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LBNL-63111

An Effective Longitudinal Space-Charge Impedance Model for Beams with
Non-uniform and Non-axissymmetric Transverse Density

Marco Venturini∗
Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720

(Dated: July 10, 2007)

Use of a one-dimensional model of longitudinal space-charge (SC) impedance has been proposed
[1, 2] for studying the microbunching instability in single-pass delivery systems relevant for the next
generation of FELs. For beams with uniform transverse density and circular cross-section of radius
rb the SC impedance can be expressed in a handy analytical form, making this model particularly
convenient. In this report we show how with an appropriate choice of rb one can use this as an
effective-beam model to approximate beams with non-axissymmetric and non-uniform transverse
densities.

PACS numbers: 29.27.Bd, 41.60.Ap

I. INTRODUCTION

Consider a single electron at (x′, y′, z′) moving along the z axis at relativistic velocity with relativistic factor γ.
The longitudinal electric field as seen in the lab frame is [3]

Ez(x, y, z) =
e

4πε0

(z − z′)γ
[(x− x′)2 + (y − y′)2 + (z − z′)2γ2]3/2

. (1)

Similarly, a distribution of electrons with density ρ⊥(x, y)λeikz where λ is the longitudinal particle density and
ρ⊥(x, y) the transverse density (normalized to unity

∫
ρ⊥(x′, y′)dx′dy′ = 1), will generate a longitudinal electric field

Ez(x, y, z) =
eλγ

4πε0

∫
(z − z′)ρ⊥(x′, y′)eikz′dx′dy′dz′

[(x− x′)2 + (y − y′)2 + (z − z′)2γ2]3/2

=
eλγ

4πε0
eikz

∫
ζρ⊥(x′, y′)e−ikζdx′dy′dζ

[(x− x′)2 + (y − y′)2 + ζ2γ2]3/2
. (2)

If we set

Ik = −γ

∫
ζρ⊥(x′, y′)e−ikζdx′dy′dζ

[(x− x′)2 + (y − y′)2 + ζ2γ2]3/2
, (3)

we have

Ez = − eλ

4πε0
eikzIk. (4)

The longitudinal space-charge (SC) impedance (per unit length) for wave-number k is defined as

Ẑ(k) =
1

4πcε0
Ik =

Z0

4π
Ik, (5)

where Z0 = 120π Ω is the vacuum impedance.

∗ mventurini@lbl.gov



2

0 5 10 15 20
Ξ

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 1 - Ξ K1 HΞL
����������������������������������

Ξ

1 - 2 K1 HΞL I1 HΞL
��������������������������������������������������

Ξ

FIG. 1: The black curve is proportional to the SC impedance relative to the on-axis longitudinal electric field for a uniform
beam with circular cross-section, