

−1M 2(Ik − (Ik + M 1)
−1M 1)

= M 2(Ik + M 1)
−1 −M 1(Ik + M 1)

−1M 2(Ik + M 1)
−1

= (Ik + M 1)
−1M 2(Ik + M 1)

−1,

where we used the identity Ik − (Ik + M 1)
−1M 1 = (Ik + M 1)

−1 twice in the second last
equality and the identity Ik −M 1(Ik + M 1)

−1 = (Ik + M 1)
−1 in the last equality.

Lemma 3. For any i ∈ {1, . . . , p} define A−i :=
∑

j ̸=i λjzjz
⊤
j . If A−i is invertible, then

λ2
iz

⊤
i A

−2zi =
λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−izi)

2
.

Proof. We use Lemma 66, which is a consequence of the Sherman-Woodbury-Morrison for-
mula.

λ2
iz

⊤
i

(∑
j

λjzjz
⊤
j

)−2

zzi = λ2
iz

⊤
i

(
λiziz

⊤
i + A−i

)−2
zi

=
λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−izi)

2
,

by Lemma 66, for the case k = 1 and V =
√
λizi.

Concentration inequalities

We use some standard results about sub-Gaussian and sub-Exponential random variables.
First of all, we define sub-Exponentiality:
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Definition 67 (Definition 2.7.5 from [55]). For any centered random variable v we define
its sub-Exponential norm as

∥v∥ψ1 := inf {t > 0 : E exp(|v|/t) ≤ 2} .

If ∥v∥ψ1 ≤ σ, we say that the distribution of v is σ-sub-Exponential.

We are going to need the following direct consequence of Propositions 2.5.2 and 2.7.1 and
Lemma 2.7.6 from [55]:

Lemma 68. There is a universal constant c such that for any random variable ξ that is
centered, σ-sub-Gaussian, and unit variance, ξ2−1 is a centered cσ2-sub-Exponential random
variable.

Second, we are going to use the following form of Bernstein’s inequality, which is Theorem
2.8.2 in [55]:

Lemma 69. There is a universal constant c such that, for any independent, mean zero,
σ-sub-Exponential random variables ξ1, . . . , ξN , any a = (a1, . . . , aN) ∈ Rn, and any t ≥ 0,

P

(∣∣∣∣∣
N∑
i=1

aiξi

∣∣∣∣∣ > t

)
≤ 2 exp

[
−cmin

(
t2

σ2
∑N

i=1 a
2
i

,
t

σ max1≤i≤n ai

)]
.

Corollary 70. There is a universal constant c such that for any non-increasing sequence
{λi}∞i=1 of non-negative numbers such that

∑∞
i=1 λi < ∞, and any independent, centered,

σ-sub-Exponential random variables {ξi}∞i=1, and any x > 0, with probability at least 1−2e−x∣∣∣∣∣∑
i

λiξi

∣∣∣∣∣ ≤ cσ max

xλ1,

√
x
∑
i

λ2
i

 .

Proof. Denote the constant from Lemma 69 as c1. Plug in the following value of t in the
result of that lemma:

t = σ max

c−1
1 xmax

i
ai,

√√√√c−1
1 x

N∑
i=1

a2i

 .

Finally, change notation from (ai)
N
i=1 to (λi)

p
i=1 and take c = max(c−1

1 , c
−1/2
1 ).

Concentration of a quadratic form evaluated at a vector with independent components
is implied by the following lemma.
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Lemma 71 (A version of Hanson-Wright inequality). Suppose M ∈ Rn×n is a (possibly
random) matrix, and z ∈ Rn is a random vector with independent components, that have
unit variances and are σ-sub-Gaussian. If z is independent from M , then for an absolute
constant c and any t > 0 with probability 1 − 2e−t,

|z⊤Mz − tr(M )| ≤ cσ2(
√
t∥M∥F + t∥M∥).

Proof. By Theorem 6.2.1 (Hanson-Wright inequality) in [55], for some absolute constant c1
for any t > 0,

P
{
|z⊤Mz − Ez⊤Mz| ≥ t

}
≤ 2 exp

(
−c1 min

{
t2

∥M∥2Fσ4
,

t

∥M∥σ2

})
.

Substituting t by σ2 max(
√

t/c1∥M∥F , t∥M∥/c1) yields the result.

Corollary 72. There is an absolute constant c such that for any centered random vector z ∈
Rn with independent σ-sub-Gaussian coordinates with unit variances, any random subspace
L of Rn of codimension k that is independent of z, and any t > 0, with probability at least
1 − 4e−t,

∥z∥2 ≤n + cσ2(t +
√
nt),

∥ΠL z∥2 ≥n− cσ2(k + t +
√
nt),

where ΠL is the orthogonal projection on L .

Proof. Denote the coordinates of z as (zi)
n
i=1, that is, z = (z1, . . . , zn)⊤. First of all, since

∥z∥2 =
∑n

i=1 z
2
i — a sum of n σ2-sub-Exponential random variables, by Corollary 70, for

some absolute constant c and for any t > 0, with probability at least 1 − 2e−t,∣∣∥z∥2 − n
∣∣ ≤ cσ2 max(t,

√
nt).

Second, we can write
∥ΠL z∥2 = ∥z∥2 − ∥ΠL ⊥z∥2.

Recall that projectorsare self-adjoing operators, so the matrix ΠL ⊥ is symmetric PSD.
Since ∥ΠL ⊥∥ = 1 and tr (ΠL ⊥) = tr(Π2

L ⊥) = k, by Lemma 71, for some absolute constant
c1 with probability at least 1 − 2e−t,

∥ΠL ⊥z∥2 =z⊤ΠL ⊥z

≤k + c1σ
2(t +

√
kt)

≤c1σ
2(2k + 2t).

Thus, with probability at least 1 − 4e−t

∥z∥2 ≤n + cσ2 max(t,
√
nt),

∥ΠL z∥2 ≥∥z∥ − 2c1σ
2(k + t)

≥n− c2σ
2(k + t + max(t,

√
nt)),

where we chose a new large enough absolute constant c2 in the last transition.
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Epsilon-net argument

Lemma 73 (ϵ-net argument). Suppose A ∈ Rn×n is a symmetric matrix, and Nϵ is an ϵ-net
on the unit sphere Sn−1 in the Euclidean norm, where ϵ < 1

2
. Then

∥A∥ ≤ (1 − ϵ)−2 max
u∈Nϵ

|u⊤Au|.

Proof. Denote the eigenvalues of A as λ1, . . . , λn and assume |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.
Denote the first eigenvector of A as v ∈ Sn−1, and take ∆v ∈ Rn such that v + ∆v ∈ Nϵ

and ∥∆v∥ ≤ ϵ. Denote the coordinates of ∆v in the eigenbasis of A as ∆v1, . . . ,∆vn. Now
we can write∣∣(v + ∆v)⊤A(v + ∆v)

∣∣ =

∣∣∣∣∣λ1 + 2λ1∆v1 +
n∑
i=1

λi∆v2i

∣∣∣∣∣
= |λ1| ·

∣∣∣∣∣1 + 2∆v1 + ∆v21 +
n∑
i=2

λi
λ1

∆v2i

∣∣∣∣∣
≥ |λ1| ·

∣∣∣∣∣1 + 2∆v1 + ∆v21 −
n∑
i=2

∆v2i

∣∣∣∣∣
= |λ1| ·

∣∣1 + 2∆v1 + ∆v21 − ∥∆v∥2 + ∆v21
∣∣

= |λ1| ·
∣∣1 + 2

(
∆v1 + ∆v21

)
− ∥∆v∥2

∣∣
≥ |λ1| ·

∣∣1 + 2
(
−∥∆v∥ + (−∥∆v∥)2

)
− ∥∆v∥2

∣∣
= |λ1| ·

∣∣1 − 2∥∆v∥ + ∥∆v∥2
∣∣

≥ |λ1| · |1 − 2ϵ + ϵ2|
= ∥A∥(1 − ϵ)2,

where the first inequality holds because the λis are decreasing in magnitude, and the last
two inequalities hold since the functions x + x2 and 2x + x2 are both increasing on (−1

2
,∞)

and ∆v1 ≥ −∥∆v∥ ≥ −ϵ ≥ −1
2
.

Lemma 4. Set λ = 0. Suppose all elements of matrix Z are independent and σx-sub-
Gaussian. There is a constant c that only depends on σx such that with probability 1 − 2e−n

µn(A) ≥
p∑
i=1

λi − c

nλ1 +

√√√√n

p∑
i=1

λ2
i

 = tr(Σ) − c(n∥Σ∥ +
√
n∥Σ∥F ),

µ1(A) ≤
p∑
i=1

λi + c

nλ1 +

√√√√n

p∑
i=1

λ2
i

 = tr(Σ) + c(n∥Σ∥ +
√
n∥Σ∥F ).

Proof. For a fixed vector v ∈ Rn, Proposition 2.6.1 from [55] implies that for some constant
c1 and any i the random variable v⊤zi is c1∥v∥2σx-sub-Gaussian. Thus, for any fixed unit
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vector v, as v⊤Av =
∑

i λi(v
⊤zi)

2, Lemma 68 and Corollary 70 imply that for some constant
c2 with probability at least 1 − 2e−t,∣∣∣v⊤Av −

∑
λi

∣∣∣ ≤ c2σ
2
x max

(
λ1t,

√
t
∑

λ2
i

)
.

Let N be a 1
4
-net on the sphere Sn−1 with respect to the Euclidean distance such that

|N | ≤ 9n. Applying the union bound over the elements of N , we see that with probability
1 − 2e−t, every v ∈ N satisfies

∣∣∣v⊤Av −
∑

λi

∣∣∣ ≤ c2σ
2
x max

λ1(t + n ln 9),

√
(t + n ln 9)

∑
i

λ2
i

 .

Since N is a 1
4
-net, by Lemma 73, we need to multiply the quantity above by (1− 1/4)−2 to

get the bound on the norm of the A− In
∑

i λi. Denote

♢ =

λ1(t + n ln 9) +

√
(t + n ln 9)

∑
i

λ2
i

 .

Thus, with probability at least 1 − 2e−t,∥∥∥∥∥A− In
∑
i

λi

∥∥∥∥∥ ≤ c3σ
2
x♢.

Taking t = n finishes the proof.

Eigenvalues of low rank corrections

For symmetric matrices U ,V we use the notation U ⪯ V to denote that the matrix V −U
is PSD.

Recall (half of) the Courant-Fischer-Weyl theorem.

Lemma 74. For any symmetric n × n matrix A, and any i ∈ [n], µi(A) is the minimum,
over all subspaces U of Rn of dimension n− i, of the maximum, over all unit-length u ∈ L ,
of u⊤Au.

Lemma 75 (Monotonicity of eigenvalues). If symmetric matrices A and B satisfy A ⪯ B,
then, for any i ∈ [n], we have µi(A) ≤ µi(B).
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Proof. Let U be the subspace of Rn of dimension n − i that minimizes the maximum over
all unit-length u ∈ U , of u⊤Au, and let V be the analogous subspace for B. We have

µi(A) = max
u∈U :||u||=1

u⊤Au (by Lemma 74)

≤ max
v∈V :||v||=1

v⊤Av (since U is the minimizer)

≤ max
v∈V :||v||=1

v⊤Bv (since A ⪯ B)

= µi(B),

by Lemma 74, completing the proof.

Lemma 7. 1. for all i ≥ 1,

µk+1(A−i) ≤ µk+1(A) ≤ µ1(Ak),

2. for all 1 ≤ i ≤ k,
µn(A) ≥ µn(A−i) ≥ µn (Ak) ,

Proof. First, the matrix A−Ak has rank at most k (as a sum of k matrices of rank 1). Thus,
there is a linear space L of dimension n − k such that for all v ∈ L , v⊤Av = v⊤Akv ≤
µ1(Ak)∥v∥2, and so µk+1(A) ≤ µ1(Ak).

Second, by the Courant-Fischer-Weyl Theorem, for all i and j, µj(A−i) ≤ µj(A) (see
Lemma 75). On the other hand, for i ≤ k, Ak ⪯ A−i, so all the eigenvalues of A−i are lower
bounded by µn(Ak).

Proof of the upper bound

Lemma 8. Suppose all elements of matrix Z are independent and σx-sub-Gaussian. There
are constants b, c ≥ 1 that only depend on σx such that if 0 ≤ k ≤ n/c, rk ≥ bn, and l ≤ k
then with probability at least 1 − 8e−n/c,

V ≤ c

(
l

n
+

n
∑

i>l λ
2
i

(λk+1rk)
2

)
.

Proof. By Lemma 3,

V =
∑
i

λ2
iz

⊤
i A

−2zi

=
l∑

i=1

λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−izi)

2
+
∑
i>l

λ2
iz

⊤
i A

−2zi. (A.2)

First, consider the sum up to l. Take b to be equal to the constant c from Lemma 6. If
rk ≥ bn, Lemmas 6 and 7 show that with probability at least 1 − 2e−n, for all i ≤ k,
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µn(A−i) ≥ λk+1rk/c1, and, for all i, µk+1(A−i) ≤ c1λk+1rk. The lower bounds on the
µn(A−i)’s imply that, for all z ∈ Rn and 1 ≤ i ≤ l,

z⊤A−2
−iz ≤ c21∥z∥2

(λk+1rk)
2 ,

and the upper bounds on the µk+1(A−i)’s give

z⊤A−1
−iz ≥ (ΠLi

z)⊤A−1
−iΠLi

z ≥ ∥ΠLi
z∥2

c1λk+1rk
,

where Li is the span of the n − k eigenvectors of A−i corresponding to its smallest n − k
eigenvalues. So for i ≤ l,

λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−izi)

2
≤

z⊤
i A

−2
−izi

(z⊤
i A

−1
−izi)

2
≤ c41

∥zi∥2

∥ΠLi
zi∥4

. (A.3)

Next, we apply Corollary 72 l times, together with a union bound, to show that with prob-
ability at least 1 − 4e−t, for all 1 ≤ i ≤ l,

∥zi∥2 ≤ n + aσ2
x(t + ln k +

√
n(t + ln k)) ≤ c2n, (A.4)

∥ΠLi
zi∥2 ≥ n− aσ2

x(k + t + ln k +
√

n(t + ln k)) ≥ n/c3, (A.5)

provided that t < n/c0 and c > c0 for some sufficiently large c0 (note that c2 and c3 only
depend on c0, a and σx, and we can still take c large enough in the end without changing c2
and c3). Combining (A.3), (A.4), and (A.5), with probability at least 1 − 5e−n/c0 ,

l∑
i=1

λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−izi)

2
≤ c4

l

n
.

Second, consider the second sum in (A.2). Lemma 7 shows that, on the same high probability
event that we considered in bounding the first half of the sum, µn(A) ≥ λk+1rk/c1. Hence,∑

i>l

λ2
iz

⊤
i A

−2zi ≤
c21
∑

i>l λ
2
i ∥zi∥2

(λk+1rk)
2 .

Notice that
∑

i>l λ
2
i ∥zi∥2 is a weighted sum of σ2

x-sub-Exponential random variables, with
the weights given by the λ2

i in blocks of size n. Corollary 70 implies that, with probability
at least 1 − 2e−t,

∑
i>l

λ2
i ∥zi∥2 ≤ n

∑
i>l

λ2
i + aσ2

x max

λ2
l+1t,

√
tn
∑
i>l

λ4
i


≤ n

∑
i>l

λ2
i + aσ2

x max

(
t
∑
i>l

λ2
i ,
√
tn
∑
i>l

λ2
i

)
≤ c5n

∑
i>l

λ2
i ,
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because t < n/c0. Combining the above gives

∑
i>l

λ2
iz

⊤
i A

−2zi ≤ c6n

∑
i>l λ

2
i

(λk+1rk)
2 .

Finally, putting both parts together and taking c > max{c0, c4, c6} gives the lemma.

Proof of the lower bound

Lemma 76. There is a constant c such that for any i ≥ 1 with λi > 0, and any 0 ≤ k ≤ n/c,
with probability at least 1 − 6e−n/c,

λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−izi)

2
≥ 1

cn

(
1 +

∑
j>k λj + nλk+1

nλi

)−2

.

Proof. Fix i ≥ 1 with λi > 0 and 0 ≤ k ≤ n/c. Apply Lemma 4 to matrix Ak instead of
A, and note that

√
n∥Σk:∞∥F ≤

√
n∥Σk:∞∥tr(Σk:∞)∥ ≤ n∥Σk:∞∥ + tr(Σk:∞). Plugging the

resulting bound on µ1(Ak) into Lemma 7 shows that with probability at least 1 − 2e−n,

µk+1(A−i) ≤ c1

(∑
j>k

λj + λk+1n

)
,

and hence

z⊤
i A

−1
−izi ≥

∥ΠLi
zi∥2

c1

(∑
j>k λj + λk+1n

) .
By Corollary 72, with probability at least 1 − 4e−t,

∥ΠLi
zi∥2 ≥ n− aσ2

x(k + t +
√
tn) ≥ n/c2,

provided that t < n/c0 and c > c0 for some sufficiently large c0. Thus, with probability at
least 1 − 5e−n/c3 ,

z⊤
i A

−1
−izi ≥

n

c3

(∑
j>k λj + λk+1n

) ,
hence

1 + λiz
⊤
i A

−1
−izi ≤

c3

(∑
j>k λj + λk+1n

)
λin

+ 1

λiz
⊤
i A

−1
−izi.
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Dividing λ2
iz

⊤
i A

−2
−izi by the square of both sides, we have

λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−izi)

2
≥

c3

(∑
j>k λj + λk+1n

)
λin

+ 1

−2

z⊤
i A

−2
−izi

(z⊤
i A

−1
−izi)

2
.

Also, from the Cauchy-Schwarz inequality and Corollary 72 again, we have that on the same
event,

z⊤
i A

−2
−izi

(z⊤
i A

−1
−izi)

2
≥

z⊤
i A

−2
−izi∥∥A−1

−izi
∥∥2 ∥zi∥2

=
1

∥zi∥2
≥ 1

n + aσ2
x(t +

√
nt)

≥ 1

c4n
.

Choosing c suitably large gives the lemma.

Lemma 77. Suppose that {ηi}pi=1 is a sequence of non-negative random variables, and that
{ti}pi=1 is a sequence of non-negative real numbers (at least one of which is strictly positive)
such that, for some δ ∈ (0, 1) for any i ≤ p with probability at least 1− δ, ηi > ti. Then with
probability at least 1 − 2δ,

n∑
i=1

ηi ≥
1

2

p∑
i=1

ti.

Proof. We know that, for all i ≤ p, P(ηi > ti) ≥ 1 − δ. Consider the following event:

E =

{
p∑
i=1

ηi <
1

2

p∑
i=1

ti

}
,

and denote its probability as P(E ) = cδ for some c ∈ (0, δ−1). On the one hand, by the
definition of the event, we have

1

P(E )
E

[
1E

p∑
i=1

ηi

]
≤ 1

2

p∑
i=1

ti,

where 1E is the indicator of the event E . On the other hand, note that for any i,

E[ηi1E ] ≥E[ti1{ηi≥ti}∩E ]

= tiP({ηi ≥ ti} ∩ E )

≥ ti(P{ηi ≥ ti} + P(E ) − 1)

≥ ti(c− 1)δ.
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So

E

[
1E

p∑
i=1

ηi

]
≥ (c− 1)δ

p∑
i=1

ti,

1

P(E )
E

[
1E

p∑
i=1

ηi

]
≥ (1 − c−1)

p∑
i=1

ti.

Thus, we obtain

1

2

p∑
i=1

ti ≥ (1 − c−1)

p∑
i=1

ti,

c ≤ 2,

P

(
p∑
i=1

ηi <
1

2

p∑
i=1

ti

)
= P(E ) = cδ ≤ 2δ.

Lemma 9. Suppose all elements of matrix Z are independent and σx-sub-Gaussian. There
is a constant c that only depends on σx such that for any 0 ≤ k ≤ n/c and any b > 1 with
probability at least 1 − 10e−n/c,

1. If rk < bn, then V ≥ k+1
cb2n

.

2. If rk ≥ bn, then

V ≥ 1

cb2
min
l≤k

(
l

n
+

b2n
∑

i>l λ
2
i

(λk+1rk)
2

)
.

In particular, if all choices of k ≤ n/c give rk < bn, then rn/c < bn implies that with
probability at least 1 − 12e−n/c, V ≥ (cb)−2—at least a constant.

Proof. From Lemmas 3, 76 and 77, with probability at least 1 − 12e−n/c1 ,

V ≥ 1

c1n

∑
i

(
1 +

∑
j>k λj + nλk+1

nλi

)−2

≥ 1

c2n

∑
i

min

1,
n2λ2

i(∑
j>k λj

)2 , λ2
i

λ2
k+1


≥ 1

c2b2n

∑
i

min

{
1,

(
bn

rk

)2
λ2
i

λ2
k+1

,
λ2
i

λ2
k+1

}
.
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Now, if rk < bn, then the second term in the minimum is always bigger than the third term,
and in that case,

V ≥ 1

c2b2n

∑
i

min

{
1,

λ2
i

λ2
k+1

}
≥ k + 1

c2b2n
.

On the other hand, if rk(λ) ≥ bn,

V ≥ 1

c2b2

∑
i

min

{
1

n
,

b2nλ2
i

(λk+1rk)
2

}
=

1

c2b2
min
l≤k

(
l

n
+

b2n
∑

i>l λ
2
i

(λk+1rk)
2

)
,

where the equality follows from the fact that the λis are non-increasing.

Choosing ℓ

Lemma 10. For any b ≥ 1 and k∗ := min {k : rk ≥ bn}, if k∗ < ∞, we have

min
l≤k∗

(
l

bn
+

bn
∑

i>l λ
2
i

(λk∗+1rk∗)2

)
=

k∗

bn
+

bn
∑

i>k∗ λ
2
i

(λk∗+1rk∗)2
=

k∗

bn
+

bn

Rk∗
,

where we introduced Rk :=
(∑

i>k λi
)2

/
(∑

i>k λ
2
i

)
.

Proof. We can write the function of l being minimized as

l

bn
+

bn
∑

i>l λ
2
i

(λk∗+1rk∗)2
=

l∑
i=1

1

bn
+
∑
i>l

bnλ2
i

(λk∗+1rk∗)2

≥
k∗∑
i=1

min

{
1

bn
,

bnλ2
i

(λk∗+1rk∗)2

}
+
∑
i>k∗

bnλ2
i

(λk∗+1rk∗)2

=
l∗∑
i=1

1

bn
+
∑
i>l∗

bnλ2
i

(λk∗+1rk∗)2
,

where l∗ is the largest value of i ≤ k∗ for which

1

bn
≤ bnλ2

i

(λk∗+1rk∗)2
,
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since the λ2
i are non-increasing. This condition holds iff

λi ≥
λk∗+1rk∗

bn
.

The definition of k∗ implies rk∗−1 < bn. So we can write

rk∗ =

∑
i>k∗ λi

λk∗+1

=

∑
i>k∗−1 λi − λk∗

λk∗+1

=
λk∗

λk∗+1

(rk∗−1 − 1)

<
λk∗

λk∗+1

(bn− 1),

and so the minimizing l is k∗. Also,∑
i>k∗ λ

2
i

(λk∗+1rk∗)2
=

∑
i>k∗ λ

2
i(∑

i>k∗ λi
)2 =

1

Rk∗
.

Effective ranks

Theorem 12. Consider some positive summable sequence {λi}∞i=1, and for any non-negative
integer i denote

ri := λ−1
i+1

∑
j>i

λj.

Then ri > 1 and
∑

i r
−1
i = ∞. Moreover, for any positive sequence {ui} such that

∑∞
i=0 u

−1
i =

∞ and for every i ui > 1, there exists a positive sequence {λi} (unique up to constant
multiplier) such that ri ≡ ui. The sequence is (a constant rescaling of)

λk = u−1
k−1

k−2∏
i=0

(1 − u−1
i ).

Proof. ∑
i≥k+1

λi =
∑
i≥k

λi − λk = (1 − r−1
k−1)

∑
i≥k

λi.

Thus, ∑
i≥k+1

λi =
k−1∏
i=0

(
1 − r−1

i

)
·
∑
i

λi,



APPENDIX A. PROOFS FOR CHAPTER 2 113

which goes to zero if and only if
∑

i r
−1
i = ∞. On the other hand, we may rewrite the first

equality in the proof as
λk+1rk = λkrk−1(1 − r−1

k−1),

and hence

λkrk−1 =
k−2∏
i=0

(
1 − r−1

i

)
λ1r0.

So for any sequence {ui} we can uniquely (up to a constant multiplier) recover the sequence
{λi} such that ri = ui — the only candidate is

λk = u−1
k−1

k−2∏
i=0

(1 − u−1
i ).

However, for such {λi} one can compute

k∑
i=1

λi = 1 −
k−1∏
i=0

(1 − u−1
i ),

so the resulting sequence {λi} sums to 1, and

rk = λ−1
k+1

∑
i>k

λi = λ−1
k+1

k−1∏
i=0

(1 − u−1
i ) = uk.

Benign sequences

Here we prove the following theorem.

Theorem 15. Define λk,n := µk(Σn) for all k, n.

1. If λk,n = k−α ln−β(k + 1), then Σn is benign if and only if α = 1 and β > 1.

2. If λk,n = k−(1+αn), then Σn is benign if and only if ω(1/n) = αn = o(1).

3. If

λk,n =

{
k−α if k ≤ pn,

0 otherwise,

then Σn is benign if and only if either 0 < α < 1, pn = ω(n) and pn = o
(
n1/(1−α)) or

α = 1, pn = eω(
√
n) and pn = eo(n).
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4. If

λk,n =

{
γk + ϵn if k ≤ pn,

0 otherwise,

and γk = Θ(exp(−k/τ)), then Σn is benign if and only if pn = ω(n) and ne−o(n) =
ϵnpn = o(n).

We start the proof by proving two auxiliary lemmas.

Lemma 78. Fix some sequence (λi)
∞
i=1 and define rk = λ−1

k+1

∑
i>k λi for any non-negative

integer k. Suppose b is some constant, and k∗(n) = min{k : rk ≥ bn}. Suppose also that the
sequence (rn)∞n=1 is increasing. Then, as n goes to infinity, k∗(n)/n goes to zero if and only
if rn/n goes to infinity.

Proof. We prove the “if” part separately from the “only if” part.

1. If k∗(n)/n → 0 then rn/n → ∞.

Fix some C > 1. Since k∗(n)/n → 0, there exists some NC such that for any n ≥ NC ,
k∗(n) < n/C. Thus, for all n > NC ,

k∗(⌊Cn⌋) ≤ n,

rn ≥ rk∗(⌊Cn⌋) ≥ b⌊Cn⌋.

Since the constant C is arbitrary, rn/n goes to infinity.

2. If rn/n → ∞ then k∗(n)/n → 0 .

Fix some constant C > 1. Since rn/n → ∞ there exists some NC such that for any
n ≥ NC , rn > Cn. Thus, for any n > CNC/b

r⌈nb/C⌉ ≥ bn,

k∗(n) ≤ ⌈nb/C⌉.

Since the constant C is arbitrary, k∗(n)/n goes to zero.

Lemma 79. Suppose the sequence {ri} is increasing and rn/n → ∞ as n → ∞. Then a
sufficient condition for n

Rk∗(n)
→ 0 is

r−2
k = o(r−1

k − r−1
k+1) as k → ∞.

For example, this condition holds for rn = n log n.
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Proof. We need to show that

n

Rk∗(n)
=

n
∑

i>k∗(n) λ
2
i(∑

i>k∗(n) λi

)2 =
n
∑

i>k∗(n) λ
2
i

λ2
k∗(n)+1r

2
k∗(n)

→ 0.

Since rk∗(n) ≥ bn and limn→∞ k∗(n) = ∞, it is enough to prove that
∑

i>k λ
2
i

λ2k+1rk
→ 0 as k goes

to infinity. Since
λk+2rk+1 = λk+1rk(1 − r−1

k ),

we can write that

λk+1+lrk+l = λk+1rk

k+l−1∏
i=k

(1 − r−1
i )

≤ λk+1rk exp

(
−

k+l−1∑
i=k

r−1
i

)

which yields

λk+1+l

λk+1rk
≤ r−1

k+l exp

(
−

k+l−1∑
i=k

r−1
i

)
.

Thus, we obtain ∑
i>k λ

2
i

λ2
k+1rk

≤ rk
∑
i≥k

r−2
i exp

(
−2

i−1∑
j=k

r−1
j

)
,

and it is sufficient to prove that the latter quantity goes to zero. We write

rk
∑
i≥k

r−2
i exp

(
−2

i−1∑
j=k

r−1
j

)
=

∑
i≥k r

−2
i exp

(
−2
∑i−1

j=k r
−1
j

)
r−1
k

=

∑
i≥k r

−2
i exp

(
−2
∑i−1

j=0 r
−1
j

)
r−1
k exp

(
−2
∑k−1

j=0 r
−1
j

) .

Since both numerator and denominator are decreasing in k and go to zero as k → ∞, we
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can apply the Stolz–Cesáro theorem (an analog of L’Hôpital’s rule for discrete sequences):

lim
k→∞

∑
i≥k r

−2
i exp

(
−2
∑i−1

j=0 r
−1
j

)
r−1
k exp

(
−2
∑k−1

j=0 r
−1
j

) = lim
k→∞

r−2
k exp

(
−2
∑k−1

j=0 r
−1
j

)
(r−1
k − e−2r−1

k r−1
k+1) exp

(
−2
∑k−1

j=0 r
−1
j

)
= lim

k→∞

r−2
k

(r−1
k − e−2r−1

k r−1
k+1)

(since, for large enough k, e−2r−1
k ≤ 1 − r−1

k )

≤ lim
k→∞

r−2
k

r−1
k − r−1

k+1 + r−1
k r−1

k+1

= 0,

where the last line is due to our sufficient condition.

Now we are ready to prove Theorem 15.
Part 1, if direction, first term: We have

r0(Σn) = λ−1
1

∞∑
i=1

λi =
∞∑
i=1

logβ(2)

i logβ(1 + i)
,

which is O(1) for β > 1 since the function f(x) = x−1 (log(2)/ log(x))β has finite integral on
[1,+∞).
Part 1, if direction, second term: By Lemma 78, it suffices to prove that limn→∞

rn
n

= ∞.
This holds because

rn =

∑
i>n

1
i logβ(1+i)

1
(n+1) logβ(2+n)

= Θ(n log n),

since β > 1.
Part 1, if direction, third term: By Lemma 79, it suffices to prove that r−2

k = o(r−1
k −

r−1
k+1), that is

lim
k→∞

r−2
k

r−1
k − r−1

k+1

= 0

or, equivalently,

lim
k→∞

rk+1

rk(rk+1 − rk)
= 0.
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As argued above, when α = 1 and β > 1, rk = Θ(k log k), so it suffices to show that
limk→∞(rk+1 − rk) = ∞. We have

rk+1 − rk =

∑
i>k+1 λi

λk+2

−
∑

i>k λi

λk+1

=

(
(λk+1 − λk+2)

∑
i>k+1 λi

)
− λk+1λk+2

λk+1λk+2

=

((
1

λk+2

− 1

λk+1

) ∑
i>k+1

λi

)
− 1

so it suffices to show that

lim
k→∞

(
1

λk+2

− 1

λk+1

) ∑
i>k+1

λi = ∞.

Since λi is non-increasing, we have(
1

λk+2

− 1

λk+1

) ∑
i>k+1

λi ≥
(

1

λk+2

− 1

λk+1

)∫ ∞

k+1

1

x logβ x
dx

=

(
1

λk+2

− 1

λk+1

)
1

(β − 1) logβ−1(k + 1)

=
(k + 2) logβ(k + 3) − (k + 1) logβ(k + 2)

(β − 1) logβ−1(k + 1)
.

If we define f on the positive reals by f(x) = x logβ(x + 1), then f is convex, and, since

f ′(x) = βx logβ−1(x+1)
x+1

+ logβ(x + 1), we have

(k + 2) logβ(k + 3) − (k + 1) logβ(k + 2)

(β − 1) logβ−1(k + 1)
≥

β(k+1) logβ−1(k+2)
k+2

+ logβ(k + 2)

(β − 1) logβ−1(k + 1)
,

which goes to infinity for large k, completing the proof of the “if” direction of the third term
of Part 1.
Part 1, only if direction, α > 1: If α > 1, then

rn =

∑
i>n

1
ia logβ(1+i)

1
na logβ(1+n)

≤ nα
∑
i>n

logβ(1 + n)

ia logβ(1 + i)

≤ nα
∑
i>n

1

ia

= nαO(n1−α),
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which does not grow faster than n. Thus, by Lemma 78, k∗(n)/n does not go to zero.
Part 1, only if direction, α < 1, or α = 1 and β ≤ 1: In this case,

∑∞
i=1

1
iα logβ(1+i)

diverges, so r0(Σn)
n

does not go to zero.
Before starting on Part 2, let us define rk,n = rk(Σn) and Rk,n = Rk(Σn).
Part 2, if direction, first term: We have

r0,n =
∞∑
i=1

1

i1+αn
≤ 1 +

1

αn
,

so r0,n
n

≤ 1+ 1
αn

n
which goes to zero with n if αn = ω(1/n).

Part 2, if direction, second term: First,

rk,n = (k + 1)1+αn
∑
i>k

i−(1+αn)

≥ (k + 1)1+αn

∫ ∞

k+1

x−(1+αn)dx

=
k + 1

αn
.

Thus, k∗(n) = O(αnn), so that k∗(n)
n

= O(αn) = o(1).
Part 2, if direction, third term: We bound Rk,n from below by separately bounding its
numerator and denominator: ∑

i>k

i−(1+αn) ≥
∫ ∞

k+1

x−(1+αn) dx

=
1

αn(k + 1)αn
,

and ∑
i>k

i−2(1+αn) ≤
∫ ∞

k

x−2(1+αn) dx

=
1

k1+2αn(2αn + 1)
,

so that

Rk,n ≥ k1+2αn(2αn + 1)

α2
n(k + 1)2αn

≥ k

α2
n

×
(

1 − 1

k + 1

)2αn

. (A.6)
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So now we want a lower bound on k∗(n). For that, we need an upper bound on rk,n, and

rk,n ≤ (k + 1)1+αn

∫ ∞

k

x−(1+αn)dx

=
(k + 1)

αn
×
(

1 +
1

k

)αn

≤ 2k

αn
eαn/k.

This implies 2k∗(n)
αn

eαn/k∗(n) ≥ bn. This, together with the fact that, for u > 1, ue1/u is an
increasing function of u, implies that, for large enough n, k∗(n) ≥ αnbn/3. Since αn =
ω(1/n), this implies that k∗(n) = ω(1). Combining this with (A.6), for large enough n

Rk∗(n),n ≥ k∗(n)

α2
n

e−αn/k∗(n) ≥ k∗(n)

2α2
n

≥ bn

6αn
.

Thus n/Rk∗(n),n = O(αn) = o(1).
Part 2, only if direction, αn ̸= ω(1/n): We have

r0,n =
∞∑
i=1

1

i1+αn
≥ 1

αn
,

so r0,n
n

≥ 1
αnn

, which does not go to zero unless αn = ω(1/n).
Part 2, only if direction, αn ̸= o(1): Recall that, in the proof of the “if” direction of

the third term, we showed that k∗(n) ≥ αnbn/3. This implies that k∗(n)
n

= Ω(αn), so it is
required to have αn = o(1).
Part 3: Suppose that Σn is benign. Then because rk(Σn) ≤ pn−k, we must have pn = ω(n).
Thus, we can restrict our attention to the sequences for which pn = ω(n) and find the
necessary and sufficient conditions for that class.

Next, for any positive α and any natural number k ∈ [1, pn), we can write∫ pn

k

x−α dx ≥
pn∑

i=k+1

i−α ≥
∫ pn

k+1

x−α dx,

F (pn) − F (k) ≥
pn∑

i=k+1

i−α ≥ F (pn) − F (k + 1),

where

F (x) =

{
1

1−αx
1−α, for α ̸= 1,

ln(x), for α = 1.

As the sequence can only be benign if k∗ = o(n), we can only consider values of k that
do not exceed some constant fraction of n, e.g. n/2. Since pn = ω(n), noting that, for x > 0,
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the sign of 1
1−αx

1−α flips when α crosses 1, we can write, uniformly for all k ∈ [1, n/2],

pn∑
i=k+1

i−α =


Θα (p1−αn ) , for α ∈ (0, 1),

Θα (ln(pn/k)) , for α = 1,

Θα (k1−α) , for α > 1.

Recall that we consider λi,n = i−α for i ≤ pn. Using the formula above, we get uniformly for
all k ∈ [1, n/2]

rk(Σn) =


Θα (kαp1−αn ) , for α ∈ (0, 1),

Θα (k ln(pn/k)) , for α = 1,

Θα (k) , for α > 1.

Recall that k∗ = min{k : rk(Σn) ≥ bn}. We compute

k∗ =


Θα

(
p
1− 1

α
n n

1
α

)
, for α ∈ (0, 1),

Θα

(
n

ln(pn/n)

)
, for α = 1,

Θα (n) , for α > 1.

One can see that for α > 1, k∗ = Ωα(n), so the sequence is not benign for α > 1. On the
other hand, k∗ = o(n) for α ≤ 1.

Next, analogously to the asymptotics for rk(Σ), we have

rk(Σ
2
n) =


Θα (k2αp1−2α

n ) , for α ∈ (0, 0.5),

Θα (k ln(pn/k)) , for α = 0.5,

Θα (k) , for α ∈ (0.5, 1].

Since Rk = rk(Σ)2

rk(Σ
2)

, we can write uniformly for all k ∈ [1, n/2]

Rk =


Θα (pn) , for α ∈ (0, 0.5),

Θα

(
pn

ln(pn/k)

)
, for α = 0.5,

Θα (k2α−1p2−2α
n ) , for α ∈ (0.5, 1),

Θα (ln(pn/k)2) , for α = 1.

Now we plug in k∗ instead of k. Recall that pn/k
∗ = Θα

(
(pn/n)1/α

)
for α ∈ (0, 1), and

pn/k
∗ = Θα (pn/n ln(pn/n)) for α = 1. We get

Rk∗ =


Θα (pn) , for α ∈ (0, 0.5),

Θα

(
n pn/n

ln(pn/n)

)
, for α = 0.5,

Θα

(
n
(
pn
n

) 1
α
−1
)
, for α ∈ (0.5, 1),

Θα (ln(pn/n)2) , for α = 1.
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Since pn = ω(n), for any α ∈ (0, 1), Rk∗ = ω(n). For α = 1 the necessary and sufficient
for Rk∗ = ω(n) is ln(pn/n) = ω(

√
n).

So far, we obtained the necessary and sufficient conditions for the last terms to go to
zero. Now let’s look at the upper bound for the first term: we write, for α ∈ (0, 1],

r0 =

pn∑
i=1

i−α =

{
Θα (p1−αn ) , for α ∈ (0, 1),

Θα (ln pn) , for α = 1.

Thus, for α < 1, r0(Σn)/n goes to zero if and only if pn = o
(
n1/(1−α)), and for α = 1,

r0(Σn)/n goes to zero if and only if ln(pn) = o(n).
Part 4: Suppose that Σn is benign. Then because rk(Σn) ≤ pn−k, we must have pn = ω(n).
Also,

tr(Σn) = Θ
(
1 − e−pn/τ + pnϵn

)
= Θ (1 + pnϵn) ,

and so pnϵn = o(n). Since Σn benign implies k∗ = o(n), and hence k∗ = o(pn), we consider
k = o(pn). In this regime,∑

i>k

λi = Θ
(
e−k/τ − e−pn/τ + (pn − k)ϵn

)
≤ Θ

(
e−k/τ + pnϵn

)
.

Thus, whenever k ≤ pn,

rk(Σn) ≤ Θ

(
e−k/τ + pnϵn
e−k/τ + ϵn

)
.

Notice that

d

dx

x + pnϵn
x + ϵn

=
ϵn − pnϵn
(x + ϵn)2

< 0,

so k∗ must be large enough to make

e−k/τ + pnϵn
e−k/τ + ϵn

= Ω(n).

Substituting k = τ ln(n/(pnϵn)) ±O(1) gives

rk(Σn) ≤ Θ

(
pnϵn/n + pnϵn
pnϵn/n + ϵn

)
= Θ

(
pnϵn

pnϵn/n

)
= Θ (n) ,
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which shows that k∗ ≥ τ ln(n/(pnϵn))−O(1). Thus, if Σn is benign, we must have k∗ = o(n),
that is, ϵnpn = ne−o(n).

Conversely, assume pn = Ω(n) and ϵnpn = ne−o(n) (that is, ln(n/(pnϵn)) = o(n)). Set
k = τ ln(n/(pnϵn)) − a, for some a, which we shall see is Θ(1). Notice that k = o(n), so
pn − k = Ω(pn) and e−pn = o(e−k). Thus,∑

i>k

λi = Θ
(
e−k/τ − e−pn/τ + (pn − k)ϵn

)
= Θ

(
e−k/τ + pnϵn

)
,∑

i>k

λ2
i = Θ

(
e−2k/τ − e−2pn + (pn − k)ϵ2n

)
= Θ

(
e−2k/τ + pnϵ

2
n

)
.

These imply

tr(Σn) = Θ(1 + pnϵn),

rk(Σn) = Θ

(
e−k/τ + pnϵn
e−k/τ + ϵn

)
= Θ

(
apnϵn/n + pnϵn
apnϵn/n + ϵn

)
= Θ

(
pnϵn

apnϵn/n

)
= Θ (n/a) ,

which shows that k∗ = τ ln(n/(pnϵn)) + O(1). Also, we have

Rk(Σn) = Θ

((
e−k/τ + pnϵn

)2
e−2k/τ + pnϵ2n

)

= Θ

(
(pnϵn/n + pnϵn)2

p2nϵ
2
n/n

2 + pnϵ2n

)

= Θ

(
p2nϵ

2
n

p2nϵ
2
n/n

2 + pnϵ2n

)
= Θ

(
min

{
n2, pn

})
.

Now, it is clear that pn = ω(n), ϵnpn = o(n), and ϵnpn = ne−o(n) imply that Σn is benign.

A.3 Concentration inequalities

Lemma 80 (Mahalanobis norms of sub-Gaussian vectors ). Suppose z is a σ-sub-Gaussian
vector in Rp. Consider Σ = diag(λ1, . . . , λp) for some positive non-increasing sequence
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{λi}pi=1. Then for some absolute constant c for any t > 0

P

{
∥Σ1/2z∥2 > cσ2

(
tλ1 +

∑
i

λi

)}
≤ 2e−t/c.

Proof. The argument consists of two parts: first, we obtain a bound that only works well in
the case when all λi are approximately the same. Next, we split the sequence {λi} into pieces
with approximately equal values within each piece and obtain the final result by applying
the first part of the argument to each piece.

First part: Consider a 1/4-net {uj}mj=1 on Sp−1, such that m ≤ 9p. Note that for any
vector v ∈ Sp−1 there exists an element uj of that net such that ⟨v,uj⟩ ≥ 3/4 · ∥v∥. Thus,
we have

∥Σ1/2z∥ ≤ 4

3

√
λ1 max

j
⟨z,uj⟩ ≤ 2

√
λ1 max

j
⟨z,uj⟩.

Since the random variable ⟨z,uj⟩ is σ-sub-Gaussian, it also holds for any t > 0 and some
absolute constant c that

P(|⟨z,uj⟩| > t) ≤ 2e−ct
2/σ2

,

P(4λ1⟨z,uj⟩2 > 4λ1tσ
2) ≤ 2e−ct.

By multiplicity correction, we obtain

P
(
∥Σ1/2z∥2 > 4λ1σ

2t +
4σ2λ1 log 9

c
p

)
≤ 2e−ct.

We see that the random variable
(
∥Σ1/2z∥2 − 4σ2λ1 log 9

c
p
)
+

has sub-Exponential norm

bounded by Cσ2λ1.
Second part: Now, instead of applying the result that we have just obtained to the

whole vector z, split it in the following way: define the sub-sequence {ij} in such that
i1 = 1, and for any l ≥ 1 il+1 = min{i : λi < λil/2}. Denote zl to be a sub-vector of z
comprised of components from the il-th to (il+1 − 1)-th. Let Σl = diag(λil , . . . , λil+1−1).

Then by the initial argument, the random variable
(
∥Σ1/2

l zl∥2 −
4σ2λil log 9

c
(il+1 − il)

)
+

has sub-Exponential norm bounded by Cσ2λil . Since each next λil is at most half of the
previous, we obtain that the sum (over l) of those random variables has sub-Exponential
norm at most 2Cσ2λ1. Combining this with the fact that

il+1−1∑
i=il

λi ≥ (il+1 − il)λil+1−1 ≥ (il+1 − il)λil+1
/2,
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we obtain that for some absolute constants c0, c1, . . . for any t > 0

2e−c0t ≥P

{∑
l

(
∥Σ1/2

l zl∥2 − c1σ
2λil(il+1 − il)

)
> c2σ

2λ1t

}

≥P

{
∥Σ1/2z∥2 ≥ c3σ

2
∑
i

λi + c2σ
2λ1t

}
.

Lemma 81 (Concentration of the sum of squared norms). Suppose Z ∈ Rn×p is a matrix
with independent isotropic σ-sub-Gaussian rows z1, . . . ,zn (i.e. Z⊤ = [z1, . . . ,zn]). Con-
sider Σ = diag(λ1, . . . , λp) for some positive non-increasing sequence {λi}pi=1. Then for some
absolute constant c and any t ∈ (0, n) with probability at least 1 − 2 exp(−ct),

(n−
√
ntσ2)

∑
i>k

λi ≤
n∑
i=1

∥Σ1/2
k:∞zik:∞∥2 ≤ (n +

√
ntσ2)

∑
i>k

λi.

Proof. Since {zik:∞}ni=1 are independent, isotropic and sub-Gaussian, ∥Σ1/2
k:∞zik:∞∥2 are inde-

pendent sub-Exponential r.v.’s with expectation
∑

i>k λi and sub-Exponential norms bounded
by c1σ

2
∑

i>k λi. Applying Bernstein’s inequality gives

P

(∣∣∣∣∣ 1n
n∑
i=1

∥Σ1/2
k:∞zik:∞∥2 −

∑
i>k

λi

∣∣∣∣∣ ≥ tσ2
∑
i>k

λi

)
≤ 2 exp

(
−c2 min(t, t2)n

)
.

Changing t to
√

t/n gives the result.

Lemma 82 (Weakened Hanson-Wright inequality). Suppose M ∈ Rn×n is a (random) PSD
matrix and ε ∈ Rn is a centered vector whose components {εi}ni=1 are independent and σ-
sub-Gaussian. Then for some absolute constants c, C and any t > 1 with probability at least
1 − 2e−t/c,

ε⊤Mε ≤ Ctσ2tr(M ).

Proof. By Theorem 6.2.1 (Hanson-Wright inequality) in [55], for some absolute constant c1
for any t > 0,

PM

{
|ε⊤Mε− Eε⊤Mε| ≥ t

}
≤ 2 exp

(
−c1 min

{
t2

∥M∥2Fσ4
,

t

∥M∥σ2

})
,

where PM denotes conditional probability given M .
Since for any i, Eεi = 0, and Var(εi) is within a constant factor of σ2, and since M is

PSD, we have
Eε⊤Mε ≤ c2σ

2tr(M).
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Moreover, since ∥M∥2F ≤ tr(M)2 and ∥M∥ ≤ tr(M), we obtain

PM

{
ε⊤Mε > σ2(c2 + t)tr(M )

}
≤ 2 exp{−c1 min(t, t2}).

Restricting to t > 1 and adjusting the constants gives the result (note that since the RHS
doesn’t depend on M , we can replace PM with P).

A.4 Controlling the singular values

In this section we use the following notation: for any matrix M we denote the element in
the i-th row and the j-th column of M as M [i, j]. We denote the i-th row of M as M [i, ∗]
and the j-th column of M as M [∗, j]. For a vector u we denote it’s i-th coordinate as u[i].

Lemma 83 (Bound on the norm of non-diagonal part of a Gram matrix). Denote Åk to be
the matrix Ak with zeroed out diagonal elements: Åk[i, j] = (1− δi,j)Ak[i, j]. Then for some
absolute constant c for any t > 0 with probability at least 1 − 4e−t/c,

∥Åk∥ ≤ cσ2
x

√√√√(t + n)

(
λ2
k+1(t + n) +

∑
i>k

λ2
i

)
.

Proof. We follow the lines of the decoupling argument from [56]. Consider a 1/4-net {uj}mj=1

on Sn−1 s.t. m ≤ 9n. Then
∥Åk∥ ≤ 2 max

j
|u⊤

j Åkuj|.

Indeed, take v ∈ Sn−1 to be the eigenvector of Åk whose eigenvalue has the largest absolute
value µ (i.e., ∥Åk∥ = µ), and let uj be the closest point in the net to v. Then

∥v − uj∥ ≤1/4,

u⊤
j v ≥3/4,

|u⊤
j Åkuj| ≥|u⊤

j Åkv| − |u⊤
j Åk(v − uj)|

=|µ|u⊤
j v − |u⊤

j Åk(v − uj)|
≥|µ|u⊤

j v − ∥uj∥∥Åk∥∥v − uj∥

≥|µ|
(

3

4
− 1

4

)
.

Denote the k-th coordinate of uj as uj[k]. Note that

u⊤
j Åkuj = 4ET

∑
k∈T ̸∋l

uj[k]uj[l]Åk[k, l],
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where the expectation is taken over a uniformly chosen random subset T of {1, . . . , n} (since
Åk has zeroed-out diagonal, we don’t need to consider terms with m = l which allows us to
sum over k ∈ T ̸∋ l). Thus,

|u⊤
j Åkuj| ≤ 4 max

T

∣∣∣∣∣ ∑
l∈T ̸∋m

uj[l]uj[m]Åk[l,m]

∣∣∣∣∣
= 4 max

T

∣∣∣∣∣
〈∑

l∈T

uj[l]Xk:∞[l, ∗],
∑
m̸∈T

uj[m]Xk:∞[m, ∗]

〉∣∣∣∣∣ .
Fix j and denote

ξ⊤ :=
∑
l∈T

uj[l]Xk:∞[l, ∗]Σ
−1/2
k:∞ ,

η⊤ :=
∑
m̸∈T

uj[m]Xk:∞[m, ∗]Σ
−1/2
k:∞ .

Note that since uj is from the sphere, {Xk:∞[i, ∗]}ni=1 are independent, and l,m live in
disjoint subsets, the vectors ξ and η are independent sub-Gaussian with sub-Gaussian norms
bounded by Cσx for some absolute constant C.

First, that means that for some absolute constant c1 we have

P
{∣∣∣〈Σ1/2ξ,Σ1/2η

〉∣∣∣ ≥ tσx∥Ση∥
}
≤ 2e−c1t

2

.

Second, by Lemma 80, for some constant c2 for any t > 0

P

{
∥Ση∥2 ≥ c2σ

2
x

(
λ2
k+1t +

∑
i>k

λ2
i

)}
≤ 2e−t/c2 .

We obtain that for some absolute constant c for any t > 0 with probability at least
1 − 4e−t/c ∣∣∣〈Σ1/2ξ,Σ1/2η

〉∣∣∣ < cσ2
x

√√√√t

(
λ2
k+1t +

∑
i>k

λ2
i

)
.

Finally, making multiplicity correction for all j (there are at most 9n of them), and all
subsets T (at most 2n), we obtain that for some absolute constant c with probability at least
1 − 4e−t/c

∥Åk∥ ≤ cσ2
x

√√√√(t + n)

(
λ2
k+1(t + n) +

∑
i>k

λ2
i

)
.
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Lemma 84. For some absolute constant c, for any t > 0, with probability at least 1−6e−t/c,

∥Xk:∞X⊤
k:∞∥ ≤ cσ2

x

(
λk+1(t + n) +

∑
i>k

λi

)
.

Proof. Note that ∥Xk:∞X⊤
k:∞∥ ≤ maxi ∥X i,∗∥ + ∥Å∥. Combining Lemma 80 (with multi-

plicity correction) and Lemma 83 gives with probability 1 − 6e−t/c1

∥Xk:∞X⊤
k:∞∥ ≤ c1σ

2
x

(t + c1 log n)λk+1 +
∑
i>k

λi +

√√√√(t + n)

(
λ2
k+1(t + n) +

∑
i>k

λ2
i

) .

Now note that

(t + c1 log n)λk+1 ≤c1

√√√√(t + n)

(
λ2
k+1(t + n) +

∑
i>k

λ2
i

)

≤c1

√
λ2
k+1(t + n)2 + λk+1(t + n)

∑
i>k

λi

≤c1

(
λk+1(t + n) +

∑
i>k

λi

)
,

where we used
√
a2 + ab ≤ a + b in the last transition. Removing the dominated (up to a

constant multiplier) terms gives the result.

Lemma 18 (Controlling µ1(Ak)/µn(Ak) under sub-Gaussianity). For any γ ∈ [0, 1) and
σx > 0 there exists c > 0 that only depends on σx and γ such that under Assumption
NoncritReg(k, γ) the following holds: for any L ≥ 1

• If ρk ≥ L2 and with probability at least (1 − δ)1/n

λ + ∥xk:∞∥2 ≥ c

L

(
λ + E∥xk:∞∥2

)
,

then with probability at least 1 − δ − ce−n/c

µn(Ak) ≥ L−1µ1(Ak).

• Suppose that it is known that with probability at least ce−n/c µn(Ak) ≥ L−1µ1(Ak).

Then ρk ≥ 1
cL

and with probability at least
(
1 − ce−n/c

)1/n
λ + ∥xk:∞∥2 ≥ 1

cL

(
λ + E∥xk:∞∥2

)
.
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Proof. We start with the high-probability bounds that we can derive assuming only sub-
Gaussianity and independence of data vectors. By Lemma 80, for some absolute constant c
and for any t > 0,

P

{
∥Xk:∞[i, ∗]∥2 > cσ2

x

(
tλk+1 +

∑
i>k

λi

)}
≤ 2e−t/c.

By Lemma 83, for some absolute constant c and for any t > 0, with probability at least
1 − 4e−t/c,

∥Åk∥ ≤ cσ2
x

√√√√(t + n)

(
λ2
k+1(t + n) +

∑
i>k

λ2
i

)
.

Since ∥Ak∥ ≤ λ + ∥Åk∥ + maxi ∥Xk:∞[i, ∗]∥, the above two statements imply that for
any t > 0 with probability at least 1 − 4e−n/c − 2ne−t/c,

µ1(Ak) ≤λ + cσ2
x

√√√√n

(
λ2
k+1n +

∑
i>k

λ2
i

)
+ cσ2

x

(
tλk+1 +

∑
i>k

λi

)

≤λ + 2cσ2
x

(t + n)λk+1 +
∑
i>k

λi +

√
n
∑
i>k

λ2
i


≤λ + 3cσ2

x

(
(t + n)λk+1 +

∑
i>k

λi

)
,

where we used the following chain of inequalities to make the last transition:

2

√
n
∑
i>k

λ2
i ≤ 2

√
nλk+1

∑
i>k

λi ≤ nλk+1 +
∑
i>k

λi.

On the same event,

µn(Ak) ≥ λ + min
i

∥Xk:∞[i, ∗]∥2 − cσ2
x

nλk+1 +

√
n
∑
i>k

λ2
i

 .

On the other hand, note that the sum of eigenvalues of Ak is equal to

tr(Ak) = λn +
n∑
i=1

∥Σ1/2
k:∞Zk:∞[i, ∗]⊤∥2.

By Lemma 81, for some absolute constant c and any t ∈ (0, n), with probability at least
1 − 2e−ct,

(n−
√
ntσ2

x)
∑
i>k

λi ≤
n∑
i=1

∥Σ1/2
k:∞Zk:∞[i, ∗]⊤∥2 ≤ (n +

√
ntσ2

x)
∑
i>k

λi.
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On this event

µ1(Ak) ≥λ +

(
1 −

√
t

n
σ2
x

)∑
i>k

λi,

µn(Ak) ≤λ +

(
1 +

√
t

n
σ2
x

)∑
i>k

λi.

Finally, note that µ1(Ak) ≥ λk+1∥Zk:∞[∗, 1]∥2 + λ. By Lemma 81, for some c3 and for
any t ∈ (0, n), with probability. at least 1 − 2e−c3t,

∥Zk:∞[∗, 1]∥2 ≥ n−
√
ntσ2

x,

which means that

µ1(Ak) ≥ λ + nλk+1

(
1 −

√
t

n
σ2
x

)
.

Combining all those bounds together gives that there is a constant cx that only depends
on σx such that with probability at least 1 − cxe

−n/cx all the following inequalities hold
simultaneously:

µ1(Ak) ≤λ + cx

(
nλk+1 +

∑
i>k

λi

)
,

µ1(Ak) ≥λ +
1

cx

∑
i>k

λi,

µ1(Ak) ≥λ +
1

cx
nλk+1,

µn(Ak) ≥λ + min
i

∥Xk:∞[i, ∗]∥2 − cx

nλk+1 +

√
n
∑
i>k

λ2
i

 ,

µn(Ak) ≤λ + cx
∑
i>k

λi,

µn(Ak) ≤λ + min
i

∥Xk:∞[i, ∗]∥2.

In view of the bounds that we derived above, the following inequality is a sufficient
condition for the statement that with probability at least 1− cxe

−n/cx the condition number
of Ak does not exceed L:

1

L

(
λ + cx

(
nλk+1 +

∑
i>k

λi

))
≤ λ + min

i
∥Xk:∞[i, ∗]∥2 − cx

nλk+1 +

√
n
∑
i>k

λ2
i

 .
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Note that for any ζ > 0√
n
∑
i>k

λ2
i < 2

√
n
∑
i>k

λ2
i ≤ 2

√
nλk+1

∑
i>k

λi ≤ ζnλk+1 + ζ−1
∑
i>k

λi,

which implies that for any ζ the following is also a sufficient condition:

λ + min
i

∥Xk:∞[i, ∗]∥2 ≥ λL−1 + cx(1 + L−1 + ζ)nλk+1 + cx(L
−1 + ζ−1)

∑
i>k

λi.

Recall that λ > −γ
∑

i>k λi, so

∑
i>k

λi ≤
1

1 − γ

(
λ +

∑
i>k

λi

)
,

which allows us to upper bound the right-hand side of that condition. We write

λL−1 + cx(1 + L−1 + ζ)nλk+1 + cx(L
−1 + ζ−1)

∑
i>k

λi

≤L−1

(
λ +

∑
i>k

λi

)
+ cx(1 + L−1 + ζ)ρ−1

k

(
λ +

∑
i>k

λi

)
+

cx(L
−1 + ζ−1)

1 − γ

(
λ +

∑
i>k

λi

)

=

(
λ +

∑
i>k

λi

)(
L−1

(
1 + cxρ

−1
k +

cx
1 − γ

)
+ ρ−1

k (cx + cxζ) +
cxζ

−1

1 − γ

)
.

Now take ζ = ρ
1/2
k and a constant c that is big enough depending on γ and cx. Then if

ρk > L2 > 1 and with probability at least 1 − δ,

λ + min
i

∥Xk:∞[i, ∗]∥2 ≥ c

L

(
λ +

∑
i>k

λi

)
,

then with probability at least 1 − δ − cxe
−n/cx ,

µn(Ak) ≥ L−1µ1(Ak).

Note that since the rows of Xk:∞ are i.i.d., the first condition is equivalent to that with
probability at least (1 − δ)1/n

λ + ∥Xk:∞[1, ∗]∥2 ≥ c

L

(
λ +

∑
i>k

λi

)
.
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Now let’s derive a necessary condition. Suppose it is known that with probability at least
cxe

−n/cx µn(Ak) ≥ L−1µ1(Ak). Then

λ + min
i

∥Xk:∞[i, ∗]∥2 ≥ 1

L

(
λ +

1

cx

∑
i>k

λi

)
,

λ + cx
∑
i>k

λi ≥
1

L

(
λ +

1

cx
nλk+1

)
.

For the first equation, we can write

λ + min
i

∥Xk:∞[i, ∗]∥2 ≥ 1

L

(
λ +

1

cx

∑
i>k

λi

)

λ(1 − L−1 + L−1c−1
x ) + min

i
∥Xk:∞[i, ∗]∥2 ≥ 1

Lcx

(
λ +

∑
i>k

λi

)
,

λ + min
i

∥Xk:∞[i, ∗]∥2 ≥ 1

Lcx(1 − L−1 + L−1c−1
x )

(
λ +

∑
i>k

λi

)

≥ 1

Lcx

(
λ +

∑
i>k

λi

)
,

where we used the fact that cx > 1 and L > 1.
When it comes to the second equation, we write

λ + cx
∑
i>k

λi ≥
1

L

(
λ +

1

cx
nλk+1

)
,

(L− 1)λ + cxL
∑
i>k

λi ≥
1

cx
nλk+1 =

1

cx
ρ−1
k

(
λ +

∑
i>k

λi

)
,

(L− 1)

(
λ +

∑
i>k

λi

)
+ (cxL− L + 1)

∑
i>k

λi ≥
1

cx
ρ−1
k

(
λ +

∑
i>k

λi

)
(
L− 1 +

cxL− L + 1

1 − γ

)(
λ +

∑
i>k

λi

)
≥ 1

cx
ρ−1
k

(
λ +

∑
i>k

λi

)

ρk ≥c−1
x

(
L− 1 +

cxL− L + 1

1 − γ

)−1

≥ c−1L−1,

where c is a large enough constant that only depends on γ and cx.
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Lemma 85. Suppose assumptions NoncritReg(k, γ) and CondNum(k, δ, L) are satisfied and
γ < 1. Then for some absolute constant c for any t ∈ (0, n) with probability at least 1 − δ −
2e−ct

1

L

(
1 −

√
tσ2
x√

n(1 − γ)

)(
λ +

∑
i>k

λi

)
≤ µn(Ak) ≤ µ1(Ak) ≤ L

(
1 −

√
tσ2
x√

n(1 − γ)

)(
λ +

∑
i>k

λi

)
.

Moreover, if δ < 1 − 4e−ct for some t ∈ (0, n), then

λ +
∑

i>k λi

nλk+1

≥
1 − σ2

x

√
t/n

L + γ
1−γ +

√
tσ2

xL√
n(1−γ)

.

Proof. First of all, note that the sum of eigenvalues of Ak is equal to

tr(Ak) = λn +
n∑
i=1

∥Σ1/2
k:∞Zk:∞[i, ∗]⊤∥2.

By Lemma 81 for some absolute constant c and any t ∈ (0, n) with probability at least
1 − 2e−ct

(n−
√
ntσ2

x)
∑
i>k

λi ≤
n∑
i=1

∥Σ1/2
k:∞Zk:∞[i, ∗]⊤∥2 ≤ (n +

√
ntσ2

x)
∑
i>k

λi.

Now we know that with probability at least 1−δ−2 exp(−c2t) the following two conditions
hold:

µ1(Ak) ≤ Lµn(Ak),

nλ + (n−
√
ntσ2

x)
∑
i>k

λi ≤
n∑
i=1

µi(Ak) ≤ nλ + (n +
√
ntσ2

x)
∑
i>k

λi.

The first line of the display above implies that

nµ1(Ak)/L ≤
n∑
i=1

µi(Ak) ≤ nµn(Ak) · L

Thus, with probability at least 1 − δ − 2 exp(−c2t),

λ

L
+

n−
√
ntσ2

x

nL

∑
i>k

λi ≤ µn(Ak) ≤ µ1(Ak) ≤ λL +
(n +

√
ntσ2

x)L

n

∑
i>k

λi,

1

L

(
λ +

∑
i

λi

)
−

√
tσ2
x√

nL

∑
i>k

λi ≤ µn(Ak) ≤ µ1(Ak) ≤ L

(
λ +

∑
i

λi

)
+

√
tσ2
xL√
n

∑
i>k

λi.
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Using the fact that
∑

i>k λi ≤
(
λ +

∑
i>k λi

)
/(1 − γ), we obtain

1

L

(
λ +

∑
i>k

λi

)(
1 −

√
tσ2
x√

n(1 − γ)

)
≤ µn(Ak) ≤ µ1(Ak) ≤ L

(
λ +

∑
i>k

λi

)(
1 +

√
tσ2
x√

n(1 − γ)

)
,

which gives the first assertion of the lemma.
Next, note that µ1(Ak) ≥ λk+1∥Zk:∞[∗, 1]∥2 + λ. By Lemma 81 for some c3 for any

t ∈ (0, n) w.p. at least 1 − 2e−c3t, ∥Zk:∞[∗, 1]∥2 ≥ n −
√
ntσ2

x, which means that if 1 − δ −
2e−c2t − 2e−c3t > 0 then with positive probability

λL +
(n +

√
ntσ2

x)L

n

∑
i>k

λi ≥λk+1(n−
√
ntσ2

x) + λ,

λ(L− 1) +
(n +

√
ntσ2

x)L

n

∑
i>k

λi ≥λk+1(n−
√
ntσ2

x),(
λ +

∑
i>k

λi

)
(L− 1) +

(
1 +

√
tσ2
xL√
n

)∑
i>k

λi ≥λk+1(n−
√
ntσ2

x),(
λ +

∑
i>k

λi

)(
L +

γ

1 − γ
+

√
tσ2
xL√

n(1 − γ)

)
≥λk+1(n−

√
ntσ2

x).

Taking c4 = min(c2, c3) we see that if δ < 1 − 4e−c4t, then

λ +
∑

i>k λi

nλk+1

≥
1 − σ2

x

√
t/n

L + γ
1−γ +

√
tσ2

xL√
n(1−γ)

.

Lemma 26 (k can be taken to be k∗). Fix any constants γ ∈ [0, 1), b > 0, L > 0. Denote

k∗ = min{k : ρk > b}.

There exist constants c, L′ that only depend on σx, γ, b, L s.t. the following holds: sup-
pose assumptions NoncritReg(k, γ) and CondNum(k, δ, L) hold for some k ∈ [k∗, n]. Then
assumptions NoncritReg(k∗, γ) and CondNum(k∗, δ + ce−n/c, L′) hold too.

Proof. First, by Lemma 85 for any t ∈ (0, n) with probability at least 1 − δ − 2e−c1t,

1

L

(
1 −

√
tσ2
x√

n(1 − γ)

)(
λ +

∑
i>k

λi

)
≤ µn(Ak) ≤ µn(Ak∗).
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Next, by Lemma 84 we know that with probability at least 1 − 6e−t/c3 ,

µ1(Ak∗) ≤ c3σ
2
x

(
λk∗+1(t + n) +

∑
i>k∗

λi

)
+ λ.

By definition of k∗ and ρk

λk∗+1n = ρ−1
k∗

(
λ +

∑
i>k∗

λi

)
≤ b−1

(
λ +

∑
i>k∗

λi

)
.

Therefore,

λ +
∑
i>k

λi = λ +
∑
i>k∗

λi −
k∑

i=k∗+1

λi ≥ λ +
∑
i>k∗

λi − nλk∗+1 ≥ (1 − b−1)

(
λ +

∑
i>k∗

λi

)
.

Moreover, since λ > −γ
∑

i>k∗ λi,

λ ≤λ +
∑
i>k∗

λi,

∑
i>k∗

λi ≤
1

1 − γ

(
λ +

∑
i>k∗

λi

)

λk∗+1(t + n) ≤b−1(1 + t/n)

(
λ +

∑
i>k∗

λi

)
.

Thus, with probability at least 1 − δ − 8e−t/c4

µn(Ak∗) ≥ 1

L

(
1 −

√
tσ2
x√

n(1 − γ)

)
(1 − b−1)

(
λ +

∑
i>k∗

λi

)
,

µ1(Ak∗) ≤
(
c3σ

2
x

(
1

1 − γ
+

1

b

(
1 +

t

n

))
+ 1

)(
λ +

∑
i>k∗

λi

)
.

Taking c5 large enough (depending on L, b, σx and γ) and plugging in t = n/c5 gives the
result for c = max(8, c4c5) and

L′ =

(
c3σ

2
x

(
1

1 − γ
+

1

b

(
1 + c−1

5

))
+ 1

)
÷
(

1

L

(
1 − σ2

x√
c5(1 − γ)

)
(1 − b−1)

)
.

The derivation of NoncritReg(k∗, γ) is obvious: indeed, assumption NoncritReg(k, γ)
states that

λ > −γ
∑
i>k

λi.
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Since k∗ ≥ k,
∑

i>k λi ≤
∑

i>k∗ λi, so

λ > −γ
∑
i>k∗

λi,

which is exactly assumption NoncritReg(k∗, γ).

A.5 Lower bounds

We reuse a very convenient tool for proving lower bounds: Lemma 77 from Appendix A.2.
We restate it below for convenience.

Lemma 77. Suppose that {ηi}pi=1 is a sequence of non-negative random variables, and that
{ti}pi=1 is a sequence of non-negative real numbers (at least one of which is strictly positive)
such that, for some δ ∈ (0, 1) for any i ≤ p with probability at least 1− δ, ηi > ti. Then with
probability at least 1 − 2δ,

n∑
i=1

ηi ≥
1

2

p∑
i=1

ti.

It turns out to be quite straightforward to express bias and variance terms as sums of
non-negative series. This lemma allows us to give a separate high probability lower bound
for each term in the series to obtain the high probability lower bound for the whole sum.

Variance term

The argument for lower bounding the variance term is the same as in Appendix A.2. We
repeat it here because the result there was stated in a different form and in the ridgeless
setting only. Small changes are required to deal with possibly negative regularization.

Lemma 22 (Lower bound for the variance term). Fix any constant γ ∈ [0, 1). There
exists a constant c that only depends on σx and γ s.t. for any k < n/c under assumptions
NoncritReg(k, γ) and IndepCoord w.p. at least 1 − ce−n/c

V ≥ 1

cn

∑
i=1

min

{
1,

λ2
i

λ2
k+1(ρk + 1)2

}
.

Proof. The variance term can be written as

V = tr
(
ΣX⊤A−2X

)
=

∞∑
i=1

λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−izi)

2
,

where zi are columns of matrix Z (recall that Z = XΣ−1/2). Note that every term in this
sum is non-negative, even if A−i is not PSD. Denote A−i+ to be the PSD square root of A2

−i,
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i.e., the matrix with the same eigendecomposition as A−i, but with eigenvalues substituted
by their absolute values. It immediately follows that

V ≥
∞∑
i=1

λ2
iz

⊤
i A

−2
−izi

(1 + λiz⊤
i A

−1
−i+zi)

2
,

By Cauchy-Schwartz we have

∥zi∥2 · z⊤
i A

−2
−izi ≥ (z⊤

i A
−1
−i+zi)

2.

Thus,

V ≥
∞∑
i=1

1

∥zi∥2
(
1 + (λiz⊤

i A
−1
−i+zi)

−1
)2 .

Now our goal is to lower-bound the largest eigenvalues of A−1
−i+. Let’s write

A−i = λIn +
∑
j ̸=i

λjzjz
⊤
j .

The idea is, as always, to separate the first k coordinates. Our initial goal is to bound the
norm of

∑
j ̸=i,j>k λjzjz

⊤
j . Using Lemma 84, for some absolute constant c1 and for any t > 0,

with probability at least 1 − 6e−t/c1 ,∥∥∥∥∥ ∑
j ̸=i,j>k

λjzjz
⊤
j

∥∥∥∥∥ ≤

∥∥∥∥∥∑
j>k

λjzjz
⊤
j

∥∥∥∥∥ = ∥Xk:∞X⊤
k:∞∥ ≤ c1σ

2
x

(
λk+1(t + n) +

∑
i>k

λi

)

The matrix
∑

j ̸=i λjzjz
⊤
j is a correction to

∑
j ̸=i,j>k λjzjz

⊤
j of rank at most k. Therefore,

with probability at least 1 − 6e−t/c1 the bottom n− k eigenvalues of
∑

j ̸=i λjzjz
⊤
j lie in the

segment from 0 to c1σ
2
x

(
λk+1(t + n) +

∑
i>k λi

)
. The matrix A−i has the same eigenvalues,

but with λ added to each one, so on the same event all the eigenvalues of A−i are from λ to
λ + c1σ

2
x

(
λk+1(t + n) +

∑
i>k λi

)
. We can write

c1σ
2
x

(
λk+1(t + n) +

∑
i>k

λi

)
+ λ

≤c1σ
2
x

(
λk+1(t + n) +

1

1 − γ

(
λ +

∑
i>k

λi

))
+

γ

1 − γ

(
λ +

∑
i>k

λi

)
,

where we used that λ > −γ
∑

i>k λi in the second line (for λ < 0 it implies |λ| < γ
∑

i>k λi).
Moreover, for the left end of the segment we also have that either λ > 0 or

|λ| ≤ γ
∑
i>k

λi ≤
γ

1 − γ

(
λ +

∑
i>k

λi

)
.



APPENDIX A. PROOFS FOR CHAPTER 2 137

Thus, for some constant c2 which only depends on σ and γ, for any i with probability at
least 1 − 6e−n/c2 , for any j > k

|µj(Ai)| ≤ c2

(
λk+1n + λ +

∑
i>k

λi

)
.

In words, with high probability the matrix A−i has at least n − k eigenvalues whose
magnitude is bounded by c2

(
λk+1n + λ +

∑
i>k λi

)
. Recall that A−i+ is PSD with the same

magnitudes of the eienvalues. Denote P i,k to be the projector on the linear space spanned by
the first k eigenvectors of A−i+. We can now write that with probability at least 1− 6e−n/c2

z⊤
i A

−1
−i+zi ≥ ∥(I − P i,k)zi∥2c−1

2

(
λk+1n + λ +

∑
i>k

λi

)−1

Since zi is independent of P i,k, by Theorem 6.2.1 (Hanson-Wright inequality) in [55], for
some absolute constant c2 and for any t > 0,

P
{∣∣∥P i,kzi∥2 − Ezi

∥P i,kzi∥2
∣∣ ≥ t

}
≤ 2 exp

(
−c−1

2 min

{
t2

σ4
x∥P 2

i,k∥2F
,

t

σ2
x∥P 2

i,k∥

})
.

We have ∥P 2
i,k∥2F = k, ∥P 2

i,k∥ = 1, and Ezi
∥P i,kzi∥2 = tr(P i,k) = k since P i,k is an

orthogonal projector of rank kThus, w.p. at least 1 − 2e−t/c2 ,∣∣∥P i,kzi∥2 − k
∣∣ ≤ σ2

x max(
√
kt, t) ≤ (t +

√
kt)σ2

x.

Next, by Lemma 81 for some constant c3 and any t ∈ (0, n) w.p. at least 1 − 2e−t/c3 ,

n−
√
ntσ2

x ≤ ∥zi∥2 ≤ n +
√
ntσ2

x.

Take constant c4 large enough depending on σx and set t = n/c4. Then for any k < n/c5,
w.p. at least 1 − 10e−n/c6 − δ,

z⊤
i A

−1
−i+zi ≥

n

c7
(
λk+1n + λ +

∑
i>k λi

) ,
where constants c5 and c6 depend only on σx and constant c7 depends only on σx and γ.

Rewrite this equation as

(z⊤
i A

−1
−i+zi)

−1 ≤ c7

(
λk+1 +

1

n

(
λ +

∑
i>k

λi

))
= c7λk+1(ρk + 1),

where ρk := 1
nλk+1

(
λ +

∑
i>k λi

)
.
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On the same event

1

∥zi∥2
(
1 + (λiz⊤

i A
−1
−i+zi)

−1
)2 ≥ 1

c8n
(

1 + λk+1

λi
(ρk + 1)

)2 ,
where c8 depends only on σx and γ.

Finally, by Lemma 77, we can convert lower bounds for separate non-negative terms into
a lower bound on their sum: with probability at least 1 − 20e−n/c6 ,

V ≥ 1

8c8n

p∑
i=1

min

{
1,

λ2
i

λ2
k+1(ρk + 1)2

}
,

where we also used that 1/(a + b)2 ≥ min(a−2, b−2)/4 for non-negative a, b.

Bias term

Lemma 23 (Lower bound for the bias term). Fix any constant L > 0. There exists c that
only depends on σx and L s.t. for any k ∈ {1, 2, . . . , p} under assumptions PriorSigns(θ̄)
and StableLowEig(k, δ, L) w.p. at least 1 − 2δ − ce−n/c

Eθ∗B ≥ 1

c

∑
i

λiθ̄
2
i(

1 + λi
λk+1ρk

)2 ,
where Eθ∗ denotes the expectation over the random draw of θ∗ from the prior distribution
described in assumption PriorSigns(θ̄).

Proof. Applying Sherman-Morrison-Woodbury yields(
λIp + X⊤X

)−1
= λ−1Ip − λ−2X⊤(In + λ−1XX⊤)−1X.

So, (
λIp + X⊤X

)−1
X⊤X − Ip =

(
λIp + X⊤X

)−1
(λIp + X⊤X − λIp) − Ip

= − λ
(
λIp + X⊤X

)−1

=Ip − λ−1X⊤(In + λ−1XX⊤)−1X

=Ip −X⊤(λIn + XX⊤)−1X.

Thus, the bias term becomes

(θ∗)⊤
(
Ip −X⊤(λIn + XX⊤)−1X

)
Σ
(
Ip −X⊤(λIn + XX⊤)−1X

)
θ∗
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and taking expectation over the prior kills all the off-diagonal elements, so

Eθ∗B =
∑
i

((
Ip −X⊤(λIn + XX⊤)−1X

)
Σ
(
Ip −X⊤(λIn + XX⊤)−1X

))
[i, i] · θ̄2

i .

Let’s compute the diagonal elements of the matrix(
Ip −X⊤(λIn + XX⊤)−1X

)
Σ
(
Ip −X⊤(λIn + XX⊤)−1X

)
.

The i-th diagonal element is equal to the bias term for the case when θ∗ = ei — the
i-th vector of the standard orthonormal basis. Note that the i-th row of Ip − X⊤(λIn +
XX⊤)−1X is equal to ei −

√
λiz

⊤
i (λIn + XX⊤)−1X, so the i-th diagonal element of the

initial matrix is given by

p∑
j=1

λi

(
ei[j] −

√
λiλjz

⊤
i (λIn + XX⊤)−1zj

)2
λi
(
1 − λiz

⊤
i A

−1zi
)2

+
∑
j ̸=i

λiλ
2
j(z

⊤
i A

−1zj)
2.

Recall that A = λIn +
∑p

i=0 λiziz
⊤
i , A−i := A− λiziz

⊤
i .

First, let’s use Sherman-Morrison identity to convert A in z⊤
i A

−1zi into A−i:

1 − λiz
⊤
i A

−1zi =1 − λiz
⊤
i

(
A−i + λiziz

⊤
i

)−1
zi

=1 − λiz
⊤
i

(
A−1

−i − λiA
−1
−izi(1 + z⊤

i A
−1
−izi)

−1z⊤
i A

−1
−i
)
zi

=1 − λiz
⊤
i A

−1
−izi +

(
λiz

⊤
i A

−1
−izi

)2
1 + λiz⊤

i A
−1
−izi

=
1

1 + λiz⊤
i A

−1
−izi

.

So the diagonal element becomes

λi

(1 + λiz⊤
i A

−1
−izi)

2
+
∑
j ̸=i

λiλ
2
j(z

⊤
i A

−1zj)
2 ≥ λi

(1 + λiz⊤
i A

−1
−izi)

2
,

and thus

Eθ∗B ≥
∑
i

λiθ̄
2
i

(1 + λiz⊤
i A

−1
−izi)

2
.

Let’s bound each term in that sum from below with high probability. By our assumptions,
for any i with probability at least 1 − δ

µn(A−i) ≥
1

L

(
λ +

∑
j>k

λj

)
.
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Next,
λi

(1 + λiz⊤
i A

−1
−izi)

2
≥ λi

(1 + λiµn(A−i)−1∥zi∥2)2
,

and by Lemma 81 for some absolute constant c1 for any t ∈ (0, n) w.p. at least 1−2e−t/c1 we
have ∥zi∥2 ≤ n−

√
tnσ2

x ≤ n/2, where the last transition is true if additionally t ≤ n/(4σ4
x).

Recall that ρk :=
λ+

∑
j>k λj

nλk+1
. We obtain by plugging t = n/(4σ4

x) that w.p. at least

1 − δ − 2e−n/c2 ,

λiθ̄
2
i

(1 + λiz⊤
i A

−1
−izi)

2
≥ λiθ̄

2
i(

1 + Lλi
2λk+1ρk

)2 ,
where c2 only depends on σx.

Finally, since all the terms are non-negative and we need to obtain a lower bound on
their sum, Lemma 77 gives the result.

Lemma 24. For any γ < 1 there exists a constant c that only depends on γ and σx such
that if assumptions CondNum(k, δ, L), NoncritReg(k, γ) and ExchCoord are satisfied for some
L ≥ 1 and k ∈ {1, 2, . . . , p}, then StableLowEig(k, δ + 2e−n/c, cL) is also satisfied.

Proof. First of all, note that Assumption NoncritReg(k, γ) with γ < 1 directly implies that
λ +

∑
i>k λi ≥ 0, which is the second part of Assumption StableLowEig(k, δ, L).

Next, by Lemma 85 for some absolute constant c1 for any t ∈ (0, n) with probability at
least 1 − δ − 2e−ct

µn(Ak) ≥
1

L

(
1 −

√
tσ2
x√

n(1 − γ)

)(
λ +

∑
i>k

λi

)
.

Taking t = n/c2 where c2 is large enough depending on γ, σx we get that for c large enough
with probability at least 1 − 2e−n/c

µn(Ak) ≥
1

cL

(
λ +

∑
i>k

λi

)
.

Now we just need to propagate that result to A−i for all i.
For i ≤ k, we simply have A−i ⪰ Ak (that is,A−i is at least as large as Ak in the sense

of Loewner order) with probability 1, so indeed ∀i ≤ k

P

(
µn(A−i) ≥

1

cL

(
λ +

∑
i>k

λi

))
≥ P

(
µn(Ak) ≥

1

cL

(
λ +

∑
i>k

λi

))
≥ 1 − 2e−n/c.
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When it comes to i > k, we can write

A−i =λIn +
∑
j ̸=i

λjzjz
⊤
j

=λIn +
∑
j≤k

λjzjz
⊤
j +

∑
j>k,j ̸=i

λjzjz
⊤
j

⪰λIn + λ1z1z
⊤
1 +

∑
j>k,j ̸=i

λjzjz
⊤
j

⪰λIn + λiz1z
⊤
1 +

∑
j>k,j ̸=i

λjzjz
⊤
j .

Now note that due to Assumption ExchCoord, the distribution of the matrix λIn+λiz1z
⊤
1 +∑

j>k,j ̸=i λjzjz
⊤
j is the same as the distribution of Ak = λIn +

∑
j>k λjzjz

⊤
j . Therefore

P

(
µn(A−i) ≥

1

cL

(
λ +

∑
i>k

λi

))

≥P

(
µn

(
λIn + λiz1z

⊤
1 +

∑
j>k,j ̸=i

λjzjz
⊤
j

)
≥ 1

cL

(
λ +

∑
i>k

λi

))

=P

(
µn(Ak) ≥

1

cL

(
λ +

∑
i>k

λi

))
≥1 − 2e−n/c,

which finishes the proof.

A.6 Deriving a useful identity

Motivated by the results of Section 2.3, we split the principal directions of the covariance
matrix into two parts: small dimensional and high dimensional. The main idea of our
argument is to use classical machinery (like some sort of uniform convergence argument)
in the small dimensional subspace. To do this we write θ̂(y)⊤ =

[
θ̂(y)⊤0:k, θ̂(y)⊤k:∞

]
and

mentally split the search process for θ̂(y) into two parts: first, for any fixed θ0:k, optimize
for θk:∞. Then only the first k coordinates are left. The result of that optimization in θk:∞
is the following identity:

θ̂(y)0:k + X⊤
0:kA

−1
k X0:kθ̂(y)0:k = X⊤

0:kA
−1
k y. (A.7)

The goal of this section is to derive this identity.
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Derivation in the ridgeless case

In the ridgeless case we are simply dealing with projections, and θ̂(y) is the minimum norm
interpolating solution. Note that θ̂(y)k:∞ is also the minimum norm solution to the equation
Xk:∞θk:∞ = y −X0:kθ̂(y)0:k, where θk:∞ is the variable. Thus, we can write

θ̂(y)k:∞ = X⊤
k:∞
(
Xk:∞X⊤

k:∞
)−1
(
y −X0:kθ̂(y)0:k

)
.

Now we need to minimize the norm in θ̂(y)0:k (our choice of θ̂(y)k:∞ already makes the
solution interpolating): we need to minimize the norm of the following vector:

v(θ0:k) =
[
θ⊤
0:k, (y −X0:kθ0:k)

⊤ (Xk:∞X⊤
k:∞
)−1

Xk:∞

]
As θ0:k varies, this vector sweeps an affine subspace of our Hilbert space. The vec-

tor θ̂(y)0:k gives the minimum norm if and only if for any additional vector η0:k we have
v(θ̂(y)0:k) ⊥ v(θ̂(y)0:k + η0:k) − v(θ̂(y)0:k). Let’s write out the second vector: ∀η0:k ∈ Rk

v(θ̂(y)0:k + η0:k) − v(θ̂(y)0:k) =
[
η⊤
0:k,−η⊤

0:kX
⊤
0:k

(
Xk:∞X⊤

k:∞
)−1

Xk:∞

]
We see that the above mentioned orthogonality for any η0:k is equivalent to the following:

θ̂(y)⊤0:k −
(
y −X0:kθ̂(y)0:k

)⊤ (
Xk:∞X⊤

k:∞
)−1

X0:k = 0,

θ̂(y)0:k + X⊤
0:kA

−1
k X0:kθ̂(y)0:k = X⊤

0:kA
−1
k y,

where we replaced Xk:∞X⊤
k:∞ =: Ak.

Checking for the case of non-vanishing regularization

So, now we have λ ̸= 0 and we want to prove that θ̂(y)0:k+X⊤
0:kA

−1
k X0:kθ̂(y)0:k = X⊤

0:kA
−1
k y.

Recall that

θ̂(y) =X⊤(λIn + XX⊤)−1y,

θ̂(y)0:k =X⊤
0:k(Ak + X0:kX

⊤
0:k)

−1y.

This identity yields

θ̂(y)0:k + X⊤
0:kA

−1
k X0:kθ̂(y)0:k

=X⊤
0:k(Ak + X0:kX

⊤
0:k)

−1y + X⊤
0:kA

−1
k X0:kX

⊤
0:k(Ak + X0:kX

⊤
0:k)

−1y

=X⊤
0:kA

−1
k (Ak + X0:kX

⊤
0:k)(Ak + X0:kX

⊤
0:k)

−1y

=X⊤
0:kA

−1
k y.
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A.7 Variance

Recall that the variance term is

V =
1

v2ε
Eε∥θ̂(ε)∥2Σ =

1

v2ε
Eε∥X⊤(λIn + XX⊤)−1ε∥2Σ.

In this section we prove the following lemma.

Lemma 86. If for some k < n the matrix Ak is PD, then

V ≤ µ1(A
−1
k )2tr(X0:kΣ

−1
0:kX

⊤
0:k)

µn(A−1
k )2µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)2 + µ1(A
−1
k )2tr(Xk:∞Σk:∞X⊤

k:∞).

Note that the RHS of the inequality above is straightforward to estimate if one knows
the spectrum of Ak. Indeed, the matrices X0:kΣ

−1
0:kX

⊤
0:k and Xk:∞Σk:∞X⊤

k:∞ have i.i.d.
elements on their diagonals, so their traces concentrate around expectations:

tr(X0:kΣ
−1
0:kX

⊤
0:k) ≈ kn and tr(Xk:∞Σk:∞X⊤

k:∞) ≈ n
∑
i>k

λ2
i .

When it comes to the matrix Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k /n, this is just a sample covariance

matrix of n isotropic vectors in k-dimensional space. Since k is small compared to n, it
concentrates around the identity. Thus,

µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
≈ n.

These computations are done rigorously in the proof of Theorem 20.

First k components

It was shown in Section A.6 that the following identity holds (c.f. (A.7)):

X⊤
0:kA

−1
k ε = θ̂(ε)0:k + X⊤

0:kA
−1
k X0:kθ̂(ε)0:k.

Multiplying the identity by θ̂(ε)⊤0:k from the left, and using that θ̂(ε)⊤0:kθ̂(ε)0:k ≥ 0 we get

θ̂(ε)⊤0:kX
⊤
0:kA

−1
k ε ≥ θ̂(ε)⊤0:kX

⊤
0:kA

−1
k X0:kθ̂(ε)0:k. (A.8)

The leftmost expression is linear in θ̂(ε)0:k, and the rightmost is quadratic. We use these
expressions to bound ∥θ̂(ε)0:k∥Σ0:k

.
First, we extract that norm from the quadratic part

θ̂(ε)⊤0:kX
⊤
0:kA

−1
k X0:kθ̂(ε)0:k ≥µn(A−1

k )θ̂(ε)⊤0:kX
⊤
0:kX0:kθ̂(ε)0:k

≥µn(A−1
k )∥θ̂(ε)0:k∥2Σ0:k

µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
.



APPENDIX A. PROOFS FOR CHAPTER 2 144

Then we can substitute (A.8) and apply Cauchy-Schwarz to obtain

∥θ̂(ε)0:k∥2Σ0:k
µn(A−1

k )µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
≤ θ̂(ε)⊤0:kX

⊤
0:kA

−1
k X0:kθ̂(ε)0:k

≤ θ̂(ε)⊤0:kX
⊤
0:kA

−1
k ε

≤ ∥θ̂(ε)0:k∥Σ0:k

∥∥∥Σ−1/2
0:k X⊤

0:kA
−1
k ε
∥∥∥ ,

and so

∥θ̂(ε)0:k∥2Σ0:k
≤ ε⊤A−1

k X0:kΣ
−1
0:kX

⊤
0:kA

−1
k ε

µn(A−1
k )2µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)2 .
Since ε is independent of X, taking expectation in ε only leaves the trace in the numerator:

1

v2ε
Eε∥θ̂(ε)0:k∥2Σ0:k

≤ tr(A−1
k X0:kΣ

−1
0:kX

⊤
0:kA

−1
k )

µn(A−1
k )2µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)2
≤ µ1(A

−1
k )2tr(X0:kΣ

−1
0:kX

⊤
0:k)

µn(A−1
k )2µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)2 ,
where we transitioned to the second line by using the fact that tr(MM ′M ) ≤ µ1(M)2tr(M ′)
for PD matrices M ,M ′.

Components starting from k + 1-st

The rest of the variance term is∥∥∥Σ1/2
k:∞X⊤

k:∞A−1ε
∥∥∥2 = ε⊤A−1Xk:∞Σk:∞X⊤

k:∞A−1ε.

Since ε is independent of X, taking expectation in ε only leaves the trace of the matrix:

1

v2ε
Eε

∥∥∥Σ1/2
k:∞X⊤

k:∞A−1ε
∥∥∥2 =tr(A−1Xk:∞Σk:∞X⊤

k:∞A−1)

≤µ1(A
−1)2tr(Xk:∞Σk:∞X⊤

k:∞)

≤µ1(A
−1
k )2tr(Xk:∞Σk:∞X⊤

k:∞).

Here we again used the fact that tr(MM ′M) ≤ µ1(M )2tr(M ′) for PD matrices M ,M ′ to
transition to the second line. We then used A ⪰ Ak to infer µ1(A

−1) ≤ µ1(A
−1
k ).
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A.8 Bias

The bias term is given by ∥θ∗ − θ̂(Xθ∗)∥2Σ. In this section we prove the following

Lemma 87 (Bias term). Suppose that for some k < n the matrix Ak is PD. Then there
exists an absolute constant c such that

∥θ∗ − θ̂(Xθ∗)∥2Σ/c

≤ ∥θ∗
k:∞∥2Σk:∞

+
µ1(A

−1
k )2

µn(A−1
k )2

µ1

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)2∥Xk:∞θ∗
k:∞∥2

+
∥θ∗

0:k∥2Σ−1
0:k

µn(A−1
k )2µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)2
+ λk+1

(
1 + max(0,−λ)µ1(A

−1
k )
)
µ1(A

−1)∥Xk:∞θ∗
k:∞∥2

+ λk+1

(
1 + max(0,−λ)µ1(A

−1
k )
) µ1(A

−1
k )

µn(A−1
k )2

µ1(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )

µk(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )2

∥Σ−1/2
0:k θ∗

0:k∥2.

First k components

We need to bound ∥θ∗
0:k− θ̂(y)0:k(λ,Xθ∗)∥2Σ0:k

. By Section A.6, in particular identity (A.7),
we have

θ̂(Xθ∗)0:k + X⊤
0:kA

−1
k X0:kθ̂(Xθ∗)0:k = X⊤

0:kA
−1
k Xθ∗.

Denote the error vector as ζ := θ̂(Xθ∗) − θ∗. We can rewrite the equation above as

ζ0:k + X⊤
0:kA

−1
k X0:kζ0:k = X⊤

0:kA
−1
k Xk:∞θ∗

k:∞ − θ∗
0:k.

Multiplying both sides by ζ⊤
0:k from the left and using that ζ⊤

0:kζ0:k = ∥ζ0:k∥2 ≥ 0 we
obtain

ζ⊤
0:kX

⊤
0:kA

−1
k X0:kζ0:k ≤ ζ⊤

0:kX
⊤
0:kA

−1
k Xk:∞θ∗

k:∞ − ζ⊤
0:kθ

∗
0:k.

Next, divide and multiply by Σ
1/2
0:k in several places:

ζ⊤
0:kΣ

1/2
0:kΣ

−1/2
0:k X⊤

0:kA
−1
k X0:kΣ

−1/2
0:k Σ

1/2
0:k ζ0:k ≤ζ⊤

0:kΣ
1/2
0:kΣ

−1/2
0:k X⊤

0:kA
−1
k Xk:∞θ∗

k:∞

− ζ⊤
0:kΣ

1/2
0:kΣ

−1/2
0:k θ∗

0:k.

Now we pull out the lowest singular values of the matrices in the LHS and largest singular
values of the matrices in the RHS to obtain lower and upper bounds respectively, yielding

∥ζ0:k∥2Σ0:k
µn(A−1

k )µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
≤ ∥ζ0:k∥Σ0:k

µ1(A
−1
k )

√
µ1

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
∥Xk:∞θ∗

k:∞∥

+ ∥ζ0:k∥Σ0:k
∥θ∗

0:k∥Σ−1
0:k
,
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and so

∥ζ0:k∥Σ0:k
≤µ1(A

−1
k )

µn(A−1
k )

µ1

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)1/2
µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

) ∥Xk:∞θ∗
k:∞∥

+
∥θ∗

0:k∥Σ−1
0:k

µn(A−1
k )µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

) .
The rest of the components

Recall that the full bias term is ∥(Ip−X⊤(λIn+XX⊤)−1X)θ∗∥2Σ and that A = λIn+XX⊤.
The contribution of the components of ζ, starting from the k+1st can be bounded as follows:

∥θ∗
k:∞ −X⊤

k:∞A−1Xθ∗∥2Σk:∞

≤ 3
(
∥θ∗

k:∞∥2Σk:∞
+ ∥X⊤

k:∞A−1Xk:∞θ∗
k:∞∥2Σk:∞

+ ∥X⊤
k:∞A−1X0:kθ

∗
0:k∥2Σk:∞

)
.

First of all, let’s deal with the second term:

∥X⊤
k:∞A−1Xk:∞θ∗

k:∞∥2Σk:∞
=∥Σ1/2

k:∞X⊤
k:∞A−1Xk:∞θ∗

k:∞∥2

≤∥Σk:∞∥∥X⊤
k:∞A−1Xk:∞θ∗

k:∞∥2

=λk+1(θ
∗
k:∞)⊤X⊤

k:∞A−1 (A− λIn −X0:kX
⊤
0:k)︸ ︷︷ ︸

Xk:∞X⊤
k:∞

A−1Xk:∞θ∗
k:∞

≤λk+1(θ
∗
k:∞)⊤X⊤

k:∞A−1
(
A + max(0,−λ)In

)
A−1Xk:∞θ∗

k:∞

≤λk+1

(
µ1(A

−1) + max(0,−λ)µ1(A
−1)2

)
∥Xk:∞θ∗

k:∞∥2

≤λk+1

(
1 + max(0,−λ)µ1(A

−1
k )
)
µ1(A

−1
k )∥Xk:∞θ∗

k:∞∥2,

where we used that µ1(A
−1
k ) ≥ µ1(A

−1) in the last transition.
Now, let’s deal with the last term. Note that A = Ak + X0:kX

⊤
0:k. By the Sher-

man–Morrison–Woodbury formula,

A−1X0:k =(A−1
k + X0:kX

⊤
0:k)

−1X0:k

=
(
A−1
k −A−1

k X0:k

(
Ik + X⊤

0:kA
−1
k X0:k

)−1
XT

0:kA
−1
k

)
X0:k

=A−1
k X0:k

(
In −

(
Ik + X⊤

0:kA
−1
k X0:k

)−1
XT

0:kA
−1
k X0:k

)
=A−1

k X0:k

(
In −

(
Ik + X⊤

0:kA
−1
k X0:k

)−1 (
Ik + XT

0:kA
−1
k X0:k − Ik

))
=A−1

k X0:k

(
Ik + X⊤

0:kA
−1
k X0:k

)−1
.
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Thus,

∥X⊤
k:∞A−1X0:kθ

∗
0:k∥2Σk:∞

=∥X⊤
k:∞A−1

k X0:k

(
Ik + X⊤

0:kA
−1
k X0:k

)−1
θ∗
0:k∥2Σk:∞

=∥Σ1/2
k:∞X⊤

k:∞A−1
k X0:kΣ

−1/2
0:k

(
Σ−1

0:k + Σ
−1/2
0:k X⊤

0:kA
−1
k X0:kΣ

−1/2
0:k

)−1

Σ
−1/2
0:k θ∗

0:k∥2

≤∥A−1/2
k Xk:∞Σk:∞X⊤

k:∞A
−1/2
k ∥µ1(A

−1/2
k )2

µ1(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )

µk(Σ
−1/2
0:k X⊤

0:kA
−1
k X0:kΣ

−1/2
0:k )2

∥Σ−1/2
0:k θ∗

0:k∥2

≤∥Σk:∞∥∥A−1/2
k Xk:∞X⊤

k:∞A
−1/2
k ∥ µ1(A

−1
k )

µn(A−1
k )2

µ1(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )

µk(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )2

∥Σ−1/2
0:k θ∗

0:k∥2

=λ1∥In − λA−1
k ∥ µ1(A

−1
k )

µn(A−1
k )2

µ1(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )

µk(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )2

∥Σ−1/2
0:k θ∗

0:k∥2

≤λ1

(
1 + max(0,−λ)µ1(A

−1
k )
) µ1(A

−1
k )

µn(A−1
k )2

µ1(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )

µk(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )2

∥Σ−1/2
0:k θ∗

0:k∥2,

where in the last transition we used the fact that In − λA−1
k is a PSD matrix with norm

bounded by 1 for λ > 0.
Putting those bounds together yields the result.

A.9 Main results

Upper bound on the prediction MSE

Theorem 20. There exists a (large) constant c, which only depends on σx, s.t. for any
k < n/c with probability at least 1 − ce−n/c, if the matrix Ak is PD, then

B/c ≤∥θ∗
k:∞∥2Σk:∞

(
1 +

µ1(A
−1
k )2

µn(A−1
k )2

+ nλk+1µ1(A
−1
k )
(
1 + max(0,−λ)µ1(A

−1
k )
))

+∥θ∗
0:k∥2Σ−1

0:k

(
1

n2µn(A−1
k )2

+
λk+1

n

µ1(A
−1
k )

µn(A−1
k )2

(
1 + max(0,−λ)µ1(A

−1
k )
))

,

V/c ≤µ1(A
−1
k )2

µn(A−1
k )2

k

n
+ nµ1(A

−1
k )2

∑
i>k

λ2
i .

Proof. Lemmas 86 and 87 bound the bias and variance on the event that Ak is PD. Next
to those lemmas we already put explanations of why those bounds are easy to assess via
concentration arguments. Here we just do this rigorously.
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Recall the bounds from Lemmas 86 and 87: for some absolute constant c

B/c ≤∥θ∗
k:∞∥2Σk:∞

(A.9)

+
µ1(A

−1
k )2

µn(A−1
k )2

µ1

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)2∥Xk:∞θ∗
k:∞∥2 (A.10)

+
∥θ∗

0:k∥2Σ−1
0:k

µn(A−1
k )2µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)2 (A.11)

+λk+1

(
1 + max(0,−λ)µ1(A

−1
k )
)
µ1(A

−1)∥Xk:∞θ∗
k:∞∥2 (A.12)

+λk+1

(
1 + max(0,−λ)µ1(A

−1
k )
) µ1(A

−1
k )

µn(A−1
k )2

µ1(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )

µk(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )2

∥Σ−1/2
0:k θ∗

0:k∥2,

(A.13)

V/c ≤ µ1(A
−1
k )2tr(X0:kΣ

−1
0:kX

⊤
0:k)

µn(A−1
k )2µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)2 (A.14)

+µ1(A
−1
k )2tr(Xk:∞Σk:∞X⊤

k:∞), (A.15)

where the first four terms correspond to the bias and the last two to the variance. By
inspecting that expression one can notice that it consists of some products of simple quantities
that could be assessed individually. Namely, those quantities are:

1. µ1(A
−1
k ) and µn(A−1

k ) — smallest and largest singular values of Ak. In this theorem
we assume that those quantities are known or there is some oracle control over them.

2. µ1

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
and µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
.

The matrix X0:kΣ
−1/2
0:k ∈ Rk×n has n i.i.d. columns with isotropic sub-Gaussian dis-

tribution in Rk. The matrix Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k /n is the sample covariance matrix

of those columns, so when k ≪ n it concentrates around its expectation, which is Ik.
More precisely, by Theorem 5.39 in [56], for some constants c′x, C

′
x (which only depend

on σx ) for every t > 0 s.t.
√
n− C ′

x

√
k −

√
t > 0, with probability 1 − 2 exp(−c′xt),

µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
≥
(√

n− C ′
x

√
k −

√
t
)2

, (A.16)

µ1

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
≤
(√

n + C ′
x

√
k +

√
t
)2

. (A.17)

3. tr
(
X0:kΣ

−1
0:kX

⊤
0:k

)
and tr

(
Xk:∞Σk:∞X⊤

k:∞
)
.

tr
(
X0:kΣ

−1
0:kX

⊤
0:k

)
is the sum of squared norms of columns of Σ

−1/2
0:k X⊤

0:k, which are n

i.i.d. isotropic vectors in Rk. Analogously, tr
(
Xk:∞Σk:∞X⊤

k:∞
)

is the sum of squared
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norms of n i.i.d. sub-Gaussian vectors with covariance Σ2
k:∞. Therefore, they con-

centrate around their expectations by the law of large numbers. More precisely, by
Lemma 81 with probability at least 1 − 4e−c2t,

tr
(
X0:kΣ

−1
0:kX

⊤
0:k

)
≤ (n +

√
tnσ2

x)k,

tr
(
Xk:∞Σk:∞X⊤

k:∞
)
≤ (n +

√
tnσ2

x)
∑
i>k

λ2
i .

4. ∥Xk:∞θ∗
k:∞∥2.

Once again, this quantity concentrates by the law of large numbers. The vector
Xk:∞θ∗

k:∞/∥θ∗
k:∞∥Σk:∞ has n i.i.d. centered components with unit variances and sub-

Gaussian norms at most σx. Treating those components as sub-Gaussian vectors in
R1, we can apply Lemma 81 to get that for any t ∈ (0, n), with probability at least
1 − 2e−c2t,

∥Xk:∞θ∗
k:∞∥2 ≤ (n +

√
tnσ2

x)∥θ∗
k:∞∥2Σk:∞

.

Now take constant c4 to be large enough depending on σx and set t = n/c4. For some
constant c5 which only depends on σx we get that with probability at least 1 − c5e

−n/c5 , all
the following inequalities hold at the same time:

µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
≥n/c5,

µ1

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
≤c5n,

∥Xk:∞θ∗
k:∞∥2 ≤c5n∥θ∗

k:∞∥2Σk:∞
,

∥Xk:∞Σk:∞,

tr
(
X0:kΣ

−1
0:kX

⊤
0:k

)
≤c5nk,

tr
(
Xk:∞Σk:∞X⊤

k:∞
)
≤c5n

∑
i>k

λ2
i .

(A.18)

Next, plug these bounds into (A.10)–(A.15):

µ1(A
−1
k )2

µn(A−1
k )2

µ1

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)
µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)2∥Xk:∞θ∗
k:∞∥2 ≤ c35

µ1(A
−1
k )2

µn(A−1
k )2

∥θ∗
k:∞∥2Σk:∞

,

∥θ∗
0:k∥2Σ−1

0:k

µn(A−1
k )2µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)2 ≤ c25

∥θ∗
0:k∥2Σ−1

0:k

µn(A−1
k )2n2

,

λk+1

(
1 + max(0,−λ)µ1(A

−1
k )
)
µ1(A

−1)∥Xk:∞θ∗
k:∞∥2 ≤

≤ c25λk+1

(
1 + max(0,−λ)µ1(A

−1
k )
)
µ1(A

−1
k )n∥θ∗

k:∞∥2Σk:∞
,



APPENDIX A. PROOFS FOR CHAPTER 2 150

λk+1

(
1 + max(0,−λ)µ1(A

−1
k )
) µ1(A

−1
k )

µn(A−1
k )2

µ1(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )

µk(Σ
−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k )2

∥Σ−1/2
0:k θ∗

0:k∥2 ≤

≤ c45λk+1

(
1 + max(0,−λ)µ1(A

−1
k )
) µ1(A

−1
k )

µn(A−1
k )2

1

n
∥θ∗

0:k∥2Σ−1
0:k
,

µ1(A
−1
k )2tr(X0:kΣ

−1
0:kX

⊤
0:k)

µn(A−1
k )2µk

(
Σ

−1/2
0:k X⊤

0:kX0:kΣ
−1/2
0:k

)2 ≤ c35
µ1(A

−1
k )2

µn(A−1
k )2

k

n
,

µ1(A
−1
k )2tr(Xk:∞Σk:∞X⊤

k:∞) ≤ c5µ1(A
−1
k )2n

∑
i>k

λ2
i .

Putting all the terms together gives the result.

Corollary 21. Fix any constants γ ∈ [0, 1) and L > 0. There exists a constant c that
only depends on σx, γ, L s.t. for any k < n/c and δ < 1 − ce−n/c under assumptions
NoncritReg(k, γ) and CondNum(k, δ, L), it holds that ρk > c−1, and with probability at least
1 − δ − ce−n/c,

B/c ≤∥θ∗
k:∞∥2Σk:∞

+ ∥θ∗
0:k∥2Σ−1

0:k

(
λ +

∑
i>k λi

n

)2

,

V/c ≤k

n
+

n
∑

i>k λ
2
i(

λ +
∑

i>k λi
)2 .

Proof. Almost all the work was already done in Lemma 85. It says that for some absolute
constant c1 and for any t ∈ (0, n) with probability at least 1 − δ − 2e−c1t,

µn(Ak) ≥
1

L

(
1 −

√
tσ2
x√

n(1 − γ)

)(
λ +

∑
i

λi

)
,

µ1(Ak) ≤L

(
1 −

√
tσ2
x√

n(1 − γ)

)(
λ +

∑
i

λi

)
.

Moreover, if δ < 1 − 4e−c1t, then

ρk ≥
1 − σ2

√
t/n

L + γ
1−γ +

√
tσ2L√
n(1−γ)

.

We just need to choose t, plug these bounds into the result of Theorem 20 and evaluate
the result up to multiplicative constants.
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First, choose constant c2 large enough depending on L, γ, σx , and put t = n/c2. State-
ments above imply that if δ < 1 − 4e−n/(c1c2), then for some constant c3 which only depends
on L, γ, σx, with probability at least 1 − δ − c2e

−n/(c1c2),

µn(A−1
k ) =µ1(Ak)

−1 ≥ 1

c3

(
λ +

∑
i

λi

)−1

,

µ1(A
−1
k ) =µn(Ak)

−1 ≤ 1

c3

(
λ +

∑
i

λi

)−1

,

ρk ≥
1

c3
.

These three inequalities allow us to evaluate the result of Theorem 20: let’s plug them
term-by-term:

• Since λ > −γ
∑

i>k λi,

max(0,−λ) ≤ γ

1 − γ

(
λ +

∑
i

λi

)
.

Thus,

1 + max(0,−λ)µ1(A
−1
k ) ≤ 1 +

γ

1 − γ
c3,

so this term is just a constant.

•

nλk+1µ1(A
−1
k ) ≤ c3nλk+1

(
λ +

∑
i

λi

)
= c3/ρk ≤ c23,

so this term is also just a constant.

•
1

n2µn(A−1
k )2

≤ c23
n

(
λ +

∑
i

λi

)2

.

•

λk+1

n

µ1(A
−1
k )

µn(A−1
k )2

≤ c33
n2

· nλk+1

(
λ +

∑
i

λi

)

=
c33
n2

· ρ−1
k

(
λ +

∑
i

λi

)2

≤ c43
n2

(
λ +

∑
i

λi

)2

.
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• µ1(A
−1
k )2

µn(A
−1
k )2

≤ L2 — also just a constant.

•

nµ1(A
−1
k )2 ≤ c23n

(
λ +

∑
i

λi

)−2

.

Plugging all these bounds in the statement of Theorem 20 gives the result for a large
enough c.

Upper bound matches the lower bound

In the next theorem we show that the upper bound given in Theorem 20 matches the lower
bounds from Lemmas 22 and 23 if we choose suitable k. Note that by Lemmas 85 and 26,
being able to control the condition number of Ak′ for some k′ < n implies that we can choose
a suitable k.

Theorem 25 (The lower bound is the same as the upper bound). Denote

B :=
∑
i

λi|θ∗i |2(
1 + λi

λk+1ρk

)2 ,
B := ∥θ∗

k:∞∥2Σk:∞
+ ∥θ∗

0:k∥2Σ−1
0:k

(
λ +

∑
i>k λi

n

)2

,

V :=
1

n

∑
i

min

{
1,

λ2
i

λ2
k+1(ρk + 1)2

}
,

V :=
k

n
+

n
∑

i>k λ
2
i(

λ +
∑

i>k λi
)2 .

Fix constants a > 0 and b > 1/n. There exists a constant c > 0 that only depends on a, b,
s.t. the following holds: if either ρk ∈ (a, b) or k = min{κ : ρκ > b}, then

c−1 ≤ B / B ≤ 1, c−1 ≤ V / V ≤ 1.

Proof. First of all, we represent

∥θ∗
k:∞∥2Σk:∞

+ ∥θ∗
0:k∥2Σ−1

0:k

(
λ +

∑
i>k λi

n

)2

=
∑
i

(
1{i ≤ k}

|θ∗i |2ρ2kλ2
k+1

λi
+ 1{i > k}λi|θ∗i |2

)
k

n
+

n
∑

i>k λ
2
i(

λ +
∑

i>k λi
)2 =

∑
i

(
1{i ≤ k} 1

n
+ 1{i > k} λ2

i

nλ2
k+1ρ

2
k

)
In the following we will bound the ratio of the sums from the statement of the theorem

by bounding the ratios of the corresponding terms.
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• First case: ρk ∈ (a, b).

– Bias term:

∗ i ≤ k:

λi|θ∗i |2(
1 + λi

λk+1ρk

)2 :
|θ∗i |2ρ2kλ2

k+1

λi

=
λ2
i

ρ2kλ
2
k+1

(
1 + λi

λk+1ρk

)2
=

(
1 +

λk+1ρk
λi

)−2

∈
(
(1 + b)−2, 1

)
∗ i > k:

λi|θ∗i |2(
1 + λi

λk+1ρk

)2 : λi|θ∗i |2

=

(
1 +

λi
λk+1ρk

)−2

∈
(
(1 + a−1)−2, 1

)
– Variance term:

∗ i ≤ k:

1

n
min

{
1,

λ2
i

λ2
k+1(ρk + 1)2

}
:

1

n

∈
(
(1 + b)−2, 1

]
∗ i > k:

1

n
min

{
1,

λ2
i

λ2
k+1(ρk + 1)2

}
:

λ2
i

nλ2
k+1ρ

2
k

=
λ2
i

λ2
k+1(ρk + 1)2

:
λ2
i

λ2
k+1ρ

2
k

=
ρ2k

(ρk + 1)2

∈
(
(1 + a−1)−2, 1

)
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• Second case: k = min{l : ρl > b}. In this case we have

ρk ≥ b,

λk + nλk+1ρk
nλk

=
λ + λk +

∑
i>k λi

nλk
= ρk−1 < b,

∀i ≤ k : λi ≥ λk ≥
nλk+1ρk
nb− 1

=
λk+1ρk

b
≥ λk+1ρk

b
.

The rest of the computation is analogous to the previous case:

– Bias term:

∗ i ≤ k:

λi|θ∗i |2(
1 + λi

λk+1ρk

)2 :
|θ∗i |2ρ2kλ2

k+1

λi

=
λ2
i

ρ2kλ
2
k+1

(
1 + λi

λk+1ρk

)2
=

(
1 +

λk+1ρk
λi

)−2

∈
[
(1 + b)−2, 1

)
∗ i > k:

λi|θ∗i |2(
1 + λi

λk+1ρk

)2 : λi|θ∗i |2

=

(
1 +

λi
λk+1ρk

)−2

∈
[
(1 + b−1)−2, 1

)
– Variance term:

∗ i ≤ k:

1

n
min

{
1,

λ2
i

λ2
k+1(ρk + 1)2

}
:

1

n

∈
[

λ2
k+1ρ

2
k/b

2

λ2
k+1(ρk + 1)2

, 1

]
⊆
[

b2

(b + 1)2b2
, 1

]
=
[
(b + 1)−2, 1

]



APPENDIX A. PROOFS FOR CHAPTER 2 155

∗ i > k:

1

n
min

{
1,

λ2
i

λ2
k+1(ρk + 1)2

}
:

λ2
i

nλ2
k+1ρ

2
k

=
λ2
i

λ2
k+1(ρk + 1)2

:
λ2
i

λ2
k+1ρ

2
k

=
ρ2k

(ρk + 1)2

∈
[
(1 + b−1)−2, 1

]

Alternative form of the main bound

Lemma 27. Suppose k < n/c for some c > 1 and k∗ < k. Then

λk+1ρk ≤ λk∗+1ρk∗ ≤ λk+1ρk/(1 − b−1c−1).

Proof.

λk∗+1ρk∗ =λk+1ρk +
1

n

k∑
i=k∗+1

λi

≤λk+1ρk +
k − k∗

n
λk∗+1

=λk+1ρk +
k − k∗

n

λk∗+1ρk∗
ρk∗

≤λk+1ρk +
λk∗+1ρk∗

bc
,

where we used k − k∗ < n/c and ρk∗ > b in the last transition. Moving
λk∗+1ρk∗

bc
to the

left-hand side and dividing both sides by (1 − b−1c−1) gives the result.

Corollary 28. There is a large positive constant c that only depends on σx such that if

λ > cnλ⌊n/c⌋ + 2
∑

i>⌊n/c⌋

λi,

then

B/c ≤
∑
i

λi|θ∗i |2
(λ/n)2

(λ/n + λi)
2 ,

V/c ≤ 1

n

∑
i

λ2
i

(λ/n + λi)
2 .
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Proof. Set γ = 0 and denote c1 to be the constant c from Lemma 18. Take L = 2c1 and
b = L2, a = b/2. For such choice of γ, L, a, b denote c2 to be the constant from Theorem 16
and take any k̃ < n/c2.

Take any λ s.t.

λ ≥ 2
∑
i>k̃

λi and ρk̃ ≥ L2,

i.e.,

λ ≥ max

2
∑
i>k̃

λi, L
2nλk̃+1 −

∑
i>k̃

λi

 .

Then the conditions of the first part of Lemma 18 are satisfied with δ = 0, which means
that with probability 1− c1e

−n/c1 , µn(Ak̃) ≥ L−1µ1(Ak̃), so the assumptions of the first part
of Theorem 16 are satisfied with δ = c1e

−n/c1 and k̄ = k̃. Note also that since ρk̃ ≥ L2 = b,
then k∗ ≤ k̃. This means that with probability at least 1 − c1e

−n/c1 − c2e
−n/c2 , for k = k∗,

B/c2 ≤∥θ∗
k:∞∥2Σk:∞

+ ∥θ∗
0:k∥2Σ−1

0:k

(
λ +

∑
i>k λi

n

)2

,

V/c2 ≤
k

n
+

n
∑

i>k λ
2
i(

λ +
∑

i>k λi
)2 .

Now since k = k∗, by Theorem 25 there exists a large constant c3 (that depends on b and
c2) such that on the same event,

B/c3 ≤
∑
i

λi|θ∗i |2
ρ2kλ

2
k∗+1

(ρk∗λk∗+1 + λi)
2 ,

V/c3 ≤
1

n

∑
i

λ2
i

(ρk∗λk∗+1 + λi)
2 ,

where B̃ and Ṽ are defined in Equations (2.9)–(2.10).
We’ve just cast the bounds to the alternative form, which allows us to transition from

k∗ to the initial value k̃. By Lemma 27 since n/c2 ≥ k̃ ≥ k∗ there exists a constant c4 that
depends on c2, c3, b such that on the same event

B/c4 ≤
∑
i

λi|θ∗i |2
ρ2kλ

2
k+1

(ρkλk+1 + λi)
2 ,

V/c4 ≤
1

n

∑
i

λ2
i

(ρkλk+1 + λi)
2 .
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Finally, since λ > 2
∑

i>k λi, we have

λ/n ≤ ρkλk+1 =
1

n

(
λ +

∑
i>k

λi

)
≤ 1.5λ/n.

Thus, on the same event

B/(2.25c4) ≤
∑
i

λi|θ∗i |2
(λ/n)2

(λ/n + λi)
2 ,

V/(2.25c4) ≤
1

n

∑
i

λ2
i

(λ/n + λi)
2 .

To finish the proof take c = max(2.25c4, c1 + c2, L
2) and k̃ = ⌊n/c⌋.

Lemma 29. Suppose that n ≥ c2 + c for some c > 0 and take

λ = cnλ⌊n/c⌋ + 2
∑

i>⌊n/c⌋

λi.

Then
d(λ/n) ≥ n

2 max(2, (c + 1)2)
.

Proof.

d(λ/n) =
∑
i

λi
λi + cλ⌊n/c⌋ + 2

n

∑
i>⌊n/c⌋ λi

.

Consider two cases:

Case 1: (1 + c)λ⌊n/c⌋ ≥ 2
n

∑
i>⌊n/c⌋ λi. Then

∑
i

λi
λi + cλ⌊n/c⌋ + 2

n

∑
i>⌊n/c⌋ λi

≥
∑
i

λi
λi + (1 + 2c)λ⌊n/c⌋

≥
∑

i≤⌊n/c⌋

λi
λi + (1 + 2c)λ⌊n/c⌋

≥
∑

i≤⌊n/c⌋

λi
λi(2 + 2c)

=
⌊n/c⌋
2 + 2c

.
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Case 2: (1 + c)λ⌊n/c⌋ <
2
n

∑
i>⌊n/c⌋ λi. Then∑

i

λi
λi + cλ⌊n/c⌋ + 2

n

∑
i>⌊n/c⌋ λi

≥
∑

i>⌊n/c⌋

λi
λi + cλ⌊n/c⌋ + 2

n

∑
i>⌊n/c⌋ λi

≥
∑

i>⌊n/c⌋

λi
(1 + c)λ⌊n/c⌋ + 2

n

∑
i>⌊n/c⌋ λi

≥
∑

i>⌊n/c⌋

λi
4
n

∑
i>⌊n/c⌋ λi

=
n

4
.

A straightforward computation shows that if n ≥ c2 + c then n/c− 1 ≥ n/(c + 1), so

⌊n/c⌋
2 + 2c

≥ n

2(c + 1)2
,

which finishes the proof.

A.10 Negative regularization

Lemma 32 (Lower bound on the bias for any non-negative regularization). There exist
constants b, c that only depend on σx such that the following holds: suppose that assumptions
IndepCoord and PriorSigns(θ̄) hold. Take k = min{κ : ρκ(0) > b} and suppose that k > 0.
Then with probability at least 1 − ce−n/c for any λ ≥ 0

Eθ∗B ≥ 1

c
∥θ̄0:k∥2Σ−1

0:k

(∑
i>k λi

)2
n2

.

Proof. We start exactly as in the proof of Lemma 23, where it was shown that if A−i is PSD
for every i (which is satisfied almost surely when λ ≥ 0 ) then

Eθ∗B ≥
∑
i

λiθ̄
2
i

(1 + λiz⊤
i A

−1
−izi)

2
≥
∑
i

λiθ̄
2
i

(1 + λiµn(A−1
−i )∥zi∥2)2

. (A.19)

Note that have µn(A−1
−i ) is a decreasing function of λ with probability 1. Thus, the

right-hand side of (A.19) is a non-decreasing function of λ with probability 1, and any lower
bound for it when λ = 0 will also hold uniformly for all λ ≥ 0. Thus, for the remainder of
the proof, fix λ = 0.
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We are going to use Lemma 31 to lower bound µn(A−i) for each i separately (we are
not looking for a uniform bound over all i simultaneously). If i ≤ k, then A−i ⪰ Ak with
probability 1, so we can just use Lemma 31 directly. If i > k, consider the following matrix:

X
(i)
k:∞ := [

√
λk+1zk+1, . . . ,

√
λi−1zi−1,

√
λiz1,

√
λi+1zi+1, . . . ,

√
λpzp].

In words, we took matrix X, multiplied the first column by
√

λi/λ1 (to make the variances
equal to λi), swapped the first column with the i-th column and dropped the first k columns.
The purpose of this matrix is to write the following:

A−i =
∑
j ̸=i

λjzjz
⊤
j ⪰ λiz1z

⊤
1 +

∑
j>k,j ̸=i

λjzjz
⊤
j = X

(i)
k:∞(X

(i)
k:∞)⊤.

Thus, to lower bound µn(A−i) one can just lower bound µn(X
(i)
k:∞(X

(i)
k:∞)⊤). This can be

done by using Lemma 31 with matrix X
(i)
k:∞ instead of Xk:∞, which is valid because matrix

X
(i)
k:∞ satisfies exactly the same assumptions, namely the matrix X

(i)
k:∞Σ

−1/2
k:∞ has independent

centered σx-sub-Gaussian elements with unit variances.
Therefore, by Lemma 31 for some constant c1 that only depends on σx for any i with

probability at least 1 − c1e
−n/c1 ,

µn(A−i) ≥
∑
i>k

λi − c1

nλk+1 +

√
n
∑
i>k

λ2
i


≥
(
1 − c1ρk(0)−1 − c1ρk(0)−1/2

)∑
i>k

λi

=nλk+1(ρk − c1 − c1
√
ρk),

where we used Equations (2.16) and (2.17). Choose a constant b large enough depending on
c1, so that ρk − c1 − c1

√
ρk ≥ ρk/c2 for some constant c2 that only depends on σx.

By Lemma 81, for some absolute constant c3 for any t ∈ (0, n), w.p. at least 1 − 2e−t/c3 ,
we have ∥zi∥2 ≤ n −

√
tnσ2

x ≤ n/2, provided t ≤ n/(4σ4
x). Combining it with the previous

results and taking constant c4 large enough depending on σx and c2 we get that if ρk > c4
then for any i with probability at least 1 − c4e

−n/c4 ,

λiθ̄
2
i

(1 + λiµn(A−1
−i )∥zi∥2)2

≥ 1

c4

λiθ̄
2
i

(1 + nλi
nλk+1ρk

)2
=

1

c4

λiθ̄
2
i

(1 + λi
λk+1ρk

)2
.

Now we convert the high-probability lower bound for each term into the high-probability
lower bound for the whole sum. Using Lemma 77 gives that with probability at least 1 −
2c4e

−n/c4 ,

Eθ∗B ≥ 1

2c4

∑
i

λiθ̄
2
i

(1 + λi
λk+1ρk

)2
.
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Finally, by Theorem 25 there exists a constant c5 that only depends on b s.t.

∑
i

λiθ̄
2
i

(1 + λi
λk+1ρk

)2
≥ 1

c5
∥θ0:k∥2Σ−1

0:k

(∑
i>k λi

n

)2

.

Therefore, setting the constant c large enough (depending on b and σx) gives the result.

Lemma 33 (Upper bound on excess risk for some negative regularization). There exists a
constant c that only depends on σx such that the following holds: suppose that assumptions
PriorSigns(θ̄) and IndepCoord hold and that ρk(0) > c for some k < n/c. Assume also that

v2ε ≤ 1

c
∥θ̄0:k∥2Σ−1

0:k

(∑
i>k λi

)2
n3
(∑

i>k λ
2
i

)2 . (2.18)

Then there exists such λ < 0 that with probability at least 1 − ce−n/c

Eθ∗B + v2εV ≤c

(
v2ε

k

n
+ vε∥θ̄0:k∥Σ−1

0:k

√∑
i>k λ

2
i

n
+ ∥θ̄0:k∥2Σ−1

0:k

λk+1

∑
i>k λi

n
+ ∥θ̄k:∞∥2Σk:∞

)
.

Proof. In the following c1, c2, . . . are constants that only depend on σx.
Let’s introduce a new variable ♢ such that λ = −

∑
i>k λi + ♢.

By Lemma 31 with probability at least 1 − c1e
−n/c1 ,

µ1(Ak) = λ + µ1(Xk:∞X⊤
k:∞) ≤♢ + c1

nλk+1 +

√
n
∑
i>k

λ2
i

 ,

µn(Ak) = λ + µn(Xk:∞X⊤
k:∞) ≥♢− c1

nλk+1 +

√
n
∑
i>k

λ2
i

 .

Let’s put ∑
i>k

λi > ♢ > 2c1

nλk+1 +

√
n
∑
i>k

λ2
i

 . (A.20)

Note that the range for ♢ is non-empty if ρk is large enough according to Equations (2.16)
and (2.17). On the same event we get

µn(A−1
k )−1 = µ1(Ak) ≤

3

2
♢, µn(A−1

k ) ≥ 2

3
♢−1,

µ1(A
−1
k )−1 = µn(Ak) ≥

1

2
♢, µ1(A

−1
k ) ≤ 2♢−1.
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Now we are in a position to use Theorem 20. Recall that 0 < ♢ <
∑

i>k λi. Thus

max(0,−λ) = −λ =
∑
i>k

λi − ♢ ≤
∑
i>k

λi.

Note that results of Theorem 20 still apply for the case when the expectation of the
bias term is taken over the prior from assumption PriorSigns(θ̄). Indeed, as explained in
the sketch of its proof, it decomposes very clearly into an algebraic and a stochastic part,
where concentration results are applied. One can see that the only stochastic quantity that
changes when the expectation over θ∗ is taken is ∥X0:kθ

∗
0:k∥2. To obtain the result of the

theorem one needs to show that E∗
θ∥Xk:∞θ∗

k:∞∥2 ≤ c̃∥θ̄k:∞∥2Σk:∞
with probability 1 − c̃e−n/c̃

for some c̃ that only depends on σx. This is indeed the case because expectations over θ∗

of the squared components of Xk:∞θ∗
k:∞ are i.i.d. sub-Exponential random variables with

expectation ∥θ̄k:∞∥2Σk:∞
and sub-Exponential norm bounded by c̄∥θ̄k:∞∥2Σk:∞

for a constant c̄
that only depends on σx. Thus, the desired concentration result holds by the same application
of Bernstein’s inequality as in Lemma 81.

Thus, we can plug our bounds on eigenvalues into Theorem 20 to get that if k < n/c2
then with probability at least 1 − c1e

−n/c1 − c2e
−n/c2 ,

EθB/c2 ≤∥θ̄k:∞∥2Σk:∞

(
1 +

(2♢−1)2(
2
3
♢−1

)2 + nλk+1(2♢
−1)

(
1 + (2♢−1)

∑
i>k

λi

))

+∥θ̄0:k∥2Σ−1
0:k

(
1

n2
(
2
3
♢−1

)2 +
λk+1

n

(2♢−1)(
2
3
♢−1

)2
(

1 + (2♢−1)
∑
i>k

λi

))
,

V/c2 ≤
(2♢−1)2(
2
3
♢−1

)2 kn + n(2♢−1)2
∑
i>k

λ2
i .

Recall that ♢ <
∑

i>k λi, so 1 + (2♢−1)
∑

i>k λi is the same as ♢−1
∑

i>k λi up to a
constant multiplier. That is, on the same event,

B/c3 ≤∥θ̄k:∞∥2Σk:∞

(
1 +

nλk+1

∑
i>k λi

♢2

)
(A.21)

+∥θ̄0:k∥2Σ−1
0:k

(
♢2

n2
+

λk+1

∑
i>k λi

n

)
, (A.22)

V/c3 ≤
k

n
+

n
∑

i>k λ
2
i

♢2
. (A.23)

One can see that ♢ balances the bias in the first k components against two things: the
bias in the tail and the variance. The value of ♢ that is optimal to balance the bias in the
first k components and the bias in the tail is

√
nλk+1

∑
i>k λi. As we will check further, up

to a constant factor, ♢ will be in the range that we set in Equation (A.20). There are two
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cases then: the first case is when this choice of ♢ is optimal because the variance is not larger
than the bias. The second case is when ♢ needs to be chosen larger than

√
nλk+1

∑
i>k λi

to decrease the variance. So, consider two cases:

1. If the noise is small, meaning that

v2ε
n
∑

i>k λ
2
i

nλk+1

∑
i>k λi

≤ ∥θ̄k:∞∥2Σk:∞
+ ∥θ̄0:k∥2Σ−1

0:k

λk+1

∑
i>k λi

n
,

then set

♢ = a

√
nλk+1

∑
i>k

λi

for a constant a that only depends on σx that we will choose next. This a must be
such that Equation (A.20) is satisfied, which means

a

√
nλk+1

∑
i>k

λi ≤
∑
i>k

λi,

a

√
nλk+1

∑
i>k

λi ≥2c1

nλk+1 +

√
n
∑
i>k

λ2
i

 .

Using
√
n
∑

i>k λ
2
i ≤

√
nλk+1

∑
i>k λi we obtain that it is enough for a to satisfy

a ≤ρk(0)1/2,

a ≥2c1
(
ρk(0)−1/2 + 1

)
.

One can see that a = 4c1 satisfies this condition when c > max(1, 16c21) since ρk(0) > c.
Taking such an a, plugging ♢ into Equations (A.21)–(A.23), and choosing c4 big enough
depending on a, c1, c2, c3, we get that with probability at least 1 − c4e

−n/c4 ,

B + v2εV ≤c4

(
k

n
v2ε + v2ε

n
∑

i>k λ
2
i

nλk+1

∑
i>k λi

+ ∥θ̄k:∞∥2Σk:∞
+ ∥θ̄0:k∥2Σ−1

0:k

λk+1

∑
i>k λi

n

)
≤2c4

(
k

n
v2ε + ∥θ̄k:∞∥2Σk:∞

+ ∥θ̄0:k∥2Σ−1
0:k

λk+1

∑
i>k λi

n

)
,

which implies the desired bound for any c > 2c4.

2. If the noise is large, meaning that

v2ε
n
∑

i>k λ
2
i

nλk+1

∑
i>k λi

> ∥θ̄k:∞∥2Σk:∞
+ ∥θ̄0:k∥2Σ−1

0:k

λk+1

∑
i>k λi

n
, (A.24)
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then set

♢ = a

√√√√ vε
∥θ̄0:k∥Σ−1

0:k

n

√
n
∑
i>k

λ2
i .

for a constant a that only depends on σx that we choose next. As in the previous case,
a must be such that Equation (A.20) is satisfied, which means

a

√√√√ vε
∥θ̄0:k∥Σ−1

0:k

n

√
n
∑
i>k

λ2
i ≤

∑
i>k

λi,

a

√√√√ vε
∥θ̄0:k∥Σ−1

0:k

n

√
n
∑
i>k

λ2
i ≥2c1

nλk+1 +

√
n
∑
i>k

λ2
i

 .

The first condition is satisfied whenever a <
√
c due to Equation (2.18). Now consider

the second condition. Because of Equation (A.24), we have

vε

√
n
∑
i>k

λ2
i ≥∥θ̄0:k∥Σ−1

0:k
λk+1

∑
i>k

λi, (A.25)

♢
a

=

√√√√ vε
∥θ̄0:k∥Σ−1

0:k

n

√
n
∑
i>k

λ2
i ≥
√

nλk+1

∑
i>k

λi. (A.26)

Thus, it is enough to satisfy

a

√
nλk+1

∑
i>k

λi ≥ 2c1

nλk+1 +

√
n
∑
i>k

λ2
i

 .

This is exactly the same condition as in the previous case, so it can be reduced to

a ≥ 2c1(ρk(0)−1/2 + 1).

Thus, just as in the small variance case, we see that since c > max(1, 16c21) then a = 4c1
satisfies both conditions.

Take such an a. Before plugging ♢ into Equations (A.21)–(A.23), note the following.
Because of Equation (A.26), we have

nλk+1

∑
i>k λi

♢2
≤ 1

a2
,

♢2

n2
≥a2

λk+1

∑
i>k λi

n
,
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which means that if we take c5 large enough depending on a and c3, then Equations
(A.21)–(A.23) imply

B/c5 ≤∥θ̄k:∞∥2Σk:∞
+ ∥θ̄0:k∥2Σ−1

0:k

♢2

n2
,

V/c5 ≤
k

n
+

n
∑

i>k λ
2
i

♢2
.

Now plugging in the expression for ♢ gives that with probability at least 1 − c1e
−n/c1 ,

B + v2εV ≤c5

(
k

n
v2ε + (a−2 + a2)vε∥θ̄0:k∥Σ−1

0:k

√∑
i>k λ

2
i

n
+ ∥θ̄k:∞∥2Σk:∞

)
,

which implies the result for c > max((a−2 + a2)c5, c1).
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Appendix B

Proofs for Chapter 3

B.1 Formulas for the solution

In this section we derive the explicit formula for wridge, which operates with inverse of matrix
A instead of XX⊤. The version of this formula for the case of MNI solution wMNI with
clean labels ŷ = y already appeared in [8], who, in their turn, took it from [58].

Lemma 88 (Explicit formulas for MNI). Denote ∆y := ŷ − y. Denote the projection of
µ on the orthogonal complement to the span of the columns of Q⊤ as µ⊥, and take λ = 0.
Denote

S = (1 + ν⊤A−1y)2 + ∥µ⊥∥2y⊤A−1y.

Then

SwMNI =
[
(1 + ν⊤A−1y)2 + ∥µ⊥∥2y⊤A−1y

]
Q⊤A−1∆y

+
[
(1 + ν⊤A−1y)(1 − ν⊤A−1∆y) − ∥µ⊥∥2∆y⊤A−1y

]
Q⊤A−1y

+
[
y⊤A−1y + (1 + ν⊤A−1y)∆y⊤A−1y − y⊤A−1yν⊤A−1∆y

]
µ⊥,

Sµ⊤wMNI =y⊤A−1ŷ∥µ⊥∥2 + (1 + ν⊤A−1y)ν⊤A−1ŷ

=y⊤A−1y∥µ⊥∥2 + (1 + ν⊤A−1y)ν⊤A−1y

+ν⊤A−1∆y · (1 + ν⊤A−1y) + y⊤A−1∆y · ∥µ⊥∥2.

In particular, when ŷ = y

SwMNI =(1 + ν⊤A−1y)Q⊤A−1y + y⊤A−1yµ⊥,

Sµ⊤wMNI =y⊤A−1y∥µ⊥∥2 + (1 + ν⊤A−1y)ν⊤A−1y.

Proof. We defined wMNI as X⊤(XX⊤)−1ŷ. Our goal is to derive a different formula, which
would have inverse of QQ⊤ instead of XX⊤. This derivation could be made algebraically
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using the fact that XX⊤ is a low-rank correction to QQ⊤ and applying Sherman-Morrison-
Woodbury identity. Such derivation would be very bulky, so we take another path here and
derive the required formula from scratch using geometric considerations. We are going to
use the fact that wMNI can be equivalently defined as the unique vector ŵ that lies in the
span of columns of X⊤ such that Xŵ = ŷ.

Denote the span of the columns of Q⊤ as Q, and the projector onto Q as PQ := Q⊤A−1Q.
For any v ∈ Rp denote the projection of v on Q as v∥ and the projection of v on Q⊥ as v⊥:

v⊥ := (Ip − PQ)v, v∥ := PQv = v − v⊥.

Consider any vector w in the span of the columns of X⊤. The projection of this vector
on Q⊥ must be a scalar multiple of µ⊥ because the projection of the ith column of X⊤

is yiµ⊥. That is, w⊥ = αµ⊥ for some scalar α. Now let’s answer the following question:
which labels does w give to data points? The part in Q doesn’t interact with µ⊥ (they are
orthogonal) and vice versa, so

Xw =(Q + yµ⊤
∥ )w∥ + yµ⊤

⊥w⊥

=Qw∥ + (µ⊤
∥ w∥ + α∥µ⊥∥2)y

Recall that we want to find the minimum norm interpolator for labels ŷ, that is such ŵ
that

Qŵ∥ + (µ⊤
∥ ŵ∥ + α∥µ⊥∥2)y = ŷ.

Denote β := µ⊤
∥ ŵ∥ + α∥µ⊥∥2. We see that ŵ∥ is such vector in Q that Qŵ∥ = ŷ − βy.

Therefore, it is the minimum norm interpolator of labels ŷ − βy with the data matrix Q
and we can use the formula for MNI to obtain

ŵ∥ = Q⊤(QQ⊤︸ ︷︷ ︸
A

)−1(ŷ − βy).

Thus far, we learned that for some scalars α, β it holds that

ŵ⊥ =αµ⊥,

ŵ∥ =Q⊤A−1ŷ − βQ⊤A−1y,

β =µ⊤
∥ ŵ∥ + α∥µ⊥∥2

=ν⊤A−1ŷ − βν⊤A−1y + α∥µ⊥∥2.

There is, however, one more condition that we are missing: there is only one pair α, β
that satisfies the relation above for which the vector Q⊤A−1ŷ − βQ⊤A−1y + αµ⊥ lies in
the span of the columns of X⊤ — the one with the minimal norm. Thus, we arrive to the
following optimization problem in α, β:

α2∥µ⊥∥2 + β2y⊤A−1y − 2βŷ⊤A−1y → min
α,β

,

s.t. β(1 + ν⊤A−1y) − ν⊤A−1ŷ = α∥µ⊥∥2,
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where in the first line we wrote the expression for ∥ŵ∥2 = ∥ŵ∥∥2 + ∥ŵ⊥∥2 and dropped the
term ∥Q⊤A−1ŷ∥2 which doesn’t depend on α, β.

To solve this problem we parameterize

β = t∥µ⊥∥2, α = t(1 + ν⊤A−1y) − ∥µ⊥∥−2ν⊤A−1ŷ.

The optimization problem becomes to minimize the following quantity in t

t2(1+ν⊤A−1y)2∥µ⊥∥2−2t(1+ν⊤A−1y)ν⊤A−1ŷ+t2∥µ⊥∥4y⊤A−1y−2t∥µ⊥∥2ŷ⊤A−1y,

which is a simple minimization of a quadratic function in one variable. We get

t =
(1 + ν⊤A−1y)ν⊤A−1ŷ + ∥µ⊥∥2ŷ⊤A−1y

(1 + ν⊤A−1y)2∥µ⊥∥2 + ∥µ⊥∥4y⊤A−1y
,

β =
(1 + ν⊤A−1y)ν⊤A−1ŷ + ∥µ⊥∥2ŷ⊤A−1y

(1 + ν⊤A−1y)2 + ∥µ⊥∥2y⊤A−1y
,

α =
(1 + ν⊤A−1y)ν⊤A−1ŷ + ∥µ⊥∥2ŷ⊤A−1y

(1 + ν⊤A−1y)2∥µ⊥∥2 + ∥µ⊥∥4y⊤A−1y
(1 + ν⊤A−1y) − ∥µ⊥∥−2ν⊤A−1ŷ

=
(1 + ν⊤A−1y)2ν⊤A−1ŷ + (1 + ν⊤A−1y)∥µ⊥∥2ŷ⊤A−1y

(1 + ν⊤A−1y)2∥µ⊥∥2 + ∥µ⊥∥4y⊤A−1y

−
ν⊤A−1ŷ

(
(1 + ν⊤A−1y)2 + ∥µ⊥∥2y⊤A−1y

)
(1 + ν⊤A−1y)2∥µ⊥∥2 + ∥µ⊥∥4y⊤A−1y

=
(1 + ν⊤A−1y)ŷ⊤A−1y − y⊤A−1yν⊤A−1ŷ

(1 + ν⊤A−1y)2 + ∥µ⊥∥2y⊤A−1y

Recall that ∆y := ŷ − y. Using this notation

ŵ∥ = Q⊤A−1∆y + (1 − β)Q⊤A−1y, ŵ⊥ = αµ⊥.

Denote
S := (1 + ν⊤A−1y)2 + ∥µ⊥∥2y⊤A−1y.

We have

S(1 − β) =(1 + ν⊤A−1y)(1 − ν⊤A−1∆y) − ∥µ⊥∥2y⊤A−1∆y,

Sα =(1 + ν⊤A−1y)ŷ⊤A−1y − y⊤A−1yν⊤A−1ŷ.
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which gives the desired formula for ŵ. When it comes to µ⊤ŵ, we directly compute the
scalar product using the formula for ŵ:

Sµ⊤ŵ =
[
(1 + ν⊤A−1y)2 + ∥µ⊥∥2y⊤A−1y

]
ν⊤A−1∆y

+
[
(1 + ν⊤A−1y)(1 − ν⊤A−1∆y) − ∥µ⊥∥2∆y⊤A−1y

]
ν⊤A−1y

+
[
y⊤A−1y + (1 + ν⊤A−1y)∆y⊤A−1y − y⊤A−1yν⊤A−1∆y

]
∥µ⊥∥2

=ν⊤A−1∆y ·
[
(1 + ν⊤A−1y)2 + ∥µ⊥∥2y⊤A−1y

− (1 + ν⊤A−1y)ν⊤A−1y − ∥µ⊥∥2y⊤A−1y

]
+y⊤A−1∆y ·

[
(1 + ν⊤A−1y)∥µ⊥∥2 − ν⊤A−1y∥µ⊥∥2

]
+y⊤A−1y∥µ⊥∥2 + (1 + ν⊤A−1y)ν⊤A−1y

=y⊤A−1y∥µ⊥∥2 + (1 + ν⊤A−1y)ν⊤A−1y

+ν⊤A−1∆y · (1 + ν⊤A−1y) + y⊤A−1∆y · ∥µ⊥∥2.

Lemma 89 (Explicit formulas for the ridge solution). Denote

∆y :=ŷ − y,

µ⊥∼ :=(Ip −Q⊤A−1Q)µ,

S :=(1 + ν⊤A−1y)2 + µ⊤µ⊥∼y
⊤A−1y.

Then for any λ such that the matrix A is PD the following holds:

Swridge =
[
(1 + ν⊤A−1y)2 + y⊤A−1yµ⊤µ⊥∼

]
Q⊤A−1∆y

+
[
(1 + ν⊤A−1y)(1 − ν⊤A−1∆y) − ∆y⊤A−1yµ⊤µ⊥∼

]
Q⊤A−1y

+
[
y⊤A−1y + (1 + ν⊤A−1y)∆y⊤A−1y − y⊤A−1yν⊤A−1∆y

]
µ⊥∼,

Sµ⊤wridge =y⊤A−1ŷµ⊤µ⊥∼ + (1 + ν⊤A−1y)ν⊤A−1ŷ

=y⊤A−1yµ⊤µ⊥∼ + (1 + ν⊤A−1y)ν⊤A−1y

+ν⊤A−1∆y · (1 + ν⊤A−1y) + y⊤A−1∆y · µ⊤µ⊥∼.

In particular, when ŷ = y

Swridge =(1 + ν⊤A−1y)Q⊤A−1y + y⊤A−1yµ⊥∼, (B.1)

Sµ⊤wridge =(1 + ν⊤A−1y)ν⊤A−1y + y⊤A−1yµ⊤µ⊥∼. (B.2)
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Proof. First of all, we obtain formulas for the particular case when λ = 0 in Lemma 88
below. These formulas can be extended to the case of positive λ by a standard trick. Recall
the definitions:

wridge = X⊤(XX⊤ + λIn)−1ŷ,

wMNI = X†ŷ = X⊤(XX⊤)−1ŷ.

Ridge solution can be obtained from the MNI solution with augmented data, namely denote

Q̌ := [Q,
√
λIn], µ̌ :=

(
µ
0n

)
.

and
X̌ := Q̌ + yµ̌⊤ = [X,

√
λIn].

Now MNI solution for the augmented data becomes

w̌MNI = X̌
†
ŷ =

(
X⊤
√
λIn

)
(XX⊤ + λIn)−1ŷ,

that is, wridge is equal to the first p coordinates of w̌MNI. Moreover, note that µ⊤wridge =
µ̌⊤w̌MNI. To apply Lemma 88 and obtain the formula for w̌MNI and µ̌⊤w̌MNI we need to
plug in the following objects instead of Q,A,ν, and µ⊥ correspondingly:

Q̌ :=[Q,
√
λIn],

Ǎ :=Q̌Q̌
⊤

= QQ⊤ + λIn = A,

ν̌ :=Q̌µ̌ = Qµ = ν,

µ̌⊥ :=(Ip+n − Q̌
⊤
Ǎ

−1
Q̌)µ̌ =

(
(Ip −Q⊤A−1Q)µ

−
√
λA−1ν

)
=

(
µ⊥∼

−
√
λA−1ν

)
.

The only thing that is not straightforward to plug in is ∥µ̌⊥∥2, which we derive next:

∥µ̌⊥∥2 =∥(Ip −Q⊤A−1Q)µ∥2 + λ∥A−1ν∥2

=∥µ∥2 − 2ν⊤A−1ν + ν⊤A−1QQ⊤A−1ν + λν⊤A−1pA−1ν

=∥µ∥2 − 2ν⊤A−1ν + ν⊤A−1(QQ⊤ + λIn︸ ︷︷ ︸
A

)A−1ν

=∥µ∥2 − ν⊤A−1ν

=µ⊤µ⊥∼.

Now we can obtain the result for λ ≥ 0: Plugging all those objects in Lemma 88 gives
the formulas for w̌MNI and µ̌⊤w̌MNI = µ⊤wridge. The formula for wridge is then obtained
from w̌MNI by trimming the last n coordinates.

Finally, to extend the result to the case of negative λ note that the expressions on the
both sides of equations in (B.1) are analytic functions of λ on the domain {λ ∈ C : ℜ(λ) >
−µn(QQ⊤)}. Since those equations hold on {λ ∈ R : λ > 0} they coincide on that whole
domain, in particular for {λ ∈ R : λ > −µn(−µn(QQ⊤))}.
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B.2 General probabilistic results

Lemma 90. Consider a random variable ξ such that

η/2 = P(ξ = 1) = P(ξ = −1) = (1 − P(ξ = 0))/2.

Then

∥ξ∥ψ2 =1/
√

ln(1 + 1/η) ≤ 1/

√
ln

3 + η−1

2
,

∥ξ2 − η∥ψ2 ≤1/

√
ln

3 + η−1

2
.

Proof. By Definition 1, since ξ is a centered random variable

∥ξ∥ψ2 := inf
{
t > 0 : E exp(ξ2/t2) ≤ 2

}
.

We write out

E exp(ξ2/t2) =ηet
−2

+ (1 − η) ≤ 2,

and see that it is equivalent to et
−2 ≤ 1 + 1/η. Thus, ∥ξ∥ψ2 = 1/

√
ln(1 + 1/η).

Now let’s do the same for ξ2 − η: we need to find some t such that

E exp
(

(ξ2 − η)2/t2
)

=ηe(1−η)
2/t2 + (1 − η)eη

2/t2 ≤ 2.

Let’s find such t that a stronger condition is satisfied, namely

eη
2/t2 ≤3

2
,

ηe(1−η)
2/t2 ≤ ηe1/t

2 ≤1

2
+

3

2
η.

We take

t−2 = min

(
η−2 ln

3

2
, ln

3 + η−1

2

)
.

Since η−1 ≥ 1, we have

η−2 ln
3

2
= ln(3eη

−2

/2) ≥ ln(3(1 + η−2)/2) ≥ ln(3(1 + η−1)/2),

so ∥ξ2 − η∥ψ2 ≤ t = 1/
√

ln 3+η−1

2
.

Finally, we compare two bounds that we obtained:

1 + η−1 − 3 + η−1

2
=

η−1 − 1

2
≥ 0.

We see that 1/
√

ln(1 + 1/η) ≤ 1/
√

ln 3+η−1

2
.
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Lemma 91. Suppose that {ηi}ni=1 are i.i.d. centered random variables with sub-Gaussian
norms σ. Then for some absolute constant c > 0 and any t > 0 with probability at least
1 − 2e−t

2/c √∑
i

η2i ≤ σ(
√
n + t)

Proof. We basically repeat the proof of Theorem 3.1.1 from [55], but we don’t use the
assumption that {ηi}ni=1 have unit variances.

Without loss of generality we can assume that σ = 1. Indeed, if σ ̸= 1 we can just work
with random variables {ηi/σ}ni=1 instead of {ηi}ni=1.

Denote v =
√

E[η21] — standard deviation for {ηi}ni=1. Recall (or note) that v ≤ σ ≤ 1.
As in the proof of Theorem 3.1.1 from [55], we get that random variables {η2i }ni=1 are

sub-Exponential, with sub-Exponential norms bounded by an absolute constant. Applying
Bernstein’s inequality (Corollary 2.8.3) from [55], we get that for some absolute constant
c > 0 and any u ≥ 0 with probability at least 1 − 2 exp(−cn(u ∧ u2))

n−1
∑
i

η2i ≤ v2 + u ≤ 1 + u ≤ (1 + (
√
u ∧ u))2.

Finally, we make a change of variables: t =
√

n(u ∧ u2) =
√
n(
√
u ∧ u), and get that with

probability at least 1 − 2e−ct
2

√
n−1

∑
i

η2i ≤ 1 + t/
√
n.

Lemma 92 (Hanson-Wright inequality). Suppose M ∈ Rn×n is a (random) matrix and
ε ∈ Rn is a centered vector whose components {εi}ni=1 are independent, have variances v2

and sub-Gaussian norms at most σ. If ε is independent from M , then for some absolute
constant c and any s > 0

P
{
|ε⊤Mε− v2tr(M)| > σ2 max(

√
s∥M∥F , s∥M∥)

}
≤ 2 exp {−s/c} .

Proof. This is basically a rewriting of Theorem 6.2.1 (Hanson-Wright inequality) in [55].
According to that theorem, for some absolute constant c for any t > 0,

P
{
|ε⊤Mε− Eεε

⊤Mε| ≥ t
}
≤ 2 exp

(
−c−1 min

{
t2

∥M∥2Fσ4
,

t

∥M∥σ2

})
,

where Eε denotes expectation over ε.
Since for any i, Eεi = 0, and Var(εi) = v2, we have

Eε⊤Mε = v2tr(M ).
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Plug in t = σ2 max(
√
s∥M∥F , s∥M∥), and note that t2

∥M∥2F σ4 ≥ s and t
∥M∥σ2 ≥ s:

P
{
|ε⊤Mε− v2tr(M )| ≥ σ2 max(

√
s∥M∥F , s∥M∥)

}
≤ 2 exp

{
−c−1s

}
.

Corollary 93 (Weakened Hanson-Wright for PSD matrices). In the setting of Lemma 92
assume that M is almost surely PSD. Then for some absolute constant c > 0 and any s > 0

P
{
ε⊤Mε > cσ2(tr(M ) + s∥M∥)

}
≤ 2 exp {−s/c} .

Proof. We just need to transform the result of Lemma 92 using the fact that M is PSD.
Note that this fact implies that ∥M∥2F ≤ tr(M)∥M∥ so we obtain that with probability at
least 1 − 2 exp

{
−c−1

1 s
}

|ε⊤Mε− v2tr(M)| ≤ σ2 max(
√
s∥M∥tr(M ), s∥M∥),

where c1 is the constant from Lemma 92. Now on the same even we can write

ε⊤Mε ≤vtr(M) + σ2
√
s∥M∥tr(M ) + s∥M∥

≤σ2(tr(M ) +
√

s∥M∥tr(M ) + s∥M∥)

≤3

2
σ2(tr(M ) + s∥M∥),

where we used the fact that σ ≥ v (sub-Gaussian norm is greater or equal to variance for
any centered distribution) in the second line, and AM-GM inequality 2

√
s∥M∥tr(M) ≤

tr(M ) + s∥M∥ in the last line.
Taking c large enough depending on c1 yields the result.

The following lemma is a restatement of Lemma 84 with a change of notation.

Lemma 94. Suppose that Z̃ ∈ Rn×p is a matrix with i.i.d. isotropic σ-sub-Gaussian rows.
Suppose that M ∈ Rp×p is a symmetric PSD matrix that is independent of Z̃. Then there
exists an absolute constant c such that for any t > 0 with probability at least 1 − 6e−t/c

∥Z̃MZ̃
⊤∥ ≤ cσ2

(
∥M∥(t + n) + tr(M )

)
.

Corollary 95. There exists a constant c that only depends on σx such that with probability
at least ce−n/c

∥Qk:∞Σk:∞Q⊤
k:∞∥ ≤ c

(∑
i>k

λ2
i + nλ2

k+1

)
.

Proof. Note that Qk:∞Σk:∞Q⊤
k:∞ = Zk:∞Σ2

k:∞Z⊤
k:∞, apply Lemma 94 for Z̃ = Zk:∞ and

M = Σ2
k:∞.
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Lemma 96. Consider y ∈ {−1, 1}n — random vector with i.i.d. Rademacher coordinates.
Suppose that v ∈ Rn is independent from y. Then for some absolute constant c with proba-
bility at least c−1

|v⊤y| ≥ c−1∥v∥.

Proof. Since y is a vector with centered independent coordinates that have constant sub-
Gaussian norms, the random variable ξ := v⊤y/∥v∥ has sub-Gaussian norm at most c1,
where c1 is an absolute constant.

Thus, for some absolute constant c2 we and any t > 0

P(ξ > t) ≤ 2e−t
2/c2 .

The idea is to consider variance Eξ2 = 1. Since the tails of the random variable ξ decay
very fast, only a small fraction of that variance can come from the tail, which means that
most of it must come from a segment of constant length, from which it is easy to deduce the
bound by Markov’s inequality.

Formally, we can write for any c3 and c4 > c3

1 =E[ξ2]

=

∫ ∞

0

P(|ξ|2 > t) dt

≤
∫ c3

0

1 dt +

∫ c4

c3

P(|ξ|2 > t) dt + 2

∫ ∞

c4

e−t/c2 dt

≤c3 + (c4 − c3)P(ξ2 > c3) + 2c2e
−c4/c2 .

We see that

P(ξ2 > c3) ≥
1 − c3 − 2c2e

−c4/c2

c4

Taking c4 to be a large enough absolute constant, and c3 — small enough, yields the result.

Lemma 97. Consider y ∈ {−1, 1}n — random vector with i.i.d. Rademacher coordinates.
Suppose that M ∈ Rn×n is a matrix that is independent from y and almost surely PSD.
Then for some absolute constant c with probability at least c−1

|y⊤My| ≥ c−1tr(M ).

Proof. First of all, since y has i.i.d. centered coordinates with sub-Gaussian norms bounded
by an absolute constant, by Corollary 93 for some absolute constant c1 and any s > 0

P(y⊤My > c1(tr(M) + s∥M∥)) ≤ 2e−s/c1 .

Denote ξ = y⊤My/tr(M ). Recall that our goal is to to show that P(ξ > c−1) > c−1.
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Note that ∥M∥ ≤ tr(M ) since M is PSD. Thus, it follows from the above that for any
s > 0

P(ξ > c1(1 + s)) ≤ 2e−s/c1 .

For further convenience we rewrite that as follows: for any t > c1

P(ξ > t) ≤ 2e−(t/c1−1)/c1 .

Now we follow the same strategy as in the proof of Lemma 96. We write for some small
c2, and large c3 > c1

1 =E[ξ]

=

∫ ∞

0

P(|ξ| > t) dt

≤
∫ c2

0

1 dt +

∫ c3

c2

P(|ξ| > t) dt + 2

∫ ∞

c3

e−(t/c1−1)/c1 dt

≤c2 + (c3 − c2)P(ξ > c2) + 2c1e
−(c3/c1−1)/c1 .

P(ξ > c2) ≥
1 − c2 − 2c1e

−(c3/c1−1)/c1

c3 − c2
.

Taking c2 to be a small enough constant, and c3 — large enough, yields the result.

B.3 Some important relations

Lemma 41 (Relations between the main quantities). Suppose that

k ≤ n and Λ > nλk+1 ∨
√
n
∑
i>k

λ2
i . (3.12)

Then

n♢2 ≤ N, n♢2 ≤ N
√
n∆V , V ≤ 2, ∆V ≤ 3

n
, ∆V ≤ 4V.

Proof. For the first inequality, we write

♢2 =nΛ−2∥µk:∞∥2Σk:∞
+ n−1

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2
≤nΛ−2λk+1∥µk:∞∥2 + n−1

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥2
≤Λ−1∥µk:∞∥2 + n−1

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥2
=Λ−1M,
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where we used that
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1
∥∥∥ ≤ 1 in the second line, and Λ > nλk+1 in the

third line. Alternatively, we could use
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1
∥∥∥ ≤ nΛ−1λ1 in the second line to

obtain

♢2 ≤nΛ−2λk+1∥µk:∞∥2 + nΛ−1λ1 · n−1
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1/2

Σ
−1/2
0:k µ0:k

∥∥∥2
≤nΛ−2λ1

(
∥µk:∞∥2 + n−1Λ

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥2)
=nΛ−2λ1M,

which means that

♢2 ≤ Λ−1M ∧ nΛ−2λ1M =

(
1√
n
∧
√
nλ1

Λ

)√
nΛ−1M ≤ Λ−1M

√
n∆V .

Now let’s upper bound V :

V =n−1tr
((

Λn−1Σ−1
0:k + Ik

)−2
)

+ Λ−2n
∑
i>k

λ2
i

≤k/n + Λ−2n
∑
i>k

λ2
i

≤2,

where we used Equation (3.12) to make the second transition, and we used the fact that(
Λn−1Σ−1

0:k + Ik
)−2

is a k × k symmetric matrix, all eigenvalues of which are in (0, 1).
When it comes to ∆V , we write

n∆V ≤1 +
n2λ2

k+1 + n
∑

i>k λ
2
i

Λ2
≤ 3,

where the last transition follows directly from Equation (3.12).
Finally, let’s compare V and ∆V . In case k = 0 we get

4V = 4Λ−2n
∑
i

λ2
i ≥ Λ−2

(
2nλ2

1 +
∑
i

λ2
i

)
= ∆V.

If k > 0, we have

4V =4n−1tr
((

Λn−1Σ−1
0:k + Ik

)−2
)

+ 4Λ−2n
∑
i>k

λ2
i

≥4n−1 1

(1 + Λn−1λ−1
1 )2

+ Λ−2nλ2
k+1 + Λ−2

∑
i>k

λ2
i

≥n−1 1

(1 ∨ Λn−1λ−1
1 )2

+ Λ−2nλ2
k+1 + Λ−2

∑
i>k

λ2
i

=∆V.
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Lemma 47 (Bounds via k∗). Suppose that

k ≤ n/2 and Λ > nλk+1.

Define

k∗ := min

{
κ ∈ {0, 1, . . . , k} : λ +

∑
i>κ

λi ≥ nλκ+1

}
,

Λ∗ :=λ +
∑
i>k∗

λi,

V∗ :=
k∗

n
+ Λ−2

∗ n
∑
i>k∗

λ2
i ,

♢2
∗ :=n−1 ∥µ0:k∗∥

2
Σ−1

0:k∗
+ nΛ−2

∗ ∥µk∗:∞∥2Σk:∞
,

N∗ := ∥µ0:k∗∥
2
Σ−1

0:k∗
+ nΛ−1

∗ ∥µk∗:∞∥2.

Then

2N∗ ≥ N ≥ N∗/2, 2♢∗ ≥ ♢ ≥ ♢∗/2, 4V∗ ≥ V ≥ V∗/4, Λ∗ ≥ Λ ≥ Λ∗/2.

Proof. First of all, let’s compare Λ and Λ∗. Since k∗ ≤ k, we obviously have Λ∗ ≥ Λ. On
the other hand,

Λ∗ =λ +
k∑

i=k∗+1

λi +
∑
i>k

λi

≤λ + (k − k∗)λk∗+1 +
∑
i>k

λi

≤k − k∗

n
Λ∗ + Λ

≤1

2
Λ∗ + Λ.

Therefore, Λ∗ ≤ 2Λ.
Suppose that k∗ ̸= 0 (we will deal with the case k∗ = 0 separately in the end. Let’s show

that k∗ is the “the place where the transition happens”, more precisely λi ≤ n−1Λ∗ for i > k∗

and λi ≥ n−1Λ∗ for i ≤ k∗. Indeed, the first of those inequalities follows from the definition
of k∗, and for the second we can write

nλi ≥ nλk∗ > λ +
∑
i≥k∗

λi ≥ Λ∗,

where the second inequality also follows from the definition of k∗. Combining with the fact
that Λ ≤ Λ∗, we also obtain that λi ≥ n−1Λ for i ≤ k∗.

Now, let’s prove the remaining relations one-by-one.



APPENDIX B. PROOFS FOR CHAPTER 3 177

1. nΛ−1M vs nΛ−1
∗ M∗.

nΛ−1M =
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1/2

Σ
−1/2
0:k µ0:k

∥∥∥2 + nΛ−1∥µk:∞∥2

=
k∑
i=1

µ2
i

λi(1 + λ−1
i n−1Λ)

+ nΛ−1
∑
i>k

µ2
i

=
k∗∑
i=1

µ2
i

λi + n−1Λ
+

k∑
i=k∗+1

µ2
i

λi + n−1Λ
+
∑
i>k

µ2
i

n−1Λ{
≥
∑k∗

i=1
µ2i
2λi

+
∑k

i=k∗+1
µ2i

2n−1Λ∗
+
∑

i>k
µ2i

n−1Λ∗
,

≤
∑k∗

i=1
µ2i
λi

+
∑k

i=k∗+1
µ2i

n−1Λ∗/2
+
∑

i>k
µ2i

n−1Λ∗/2
,

where we plugged in n−1Λ ≤ λi for i ≤ k∗, λi ≤ n−1Λ∗ for i > k∗, and Λ∗ ≥ Λ ≥ Λ∗/2
in the last transition.

Since

nΛ−1
∗ M∗ =

k∗∑
i=1

µ2
i

λi
+
∑
i>k∗

µ2
i

n−1Λ∗
,

the above implies that 2nΛ−1
∗ M∗ ≥ nΛ−1M ≥ nΛ−1

∗ M∗/2.

2. ♢ vs ♢∗.

n♢2 =
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 + n2Λ−2∥µk:∞∥2Σk:∞

=
k∑
i=1

µ2
i

λi(1 + λ−1
i n−1Λ)2

+ n2Λ−2
∑
i>k

λiµ
2
i

=
k∗∑
i=1

λiµ
2
i

(λi + n−1Λ)2
+

k∑
i=k∗+1

λiµ
2
i

(λi + n−1Λ)2
+
∑
i>k

λiµ
2
i

(n−1Λ)2{
≥
∑k∗

i=1
λiµ

2
i

(2λi)2
+
∑k

i=k∗+1
λiµ

2
i

(2n−1Λ∗)2
+
∑

i>k
λiµ

2
i

(n−1Λ∗)2
,

≤
∑k∗

i=1
λiµ

2
i

λ2i
+
∑k

i=k∗+1
λiµ

2
i

(n−1Λ∗/2)2
+
∑

i>k
λiµ

2
i

(n−1Λ∗/2)2
,

where we plugged in n−1Λ ≤ λi for i ≤ k∗, λi ≤ n−1Λ∗ for i > k∗, and Λ∗ ≥ Λ ≥ Λ∗/2
in the last transition.

Since

n♢2
∗ =

k∗∑
i=1

λiµ
2
i

λ2
i

+
∑
i>k∗

λiµ
2
i

(n−1Λ∗)2
,

the above implies that 4n♢2
∗ ≥ n♢2 ≥ n♢2

∗/4.
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3. V vs V∗.

V =n−1tr
((

Λn−1Σ−1
0:k + Ik

)−2
)

+ Λ−2n
∑
i>k

λ2
i

=n−1

k∑
i=1

1

(1 + λ−1
i n−1Λ)2

+ Λ−2n
∑
i>k

λ2
i

=
k∗∑
i=1

λ2
i /n

(λi + n−1Λ)2
+

k∑
i=k∗+1

λ2
i /n

(λi + n−1Λ)2
+
∑
i>k

λ2
i /n

(n−1Λ)2{
≥
∑k∗

i=1
λ2i /n

(2λi)2
+
∑k

i=k∗+1
λ2i /n

(2n−1Λ∗)2
+
∑

i>k
λ2i /n

(n−1Λ∗)2
,

≤
∑k∗

i=1
λ2i /n

λ2i
+
∑k

i=k∗+1
λ2i /n

(n−1Λ∗/2)2
+
∑

i>k
λ2i /n

(n−1Λ∗/2)2
,

where we plugged in n−1Λ ≤ λi for i ≤ k∗, λi ≤ n−1Λ∗ for i > k∗, and Λ∗ ≥ Λ ≥ Λ∗/2
in the last transition.

Since

V ∗ =
k∗∑
i=1

λ2
i /n

λ2
i

+
∑
i>k∗

λ2
i /n

(n−1Λ∗)2

the above implies that 4V∗ ≥ V ≥ V∗/4.

Lemma 48 (Alternative form of the bounds). Suppose that k < n and Λ > nλk+1. Denote

Na :=
∑
i

µ2
i

λi + Λ/n
, Va :=

∑
i

λ2
i /n

(λi + Λ/n)2
, ♢a

2 :=
∑
i

λiµ
2
i /n

(λi + Λ/n)2
.

Then

N ≥ Na ≥ N/2, V ≥ Va ≥ V/4, ♢2 ≥ ♢a
2 ≥ ♢2/4.

Proof. We prove the relations one-by-one. In the last transition in each display below we
use the fact that for i > k we have (Λ/n)−1 ≤ 2(λi + Λ/n)−1 to obtain the upper bound.

nΛ−1M =
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1/2

Σ
−1/2
0:k µ0:k

∥∥∥2 + nΛ−1∥µk:∞∥2

=
k∑
i=1

µ2
i

λi(1 + λ−1
i n−1Λ)

+ nΛ−1
∑
i>k

µ2
i

=
k∑
i=1

µ2
i

λi + Λ/n
+
∑
i>k

µ2
i

Λ/n{
≥
∑

i
µ2i

λi+Λ/n

≤ 2
∑

i
µ2i

λi+Λ/n
.
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n♢2 =
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 + n2Λ−2∥µk:∞∥2Σk:∞

=
k∑
i=1

µ2
i

λi(1 + λ−1
i n−1Λ)2

+ n2Λ−2
∑
i>k

λiµ
2
i

=
k∑
i=1

λiµ
2
i

(λi + Λ/n)2
+
∑
i>k

λiµ
2
i

(Λ/n)2{
≥
∑

i
λiµ

2
i

(λi+Λ/n)2

≤ 4
∑

i
λiµ

2
i

(λi+Λ/n)2
,

V =n−1tr
((

Λn−1Σ−1
0:k + Ik

)−2
)

+ Λ−2n
∑
i>k

λ2
i

=n−1

k∑
i=1

1

(1 + λ−1
i n−1Λ)2

+ Λ−2n
∑
i>k

λ2
i

=
k∑
i=1

λ2
i /n

(λi + Λ/n)2
+
∑
i>k

λ2
i /n

(Λ/n)2{
≥
∑

i
λ2i /n

(λi+Λ/n)2

≤ 4
∑

i
λ2i /n

(λi+Λ/n)2
,

B.4 Randomness in labels

Lemma 98 (Factoring out randomness in labels). There exists an absolute constant c s.t.
conditionally on the draw of Q for any t > 0 with probability at least 1 − ce−t

2/c over the
draw of (y, ŷ) all the following hold:

1.
max(|ν⊤A−1y|, |ν⊤A−1ŷ|) ≤ ct∥A−1ν∥.

2.
|ν⊤A−1∆y| ≤ ctση∥A−1ν∥.

3.
|∆y⊤A−1y| ≤ c∥A−1∥

(
nη + tση(

√
n + t)

)
.
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4.

y⊤A−1ŷ ≥(n− nη − ctση
√
n− k)µ1(Ak)

−1

−(nη + ctση
√
n + ct

√
n + ct2)∥A−1∥.

5.
n∥A−1∥ ≥ y⊤A−1y ≥ (n− k)µ1(Ak)

−1 − c(t
√
n + t2)∥A−1∥.

6.

∥Q⊤A−1∆y∥2Σ ≤cσ2
η

(
tr(A−1Q⊤ΣQ⊤A−1) + t2∥A−1Q⊤ΣQ⊤A−1∥

)
.

7.

∥Q⊤A−1y∥2Σ ≤c
(
tr(A−1Q⊤ΣQ⊤A−1) + t2∥A−1Q⊤ΣQ⊤A−1∥

)
.

Proof. Throughout the whole proof we will use Lemma 90, which states that sub-Gaussian
norms of the components of ∆y/2 are at most ση. Recall also that sub-Gaussian norms of

the components of y and ŷ are equal to an absolute constant (to be precise, 1/
√

ln(2)).
Each time we use c in this proof it denotes a new absolute constant. In the end we take c
large enough, so all the statements hold.

1. |ν⊤A−1y|, |ν⊤A−1ŷ|: the bound follows directly from the fact that y and ŷ are sub-
Gaussian vectors with sub-Gaussian norms bounded by an absolute constant (see
Lemma 3.4.2 in [55]), and both y, ŷ are independent from ν⊤A−1.

2. |ν⊤A−1∆y|: the bound follows in the same way as above from the fact that ∆y is
a sub-Gaussian vector with sub-Gaussian norm at most cση, and ∆y is independent
from ν⊤A−1.

3. |∆y⊤A−1y|. Denote yc = y + ∆y/2 — the vector, whose coordinates corresponding
to the clean points are equal to their clean labels, and other coordinates zeroed out.
Conditionally on ∆y, yc is a vector with i.i.d. Rademacher coordinates supported on
the complement of the support of ∆y. Since Rademacher R.V’s. are sub-Gaussian,
we have that for some absolute constant c for any t > 0 the following holds with
probability at least 1 − 2e−t

2/c:

|∆y⊤A−1y| =
∣∣∣−∆y⊤A−1∆y/2 + ∆y⊤A−1yc

∣∣∣
≤∆y⊤A−1∆y/2 + ct∥A−1∆y∥
≤∥A−1∥(∥∆y∥2/2 + ct∥∆y∥).
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By Lemma 90 squares of coordinates of ∆y/2 are ση-sub-Gaussian with mean η, so
by General Hoeffding’s inequality (Theorem 2.6.2 in [55]) for some absolute constant
c and any t > 0 with probability at least 1 − 2e−t

2/c

|∥∆y∥2/4 − nη| ≤ ctση
√
n.

We could use this result to bound |∥∆y∥ as well, but then
√
ση will appear in the

bounds. Instead, we use Lemma 91 to give an alternative bound that also holds with
probability 1 − 2e−t

2/c:
∥∆y∥/2 ≤ ση(

√
n + t).

Combining these bounds yields the result.

4. y⊤A−1ŷ: denote SN ∈ Rn×n to be a diagonal matrix, such that SN [i, i] = −1 if the
label of the i-th data point is noisy, and SN [i, i] = 1 otherwise.

The matrix SN is independent from both y and A. Now we can write

y⊤A−1ŷ = y⊤(A−1SN)y.

By Lemma 92 (Hanson-Wright inequality), for some absolute constant c for any t > 0
with probability at least 1 − 2e−t

2/c

y⊤A−1ŷ ≥ tr(A−1SN) − ct∥A−1SN∥F − ct2∥A−1SN∥

Note that

∥A−1SN∥ =∥A−1∥,
∥A−1SN∥F =∥A−1∥F ≤

√
n∥A−1∥.

We need to bound the number of noisy data points in order to bound tr(A−1SN) from
below. The number of noisy data points is equal to

∥∆y∥0 = ∥∆y∥2/4 ≤ nη + ctση
√
n,

where the last inequality was taken from before, and holds with probability at least
1 − 2e−t

2/c.

Recall that the n−k largest eigenvalues of A−1 are greater or equal to µ1(Ak)
−1. Thus,

with probability at least 1 − 2e−t
2/c.

tr(A−1SN) ≥(n− ∥∆y∥0 − k)µ1(Ak)
−1 − ∥∆y∥0∥A−1∥,

≥(n− nη − ctση
√
n− k)µ1(Ak)

−1 − (nη + ctση
√
n)∥A−1∥

Combining it with Hanson-Wright, we get that with probability at least 1 − 4e−t
2/c

y⊤A−1ŷ ≥(n− nη − ctση
√
n− k)µ1(Ak)

−1 − (nη + ctση
√
n + ct

√
n + ct2)∥A−1∥



APPENDIX B. PROOFS FOR CHAPTER 3 182

5. y⊤A−1y: the inequality y⊤A−1y ≤ n∥A−1∥ holds with probability one since ∥y∥2 = n
almost surely. When it comes to the lower bound, it is simply a particular case of the
result for y⊤A−1ŷ proven above for η = 0.

6. ∥Q⊤A−1∆y∥2Σ: the bound is a direct consequence of Corollary 93, applied to M =
A−1Q⊤ΣQ⊤A−1 and ε = ∆y.

7. ∥Q⊤A−1y∥2Σ: the bound is a direct consequence of Corollary 93, applied to M =
A−1Q⊤ΣQ⊤A−1 and ε = y.

B.5 Algebraic decompositions

The purpose of this section is to provide algebraic decompositions of various terms or bounds
on them as given by the following Lemma.

Lemma 99 (Algebraic decompositions). For any k < n all the following hold almost surely
on the event that the matrix Ak is PD:

1.

∥A−1ν∥ ≤µ1(Ak)

µn(Ak)

√
µ1(Z

⊤
0:kZ0:k)

µk(Z
⊤
0:kZ0:k)

∥∥∥(µ1(Z
⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥
+ µn(Ak)

−1∥Qk:∞µk:∞∥.

2.

µ⊤µ⊥∼ ≥1

2
µn(Ak)µ1(Z

⊤
0:kZ0:k)

−1
∥∥∥(µn(Ak)µ1(Z

⊤
0:kZ0:k)

−1Σ−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥2
+ ∥µk:∞∥2 − 9µn(Ak)

−1∥Q⊤
0:kµk:∞∥2.

3.

µ⊤µ⊥∼ ≤3µ1(Ak)µk(Z
⊤
0:kZ0:k)

−1
∥∥∥(µk(Z⊤

0:kZ0:k)
−1µ1(Ak)Σ

−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥2
+ ∥µk:∞∥2 + 2∥A−1/2

k Qk:∞µk:∞∥2.
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4.

∥µ⊥∼∥
2
Σ

≤2µk(Z
⊤
0:kZ0:k)

−2µ1(Ak)
2
∥∥∥(µ1(Z

⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2
+ 2

µ1(Ak)
2µ1(Z0:kZ

⊤
0:k)

µn(Z⊤
0:kZ0:k)2µn(Ak)2

∥Qk:∞µk:∞∥2

+ 3∥µk:∞∥2Σk:∞
+ 3∥Qk:∞Σk:∞Q⊤

k:∞∥µn(Ak)
−2∥Qk:∞µk:∞∥2

+ 3∥Qk:∞Σk:∞Q⊤
k:∞∥ µ1(Ak)

2µ1(Z
⊤
0:kZ0:k)

µk(Z
⊤
0:kZ0:k)2µn(Ak)2

×
∥∥∥(µ1(Z

⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2 .

(B.3)

5.

tr(A−1QΣQ⊤A−1) ≤ µ1(Ak)
2µ1(Z

⊤
0:kZ0:k)

µk(Z
⊤
0:kZ0:k)2µn(Ak)2

tr
((

µ1(Z
⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−2
)

+ µn(Ak)
−2tr(Qk:∞Σk:∞Q⊤

k:∞).

(B.4)

6.

∥A−1QΣQ⊤A−1∥ ≤ µ1(Ak)
2

µn(Ak)2
µ1(Z

⊤
0:kZ0:k)

µk(Z
⊤
0:kZ0:k)2

∧ λ2
1µ1(Z

⊤
0:kZ0:k)

µn(Ak)2
+

∥Qk:∞Σk:∞Q⊤
k:∞∥

µn(Ak)2
.

The remainder of Section B.5 gives the proof of Lemma 99.

Techniques and proof strategy

The main tool that we are going to use in this section is the following application of Sherman-
Morrison-Woodbury (SMW) identity for the matrix A−1:

Lemma 100. If Ak is invertible, then all the following hold:

A−1 =A−1
k −A−1

k Q0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
Q⊤

0:kA
−1
k , (B.5)

A−1Q0:k =A−1
k Q0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
, (B.6)

Ik −Q⊤
0:kA

−1Q0:k =
(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
. (B.7)

Proof. Equation (B.5) is a direct application of SMW as A−1 = (Ak + Q0:kQ
⊤
0:k)

−1. To
derive (B.6) we write

A−1Q0:k =A−1
k Q0:k −A−1

k Q0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
Q⊤

0:kA
−1
k Q0:k

=A−1
k Q0:k

(
Ik −

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1 (
Ik + Q⊤

0:kA
−1
k Q0:k − Ik

))
=A−1

k Q0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
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Finally, we derive (B.7) from (B.6):

Ik −Q⊤
0:kA

−1Q0:k

=Ik −Q⊤
0:kA

−1
k Q0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1

=Ik +
(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1 −
(
Ik + Q⊤

0:kA
−1
k Q0:k

) (
Ik + Q⊤

0:kA
−1
k Q0:k

)−1

=
(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
.

Another algebraic result that we will utilize is as follows:

Lemma 101. Suppose M ∈ Rk×k is a PD matrix such that αIk ⪯ M ⪯ βIk for some
positive scalars α < β. Then for any vector u ∈ Rk∥∥(Σ−1

0:k + M)−1u
∥∥ ≥β−1

∥∥(α−1Σ−1
0:k + Ik)

−1u
∥∥ , (B.8)∥∥(Σ−1

0:k + M)−1u
∥∥ ≤α−1

∥∥(β−1Σ−1
0:k + Ik)

−1u
∥∥ . (B.9)

Moreover,

β−2tr
(
(α−1Σ−1

0:k + Ik)
−2
)
≤ tr

(
(Σ−1

0:k + M)−2
)
≤ α−2tr

(
(β−1Σ−1

0:k + Ik)
−2
)
. (B.10)

Proof. Denote v := (Σ−1
0:k + M )−1u, vα := (Σ−1

0:k + αIk)
−1u, and vβ := (Σ−1

0:k + βIk)
−1u.

Then

vα :=(Σ−1
0:k + αIk)

−1u

=(Σ−1
0:k + αIk)

−1(Σ−1
0:k + M )v

=v + (Σ−1
0:k + αIk)

−1(M − αIk)v

Thus,

∥vα∥ ≤ ∥v∥
(
1 + ∥(M − αIk)∥∥(Σ−1

0:k + αIk)
−1∥
)
≤ ∥v∥

(
1 +

β − α

α

)
=

β

α
∥v∥,

which yields Equation (B.8). Analogously,

vβ :=(Σ−1
0:k + βIk)

−1u

=(Σ−1
0:k + βIk)

−1(Σ−1
0:k + M )v

=v + (Σ−1
0:k + βIk)

−1(M − βIk)v

Thus,

∥vβ∥ ≥ ∥v∥
(
1 − ∥(M − βIk)∥∥(Σ−1

0:k + βIk)
−1∥
)
≥ ∥v∥

(
1 − β − α

β

)
=

α

β
∥v∥,
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which yields Equation (B.9).
Finally, Equation (B.10) is a direct consequence of Equations (B.8) and (B.9): take g to

be an isotropic Gaussian vector in Rk. Equations (B.8) and (B.9) give

β−2
∥∥(α−1Σ−1

0:k + Ik)
−1g
∥∥2 ≤ ∥∥(Σ−1

0:k + M )−1g
∥∥2 ≤ α−2

∥∥(β−1Σ−1
0:k + Ik)

−1g
∥∥2 .

Taking expectation over g yields Equation (B.10).

∥A−1ν∥
In this section we derive an upper bound on ∥A−1ν∥. Recall that

ν = Qµ = Q0:kµ0:k + Qk:∞µk:∞,

∥A−1ν∥ ≤ ∥A−1Q0:kµ0:k∥ + ∥A−1Qk:∞µk:∞∥.

We bound those two terms separately. For the first term we use Equation (B.6):

A−1Q0:kµ0:k =A−1
k Q0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
µ0:k

=A−1
k Z0:kΣ

1/2
0:k

(
Ik + Σ

1/2
0:kZ

⊤
0:kA

−1
k Z0:kΣ

1/2
0:k

)−1

µ0:k

=A−1
k Z0:kΣ

1/2
0:k

(
Ik + Σ

1/2
0:kZ

⊤
0:kA

−1
k Z0:kΣ

1/2
0:k

)−1

µ0:k

=A−1
k Z0:k

(
Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−1
Σ

−1/2
0:k µ0:k.

So,

∥A−1Q0:kµ0:k∥2 ≤ ∥Z⊤
0:kA

−2
k Z0:k∥

∥∥∥(Σ−1
0:k + Z⊤

0:kA
−1
k Z0:k

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2 .
Now we use Lemma 101 together with the observation that

∥Z⊤
0:kA

−2
k Z0:k∥ ≤ µ1(Z

⊤
0:kZ0:k)µn(Ak)

−2,

µk(Z
⊤
0:kZ0:k)µ1(Ak)

−1Ik ⪯ Z⊤
0:kA

−1
k Z0:k ⪯ µ1(Z

⊤
0:kZ0:k)µn(Ak)

−1Ik

to write

∥A−1Q0:kµ0:k∥2

≤µ1(Z
⊤
0:kZ0:k)µn(Ak)

−2
(
µk(Z

⊤
0:kZ0:k)µ1(Ak)

−1
)−2

×
∥∥∥(µ1(Z

⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2
=

µ1(Z
⊤
0:kZ0:k)

µk(Z
⊤
0:kZ0:k)2

µ1(Ak)
2

µn(Ak)2

∥∥∥(µ1(Z
⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2 .



APPENDIX B. PROOFS FOR CHAPTER 3 186

For the k : ∞ part we can just write

∥A−1Qk:∞µk:∞∥ ≤ ∥A−1∥∥Qk:∞µk:∞∥ ≤ µn(Ak)
−1∥Qk:∞µk:∞∥.

Overall,

∥A−1ν∥ ≤µ1(Ak)

µn(Ak)

√
µ1(Z

⊤
0:kZ0:k)

µk(Z
⊤
0:kZ0:k)

∥∥∥(µ1(Z
⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥
+ µn(Ak)

−1∥Qk:∞µk:∞∥.

µ⊤µ⊥∼

Bound from below

In this section we derive a lower bound on µ⊤µ⊥∼. First of all, we write

µ⊤µ⊥∼ =µ⊤(Ip −Q⊤A−1Q)µ

=µ⊤
0:k(Ik −Q⊤

0:kA
−1Q0:k)µ0:k

+ µ⊤
k:∞(Ip−k −Q⊤

k:∞A−1Qk:∞)µk:∞

− 2µ⊤
0:kQ

⊤
0:kA

−1Qk:∞µk:∞.

We see that this decomposition has 3 terms: energy in the spiked part, energy in the
tail, and the cross term. We expect the positive contribution to come from µ⊤

0:k(Ik −
Q⊤

0:kA
−1Q0:k)µ0:k +µ⊤

k:∞Ip−kµk:∞, the other terms will be upper bounded in absolute value
and subtracted from the lower bound. The last term (the cross term) is a bit tricky, because
bounding it separately leads to a potentially vacuous bound. The approach we take here is
to bound it in terms of the quantities from the first two terms, and then bounding those
quantities.

Due to Equation (B.7) the first term becomes

µ⊤
0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
µ0:k.

Now let’s apply a similar transformation to the cross-term: we use Equation (B.6) to
write ∣∣µ⊤

0:kQ
⊤
0:kA

−1Qk:∞µk:∞
∣∣

=
∣∣∣µ⊤

0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
Q⊤

0:kA
−1
k Qk:∞µk:∞

∣∣∣
=
∣∣∣µ⊤

0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1/2 (
Ik + Q⊤

0:kA
−1
k Q0:k

)−1/2
Q⊤

0:kA
−1
k Qk:∞µk:∞

∣∣∣
≤wµ⊤

0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
µ0:k

+ w−1
∥∥∥(Ik + Q⊤

0:kA
−1
k Q0:k

)−1/2
Q⊤

0:kA
−1
k Qk:∞µk:∞

∥∥∥2
≤wµ⊤

0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
µ0:k + w−1∥A−1/2

k Qk:∞µk:∞∥2,
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where we introduced an arbitrary scalar w > 0 when we used AM-GM inequality. In the
last line we also used the following fact:∥∥∥(Ik + Q⊤

0:kA
−1
k Q0:k

)−1/2
Q⊤

0:kA
−1/2
k

∥∥∥ ≤ 1.

Indeed, Ik +Q⊤
0:kA

−1
k Q0:k is larger than Q⊤

0:kA
−1/2
k (Q⊤

0:kA
−1/2
k )⊤ in the sense of the Loewner

order.
We take w = 0.25. So far we obtained that

µ⊤µ⊥∼ ≥ 1

2
µ⊤

0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
µ0:k + ∥µk:∞∥2 − 9∥A−1/2

k Q⊤
0:kµk:∞∥2,

where we also used

µ⊤
k:∞(Ip−k −Q⊤

k:∞A−1Qk:∞)µk:∞ =∥µk:∞∥2 − µ⊤
k:∞Q⊤

k:∞ A−1︸︷︷︸
⪯A−1

k

Qk:∞µk:∞

≥∥µk:∞∥2 − ∥A−1/2
k Q⊤

0:kµk:∞∥2.

Now we just need to bound µ⊤
0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
µ0:k from below and ∥A−1/2

k Q⊤
0:kµk:∞∥2

from above. We write

µ⊤
0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
µ0:k

=µ⊤
0:kΣ

−1/2
0:k

(
Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−1
Σ

−1/2
0:k µ0:k

≥µ⊤
0:kΣ

−1/2
0:k

(
Σ−1

0:k + µn(Ak)
−1µ1(Z

⊤
0:kZ0:k)Ik

)−1
Σ

−1/2
0:k µ0:k

=µn(Ak)µ1(Z
⊤
0:kZ0:k)

−1
∥∥∥(µn(Ak)µ1(Z

⊤
0:kZ0:k)

−1Σ−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥2 .
For the term ∥A−1/2

k Q⊤
0:kµk:∞∥2 we simply do a norm-times-norm bound:

∥A−1/2
k Q⊤

0:kµk:∞∥2 ≤ µn(Ak)
−1∥Q⊤

0:kµk:∞∥2

Combining everything together gives the bound.

µ⊤µ⊥∼ ≥1

2
µn(Ak)µ1(Z

⊤
0:kZ0:k)

−1
∥∥∥(µn(Ak)µ1(Z

⊤
0:kZ0:k)

−1Σ−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥2
+ ∥µk:∞∥2 − 9µn(Ak)

−1∥Q⊤
0:kµk:∞∥2

Bound from above

In this section we bound µ⊤µ⊥∼ from above. This is easier than bounding it from below.
Indeed, recall the decomposition from the previous section:

µ⊤µ⊥∼ =µ⊤
0:k(Ik −Q⊤

0:kA
−1Q0:k)µ0:k

+ µ⊤
k:∞(Ip−k −Q⊤

k:∞A−1Qk:∞)µk:∞

− 2µ⊤
0:kQ

⊤
0:kA

−1Qk:∞µk:∞.
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For the first term we had

µ⊤
0:k(Ik −Q⊤

0:kA
−1Q0:k)µ0:k = µ⊤

0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
µ0:k.

and for the cross-term∣∣µ⊤
0:kQ

⊤
0:kA

−1Qk:∞µk:∞
∣∣

≤wµ⊤
0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
µ0:k + w−1∥A−1/2

k Qk:∞µk:∞∥2,

for any w > 0. Here we will take w = 1. For the second term we simply write

µ⊤
k:∞(Ip−k −Q⊤

k:∞A−1Qk:∞)µk:∞ ≤ ∥µk:∞∥2.

Combining everything together, we get

µ⊤µ⊥∼ ≤3µ⊤
0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
µ0:k + ∥µk:∞∥2 + 2∥A−1/2

k Qk:∞µk:∞∥2

=3µ⊤
0:kΣ

−1/2
0:k

(
Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−1
Σ

−1/2
0:k µ0:k + ∥µk:∞∥2 + 2∥A−1/2

k Qk:∞µk:∞∥2

≤3µ1(Ak)µk(Z
⊤
0:kZ0:k)

−1
∥∥∥(µk(Z⊤

0:kZ0:k)
−1µ1(Ak)Σ

−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥2
+ ∥µk:∞∥2 + 2∥A−1/2

k Qk:∞µk:∞∥2.

∥µ⊥∼∥2Σ
The quantity ∥µ⊥∼∥2Σ is exactly the bias term from Chapter 2 up to the following change of
notation: µ instead of θ∗, Q instead of X. We could, in principle, just borrow an algebraic
bound from that chapter (Lemma 87) . However, we would like a bound in a slightly different
form, so we do a new derivation here.

As before, we start with the first k components and use Lemma 100:

∥[µ⊥∼]0:k∥2Σ0:k
/2

≤
∥∥(Ik −Q⊤

0:kA
−1Q0:k)µ0:k

∥∥2
Σ0:k

+
∥∥Q⊤

0:kA
−1Qk:∞µk:∞

∥∥2
Σ0:k

=
∥∥∥(Ik + Q⊤

0:kA
−1
k Q0:k

)−1
µ0:k

∥∥∥2
Σ0:k

+
∥∥∥(Ik + Q⊤

0:kA
−1
k Q0:k

)−1
Q⊤

0:kA
−1
k Qk:∞µk:∞

∥∥∥2
Σ0:k

=
∥∥∥(Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2
+
∥∥∥(Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−1
Z⊤

0:kA
−1
k Qk:∞µk:∞

∥∥∥2
≤
(
µk(Z

⊤
0:kZ0:k)µ1(Ak)

−1
)−2
∥∥∥(µ1(Z

⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2
+ µ1(Ak)

2µn(Z⊤
0:kZ0:k)

−2µ1(Z0:kZ
⊤
0:k)µn(Ak)

−2 ∥Qk:∞µk:∞∥2 ,
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where in the last transition we used Lemma 101 and the following observation:∥∥∥(Σ−1
0:k + Z⊤

0:kA
−1
k Z0:k

)−1
∥∥∥ ≤ µk(Z

⊤
0:kA

−1
k Z0:k)

−1 ≤ µ1(Ak)µk(Z
⊤
0:kZ0:k)

−1.

When it comes to the rest of the components, we write

[µ⊥∼]k:∞

=µk:∞ −Q⊤
k:∞A−1Qµ

=µk:∞ −Q⊤
k:∞A−1Qk:∞µk:∞ −Q⊤

k:∞A−1Q0:kµ0:k

=µk:∞ −Q⊤
k:∞A−1Qk:∞µk:∞ −Q⊤
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k Q0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
µ0:k

=µk:∞ −Q⊤
k:∞A−1Qk:∞µk:∞ −Q⊤
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k Z0:k

(
Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−1
Σ

−1/2
0:k µ0:k,

which yields

∥[µ⊥∼]k:∞∥Σk:∞

≤∥µk:∞∥Σk:∞ + ∥Qk:∞Σk:∞Q⊤
k:∞∥1/2µn(A)−1∥Qk:∞µk:∞∥

+ ∥Qk:∞Σk:∞Q⊤
k:∞∥1/2µn(Ak)

−1µ1(Z
⊤
0:kZ0:k)

1/2
∥∥∥(Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−1
Σ

−1/2
0:k µ0:k

∥∥∥
≤∥µk:∞∥Σk:∞ + ∥Qk:∞Σk:∞Q⊤

k:∞∥1/2µn(Ak)
−1∥Qk:∞µk:∞∥

+ ∥Qk:∞Σk:∞Q⊤
k:∞∥1/2µn(Ak)

−1µ1(Z
⊤
0:kZ0:k)

1/2

µk(Z
⊤
0:kZ0:k)µ1(Ak)−1

×
∥∥∥(µ1(Z

⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥ ,
where we used Lemma 101 and the fact that µn(A) ≥ µn(Ak) in the last transition. Com-
bining everything together and using the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) yields the
final bound.

tr(A−1QΣQ⊤A−1)

The quantity tr(A−1QΣQ⊤A−1) is exactly the variance term from Chapter 2: as for the
bias term, plug in Q instead of X. As before, we could in principle use the algebraic
decomposition from Lemma 86, but we make a new derivation because we want to obtain
the bound in a different form.
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tr(A−1[Q0:k,Qk:∞]Σ[Q0:k,Qk:∞]⊤A−1)

=tr(A−1Q0:kΣ0:kQ
⊤
0:kA

−1) + tr(A−1Qk:∞Σk:∞Q⊤
k:∞A−1)

=tr
(
A−1
k Q0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
Σ0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
Q⊤

0:kA
−1
k

)
+ tr(A−1Qk:∞Σk:∞Q⊤

k:∞A−1)

=tr
(
A−1
k Z0:k

(
Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−2
Z⊤

0:kA
−1
k

)
+ tr(A−1Qk:∞Σk:∞Q⊤

k:∞A−1)

Now let’s bound these two terms separately. First, recall that for any PSD matrices M 1

and M 2 the following holds: tr(M 1M 2) ≤ ∥M 1∥tr(M 2). We use this to bound the first
term as follows:

tr
(
A−1
k Z0:k

(
Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−2
Z⊤

0:kA
−1
k

)
≤µn(Ak)

−2tr
(
Z0:k

(
Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−2
Z⊤

0:k

)
=µn(Ak)

−2tr
((

Σ−1
0:k + Z⊤

0:kA
−1
k Z0:k

)−2
Z⊤

0:kZ0:k

)
≤µn(Ak)

−2µ1(Z
⊤
0:kZ0:k)tr

((
Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−2
)

≤ µn(Ak)
−2µ1(Z

⊤
0:kZ0:k)

µk(Z
⊤
0:kZ0:k)2µ1(Ak)−2

tr
((

µ1(Z
⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−2
)
,

where we used Lemma 101 in the last transition.
When it comes to the second term, we simply write

tr(A−1Qk:∞Σk:∞Q⊤
k:∞A−1) ≤ µn(Ak)

−2tr
(
Qk:∞Σk:∞Q⊤

k:∞
)
.

∥A−1QΣQ⊤A−1∥
In Chapter 2 the deviations of the variance term in noise were dealt with in the following
way: Hanson-Wright inequality states that a quadratic form ε⊤Mε, where ε is a vector with
i.i.d. centered sub-Gaussian components concentrates around tr(M), with deviations being
composed of a sub-Gaussian tail controlled by ∥M∥F and sub-Exponential tail controlled
by ∥M∥. In Chapter 2 the latter two quantities were bounded as ∥M∥2F ≤ tr(M )2 and
∥M∥ ≤ tr(M), so only the bound on the trace of the matrix A−1QΣQ⊤A−1 was required.
Instead of making such step, we can bound the spectral norm separately, and then use
∥M∥2F ≤ ∥M∥tr(M ). This section shows the following:

∥A−1QΣQ⊤A−1∥ ≤ µ1(A
−1
k )2

µn(A−1
k )2

µ1(Z
⊤
0:kZ0:k)

µk(Z
⊤
0:kZ0:k)2

+
∥Qk:∞Σk:∞Q⊤

k:∞∥
µn(Ak)2

.
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We bound the operator norm as follows: first, we decompose into two terms

A−1QΣQ⊤A−1 = A−1Q0:kΣ0:kQ
⊤
0:kA

−1 + A−1Qk:∞Σk:∞Q⊤
k:∞A−1.

The second term is straightforward:

∥A−1Qk:∞Σk:∞Q⊤
k:∞A−1∥

≤∥A−1∥∥Qk:∞Σk:∞Q⊤
k:∞∥∥A−1∥

=
∥Qk:∞Σk:∞Q⊤

k:∞∥
µn(Ak)2

.

For the first term we use Equation (B.6) to write

∥A−1Q0:kΣ0:kQ
⊤
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−1∥

=
∥∥∥A−1
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(
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)−1
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)−1
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−1
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∥∥∥
= ∥A−1
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(
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−1
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)−2
Z⊤

0:kA
−1
k ∥

≤
∥∥∥(Σ−1

0:k + Z⊤
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−1
k Z0:k

)−2
∥∥∥ ∥Z0:kZ

⊤
0:k∥∥A−1

k ∥2

≤
(
λ2
1 ∧
∥∥∥(Z⊤

0:kA
−1
k Z0:k

)−2
∥∥∥) ∥Z0:kZ

⊤
0:k∥∥A−1

k ∥2

≤ µ1(Ak)
2

µn(Ak)2
µ1(Z

⊤
0:kZ0:k)

µk(Z
⊤
0:kZ0:k)2

∧ λ2
1µ1(Z

⊤
0:kZ0:k)

µn(Ak)2
.

B.6 Randomness in covariates

Lemma 102 (Randomness in covariates). Consider some L > 1. There exists a constant c
that only depends on cB and L such that the following holds. Denote

Λ = λ +
∑
i>k

λi

Assume that k < n/c and

Λ > cnλk+1 ∨
√
n
∑
i>k

λ2
i .

Then all the following hold on the event Ak(L) ∩ Bk(cB):

1.

∥A−1ν∥ ≤c
(
n−1/2

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥+ Λ−1
√
n∥µk:∞∥Σk:∞

)
;

2.

cµ⊤µ⊥∼ ≥ Λ

n

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥+ ∥µk:∞∥2 ≥ µ⊤µ⊥∼/c;
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3.

∥µ⊥∼∥
2
Σ/c ≤ Λ2n−2

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2 + ∥µk:∞∥2Σk:∞
;

4.

tr(A−1QΣQ⊤A−1) ≤c

(
n−1tr

((
Λn−1Σ−1

0:k + Ik
)−2
)

+ Λ−2n
∑
i>k

λ2
i

)
;

5.

∥A−1QΣQ⊤A−1∥ ≤c

(
1

n
∧ nλ2

1

Λ2
+

nλ2
k+1 +

∑
i>k λ

2
i

Λ2

)
.

Proof. Recall that on Ak(L) we have Λ/L ≤ µn(Ak) ≤ µ1(Ak) ≤ LΛ.
The proof is rather straightforward: we plug the bounds from the definition of the event

Bk(cB) from Section 3.3, and the bounds on eigenvalues of Ak from the definition of the
event Ak(L) into the result of Lemma 99. Recall that cB is the constant from the definition
of Bk(cB).

On Ak(L) ∩ Bk(cB) all the following hold:

1.

∥A−1ν∥ ≤µ1(Ak)

µn(Ak)

√
µ1(Z

⊤
0:kZ0:k)

µk(Z
⊤
0:kZ0:k)

∥∥∥(µ1(Z
⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥
+ µn(Ak)

−1∥Qk:∞µk:∞∥

≤c
3/2
B L2

√
n

· cBL
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥+ c
1/2
B LΛ−1

√
n∥µk:∞∥Σk:∞ .

Note that in the last transition we used that for a positive scalar a < 1 we can write∥∥∥(aΛn−1Σ−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥ ≤ a−1
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥ .
It is easy to see that this is correct since both matrices Ik and Σ0:k are diagonal. We
will make such a transition several more times throughout this proof, as well as the
following for b ≥ 1:∥∥∥(bΛn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥ ≥ b−1
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥ .
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2. We start with the lower bound on µ⊤µ⊥∼:

µ⊤µ⊥∼ ≥1

2
µn(Ak)µ1(Z

⊤
0:kZ0:k)

−1
∥∥∥(µn(Ak)µ1(Z

⊤
0:kZ0:k)

−1Σ−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥2
+ ∥µk:∞∥2 − 9µn(Ak)

−1∥Q⊤
0:kµk:∞∥2

≥ Λ

2LcBn
· 1

cBL

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥
+ ∥µk:∞∥2 − 9LcBΛ−1n∥µk:∞∥2Σk:∞

≥ Λ

2L2c2Bn

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥+ ∥µk:∞∥2(1 − 9LcBnλk+1Λ
−1),

where in the last line we used that ∥µk:∞∥2Σk:∞
≤ λk+1∥µk:∞∥2. Note that if we take

c > 18cBL in the end, then 1−9LcBnλk+1Λ
−1 > 0.5 since we assumed that Λ > cnλk+1.

Now, we do the upper bound:

µ⊤µ⊥∼ ≤3µ1(Ak)µk(Z
⊤
0:kZ0:k)

−1
∥∥∥(µk(Z⊤

0:kZ0:k)
−1µ1(Ak)Σ

−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥2
+ ∥µk:∞∥2 + 2∥A−1/2

k Qk:∞µk:∞∥2

≤3LcBΛn−1 · cBL
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1/2

Σ
−1/2
0:k µ0:k

∥∥∥2
+ ∥µk:∞∥2 + 2LcBΛ−1n∥µk:∞∥2Σk:∞

≤3L2c2BΛn−1
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1/2

Σ
−1/2
0:k µ0:k

∥∥∥2 + ∥µk:∞∥2(1 + 2LcBλk+1Λ
−1n),

where, as before, we used ∥µk:∞∥2Σk:∞
≤ λk+1∥µk:∞∥2 in the last line. Note that here

Λ > cnλk+1 implies that 2LcBλk+1Λ
−1n ≤ 2LcB/c < 1 for c large enough.

3. The upper bound on ∥µ⊥∼∥2Σ, is very similar to the bound on the bias term in Chapter 2,
but has a slightly different form. We derive it below.
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∥µ⊥∼∥
2
Σ

≤2µk(Z
⊤
0:kZ0:k)

−2µ1(Ak)
2
∥∥∥(µ1(Z

⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2
+ 2

µ1(Ak)
2µ1(Z0:kZ

⊤
0:k)

µn(Z⊤
0:kZ0:k)2µn(Ak)2

∥Qk:∞µk:∞∥2

+ 3∥µk:∞∥2Σk:∞
+ 3∥Qk:∞Σk:∞Q⊤

k:∞∥µn(Ak)
−2∥Qk:∞µk:∞∥2

+ 3∥Qk:∞Σk:∞Q⊤
k:∞∥ µ1(Ak)

2µ1(Z
⊤
0:kZ0:k)

µk(Z
⊤
0:kZ0:k)2µn(Ak)2

×
∥∥∥(µ1(Z

⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2
≤2c2BL

2Λ2n−2 · c2BL2
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2
+ 2L4c3Bn

−1 · cBn ∥µk:∞∥2Σk:∞

+ 3∥µk:∞∥2Σk:∞
+ 3cB

(
nλ2

k+1 +
∑
i>k

λ2
i

)
· L2Λ−2cBn ∥µk:∞∥2Σk:∞

+ 3cB

(
nλ2

k+1 +
∑
i>k

λ2
i

)
· L4c3Bn

−1 · c2BL2
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 ,
∥µ⊥∼∥

2
Σ

≤
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 ·(2c4BL
4Λ2n−2 + 3c6BL

6n−1

(
nλ2

k+1 +
∑
i>k

λ2
i

))

+ ∥µk:∞∥2Σk:∞
·

(
2L4c4B + 3 + 3c2BL

2Λ−2n

(
nλ2

k+1 +
∑
i>k

λ2
i

))
.

Recall that we imposed the assumption that

Λ > nλk+1, Λ >

√
n
∑
i>k

λ2
i .

Therefore

n

(
nλ2

k+1 +
∑
i>k

λ2
i

)
≤ 2Λ2.

Plugging this inequality in and taking c large enough depending on cB and L gives the
bound.
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4. The upper bound on tr(A−1QΣQ⊤A−1), is also very similar to the one derived in
Chapter 2, where it is exactly the the variance term, but has a slightly different form.
We derive it below:

tr(A−1QΣQ⊤A−1) ≤ µ1(Ak)
2µ1(Z

⊤
0:kZ0:k)

µk(Z
⊤
0:kZ0:k)2µn(Ak)2

tr
((

µ1(Z
⊤
0:kZ0:k)

−1µn(Ak)Σ
−1
0:k + Ik

)−2
)

+ µn(Ak)
−2tr(Qk:∞Σk:∞Q⊤

k:∞)

≤L4c3Bn
−1 · cBLtr

((
Λn−1Σ−1

0:k + Ik
)−2
)

+ L2cBΛ−2n
∑
i>k

λ2
i .

5.

∥A−1QΣQ⊤A−1∥ ≤µ1(Ak)
2

µn(Ak)2
µ1(Z

⊤
0:kZ0:k)

µk(Z
⊤
0:kZ0:k)2

∧ λ2
1µ1(Z

⊤
0:kZ0:k)

µn(Ak)2
+

∥Qk:∞Σk:∞Q⊤
k:∞∥

µn(Ak)2

≤L4c3B
n

∧ λ2
1cBn

L−2Λ2
+ cBL

2Λ−2

(
nλ2

k+1 +
∑
i>k

λ2
i

)
.

In all the cases above we see that taking c large enough depending on cB and L yields
the result.

B.7 Proof of the main lower bound

First of all, we combine Lemma 98 with Lemma 102 to obtain high probability bounds on
all the terms that appear in quantities of interest. The result is given by the following

Lemma 103 (High probability bounds on separate terms). Consider some L > 1. There
exists a constant c that only depends on cB and L and an absolute constant cy such that the
following holds. Assume that η < c−1. Assume that k < n/c

Λ > cnλk+1 ∨
√
n
∑
i>k

λ2
i .

For any t ∈ (0,
√
n/cy), conditionally on the event Ak(L)∩Bk(cB), with probability is at

least 1 − cye
−t2/2 over the draw of (y, ŷ) all the following hold:

1.

|ν⊤A−1y| ∨ |ν⊤A−1ŷ| ≤ct♢,

2.

|ν⊤A−1∆y| ≤ctση♢,
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3.

|∆y⊤A−1y| ≤cσηnΛ−1,

4.

y⊤A−1ŷ ≥c−1nΛ−1,

5.

cnΛ−1 ≥ y⊤A−1y ≥ c−1nΛ−1,

6.

∥Q⊤A−1∆y∥2Σ ≤cσ2
η(V + t2∆V ),

7.

∥Q⊤A−1y∥2Σ ≤c(V + t2∆V ),

8.

cM ≥ µ⊤µ⊥∼ ≥c−1M,

9.

∥µ⊥∼∥Σ ≤cΛ♢/
√
n,

Proof. Parts 1, 2, 6 and 7 can be obtained directly from the corresponding parts of Lemma
98 by plugging in the bounds from Lemma 102. Parts 8 and 9 are exactly parts 2 and 3 of
Lemma 102. Thus, only parts 3, 4, and 5 require additional explanation, which we provide
below.

First of all, note that ∥A−1∥ ≤ ∥A−1
k ∥ = µn(Ak)

−1, since A is larger than Ak w.r.t.
Loewner order. Thus, on Ak(L) we have

∥A−1∥ ≤ LΛ−1, µ1(Ak)
−1 ≥ L−1Λ−1,

Now let’s explain parts 3, 4, 5 starting with the corresponding parts of Lemma 98. Denote
the (absolute) constant from that lemma as c1. In all the following we plug in the bounds
on eigenvalues of Ak, together with η < 1/c, k < n/c and t <

√
n/c. In the end of each

derivation we need to take c large enough depending on L and c1.
By Lemma 98 for every t ∈ (0,

√
n/c1) on Ak(L) ∩ Bk(cB) we have with probability at

least 1 − c1e
−t2/2 over the draw of (y, ŷ)
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3.

|∆y⊤A−1y| ≤c1∥A−1∥
(
nη + tση(

√
n + t)

)
≤c1LΛ(nση +

√
nση(

√
n +

√
n)

≤cnΛ−1ση.

4.

y⊤A−1ŷ ≥(n− nη − c1tση
√
n− k)µ1(Ak)

−1

−(nη + c1tση
√
n + c1t

√
n + c1t

2)∥A−1∥
≥L−1Λ−1n(1 − 1/c− c1ση/c− 1/c− L2/c− c1L

2ση/c− L2c1/c)

≥c−1nΛ−1.

5.
cnΛ−1 ≥ nLΛ−1 ≥ n∥A−1∥ ≥ y⊤A−1y,

and

y⊤A−1y ≥(n− k)µ1(Ak)
−1 − c1(t

√
n + t2)∥A−1∥

≥(n− n/c)L−1Λ−1 − c1(n/c + n/c2)LΛ−1

≥c−1nΛ−1.

Theorem 42 (Main lower bound). For any cB > 0, L > 1 there exists a constant c that only
depends on cB and L, such that the following holds. Assume that η < c−1, k < n/c, and

Λ > cnλk+1 ∨
√

n
∑
i>k

λ2
i .

For any t ∈ (0,
√
n/c), conditionally on the event Ak(L) ∩ Bk(cB), with probability at

least 1 − ce−t
2/2 over the draw of (y, ŷ), the following inequalities hold for a certain scalar

S > 0:

Sµ⊤wridge ≥c−1N − ct♢, (3.13)

S∥wridge∥Σ ≤c
(

[1 + Nση]
√
V + t2∆V + ♢

√
n
)
. (3.14)

That is, if N > 2c2t♢, then on the same event,

µ⊤wridge

∥wridge∥Σ
≥ 1

2c2
N

[1 + Nση]
√
V + t2∆V + ♢

√
n
.



APPENDIX B. PROOFS FOR CHAPTER 3 198

Proof. Note that increasing c only makes the statement weaker. From the very beginning
let’s put c to be large enough, so that c > 1 and ση < 1.

Recall that

∆V :=
k ∧ 1

n
+

nλ2
k+1 +

∑
i>k λ

2
i(

λ +
∑

i>k λi
)2 .

The plan is to plug in the bounds from Lemma 103 into quantities of interest, the formulas
for which are given by Lemma 89. First of all, however, we need to make sure that S > 0.
This is required to write ∥Swridge∥Σ = S∥wridge∥Σ and then cancel S in the numerator and
denominator. This is indeed the case since S = (1 + ν⊤A−1y)2 + y⊤A−1yµ⊤µ⊥∼, and in
Lemma 103 we bound µ⊤µ⊥∼ and y⊤A−1y from below by strictly positive quantities.

Let’s plug in the bounds Lemma 103 in the formulas from Lemma 89: denote the constant
from Lemma 103 as c1 and write

1. Sµ⊤wridge: recall that yC is the vector of labels of clean points: yC = y + ∆y/2 =
ŷ − ∆y/2. Now we write

y⊤A−1ŷµ⊤µ⊥∼ + (1 + ν⊤A−1y)ν⊤A−1ŷ

=y⊤A−1ŷµ⊤µ⊥∼ + ν⊤A−1ŷ + ν⊤A−1(yC − ∆y/2)ν⊤A−1(yC + ∆y/2)

=y⊤A−1ŷµ⊤µ⊥∼ + ν⊤A−1ŷ − (ν⊤A−1∆y)2/4 + (ν⊤A−1yC)2

≥y⊤A−1ŷµ⊤µ⊥∼ + ν⊤A−1ŷ − (ν⊤A−1∆y)2/4

≥ n

c21Λ
M − c1t♢− c21t

2σ2
η♢

2

=
N

c21
− c1t♢− c21t

2σ2
η♢

2.

Recall that by Lemma 41 we have N ≥ n♢2, which yields

N

c21
− c21t

2σ2
η♢

2 ≥ N

c21
− c21

c2
n♢2 ≥ N

2c21
,

where the last transition is correct if c is taken large enough depending on c1. Thus,
we get

y⊤A−1ŷµ⊤µ⊥∼ + (1 + ν⊤A−1y)ν⊤A−1ŷ ≥ N

2c21
− c1t♢.

2. S∥wridge∥Σ, the first term:[
(1 + |ν⊤A−1y|)2 + y⊤A−1yµ⊤µ⊥∼

]
∥Q⊤A−1∆y∥Σ

≤
[
(1 + c1t♢)2 + c21MnΛ−1

]√
c1σ2

η(V + t2∆V )

≤c2.51

[
(1 + t♢)2 + nΛ−1M

]
ση
√
V + t2∆V .
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3. S∥wridge∥Σ, the second term[
(1 + |ν⊤A−1y|)(1 + |ν⊤A−1∆y|) + |∆y⊤A−1y|µ⊤µ⊥∼

]
∥Q⊤A−1y∥Σ

≤
[
(1 + c1t♢)(1 + c1σηt♢) + c21MσηnΛ−1

]√
c1(V + t2∆V )

≤c2.51

[
1 + (1 + ση)t♢ + σηt

2♢2 + nΛ−1Mση

]
√
V + t2∆V

≤2c31

[
1 + t♢ + nΛ−1Mση

]
√
V + t2∆V ,

where we used that ση < 1 and t2♢2 < n♢2 < nΛ−1M in the last transition (by Lemma
41).

4. S∥wridge∥Σ, the third term[
y⊤A−1y + (1 + |ν⊤A−1y|)|∆y⊤A−1y| + y⊤A−1y|ν⊤A−1∆y|

]
∥µ⊥∼∥Σ

≤
[
c1n

Λ
+ (1 + c1t♢)

c1nση
Λ

+
c21ntση♢

Λ

]
c1Λ√
n
♢

≤2c31
√
n(1 + tση♢)♢,

where we used c1nΛ−1(1 + ση) ≤ 2c1nΛ−1 in the last line to reduce the number of
terms.

Combining all the terms for S∥wridge∥Σ, we get that for some new constant c2 that only
depends on L and cB under the condition that t ≤

√
n/c2 and η < 1/c2

S∥wridge∥Σ/c2 ≤
[
(1 + t♢)2 + nΛ−1M

]
ση
√
V + t2∆V

+
[
1 + t♢ + nΛ−1Mση

]√
V + t2∆V

+
√
n(1 + tση♢)♢

=♢2 · tση(
√
n + t

√
V + t2∆V )

+♢ ·
(√

n + t(1 + 2ση)
√
V + t2∆V

)
+
[
1 + ση + 2nΛ−1Mση

]√
V + t2∆V

By Lemma 41
V ≤ 2, ∆V ≤ 3/n, t2∆V ≤ 3.

This allows us to obtain the final bound on S∥wridge∥Σ: plug in the following inequalities:

√
n + t

√
V + t2∆V ≤(1 +

√
5)
√
n,

√
n + t(1 + 2ση)

√
V + t2∆V ≤(1 + 3

√
5)
√
n,

1 + ση ≤2.
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We get for some c3 that only depends on L, cB:

S∥wridge∥Σ ≤ c3

([
1 + nΛ−1Mση

]√
V + t2∆V + ♢

√
n + tση♢

2
√
n
)
. (B.11)

Finally, note that by Lemma 41 we have ♢2 ≤ Λ−1M
√
n∆V , so

tση♢
2
√
n ≤ tσηMΛ−1n

√
∆V = σηMΛ−1n

√
t2∆V ≤ nΛ−1Mση

√
V + t2∆V .

We see that the term tση♢2
√
n is dominated by another term up to a constant factor, so it

can be removed. This gives the final form of the bound.

B.8 Proof of tightness

The goal of this section is to prove a constant probability upper bound on µ⊤wridge/∥wridge∥Σ
for the case without label flipping noise (that is, y = ŷ). We are going to do it by sepa-
rately bounding Sµ⊤wridge from above and ∥Swridge∥Σ from below, where S is the scalar
from Lemma 89. With our techniques, the bounds from below are usually more compli-
cated then the bounds from above. This happens because of the cross-terms: one can use
Cauchy-Schwarz to bound them from above, but not from below. To overcome this issue,
we introduce two additional random signs to the data. More precisely, introduce two inde-
pendent Rademacher random variables εy and εq, which are independent from y and Q, and
denote

Q̄ :=[Q0:k, εqQk:∞], (B.12)

ȳ :=εyy, (B.13)

w̄ridge :=(Q̄ + ȳµ⊤)⊤(Q̄Q̄
⊤

+ λIn︸ ︷︷ ︸
=A

)−1ȳ. (B.14)

Note that since the distribution of y is symmetric (i.e. y and −y have the same distribu-
tion), the distribution of ȳ is the same as the distribution of y. We are also going to assume
that Qk:∞ is independent from Q0:k and that the distribution of Qk:∞ is symmetric, which
implies that the Q is has the same distribution as Q̄. Moreover, note that the expressions
in the definitions of the events Bk(cB) and Ak(L) don’t change if we substitute Q by Q̄ in
those definitions. Both random signs εy and εy cancel. For example, this implies Lemma
102 applies if we substitute Q by Q̄, and its result holds almost surely over εq.

Introduction of those random signs allows us to say that the cross terms are non-negative
with probability 0.5 independently of Q and y, and thus we don’t need to lower bound them
to obtain results with constant probability.
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By Lemma 89

S̄ :=(1 + ν̄⊤A−1ȳ)2 + µ⊤µ̄⊥∼ȳ
⊤A−1ȳ,

S̄w̄ridge =(1 + ν̄⊤A−1ȳ)Q̄
⊤
A−1ȳ + ȳ⊤A−1ȳµ̄⊥∼,

S̄µ⊤w̄ridge =ȳ⊤A−1ȳµ⊤µ̄⊥∼ + (1 + ν̄⊤A−1ȳ)ν̄⊤A−1ȳ,

where we introduced ν̄ := Q̄µ and µ̄⊥∼ = (Ip − Q̄
⊤
A−1Q̄)µ.

The remainder of this section is organized as follows: in Section B.8 we bound S̄µ⊤w̄ridge

from above, in Section B.8 we bound ∥S̄µ⊤w̄ridge∥Σ from below. In Section B.8 we combine
those bouds into the upper bound on S̄µ⊤w̄ridge/|S̄µ⊤w̄ridge∥Σ, and thus µ⊤wridge/∥wridge∥Σ
too because it has the same distribution.

Numerator

We start with the following auxiliary lemma, which gives separate bounds on two quantities
of interest that arise in the proof of the upper bound on S̄µ⊤w̄ridge.

Lemma 104. Suppose that the distribution of the rows of Z is σx-sub-Gaussian. For any
L ≥ 1 there exists a constant c that only depends on L, σx and cB such that the following
holds. Suppose that k < n/c and Q0:k is independent from Qk:∞. There exists an event C
whose probability is at least 1 − ce−n/c such that all the following hold on the event Ak(L) ∩
Bk(cB) ∩ C :

∥A−1Q0:kµ0:k∥2 ≥c−1n−1
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 ,
∥A−1Qk:∞µk:∞∥2 ≥c−1Λ−2n∥µk:∞∥2Σk:∞

.

Proof. We prove the inequalities separately. Recall that cB is the constant from the definition
of Bk(cB) in Section 3.3.

1. Using the expressions that we derived in Section B.5 we have on the event Ak(L) ∩
Bk(cB)

∥A−1Q0:kµ0:k∥2

=
∥∥∥A−1

k Z0:k

(
Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2
≥µ1(Ak)

−2µn(Z⊤
0:kZ0:k)

∥∥∥(Σ−1
0:k + Z⊤

0:kA
−1
k Z0:k

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2
≥ µn(Ak)

2µn(Z⊤
0:kZ0:k)

µ1(Ak)2µ1(Z
⊤
0:kZ0:k)2

∥∥∥(µ1(Ak)µk(Z
⊤
0:kZ0:k)

−1Σ−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2
≥L4c3Bn

−1 · LcB
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 .
where we used Lemma 101 in the penultimate line.
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2. Use Sherman-Morrison-Woodbury for the matrix A−1 (Equation (B.5)):

A−1 = (Ak + Q0:kQ
⊤
0:k)

−1 = A−1
k −A−1

k Q0:k(Ik + Q⊤
0:kA

−1
k Q0:k)

−1Q⊤
0:kA

−1
k .

Let’s consider the matrix AkA
−1 and see what happens when we multiply it by

Qk:∞µk:∞. The idea is to say that the column span of Q0:k is independent of Qk:∞µk:∞,
and thus the part that lies that span doesn’t influence the norm of the vector much. For-
mally, denote the projector on the orthogonal complement to the span of the columns
of Q0:k as P⊥

0:k ∈ Rn×n, and note (from Equation (B.5)) that P⊥
0:kAkA

−1 = P⊥
0:k. We

write

∥A−1Qk:∞µk:∞∥2

≥µ1(Ak)
−2∥AkA

−1Qk:∞µk:∞∥2

≥µ1(Ak)
−2∥P⊥

0:kAkA
−1Qk:∞µk:∞∥2

≥µ1(Ak)
−2∥P⊥

0:kQk:∞µk:∞∥2.

Now note that the vector Qk:∞µk:∞ has i.i.d. components, whose variances are equal
to ∥µk:∞∥2Σ and whose sub-Gaussian constants don’t exceed σx∥µk:∞∥Σ. Moreover,
Qk:∞µk:∞ is independent from P⊥

0:k, and since P⊥
0:k is a projector, we have

∥P⊥
0:kQk:∞µk:∞∥2 = (Qk:∞µk:∞)⊤P⊥

0:kQk:∞µk:∞.

Thus, by Hanson-Wright inequality (Lemma 92) for some absolute constant c1 and any
s > 0, with probability at least 1 − 2 exp {−s/c1},

|∥P⊥
0:kQk:∞µk:∞∥2 − ∥µk:∞∥2Σtr(P⊥

0:k)| ≤ σ2
x∥µk:∞∥2Σ max(

√
s∥P⊥

0:k∥F , s∥P⊥
0:k∥).

Once again, P⊥
0:k is a projector of rank n− k, so

tr(P⊥
0:k) = n− k > n/2, ∥P⊥

0:k∥F =
√
n− k ≤

√
n, ∥P⊥

0:k∥F = 1.

Taking s = n/c2 for a large enough constant c2 that only depends on σx we see that
the probability of the following event is at least 1 − 2 exp {−n/(c1c2)}:

C :=

{
∥P⊥

0:kQk:∞µk:∞∥2 > n∥µk:∞∥2Σ
(

1

2
− σ2

x/
√
c2

)}
.

For c2 > 16σ4
x onC we have ∥P⊥

0:kQk:∞µk:∞∥2 ≥ n∥µk:∞∥2Σ/4.

Combining everything together, on Ak(L) ∩ C we get

∥A−1Qk:∞µk:∞∥2 ≥0.25L−2Λ−2n∥µk:∞∥2Σ.
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Our upper bound on S̄µ⊤w̄ridge is given by the following lemma.

Lemma 105. Suppose that the distribution of the rows of Z is σx-sub-Gaussian. Consider
some L > 1. There exist large constants a, c that only depend on σx, cB and L and an
absolute constant cy such that the following holds. Assume that k < n/c and

Λ > cnλk+1 ∨
√
n
∑
i>k

λ2
i .

1. If nΛ−1M ≥ a−1♢, then on Ak(L) ∩ Bk(cB) for any t ∈ (0,
√
n) with probability at

least 1 − cye
−t2/cy over the draw of y almost surely over the draw of (εq, εy)

S̄µ⊤w̄ridge < c(1 + t)nΛ−1M.

2. If nΛ−1M < a−1♢, there exists an event C that only depends on Q, whose probability
is at least 1 − ce−n/c such that then on Ak(L) ∩ Bk(cB) ∩ C with probability at least
c−1
y over the draw of y and (εq, εy)

S̄µ⊤w̄ridge < 0.

Proof. Recall that

S̄µ⊤w̄ridge = ȳ⊤A−1ȳµ⊤µ̄⊥∼ + (1 + ν̄⊤A−1ȳ)ν̄⊤A−1ȳ.

First of all, denote the constant from Lemma 102 as c1. By that lemma on Ak(L)∩Bk(cB)
we have

ȳ⊤A−1ȳµ⊤µ̄⊥∼ ≤µn(A)−1∥ȳ∥2µ⊤µ̄⊥∼

≤LΛ−1n · c1M ;

∥A−1ν̄∥ ≤c1♢.

Recall that we indeed can apply Lemma 102 to ∥A−1ν̄∥ instead of ∥A−1ν∥ because
introducing εq into the matrix Q does not change the definitions of the events Ak(L) and
Bk(cB).

In the same way as in the proof of Lemma 98 since y is a sub-Gaussian vector with
sub-Gaussian norm bounded by an absolute constant, we have for some absolute constant
cy,1 that for any t > 0 on Ak(L) and Bk(cB) with probability at least 1 − cy,1e

−t2/cy,1 over
the draw of y almost surely over the draw of εq

|ν̄⊤A−1ȳ| = |ν̄⊤A−1y| ≤ c1t♢.

We can make that statement almost surely over εq, because it can only take two values, so
we can just do multiplicity correction by adjusting the constant cy,1.
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These upper bounds directly imply the first part of the lemma. Indeed,

S̄µ⊤w̄ridge =ȳ⊤A−1ȳµ⊤(Ip − Q̄
⊤
A−1Q̄) + (1 + ν̄⊤A−1ȳ)ν̄⊤A−1ȳ

≤c21nΛ−1M + c1t♢ + (c1t♢)2

≤c21nΛ−1M + c1t♢ + c1n♢
2

≤nΛ−1M(c21 + c1) + c1tanΛ−1M,

where we used that t <
√
n, ♢2 ≤ Λ−1M (Lemma 41) and ♢ < anΛ−1M in the last line. In

the end, we just need c to be large enough depending on c1 and a.
When it comes to the second part, we leave the same bounds for the terms ȳ⊤A−1ȳµ⊤(Ip−

Q̄
⊤
A−1Q̄) and (ν̄⊤A−1ȳ)2, but show that the term ν̄⊤A−1ȳ can be negative with large

enough magnitude to pull the whole bound in the negative direction.
We take the event C to be the same as in Lemma 104, by which there exists a constant

c2 that only depends on L, σx, cB such that on Ak(L) ∩ Bk(cB) ∩ C

∥A−1Q0:kµ0:k∥2 ≥c−1
2 n−1

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2 ,
∥A−1Qk:∞µk:∞∥2 ≥c−1

2 Λ−2n∥µk:∞∥2Σk:∞
.

Now we use the same expressions as we derived in Section B.5 to write

∥A−1ν̄∥2 =∥A−1(Q0:kµ0:k + εqQk:∞µk:∞)∥2

=
∥∥∥A−1

k Z0:k

(
Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2
+∥A−1Qk:∞µk:∞∥2

+2εq(Qk:∞µk:∞)⊤A−2(Q0:kµ0:k)

≥c−1
2 ♢2/2 + 2εq(Qk:∞µk:∞)⊤A−2(Q0:kµ0:k).

Note that conditionally on Ak(L) ∩ Bk(cB) ∩ C with probability 0.5 over the draw of
εq the term involving εq is non-negative, that is ∥A−1ν̄∥ ≥ (2c2)

−1/2♢. That statement
doesn’t involve y, so y is still independent of this event. Thus, conditionally on it, by
Lemma 96 for an absolute constant cy,2 with probability at least c−1

y,2 over the choice of y we

have |y⊤A−1ν̄| ≥ c−1
y,2∥A−1ν̄∥. Moreover, we’ve seen in the first part of the proof that with

probability at least 1 − cy,1e
−n/cy,1 over the draw of y |y⊤A−1ν̄| ≤ c1

√
n♢. Finally, with

probability 0.5 over εy we have εyy
⊤A−1ν̄ = −|y⊤A−1ν̄|. Combining everything together

(recall that εq, εy,Q and y are independent) we get that on Ak(L) ∩ Bk(cB) ∩ C with
probability at least 0.25

(
c−1
y,2 − cy,1e

−n/cy,1
)

over the draw of y and (εq, εy)

ȳ⊤A−1ν̄ ≤− c−1
y,2(2c2)

−1/2♢,

S̄µ⊤w̄ridge ≤nΛ−1M(c21 + 2c1) − c−1
y,2(2c2)

−1/2♢

<0,

where the last transition holds for a large enough depending on c1, c2, cy,1, cy,2 since nΛ−1M <
a−1♢.



APPENDIX B. PROOFS FOR CHAPTER 3 205

Denominator

The next step is to lower-bound the denominator ∥S̄µ⊤w̄ridge∥Σ. Recall that εy, εq,y,Q are
all independent from each other. We factor out the randomness in each of those variables
one-by-one, starting with the following

Lemma 106. With probability at least 0.25 over the choice of (εy, εq) (that is, conditionally
on y and Q)

∥S̄µ⊤w̄ridge∥2Σ ≥1

2

∥∥Q⊤A−1y
∥∥2
Σ

+
1

2
(y⊤A−1y)2

(∥∥(Ik −Q⊤
0:kA

−1Q0:k)µ0:k

∥∥2
Σ0:k

+ 0.5∥µk:∞∥2Σk:∞

)
−7

2
(y⊤A−1y)2

∥∥Q⊤
k:∞A−1Qk:∞µk:∞

∥∥2
Σk:∞

−7(ν̄⊤A−1y)2∥Q⊤A−1y∥2Σ.

Proof. Note that for any vectors u,v of the same dimension the following holds:

∥u + v∥2 =∥u∥2 + ∥v∥2 + 2u⊤v

≥∥u∥2 + ∥v∥2 − 2
(
0.25∥u∥2 + 4∥v∥2

)
=0.5∥u∥2 − 7∥v∥2.

Thus, we write

∥S̄w̄ridge∥2Σ ≥0.5∥Q̄⊤
A−1ȳ + ȳ⊤A−1ȳµ̄⊥∼∥

2
Σ − 7(ν̄⊤A−1ȳ)2∥Q̄⊤

A−1ȳ∥2Σ.

For the last term note that∥∥∥Q̄⊤
A−1ȳ

∥∥∥2
Σ

=
∥∥∥Q̄⊤

A−1y
∥∥∥2
Σ

=
∥∥Q⊤

0:kA
−1y
∥∥2
Σ0:k

+
∥∥εyQ⊤

k:∞A−1y
∥∥2
Σk:∞

=
∥∥Q⊤A−1y

∥∥2
Σ
.

Next, we decompose the first term as follows:∥∥∥Q̄⊤
A−1ȳ + ȳ⊤A−1ȳµ̄⊥∼

∥∥∥2
Σ

=
∥∥∥Q̄⊤

A−1y
∥∥∥2
Σ

+ (y⊤A−1y)2 ∥µ̄⊥∼∥
2
Σ

+ 2εyf1(Σ,Q,µ, εqy),

where f1(Σ,Q,µ, εqy) is a cross-term, which doesn’t involve εy. Recall that for the first

term we have
∥∥∥Q̄⊤

A−1y
∥∥∥2
Σ

=
∥∥Q⊤A−1y

∥∥2
Σ

.
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For the second term in that decomposition we go a step further and write

∥µ̄⊥∼∥
2
Σ

=
∥∥µ0:k −Q⊤

0:kA
−1Q̄µ

∥∥2
Σ0:k

+
∥∥µk:∞ − εqQ

⊤
k:∞A−1Q̄µ

∥∥2
Σk:∞

=
∥∥(Ik −Q⊤

0:kA
−1Q0:k)µ0:k

∥∥2
Σ0:k

+
∥∥µk:∞ −Q⊤

k:∞A−1Qk:∞µk:∞
∥∥2
Σk:∞

+
∥∥εqQ⊤

0:kA
−1Qk:∞µk:∞

∥∥2
Σ0:k

+
∥∥εqQ⊤

k:∞A−1Q0:kµ0:k

∥∥2
Σk:∞

+εqf(Σ,Q,µ)

≥
∥∥(Ik −Q⊤

0:kA
−1Q0:k)µ0:k

∥∥2
Σ0:k

+
∥∥µk:∞ −Q⊤

k:∞A−1Qk:∞µk:∞
∥∥2
Σk:∞

+ εqf2(Σ,Q,µ)

≥
∥∥(Ik −Q⊤

0:kA
−1Q0:k)µ0:k

∥∥2
Σ0:k

+ 0.5∥µk:∞∥2Σk:∞

− 7
∥∥Q⊤

k:∞A−1Qk:∞µk:∞
∥∥2
Σk:∞

+ εqf2(Σ,Q,µ),

where f2(Σ,Q,µ) is the cross term, which is independent from εq, εy and y.
The statement of the lemma holds on the following event

{εqf2(Σ,Q,µ) ≥ 0, εyf1(Σ,Q,µ, εqy) ≥ 0, }

whose probability is at least 0.25 conditionally on y,Q since εq and εy are independent
random signs.

Note that the last term in the lemma above still depends on εq through ν̄ and Q̄. This is
not a problem since we will bound that term almost surely over the draw of εq conditionally
on Ak(L) ∩ Bk(cB) and y.

The next step is to obtain lower bounds w.r.t. randomness that comes from y. Once
again, we don’t touch the terms that we subtract yet, and only lower-bound the positive
terms.

Lemma 107. There exists an absolute constant cy such that for any fixed value of Q for
any t ∈ (0,

√
n/cy) with probability at least c−1

y −cye
−t2/cy over the draw of y all the following

hold almost surely over the draw of εq:∥∥Q⊤A−1y
∥∥2
Σ
≥c−1

y tr(A−1QΣQ⊤A−1),

y⊤A−1y ≥(n− k)µ1(Ak)
−1 − cy(t

√
n + t2)∥A−1∥,

y⊤A−1y ≤n∥A−1∥,
∥Q⊤A−1y∥2Σ ≤cy(tr(A

−1QΣQ⊤A−1) + t2∥A−1QΣQ⊤A−1∥),

|ν̄⊤A−1y| ≤cyt∥A−1ν̄∥.

Proof. The first inequality is a direct application of Lemma 97, and the remaining were shown
as a part of Lemma 98. Note that only the last inequality depends on εq, and formally Lemma
98 only shows it for a fixed value of εq. However, there are only two possible values of εq, so
the uniform result can be obtained by straightforward multiplicity correction (the constant
from Lemma 98 should be doubled).
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At this point we just need the lower bounds on the quantities that only involve Q and
µ. These are done by the following

Lemma 108. Suppose that the distribution of the rows of Z is σx-sub-Gaussian. For any
L ≥ 1 there exists a constant c that only depends on L, cB and σx such that the following
holds. Suppose that k < n/c and Q0:k is independent from Qk:∞. There exists an event C
whose probability is at least 1 − ce−n/c such that all the following hold on the event Ak(L) ∩
Bk(cB) ∩ C :

tr(A−1QΣQ⊤A−1) ≥c−1V,

∥(Ik −Q⊤
0:kA

−1Q0:k)µ0:k∥2Σ0:k
≥c−1Λ2n−2

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2 .
Proof. We prove the inequalities separately:

1. We start with the first inequality by writing the following.

tr(A−1QΣQ⊤A−1) =tr(A−1Q0:kΣ0:kQ
⊤
0:kA

−1) + tr(A−1Qk:∞Σk:∞Q⊤
k:∞A−1).

For the first term we use the same formula as in Section B.5:

tr(A−1Q0:kΣ0:kQ
⊤
0:kA

−1)

=tr
(
A−1
k Z0:k

(
Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−2
Z⊤

0:kA
−1
k

)
≥µ1(Ak)

−2µk(Z
⊤
0:kZ0:k)tr

((
Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−2
)

≥ µn(Ak)
2µk(Z

⊤
0:kZ0:k)

µ1(Ak)2µ1(Z
⊤
0:kZ0:k)2

tr
((

µk(Z
⊤
0:kZ0:k)

−1µ1(Ak)
−1Σ−1

0:k + Ik
)−2
)

≥L4c3Bn
−1 · c2BL2tr

((
Λn−1Σ−1

0:k + Ik
)−2
)
,

where we used Lemma 101 in the penultimate line and the definition of the event
Bk(cB) from Section 3.3 in the last transition.

When it comes to the second term, we once again (as in the proof of Lemma 108) are
going to use the fact that

P⊥
0:kAkA

−1 = P⊥
0:k.

Thus, we write

tr(A−1Qk:∞Σk:∞Q⊤
k:∞A−1)

≥µ1(Ak)
−2tr(AkA

−1Qk:∞Σk:∞Q⊤
k:∞A−1Ak)

≥µ1(Ak)
−2tr(P⊥

0:kAkA
−1Qk:∞Σk:∞Q⊤

k:∞A−1AkP
⊥
0:k)

=µ1(Ak)
−2tr(P⊥

0:kQk:∞Σk:∞Q⊤
k:∞P⊥

0:k)

=µ1(Ak)
−2
∑
i>k

λ2
iz

⊤
i P

⊥
0:kzi,
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where zi are columns of Z. Note that for every fixed i > k the vector zi has i.i.d. com-
ponents with variance 1 and sub-Gaussian constant at most σx which are independent
of P 0:k. As in the proof of Lemma 108, by Hanson-Wright inequality (Lemma 92) for
some absolute constant c1 and any s > 0 with probability at least 1 − 2e−s/c1

|z⊤
i P

⊥
0:kzi − tr(P⊥

0:k)| =|z⊤
i P

⊥
0:kzi − (n− k)|

<σ2
x max(

√
s∥P⊥

0:k∥F , s∥P⊥
0:k∥)

=σ2
x max(

√
s
√
n− k, s).

So, for a large enough constant c2 that only depends on σx, given that c > c2 (i.e.,
k < n/c2) for any separate i with probability at least 1 − c2e

−n/c2

z⊤
i P

⊥
0:kzi ≥ n/c2.

By Lemma 9 from [3], we can combine separate high-probability lower bounds on non-
negative terms into a high-probability lower bound on the sum, that is, with probability
at least 1 − 2c2e

−n/c2 ∑
i>k

λ2
iz

⊤
i P

⊥
0:kzi ≥

n

2c2

∑
i>k

λ2
i .

Take this event as C .

Overall, we get that on Ak(L) ∩ C

tr(A−1Qk:∞Σk:∞Q⊤
k:∞A−1) ≥ 1

2L2c2
Λ−2n

∑
i>k

λ2
i .

2. Using Lemma 100 we have

∥(Ik −Q⊤
0:kA

−1Q0:k)µ0:k∥2Σ0:k

=
∥∥∥Σ1/2

0:k

(
Ik + Q⊤

0:kA
−1
k Q0:k

)−1
µ0:k

∥∥∥2
=
∥∥∥(Σ−1

0:k + Z⊤
0:kA

−1
k Z0:k

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2
≥µ1(Z

⊤
0:kZ0:k)

−2µn(Ak)
2
∥∥∥(µk(Z⊤

0:kZ0:k)
−1µ1(Ak)Σ

−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2
≥L−2c−2

B Λ2n−2 · c−2
B L−2

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2 ,
where we used Lemma 101 in the penultimate line and the definition of the event
Bk(cB) from Section 3.3 in the last transition.

Finally, we can put everything together in the following
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Lemma 109. Suppose that the distribution of the rows of Z is σx-sub-Gaussian. Take some
L > 1. There is an absolute constant cy and a constant c that only depends on L and σx,
such that if k < n/c and

Λ > c

nλk+1 +

√
n
∑
i>k

λ2
i

 , (B.15)

then there exists an event C which only depends on Q, whose probability is at least 1−ce−n/c

such that conditionally on Ak(L) ∩ Bk(cB) ∩ C with probability at least c−1
y − cye

−n/c over
the draw of y with probability at least 0.25 over the draw of (εy, εq)

∥S̄µ⊤w̄ridge∥2Σ ≥ c−1(V + n♢2).

Proof. Take the event C to be the same as in Lemma 108, and denote the constant from it
as c1. By that lemma on Ak(L) ∩ Bk(cB) ∩ C

tr(A−1QΣQ⊤A−1) ≥c−1
1 V,

∥(Ik −Q⊤
0:kA

−1Q0:k)µ0:k∥2Σ0:k
≥c−1

1 Λ2n−2
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 .
Moreover, denote the constant from Lemma 102 as c2. Note that k < n/c2 and Λ >

c2nλk+1 ∨
√
n
∑

i>k λ
2
i on if c is large enough. Thus, we by Lemma 102 on Ak(L) ∩ Bk(cB)

∥A−1ν̄∥ ≤c2♢,

tr(A−1QΣQ⊤A−1) ≤c2V

∥A−1QΣQ⊤A−1∥ ≤c2∆V.

Now denote the constant from Lemma 107 as cy. Combining that lemma with the results
we stated above we get that conditionally on the event Ak(L) ∩ Bk(cB) ∩ C for any t ∈
(0,

√
n/cy) with probability at least 1− cye

−t2/cy all the following hold almost surely over the
draw of εq:

∥∥Q⊤A−1y
∥∥2
Σ
≥c−1

y c−1
1 V,

y⊤A−1y ≥(n− k)µ1(Ak)
−1 − cy(t

√
n + t2)∥A−1∥

≥nΛ−1(L−1(1 − k/n) − cyLΛ−1(t
√
n + t2),

y⊤A−1y ≤nLΛ−1,

∥Q⊤A−1y∥2Σ ≤cyc2(V + t2∆V ),

|ν̄⊤A−1y| ≤cyc2t♢.

For the second inequality let’s restrict t to the range (0,
√
n/c3), where c3 is a large enough

constant depending on σx, L, so that inequality implies y⊤A−1y ≥ c−1
3 nΛ−1.



APPENDIX B. PROOFS FOR CHAPTER 3 210

Moreover, on Ak(L) ∩ Bk(cB) we can write∥∥Q⊤
k:∞A−1Qk:∞µk:∞

∥∥2
Σk:∞

≤
∥∥Qk:∞Σk:∞Q⊤

k:∞
∥∥µn(A)−2 ∥Qk:∞µk:∞∥2

≤cB

(∑
i>k

λ2
i + nλ2

k+1

)
· L2Λ−2 · cBn∥µk:∞∥2Σk:∞

≤c2BL
2

c2
∥µk:∞∥2Σk:∞

,

where in the last line we used the assumption from Equation (B.15).
Combining all that with Lemma 106 gives that conditionally on Ak(L)∩Bk(cB)∩C for

any t ∈ (0,
√
n/c3) with probability at least c−1

y −cye
−t2/cy over the draw of y with probability

at least 0.25 over the draw of (εy, εq)

∥S̄µ⊤w̄ridge∥2Σ ≥1

2

∥∥Q⊤A−1y
∥∥2
Σ

+
1

2
(y⊤A−1y)2

(∥∥(Ik −Q⊤
0:kA

−1Q0:k)µ0:k

∥∥2
Σ0:k

+ 0.5∥µk:∞∥2Σk:∞

)
−7

2
(y⊤A−1y)2

∥∥Q⊤
k:∞A−1Qk:∞µk:∞

∥∥2
Σk:∞

−7(ν̄⊤A−1y)2∥Q⊤A−1y∥2Σ

≥ 1

2c1cy
V

+
1

2c23
n2Λ−2 ·

(
c−1
1 Λ2n−2

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2 + 0.5∥µk:∞∥2Σk:∞

)
−7

2
n2Λ−2 · c

2
BL

2

c2
∥µk:∞∥2Σk:∞

− 7c2yc
2
2t

2♢2 · cyc2(V + t2∆V ).

If c is large enough, namely if 7c2BL
2c23 < 0.25c2, then we have

1

2c23
n2Λ−2 ·

(
c−1
1 Λ2n−2

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2 + 0.5∥µk:∞∥2Σk:∞

)
− 7

2
n2Λ−2 · c

2
BL

2

c2
∥µk:∞∥2Σk:∞

≥ 1

2c23
·
(
c−1
1

∥∥∥(Λn−1Σ−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2 + 0.25n2Λ−2∥µk:∞∥2Σk:∞

)
≥min(c−1

1 , 0.25)

2c23
n♢2/2.

That is, for a large enough constant c4 that only depends on σx, cB, L, we have

∥S̄µ⊤w̄ridge∥2Σ ≥c−1
4 (V + n♢2) − c4t

2♢2(V + t2∆V ).
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By Lemma 41 V ≤ 2 and t2∆V ≤ 3t2/n ≤ 3. Thus,

∥S̄µ⊤w̄ridge∥2Σ ≥ c−1
4 (V + n♢2(1 − 5c24t

2/n)) ≥ c−1
5 (V + n♢2),

provided that c5 is a large enough constant depending on c4, and t =
√

n/c5.

The ratio

Finally we can put the bound on the numerator together with the bound on the denominator
and obtain the following

Theorem 43 (Main upper bound). Suppose that η = 0 — there is no label-flipping noise,
and the rows of Z are σx-sub-Gaussian. For any L > 1 there are large constants a, c that
only depend on σx and L and an absolute constant cy such that the following holds. Suppose
that k < n/c and

Λ > c

nλk+1 +

√
n
∑
i>k

λ2
i

 .

Assume that Qk:∞ is independent from Q0:k, and the distribution of Qk:∞ is symmetric.

1. If N < a−1♢ then with probability at least c−1
y (P(Ak(L)) − ce−n/c)+,

µ⊤wridge < 0.

Here u+ denotes u ∨ 0 for any u ∈ R.

2. If N ≥ a−1♢ then for any t ∈ (0,
√
n/cy) the probability of the event{

µ⊤wridge

∥wridge∥Σ
≤ c(1 + t)

N√
V + n♢2

}
is a least

(c−1
y − cye

−t2/cy − cye
−n/c)+(P(Ak(L)) − ce−n/c)+.

Proof. First of all, it is enough to show the statement for w̄ridge (as defined in the beginning
of Section B.8) instead of wridge as it has the same distribution.

The straightforward combination of Lemmas 109 and 105 almost does the job, but we
also need to show that S̄ > 0 with high probability.

Recall that
S̄ = (1 + ν̄⊤A−1ȳ)2 + µ⊤µ̄⊥∼ȳ

⊤A−1ȳ.

By Lemma 102, if c is large enough depending on σx, L, then on the event Ak(L)∩Bk(cB)
we have

µ⊤µ̄⊥∼ ≥ M/c > 0.
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Moreover, (1 + ν̄⊤A−1ȳ)2 ≥ 0 almost surely, and ȳ⊤A−1ȳ > 0 on Ak(L). Thus, if c is large
enough, then S̄ > 0 on Ak(L) ∩ Bk(cB).

Recall that since the data is sub-Gaussian, we can take cB in the definition of the event
Bk(cB) large enough depending only on σx such that P(Bk(cB)) ≥ 1 − cBe

−n/cB (as shown
in Section 3.3). Now the first part of the theorem is a direct consequence of part 2 of Lemma
105, while the second part of the theorem is a direct combination of Lemma 109 with the
first part of 105.

Theorem 45 (Tightness of the bounds). Suppose that the distribution of the rows of Z is
σx-sub-Gaussian. Suppose that η = 0 — there is no label-flipping noise. For any L > 1
there exist constants a, c that only depend on L, σx and absolute constants ε, δ such that the
following holds. Suppose that n > c, k < n/c,

Λ > c

nλk+1 ∨
√
n
∑
i>k

λ2
i

 ,

and the probability of the event Ak(L) is at least 1 − δ. Assume that Qk:∞ is independent
from Q0:k, and the distribution of Qk:∞ is symmetric.

Then

αε ≤ c
N√

V +
√
n♢

.

If additionally N ≥ a♢, then

αε ≥ c−1 N√
V +

√
n♢

.

Proof. First of all, denote the constants from Theorem 43 as au, cu, cy,u (here index u stands
for “upper bound”). Note that by that theorem, regardless whether nΛ−1M < a−1♢ or
nΛ−1M ≥ a−1♢ it still holds for any tu ∈ (0,

√
n/cy,u) that the probability of the event{

µ⊤wridge

∥wridge∥Σ
≤ cu(1 + tu)

nΛ−1M√
V + n♢2

}
is a least

(c−1
y,u − cyue

−t2u/cy,u − cy,ue
−n/cu)+(P(Ak(L)) − cue

−n/cu)+.

Thus, if tu, n, δ and ε are such that

(c−1
y,u − cy,ue

−t2u/cy,u − cye
−n/cu)+(1 − δ − cue

−n/cu)+ > ε,

then

αε < cu(1 + tu)
nΛ−1M√
V + n♢2

.

When it comes to the lower bound, recall that by Lemma 39, the event Bk(cB) holds
with probability at least 1 − cBe

−n/cB for a constant cB that only depends on σx. Thus,
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Theorem 42 is applicable. Denote the constant from Theorem 42 as cℓ (here index ℓ stands
for “lower bound”). Then we have that for the case η = 0 (i.e. y = ŷ) for any tℓ ∈ (0,

√
n/cℓ),

conditionally on the event Ak(L) ∩ Bk(cB), with probability at least 1 − cℓe
−t2ℓ/2 over the

draw of y

µ⊤wridge

∥wridge∥Σ
≥ c−2

ℓ

N − c2ℓ tℓ♢√
V + t2ℓ∆V + ♢

√
n
≥ c−2

ℓ

N/2√
V (1 + 4t2ℓ) + ♢

√
n
,

where the last transition is made under the assumption that c2ℓ tℓ♢ ≤ N , and also uses the
fact that ∆V ≤ 4V (Lemma 41).

Thus, if we take a = 2c2ℓ tℓ and tℓ, n, ε, δ are such that

(1 − δ − cBe
−n/cB)+(1 − cℓe

−t2ℓ/2)+ ≥ 1 − ε,

then under the condition nΛ−1M ≥ a♢ we get

αε ≥ c−2
ℓ

nΛ−1M/2√
V (1 + 4t2ℓ) + ♢

√
n
.

Finally, to finish the proof we just need to choose c1, tl and tu that can only depend on
L, σx and absolute constants δ, ε such that for any n > c1

(1 − δ − cBe
−n/cB)+(1 − cy,ℓe

−t2ℓ/2)+ >1 − ε,

(c−1
y,u − cy,ue

−t2u/cy,u − cye
−n/cu)+(1 − δ − cue

−n/cu)+ >ε.

This is easy to do: first choose tu large enough so that cyue
−t2u/cy,u < c−1

yu /2. Note that tu is
an absolute constant. Second, take ε = 0.5 ∧ (c−1

yu /16) — an absolute constant. Third, take
c1 large enough depending on cB, cy,u, cu, ε so that

cye
−c1/cu ≤ c−1

y,u/4, cye
−c1/cu ≤ 1

4
, cBe

−c1/cB ≤ ε/4.

Fourth, take δ = ε/4 – an absolute constant. Finally, take tℓ such that cℓe
−t2ℓ/2 ≤ ε/2 — a

constant that only depends on cℓ (which, in its turn, only depends on L and σx). Combining
all gives

(1 − δ − cBe
−n/cB)+(1 − cy,ℓe

−t2ℓ/2)+

≥(1 − ε/4 − ε/4)+(1 − ε/2)+

>1 − ε,

(c−1
y,u − cy,ue

−t2u/cy,u − cye
−n/cu)+(1 − δ − cue

−n/cu)+

>(c−1
y,u − c−1

y,u/2 − c−1
y,u/4)(1 − 1/4 − 1/4)

=c−1
yu /16 ≥ ε,

which finishes the proof.
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B.9 Analysis of ridge regularization

Lemma 49. Consider a non-zero vector v ∈ Rp and a PD symmetric matrix M ∈ Rp×p.
Introduce the function f : Rp → R as f(w) = v⊤w/∥w∥. Then f ((Ip + tM )−1v) is a
non-increasing function of t on [0,+∞).

Proof. The idea is to introduce the vector-valued function w(t) := (Ip + tM)−1v and to
compute the derivative of f (w(t)) in t using the chain rule as

d

dt
f (w(t)) =

(
d

dt
w(t)

)⊤ (
∇f(w)

∣∣
w=w(t)

)
.

We write the following using the brackets ⟨u1,u2⟩ to denote the scalar product u⊤
1 u2.

f(w) :=v⊤w/∥w∥,
∇wf(w) =v/∥w∥ −w · v⊤w/∥w∥3,

ẇ :=
d

dt
w = −M (Ip + tM )−2v

= − t−1(Ip + tM − Ip)(Ip + tM )−2v

= − t−1(Ip + tM)−1v + t−1(Ip + tM )−2v

= − t−1
(
w + (Ip + tM )−1w

)
.

tv⊤ẇ = − v⊤w + ∥w∥2,
tw⊤ẇ = − ∥w∥2 + w⊤(Ip + tM)−1w,

t∥w∥3⟨∇f(w), ẇ⟩ =∥w∥4 − v⊤w ·w⊤(Ip + tM )−1w

=
〈
(Ip + tM)−1/2v, (Ip + tM )−3/2v

〉2
− ∥(Ip + tM )−1/2v∥2 · ∥(Ip + tM )−3/2v∥2

≤0,

where the last transition is by Cauchy-Schwartz . We see that the derivative of f(w(t)) is
non-positive when t > 0, thus the function f(w(t)) is non-increasing in t on [0,+∞).

Lemma 50 (Increasing the regularization cannot make the bound large). Suppose that k < n
and Λ(λ) > nλk. Then for some absolute constant c > 0 and any λ′ > λ

N(λ′)√
V (λ′) +

√
n♢(λ′)

≤ c

(
1 +

N(λ)√
V (λ) +

√
n♢(λ)

)
.

Proof. First of all, note that Λ(λ′) > Λ(λ) > nλk. Thus, by Lemma 48 we can show that for
some absolute constant c1 > 0

Na(Λ1)√
Va(Λ1) ∨

√
n♢a(Λ1)

≤ c1

(
1 +

Na(Λ0)√
Va(Λ0) ∨

√
n♢a(Λ0)

)
,
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where we denoted Λ0 = Λ(λ), Λ1 = Λ(λ′) and used the notation from Lemma 48.
From now on we forget about the notion of k and only study the following quantity as a

function of Λ:
Na(Λ)√
Va(Λ)

∧ Na(Λ)√
n♢a(Λ)

.

Note that if we denote

t := Λ/n, v := Σ−1/2µ, w := (Σ + tIp)
−1Σ1/2µ = (Ip + tΣ−1)−1v,

then it becomes
Na(Λ)√
n♢a(Λ)

=
v⊤w

∥w∥
.

Thus, by Lemma 49, Na(Λ)√
n♢a(Λ)

is a non-increasing function of Λ, i.e., the benefit of regulariza-

tion could only potentially come from the term Na(Λ)√
V (Λ)

. More precisely, suppose that

Na(Λ0)√
Va(Λ0)

∧ Na(Λ0)√
n♢a(Λ0)

<
Na(Λ1)√
Va(Λ1)

∧ Na(Λ1)√
n♢a(Λ1)

.

Then
√

Va(Λ0) ≥
√
n♢a(Λ0), otherwise we would have

Na(Λ0)√
Va(Λ0)

∧ Na(Λ0)√
n♢a(Λ0)

=
Na(Λ0)√
n♢a(Λ0)

≥ Na(Λ1)√
n♢a(Λ1)

≥ Na(Λ1)√
Va(Λ1)

∧ Na(Λ1)√
n♢a(Λ1)

.

Moreover, if
√
Va(Λ1) <

√
n♢a(Λ1) then by Intermediate Value Theorem we can take

such Λ0.5 that
√

Va(Λ0.5) =
√
n♢a(Λ0.5), and we’ll once again have

Na(Λ0.5)√
Va(Λ0.5)

∧ Na(Λ0.5)√
n♢a(Λ0.5)

=
Na(Λ0.5)√
n♢a(Λ0.5)

≥ Na(Λ1)√
n♢a(Λ1)

≥ Na(Λ1)√
Va(Λ1)

∧ Na(Λ1)√
n♢a(Λ1)

.

In case Λ0.5 as above exists set Λ = Λ0.5, otherwise set Λ = Λ1. Now we have

Λ1 ≥ Λ > Λ0,√
Va(Λ) ≥

√
n♢a(Λ),

√
Va(Λ0) ≥

√
n♢a(Λ0),

Na(Λ0)√
Va(Λ0)

∧ Na(Λ0)√
n♢a(Λ0)

<
Na(Λ)√
Va(Λ)

∧ Na(Λ)√
n♢a(Λ)

≥ Na(Λ1)√
Va(Λ1)

∧ Na(Λ1)√
n♢a(Λ1)

.

Let’s study Na(Λ)√
Va(Λ)

. The idea is to re-introduce k, but the “right one” (basically choose

k = k∗). Then split into the 0 : k and k : ∞ part and say that increasing regularization does
nothing to the tail, but also cannot make the 0 : k part more than a constant. Formally,
take k0 = min{κ : λκ+1 < Λ0/n}. Such k0 < n exists since Λ0 > nλk+1.
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Now we write

Na(Λ)√
Va(Λ)

=

∑
i

µ2i
λi+Λ/n√∑

i
λ2i /n

(λi+Λ/n)2

=

∑k0
i=1

µ2i
λi+Λ/n√∑

i
λ2i /n

(λi+Λ/n)2

+

∑
i>k0

µ2i
λi+Λ/n√∑

i
λ2i /n

(λi+Λ/n)2

≤
∑k0

i=1
µ2i

λi+Λ/n√∑
i

λ2i /n

(λi+Λ/n)2

+

∑
i>k0

µ2i
Λ/n√∑

i
λ2i /n

(λi+Λ/n)2

=

∑k0
i=1

µ2i
λi+Λ/n√∑

i
λ2i /n

(λi+Λ/n)2

+

∑
i>k0

µ2
i√∑

i
λ2i /n

(nλi/Λ+1)2

The second term is a decreasing function of Λ, which implies∑
i>k0

µ2
i√∑

i
λ2i /n

(nλi/Λ+1)2

≤
∑

i>k0
µ2
i√∑

i
λ2i /n

(nλi/Λ0+1)2

=

∑
i>k0

µ2i
Λ0/n√∑

i
λ2i /n

(λi+Λ0/n)2

≤ 2

∑
i

µ2i
λi+Λ0/n√∑

i
λ2i /n

(λi+Λ0/n)2

= 2
Na(Λ0)√
Va(Λ0)

,

where we used that (Λ0/n)−1 ≤ 2(λi + Λ0/n)−1 for i > k0 in the last inequality.
Now let’s study the part that comes from the first k0 components. We can write∑k0

i=1
µ2i

λi+Λ/n√∑
i

λ2i /n

(λi+Λ/n)2

=

∑k0
i=1

µ2i
λi+Λ/n√∑k0

i=1
λiµ2i

(λi+Λ/n)2

·

√∑k0
i=1

λiµ2i
(λi+Λ/n)2√∑

i
λ2i /n

(λi+Λ/n)2

By Lemma 49, the first multiplier is a non-increasing function of Λ. Moreover, if we plug Λ0

instead of Λ we get∑k0
i=1

µ2i
λi+Λ0/n√∑k0

i=1
λiµ2i

(λi+Λ0/n)2

≤ 2

∑k0
i=1

λiµ
2
i

(λi+Λ0/n)2√∑k0
i=1

λiµ2i
(λi+Λ0/n)2

= 2

√√√√ k0∑
i=1

λiµ2
i

(λi + Λ0/n)2
≤

≤ 2
√
n♢a(Λ0) ≤ 2

√
Va(Λ0) ≤ 2

√
2,

where we used that λi ≥ Λ0/n for i ≤ k0. In the last transition we also used that Va(Λ0) <
V (Λ0) (Lemma 48) and V (Λ0) < 2 (Lemma 41).

Thus, the first multiplier starts less than a constant and stays less than a constant. For
the second multiplier we have√∑k0

i=1
λiµ2i

(λi+Λ/n)2√∑
i

λ2i /n

(λi+Λ/n)2

≤
√
n♢a(Λ)√
Va(Λ)

≤ 1.
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Overall, we’ve got that either

Na(Λ0)√
Va(Λ0)

∧ Na(Λ0)√
n♢a(Λ0)

≥ Na(Λ1)√
Va(Λ1)

∧ Na(Λ1)√
n♢a(Λ1)

,

or

Na(Λ1)√
Va(Λ1)

∧ Na(Λ1)√
n♢a(Λ1)

≤ Na(Λ)√
Va(Λ)

≤ 2
√

2 + 2
Na(Λ0)√
Va(Λ0)

= 2
√

2 + 2
Na(Λ0)√
Va(Λ0)

∧ Na(Λ0)√
n♢a(Λ0)

,

which implies the desired result.

Corollary 52 (Regularization doesn’t matter for certain µ). Suppose that the distribution of
the rows of Z is σx-sub-Gaussian. For any L > 1 there exist constants a, c that only depend
on L, σx and absolute constants ε, δ such that the following holds. Suppose that n > c,
k < n/c, P(Ak(L, λ)) > 1 − δ, N(λ) ≥ a♢(λ), and

Λ(λ) > c

nλk+1 ∨
√
n
∑
i>k

λ2
i

 .

Suppose that Qk:∞ has a symmetric distribution and is independent from Q0:k.
If either for some i ≤ k

µ = µiei, and
nλiµ

2
i

(1 + nλi/Λ(λ))2
≥
∑
i

λ2
i ,

(here ei is the i-th eigenvector of Σ), or

∥µ0:k∥ = 0 and
∑
i

λ2
i ≤ n∥µk:∞∥2Σk:∞

,

then for any λ′ ≥ λ,
αε(λ

′)/c ≤ αε(λ) ≤ cαε(λ
′).

Proof. Denote the constants from Theorem 45 as a0, c0, δ0 and ε0.
First of all, let’s show that if a is chosen to be equal to a0, then for any λ′ ≥ λ it holds

nΛ(λ′)−1M(λ′) ≥ a0♢(λ′). Indeed, if ∥µ0:k∥ = 0, then

nΛ(λ′)−1M(λ′)

♢(λ′)

=

∥∥∥(Λ(λ′)n−1Σ−1
0:k + Ik

)−1/2
Σ

−1/2
0:k µ0:k

∥∥∥2 + nΛ−1∥µk:∞∥2√
n−1

∥∥∥(Λ(λ′)n−1Σ−1
0:k + Ik

)−1
Σ

−1/2
0:k µ0:k

∥∥∥2 + nΛ−2∥µk:∞∥2Σk:∞

=

√
n∥µk:∞∥2

∥µk:∞∥Σk:∞
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— doesn’t depend on λ′ at all.
In the case that µ is an eigenvector of Σ, that is, µ = µiei for some i ∈ [k], we have

nΛ(λ′)−1M(λ′)

♢(λ′)

=

(
1 + λ−1

i n−1Λ(λ′)
)−1

λ−1
i µ2

i√
n−1

(
1 + λ−1

i n−1Λ(λ′)
)−1

λ−1
i µ2

i

=
√

n/λi

— doesn’t depend on λ′ once again.
That is

nΛ(λ′)−1M(λ′)

♢(λ′)
=

nΛ(λ)−1M(λ)

♢(λ)
≥ a = a0.

Note also that

Λ(λ′) ≥ Λ(λ) > c

nλk+1 ∨
√

n
∑
i>k

λ2
i

 ,

and
P(Ak(L, λ

′)) ≥ P(Ak(L, λ)) ≥ 1 − δ0,

so if c > c0, ε = ε0 and δ = δ0 then the assumptions of Theorem 45 are satisfied for both λ
and λ′, which yields

αε(λ)/c0 ≤
nΛ(λ)−1M(λ)√
V (λ) +

√
n♢(λ)

≤ c0αε(λ), αε(λ
′)/c0 ≤

nΛ(λ′)−1M(λ′)√
V (λ′) +

√
n♢(λ′)

≤ c0αε(λ
′).

We’ve already seen that nΛ(λ′)−1M(λ′)√
n♢(λ′) = nΛ(λ)−1M(λ)√

n♢(λ) , so the only thing we need to study is

V (λ). Namely, we are going to show that under the assumptions we made V (λ) < n♢2(λ)
and V (λ′) < n♢2(λ′). That will finish the proof since in that case

αε(λ
′)/c0 ≤

nΛ(λ′)−1M(λ′)√
V (λ′) +

√
n♢(λ′)

≤ nΛ(λ′)−1M(λ′)√
n♢(λ′)

=

=
nΛ(λ′)−1M(λ)√

n♢(λ)
≤ 2

nΛ(λ′)−1M(λ)√
V (λ′) +

√
n♢(λ)

≤ 2c0αε(λ),

and analogously αε(λ)/c0 ≤ 2c0αε(λ
′).

Thus, in the rest of the proof we show that V (λ) < n♢2(λ) and V (λ′) < n♢2(λ′). Let’s
write out two cases:
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1. µ is supported on the tail. Then

V (λ) :=n−1tr
((

Λ(λ)n−1Σ−1
0:k + Ik

)−2
)

+ Λ(λ)−2n
∑
i>k

λ2
i ,

♢2 :=n−1
∥∥∥(Λ(λ)n−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 + nΛ(λ)−2∥µk:∞∥2Σk:∞

=nΛ(λ)−2∥µk:∞∥2Σk:∞

We want to show that

n−1tr
((

Σ−1
0:k + nΛ(λ)−1Ik

)−2
)

+ n−1
∑
i>k

λ2
i ≤ ∥µk:∞∥2Σk:∞

,

which holds since

n−1tr
((

Σ−1
0:k + nΛ(λ)−1Ik

)−2
)

+ n−1
∑
i>k

λ2
i

<n−1tr
((

Σ−1
0:k

)−2
)

+ n−1
∑
i>k

λ2
i

=
∑
i

λ2
i

≤n∥µk:∞∥2Σk:∞
.

We showed that V (λ) ≤ n♢2(λ). Note that V (λ′) ≤ n♢2(λ′) by exactly the same
argument.

2. µ = ei for i ≤ k. Write out V and ♢ again:

V (λ) :=n−1tr
((

Λ(λ)n−1Σ−1
0:k + Ik

)−2
)

+ Λ(λ)−2n
∑
i>k

λ2
i ,

♢(λ)2 :=n−1
∥∥∥(Λ(λ)n−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 + nΛ(λ)−2∥µk:∞∥2Σk:∞

=n−1 λ−1
i µ2

i

(n−1Λ(λ)λ−1
i + 1)2

=
nλiµ

2
i

(Λ(λ) + nλi)2

By the same argument as before, since

nλiµ
2
i

(1 + nλi/Λ(λ))2
≥
∑
i

λ2
i ,

we have V (λ) < n♢(λ)2. When it comes to λ′, we can write

nλiµ
2
i

(1 + nλi/Λ(λ′))2
≥ nλiµ

2
i

(1 + nλi/Λ(λ))2
≥
∑
i

λ2
i ,

which yields V (λ′) < n♢(λ′)2.
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Lemma 53. For any σx ≥ 1, L > 1 there exist constants a, c that only depend on σx and
absolute constants ε, δ such that the following holds. Suppose that n > c, 0 < k < n/c. Take
any C > 1 and construct the classification problem as follows:

1. Take Zk:∞ with σx-sub-Gaussian rows and the sequence {λi}i>k and regularization
parameter λ such that P(Ak(L, λ)) ≥ 1 − δ and

Λ(λ) ≥ c

nλk+1 ∨
√
n
∑
i>k

λ2
i

 .

2. Take Z0:k with σx-sub-Gaussian rows independent from Zk:∞, and {λi}ki=1 such that
nλk ≥ CΛ(λ).

3. Take µk:∞ whose most energy is spread among the eigendirections of Σ with small
eigenvalues, that is,

∥µk:∞∥2Σk:∞
≤ C−1n−1Λ(λ)∥µk:∞∥2.

4. Take1 µ0:k which balances µk:∞ in the following sense:

nC−1Λ(λ)−1∥µk:∞∥2 ≥ ∥µ0:k∥2Σ−1
0:k

≥ n2Λ(λ)−2∥µk:∞∥2Σk:∞
. (3.23)

5. Scale µ up2 if needed, so it holds that

n♢2(λ) ≥ V (λ) and N(λ) ≥ a♢(λ).

Then for any λ′ such that Λ(λ′) ≥ CΛ(λ)

αε(λ) ≥ C

c
αε(λ

′).

Proof. Take a, ε, δ to be the same as in Theorem 45. Denote the constant c from that theorem
as c1. In the end we will take c large enough depending on c1. If c > c1 then Theorem 45
implies that

αε(λ) ≥ c−1
1

nΛ(λ)−1M(λ)√
V (λ) +

√
n♢(λ)

≥ c−1
1

nΛ(λ)−1M(λ)

2
√
n♢(λ)

.

At the same time, by Theorem 45 for any λ′ > λ

αε(λ
′) ≤ c1

nΛ(λ′)−1M(λ′)√
V (λ′) +

√
n♢(λ′)

≤ c1
nΛ(λ′)−1M(λ′)√

n♢(λ′)
.

1Note that such µ0:k exists because of how we chose µk:∞.
2Note that the previous conditions were homogeneous in µ, so multiplying it by a scalar does not break

them.
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Take such λ̂ that Λ(λ̂) = CΛ(λ). Note that λ̂ > λ. By our construction, due to the fact that
λk > CΛ(λ) = Λ(λ̂) and Equation (3.23) we have

nΛ(λ)−1M(λ) ≥nΛ(λ)−1∥µk:∞∥2,
nΛ(λ̂)−1M(λ̂) ≤∥µ0:k∥2Σ−1

0:k
+ nΛ(λ̂)−1∥µk:∞∥2

≤2nΛ(λ̂)−1∥µk:∞∥2,
n♢(λ)2 ≤∥µ0:k∥2Σ−1

0:k
+ n2Λ(λ)−2∥µk:∞∥2Σk:∞

≤2∥µ0:k∥2Σ−1
0:k
,

n♢(λ̂)2 ≥
∥∥∥∥(Λ(λ̂)n−1Σ−1

0:k + Ik

)−1

Σ
−1/2
0:k µ0:k

∥∥∥∥2
≥1

4
∥µ0:k∥2Σ−1

0:k
,

where we used that Λ(λ̂)n−1Σ−1
0:k + Ik is a diagonal matrix whose diagonal elements are at

most 2 in the last transition.
Combining everything together we get that

αε(λ) ≥ c−1
1

nΛ(λ)−1M(λ)√
n♢(λ)

≥ 1

2c1

nΛ(λ)−1∥µk:∞∥2√
2∥µ0:k∥Σ−1

0:k

=

=
C

8
√

2c1

2nΛ(λ̂)−1∥µk:∞∥2
1
2
∥µ0:k∥Σ−1

0:k

≥ C

8
√

2c21
· c1

nΛ(λ̂)−1M(λ̂)
√
n♢(λ̂)

≥ C

8
√

2c21
αε(λ̂).

We obtained the result for λ′ = λ̂. To extend the result for all λ′ > λ̂ note that by
Lemma 48 and the fact that Na(λ)/♢a(λ) is a non-increasing function of λ for some absolute
constant c2 > 1 we can write

αε(λ) ≥ C

8
√

2c21
· c1

nΛ(λ̂)−1M(λ̂)
√
n♢(λ̂)

≥ C

8
√

2c21c2
· c1

Na(λ̂)
√
n♢a(λ̂)

≥

≥ C

8
√

2c21c2
· c1

Na(λ
′)√

n♢a(λ′)
≥ C

8
√

2c21c
2
2

· c1
nΛ(λ′)−1M(λ′)√

n♢(λ′)
≥ C

8
√

2c21c
2
2

αε(λ
′).

Taking c = 8
√

2c21c
2
2 finishes the proof.

Corollary 54. There exists absolute constants a, b such that the following holds. Take p =
∞, n > a and 1 ≤ k < n/a. Consider the following classification problem with Gaussian
data (in infinite dimension) and no label-flipping noise (η = 0):

λi =

{
2b, i ≤ k,

e−(i−k)/(bn), i > k.
, µi =

{
4
√
b/k, i ≤ k,

4
√
b · 2−(i−k)/2, i > k.

Then the value of λ that maximizes αε(λ) is negative.



APPENDIX B. PROOFS FOR CHAPTER 3 222

Proof. Since we consider Gaussian data, σx is an absolute constant. Let’s take L = 2 and
denote the corresponding constant c from Lemma 53 to be c1. We are going to use that
lemma to construct such distribution of data that the quantile αε(λ) is minimized for a
negative λ. Note that to do that it is enough to take C = c1 and λ = − c1−1

c1

∑
i>k λi as this

condition is equivalent to Λ(0) = c1Λ(λ).
Let’s take infinite-dimensional Gaussian data with slow exponential decay in the tail,

that is

λi =

{
ℓ, i ≤ k,

e−α(i−k), i > k.
, µi =

{
m0:k, i ≤ k,

mk:∞e−
β
2
(i−k), i > k.

Thus, the whole classification problem is described by scalars ℓ, α, β,m0:k,mk:∞, n, k.
Let’s see how we need to choose those scalars in order to follow the recipe from Lemma

53. This is an absolute constant since L is an absolute constant and the data is Gaussian.
As discussed before, we fix C = c1 and put λ = − c1−1

c1

∑
i>k λi

Due to Lemma 37, for Gaussian data the statement P(Ak(L, λ)) ≥ 1− δ follows from the
statement

Λ(λ) ≥ b

nλk+1 ∨
√

n
∑
i>k

λ2
i

 ,

where b is a large constant that depends on δ. Let’s also take it to be larger than c1 in order
to fully satisfy step 1 of Lemma 53. For our covariance and regularization this translates
into

1

c1

e−α

1 − e−α
≥ b

(
ne−α ∨

√
n

e−2α

1 − e−2α

)
,

which can be equivalently rewritten as

1 − e−α ≤ 1

bc1
√
n

(
1√
n
∧
√

1 − e−2α

)
.

For x ∈ (0, 1) it holds that 1 − x < e−x < 1 − x(1 − e−1) < 1 − x/2. Thus, assuming that
α < 0.5 the condition above follows from the following:

α ≤ 1

bc1
√
n

(
1√
n
∧
√
α

)
,

that is

α ≤ 1

bc1n
∧ 1

b2c21n
=

1

b2c21n
.

Let’s take c2 = b2c21 and put α = c−1
2 n−1. Then conditions from step 1 of Lemma 53 are

satisfied.
The second part of Lemma 53 states that we require nλk ≥ CΛ(λ), that is, nℓ ≥

C
(

e−α

1−e−α + λ
)

= e−α

1−e−α . Note that we also need ℓ ≥ 1 in order for the sequence {λi}
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to be non-increasing. Given our previous choice of α we have

e−α

1 − e−α
≤ 2

α
= 2c2n.

Thus, we can take ℓ = 2c2.
The third part of Lemma 53 requires the following

∥µk:∞∥2Σk:∞
≤ C−1n−1Λ(λ)∥µk:∞∥2,

which we equivalently transform below:∑
i>k

e−(α+β)(i−k) ≤ C−2n−1 e−α

1 − e−α

∑
i>k

e−β(i−k),

e−(α+β)

1 − e−(α+β)
≤ C−2n−1 e−α

1 − e−α
e−β

1 − e−β
,

1 − e−β

1 − e−(α+β)
≤ C−2n−1 1

1 − e−α
.

Let’s restrict the range of β so that α+β < 1. Then it is sufficient to choose β that satisfies
the following stronger condition:

2β

α + β
≤ 1

C2nα
.

Plugging the expression for α yields

2β ≤ c2
C2

(
β +

1

c2n

)
.

Actually, since c2 = b2C2 > 2C2, the inequality above always holds, so we can take any
β < 1 + α, for example, β = ln(2) (to make further computations simpler).

Next, part 4 of Lemma 53 requires

nC−1Λ(λ)−1∥µk:∞∥2 ≥ ∥µ0:k∥2Σ−1
0:k

≥ n2Λ(λ)−2∥µk:∞∥2Σk:∞
,

that is,

n
1 − e−α

e−α
e−β

1 − e−β
≥ km2

0:k

ℓm2
k:∞

≥ n2C2 (1 − e−α)2

e−2α

e−(α+β)

1 − e−(α+β)
.

Plugging in β = ln(2) and simplifying yields

n
1 − e−α

e−α
≥ km2

0:k

ℓm2
k:∞

≥ n2C2 (1 − e−α)2

e−α
1

2 − e−α
.

As before, let’s replace it by a stronger condition:

nα

2
≥ km2

0:k

ℓm2
k:∞

≥ 2n2C2α2.
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Plugging in α = (c2n)−1 and ℓ = 2c2 yields

1

2c2
≥ km2

0:k

2c2m2
k:∞

≥ 2C2

c22
,

1 ≥ km2
0:k

m2
k:∞

≥ 4C2

c2
=

4

b2
.

We see that since b > 4, we can simply put km2
0:k/m

2
k:∞ = 1, and part 4 of Lemma 53 is

satisfied.
At last, we need to check the last part of the lemma. Let’s start with writing out and

transforming the expressions for n♢2(λ), V (λ), and nΛ−1(λ)M(λ):

Λ(λ) =C−1 e−α

1 − e−α
∈
(

1

2Cα
,

2

Cα

)
,

V (λ) :=n−1tr
((

Λ(λ)n−1Σ−1
0:k + Ik

)−2
)

+ Λ−2n
∑
i>k

λ2
i

=n−1 k(
1 + n−1ℓ−1C−1 e−α

1−e−α

)2 + C2ne2α(1 − e−α)2
e−2α

1 − e−2α

≤ k/n

(1 + n−1ℓ−1C−1/(2α))2
+ C2n

α2

α

=
k/n

(1 + n−1(2c2)−1C−1c2n/2)2
+ C2nα

=
k/n

(1 + 0.25C−1)2
+ C2c−1

2

≤2.

nΛ−1(λ)M(λ) :=
∥∥∥(Λ(λ)n−1Σ−1

0:k + Ik
)−1/2

Σ
−1/2
0:k µ0:k

∥∥∥2 + nΛ(λ)−1(λ)∥µk:∞∥2

=k
m2

0:k

ℓ(1 + n−1ℓ−1Λ(λ))
+ m2

k:∞nΛ(λ)−1 e−β

1 − e−β

≥k
m2

0:k

ℓ(1 + 2n−1ℓ−1/(Cα))
+

1

2
m2
k:∞nCα(λ)

e−β

1 − e−β

=
km2

0:k

2c2 + 2c2/C
+

1

2
m2
k:∞nC/(c2n)

≥ 1

4c2
(km2

0:k + m2
k:∞) =

m2
k:∞

2c2
.
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n♢2(λ) :=
∥∥∥(Λ(λ)n−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 + n2Λ(λ)−2∥µk:∞∥2Σk:∞

=k
m2

0:k

ℓ(1 + n−1ℓ−1Λ(λ))2
+ m2

k:∞n2Λ(λ)−2 e−(α+β)

1 − e−(α+β)

=
2c2m

2
k:∞

(2c2 + Λ(λ)/n)2
+ m2

k:∞n2Λ(λ)−2 e−α

2 − e−α

For n♢2 we need bounds from both sides. In what follows we write them separately.

n♢2(λ) ≤ 2c2m
2
k:∞

(2c2 + 0.5n−1C−1α−1)2
+ m2

k:∞n2(2Cα)2

=
2c2m

2
k:∞

(2c2 + 0.5c2C−1)2
+ m2

k:∞(2C/c2)
2 ≤ 5m2

k:∞/c2,

where in the last transition we used that c2/C = b >
√
c2.

When it comes to the bound from below, we write

n♢2(λ) ≥ 2c2m
2
k:∞

(2c2 + 2n−1C−1α−1)2
+ m2

k:∞n2(2Cα)2/3

=
2c2m

2
k:∞

(2c2 + 2c2C−1)2
+ m2

k:∞(2C/c2)
2/3

≥m2
k:∞/(8c2),

where we used 2c2 + 2c2C
−1 ≤ 4c2 in the last transition.

Finally, we can write out the conditions from part 5 of Lemma 53. According to the
bounds above, the following conditions on mk:∞ are sufficient:

m2
k:∞/(8c2) ≥ 2,

m2
k:∞

2c2
≥ a

√
5

c2n
mk:∞,

that is m2
k:∞ ≥ (16c2) ∨ (5c2a

2/n) = 16c2 given that n is large enough.

Lemma 55. For any σx > 1, L > 1 there exist constants a, c that only depend on L, σx and
absolute constants ε, δ such that the following holds. Suppose that n > c, 0 < k < n/c. Take
any C > 1 and construct the classification problem as follows:

1. Take Zk:∞ with σx-sub-Gaussian rows and the sequence {λi}i>k and regularization
parameter λ such that P(Ak(L, λ)) ≥ 1 − δ and

Λ(λ) > c

nλk+1 ∨
√
n
∑
i>k

λ2
i

 .
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2. Take Z0:k with σx-sub-Gaussian rows independent from Zk:∞, and {λi}ki=1 such that
nλk ≥ Λ(λ).

3. Take µ that is only supported on the first k coordinates (i.e., ∥µk:∞∥ = 0) such that

∥µ0:k∥Σ0:k
∥µ0:k∥Σ−1

0:k
≥ C∥µ0:k∥2. (3.24)

4. Scale µ up if needed, so that

n♢2(λ) ≥ V (λ) and N(λ) ≥ a♢(λ).

Then for any λ′ such that Λ(λ′) ≥ nλ1

αε(λ) ≥ C

c
αε(λ

′).

Proof. Take a, ε, δ to be the same as in Theorem 45. Denote the constant c from that theorem
as c1. In the end we will take c large enough depending on c1. If c > c1 then Theorem 45
implies that

αε(λ) ≥ c−1
1

nΛ(λ)−1M(λ)√
V (λ) +

√
n♢(λ)

≥ c−1
1

nΛ(λ)−1M(λ)

2
√
n♢(λ)

.

At the same time, by Theorem 45 for any λ′ > λ

αε(λ
′) ≤ c1

nΛ(λ′)−1M(λ′)√
V (λ′) +

√
n♢(λ′)

≤ c1
nΛ(λ′)−1M(λ′)√

n♢(λ′)
.

Since ∥µk:∞∥ = 0, Λ(λ) ≤ nλk and Λ(λ′) > nλ1, we can write

nΛ(λ)−1M(λ) =
∥∥∥(Λ(λ)n−1Σ−1

0:k + Ik
)−1/2

Σ
−1/2
0:k µ0:k

∥∥∥2
≥1

2
∥µ0:k∥2Σ−1

0:k
,

nΛ(λ′)−1M(λ′) =
∥∥∥(Λ(λ′)n−1Ik + Σ0:k

)−1/2
µ0:k

∥∥∥2
≤2nΛ(λ′)−1∥µ0:k∥2,

n♢(λ)2 ≤∥µ0:k∥2Σ−1
0:k
,

n♢(λ′)2 =
∥∥∥(Λ(λ′)n−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2
≥1

4
n2Λ(λ′)−2∥µ0:k∥2Σ0:k

,

where we used the fact that Λ(λ)n−1Σ−1
0:k + Ik and Λ(λ′)n−1Ik + Σ0:k are both diagonal

matrices whose diagonal elements are at most 2.
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Combining everything together we get that

αε(λ) ≥ c−1
1

nΛ(λ)−1M(λ)√
n♢(λ)

≥ 1

2c1

1
2
∥µ0:k∥2Σ−1

0:k

∥µ0:k∥Σ−1
0:k

=
1

4c1
∥µ0:k∥Σ−1

0:k
≥ C

4c1

∥µ0:k∥2

∥µ0:k∥Σ0:k

=

=
C

16c1

2nΛ(λ′)−1∥µ0:k∥2
1
2
nΛ(λ′)−1∥µ0:k∥Σ0:k

≥ C

16c21
· c1

nΛ(λ′)−1M(λ′)√
n♢(λ′)

≥ C

16c21
αε(λ

′).

Taking c = 16c21 finishes the proof.

Corollary 57. There exist absolute constants b > c such that the following holds. Take
p > bn, and b ≤ k < n/b. Consider the following classification problem with Gaussian data
(in dimension p) and no label-flipping noise (η = 0):

λi =

{
k−4i/k, i ≤ k,
cn
pk4

, i > k.
, µi =

{
b ln(k)
k5

(
k
n

+ n
p

)
, i ≤ k,

0, i > k.

Then the value of λ that maximizes αε(λ) is negative.

Proof. Since we consider Gaussian data, σx is an absolute constant. Let’s take L = 2 and
denote the corresponding constants a, c from Lemma 55 to be a1, c1. We are going to use
that lemma to construct such distribution of data that the quantile αε(λ) is minimized for a
negative λ. Note that to do that it is enough to take C = c1 and λ = − c1−1

c1

∑
i>k λi as this

condition is equivalent to Λ(0) = c1Λ(λ).
Let’s take finite-dimensional Gaussian data with exponential decay in the first k compo-

nents and isotropic tails:

λi =

{
e−αi, i ≤ k,

ℓ, i > k.

Note that Λ(λ) = Λ(0)/c1 = ℓ(p− k)/c1.
We take µk:∞ to be zero, in accordance with Lemma 55. When it comes to µ0:k, we just

put all its components to be equal, that is

µi =

{
m, i ≤ k,

0, i > k.

Thus, the whole classification problem is described by scalars ℓ,m, α, n, k, p.
Our goal is to find the values of these parameters such that the conditions from Lemma

55 are satisfied for some L. We take L = 2.
The first part of that lemma says that Ak(2) should be satisfied with probability at least

1 − δ and that

ℓ(p− k)/c1 = Λ(λ) ≥ c1

nλk+1 ∨
√

n
∑
i>k

λ2
i

 = c1ℓ(n ∨
√

n(p− k)).
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Due to Lemma 37, for Gaussian data both these conditions follow from p > bn and n > b,
where b is a large enough absolute constant.

The second part of Lemma 55 requires nλi > Λ(λ), that is, ne−αk ≥ ℓ(p − k)/c1, so we
can take ℓ = c1ne

−αk/p. Note that since p > c1n we have λk+1 = ℓ < e−αk = λk, so the
eigenvalues remain in the right order.

The third part of Lemma 55 demands ∥µ0:k∥Σ0:k
∥µ0:k∥Σ−1

0:k
≥ C∥µ0:k∥2, that is,√√√√(m2

k∑
i=1

e−αi

)(
m2

k∑
i=1

eαi

)
≥ c1km

2,√
1 − e−kα

1 − e−α
ekα − 1

eα − 1
≥ c1k.

Note that for α > 0 we have 1− e−kα > 1− e−α. Moreover, ekα− 1 > (eα− 1)e(k−1)α. Thus,
it is enough to satisfy the following weaker condition:

e(k−1)α/2 ≥ c1k,

so we need to take α ≥ 2 ln(c1k)/(k− 1). Since k is lower bounded by a large constant b, we
can take α = 4 ln(k)/k. Plugging it into equation for ℓ yields ℓ = c1ne

−αk/(ep) = c1n/(epk4).
We take c = c1/e, so ℓ = cnp−1k−4.

Finally, we need to take m large enough so that part 4 of Lemma 55 is satisfied. To
check that part, we start with writing the expressions for n♢2(λ), V (λ), and nΛ−1(λ)M(λ)
and bounding them.

Λ(λ) =ℓ(p− k)/c1 =
n(p− k)

epk4
,

V (λ) :=n−1tr
((

Λ(λ)n−1Σ−1
0:k + Ik

)−2
)

+ Λ−2n
∑
i>k

λ2
i

≤k

n
+ Λ−2n

∑
i>k

λ2
i

=
k

n
+

n

p− k
.
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nΛ−1(λ)M(λ) :=
∥∥∥(Λ(λ)n−1Σ−1

0:k + Ik
)−1/2

Σ
−1/2
0:k µ0:k

∥∥∥2 + nΛ(λ)−1(λ)∥µk:∞∥2

=m2

k∑
i=1

eαi

1 + eαi(p− k)/(epk4)

≥ m2

1 + eαk/(ek4)

k∑
i=1

eαi

=
m2

1 + e−1

k∑
i=1

eαi.

Let’s bound the sum of exponents separately. We write

k∑
i=1

eαi = eα
eαk − 1

eα − 1
=

k4 − 1

1 − e−4 ln(k)/k

{
≥ k5

5 ln(k)

≤ k5

2 ln(k)

where we used that α < 1 (since k is large enough) and for x ∈ (0, 1) it holds x > 1− e−x >
x/2.

Thus,

nΛ−1(λ)M(λ) ≥ m2k5

10 ln(k)
.

When it comes to ♢, the derivation is very similar as above:

n♢2(λ) :=
∥∥∥(Λ(λ)n−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 + n2Λ(λ)−2∥µk:∞∥2Σk:∞

=m2

k∑
i=1

eαi

(1 + eαi(p− k)/(epk4))2

For n♢2 we need bounds from both sides. In what follows we write them separately.

n♢2(λ) ≤m2

k∑
i=1

eαi

1

≤ m2k5

2 ln(k)
,

n♢2(λ) ≥ m2

(1 + eαk/(ek4))2

k∑
i=1

eαi

=
m2

(1 + e−1)2

k∑
i=1

eαi

≥ m2k5

20 ln(k)
.
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Finally, to satisfy part 4 of Lemma 55 we need

n♢2(λ) ≥ V (λ), nΛ−1(λ)M(λ) ≥ a1♢(λ),

that is, it is enough to have

m2k5

20 ln(k)
≥ k

n
+

n

p− k
,

m2k5

10 ln(k)
≥ a1

√
m2k5

2n ln(k)
,

which is equivalent to
m2k5

20 ln(k)
≥
(
k

n
+

n

p− k

)
∨ 50a1

n
.

For example, we can put

m =
b ln(k)

k5

(
k

n
+

n

p

)
given that b is a large enough constant.

B.10 Comparisons with earlier results

Proposition 64. Assume that λi ≤ 1 for any i and
∑p

i=1 λi ≥ κp for some constant κ ∈
(0, 1]. Take k = 0, λ = 0 and some c > 1. Suppose additionally that κp/n ≥ ∥µ∥2 ≥
(2ct)2/(κ2n), and t2 < nκ.

Then
N − ct♢

[1 + Nση]
√
V + t2∆V + ♢

√
n
≥ 1

10

∥µ∥2
√
nκ

√
p

.

Proof. First of all, due to assumptions on λi, λ and k we can write∑
i

λ2
i ≤Λ,

Λ =
∑
i

λi ∈ [κp, p],

V =Λ−2n
∑
i>k

λ2
i ≤ n/Λ ≤ n

κp
,

∆V ≤nλ2
1

Λ2
+

nλ2
1 +

∑
i λ

2
i

Λ2
≤ 2n

κ2p2
+

1

κp
≤ 3

κ2p
,

♢2 =nΛ−2∥µ∥2Σ ≤ n∥µ∥2

κ2p2
,

M =∥µ∥2.
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Plugging in those bounds together with ση < 1 yields

nΛ−1M − ct♢ ≥n

p
∥µ∥2 − ct

√
n∥µ∥
κp

,

[
1 + nΛ−1Mση

]√
V + t2∆V + ♢

√
n ≤

[
1 +

n

κp
∥µ∥2

]√
n

κp
+ t2

3

κ2p
+

n∥µ∥
κp

.

Next, since n∥µ∥2/p ≤ κ for t2 ≤ nκ we can write

[
1 + nΛ−1Mση

]√
V + t2∆V + ♢

√
n ≤[1 + 1]

√
4n

κp
+

n∥µ∥
κp

≤ 5

√
n

pκ
.

Finally, if ∥µ∥ ≥ 2ct/(κ
√
n), then n

p
∥µ∥2 − ct

√
n∥µ∥
κp

≥ n
2p
∥µ∥2. Plugging in that bound

in yields the result.

Proposition 59. Take k = 0 and some c > 1. Suppose that nλ1 < Λ and ∥µ∥2 ≥ 2c∥µ∥Σ.
Then for t <

√
n,

N − ct♢√
V + t2∆V +

√
n♢

≥ 1

4

n∥µ∥2

n∥µ∥Σ +
√
n∥Σ∥F + n∥Σ∥

. (3.28)

Proof. Let’s write out the definitions of Λ,M,♢, V,∆V for the case k = 0 with nλ1 <
λ +

∑
i λi:

Λ =λ +
∑
i

λi = λ + tr(Σ),

V =Λ−2n
∑
i>k

λ2
i =

n∥Σ∥2F
(λ + tr(Σ))2

,

∆V =
nλ2

1

Λ2
+

nλ2
1 +

∑
i λ

2
i

Λ2
=

2n∥Σ∥2 + ∥Σ∥2F
(λ + tr(Σ))2

,

♢2 =nΛ−2∥µ∥2Σ =
n∥µ∥2Σ

(λ + tr(Σ))2
,

M =∥µ∥2.

Now we can rewrite our bound as

nΛ−1M − ct♢√
V + t2∆V +

√
n♢

=
nM − ctΛ♢√

Λ2V + t2Λ2∆V +
√
nΛ♢

=
n∥µ∥2 − ct

√
n∥µ∥Σ√

n∥Σ∥2F + t2 (2n∥Σ∥2 + ∥Σ∥2F ) + n∥µ∥Σ
.
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We see that for t ≤
√
n the condition ∥µ∥2 ≥ 2c∥µ∥Σ ensures that the numerator

greater or equal to n∥µk:∞∥2/2. At the same time, the denominator doesn’t exceed n∥µ∥Σ +√
2n∥Σ∥F + 2n∥Σ∥ Thus, we obtain the desired result.

Proposition 62. Take k = 1 and some c > 1. Assume that λ > 0, nλk+1 ≤
∑

i>k λi,
∥µ0:k∥ = 0, and ∥µ∥2 ≥ 2c∥µ∥Σ. Take any j > 1 and define A,B as in Theorem 61. Then
for t ≤

√
n

N − ct♢√
V + t2∆V +

√
n♢

≥ 1

6

∥µ∥2

A + B + λj + ∥µ∥Σ
.

Proof. Note that under assumption ∥µ0:k∥ = 0 we have

M = ∥µk:∞∥2 = ∥µ∥2, ♢2 = nΛ−2∥µk:∞∥2Σk:∞
= nΛ−2∥µ∥2Σ,

and thus, the condition ∥µ∥2 ≥ 2c∥µ∥Σ can be rewritten as M ≥ 2c
√
nΛ♢. Therefore, it

implies that nΛ−1M − ct♢ ≥ nΛ−1M/2 for t ≤
√
n. Thus,

nΛ−1M − ct♢√
V + t2∆V +

√
n♢

≥ 1

2

∥µ∥2

n−1Λ
√
V + t2∆V + ∥µ∥Σ

. (B.16)

We see that in order to compare Equation (B.16) and (3.32), we need to compare A+B+λj
to n−1Λ

√
V + t2∆V Note that

A ≥ λ1Λ

nλ1 + Λ
= n−1

(
(nλ1)

−1 + Λ−1
)−1 ≥ 1

2n
(Λ ∧ nλ1) ,

B ≥
√∑

i ̸=1,j

λ2
i ,

V =n−1(1 + n−1Λλ−1
1 )−2 + Λ−2n

∑
i>1

λ2
i

=nΛ−2

(
n−2(Λ−1 + n−1λ−1

1 )−2 +
∑
i>1

λ2
i

)
≤nΛ−2(A2 + B2 + λ2

j),

∆V =
1

n
∧ nλ2

1

Λ2
+

nλ2
2 +

∑
i>1 λ

2
i

Λ2

=
1

nΛ2
(Λ ∧ nλ1)

2 +
n−1(nλ2)

2 +
∑

i>1 λ
2
i

Λ2

≤ 1

nΛ2
(Λ ∧ nλ1)

2 +
n−1(nλ1 ∧ Λ)2 +

∑
i>1 λ

2
i

Λ2

≤ 1

nΛ2
(2nA)2 +

n−1(2nA)2 + B2 + λ2
j

Λ2

=nΛ−2(8A2 + B2/n + λ2
j/n),
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where we used that nλ2 ≤ nλ1 and nλ2 ≤
∑

i>1 λi ≤ Λ for λ > 0 to write nλ2 ≤ nλ1 ∧ Λ
when we bounded ∆V . Overall, we get

n−2Λ2(V + t2∆V ) ≤ 1

n
(A2 + B2 + λ2

j) +
t2

n
(8A2 + B2/n + λ2

j/n),

that is, for t <
√
n

n−2Λ2(V + t2∆V ) ≤9A2 + 2B2/n + 2λ2
j/n,

n−1Λ
√
V + t2∆V ≤3(A + B + λj),

which yields the result.

Proposition 65. Take real q, r, s such that 0 ≤ r < 1 < s, 0 ≤ q < s− r. Consider p = ns,
Σ = diag(λ1, . . . , λp), and µ =

√
2λ1/πe1, where {λi}pi=1 are given by Equation (3.34). Take

λ = 0, k = nr, and c to be any constant that doesn’t depend on n.
Then, as n goes to infinity, for t < n0.499r the following holds:

N − ct♢√
V + t2∆V +

√
n♢

= (1 + on(1))
N√

V +
√
n♢

=


on(1), 2q + 2r − 1 − s > 0,
1+on(1)√

2π
2q + 2r − 1 − s = 0,√

2
π

+ on(1) 2q + 2r − 1 − s < 0.

Here we use on(1) to denote quantities that converge to zero as n goes to infinity.

Proof. Throughout the proof we treat q, r, s as constants and use small-oh notation o(1) to
denote a function of n, q, r, s that converges to zero as n goes to infinity. Each time we use
this notation it denotes a different function.
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First of all, let’s write out the quantities of interest and plug in the expressions for λi.

µ :=

√
2λ1

π
e1 =

√
2/πn(s−q−r)/2e1,

Λ =
∑
i>k

λi = (ns − nr)λk+1

=(ns − nr) · (1 − n−q)/(1 − nr−s)

=ns − ns−q = ns(1 − o(1)),

Λn−1λ−1
1 =ns(1 − o(1)) · n−1 · n−s+q+r = nq+r−1(1 − o(1)),

♢2 =n−1
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1

Σ
−1/2
0:k µ0:k

∥∥∥2 + nΛ−2∥µk:∞∥2Σk:∞

=n−1 · (1 + Λn−1λ−1
1 )−2λ−1

1 · 2λ1

π

=
2 + o(1)

πn (1 + nq+r−1)2
,

nΛ−1M =
∥∥∥(Λn−1Σ−1

0:k + Ik
)−1/2

Σ
−1/2
0:k µ0:k

∥∥∥2 + nΛ−1∥µk:∞∥2

=(1 + Λn−1λ−1
1 )−1λ−1

1 · 2λ1

π

=
2 + o(1)

π(1 + nq+r−1)
,

V =n−1tr
((

Λn−1Σ−1
0:k + Ik

)−2
)

+ Λ−2n
∑
i>k

λ2
i

=n−1nr(Λn−1λ−1
1 + 1)−2 + Λ−2n(ns − nr)λ2

k+1

=
1 + o(1)

n1−r(1 + nq+r−1)2
+ n1−s(1 + o(1)),

∆V =
1

n
∧ nλ2

1

Λ2
+

nλ2
k+1 +

∑
i>k λ

2
i

Λ2

=n−1 ∧ n1−2r−2q(1 + o(1)) + n−s(1 + o(1)).

Now let’s plug this into the quantity of interest. Note that as long as t = o(
√
n), we have

t♢ = o(nΛ−1M). Moreover, ∆V/V = O(n−r), indeed

nr∆V =

(
1

n1−r ∨ n2(q+r−1)−r + nr−s
)

(1 + o(1)) ≤ V (1 + o(1)),

since r < 1. Thus, if t2 = o(nr), then V + t2∆V = V (1 + o(1)). Now note that nΛ−1M =
♢
√
n(
√

2/π + o(1)). That is,

nΛ−1M√
V +

√
n♢

=

√
2/π + o(1)

1 +
√
V/(n♢2)

.
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So, the only thing left is to compare V and n♢2:

V

n♢2
=

π + o(1)

2

(
nr−1 + n1−s(1 + nq+r−1)2

)
.

Since r < 1 < s, this ratio goes to infinity if and only if n1−s(nq+r−1)2 goes to infinity, that
is 2q + 2r − 1 − s > 0, which yields the result.
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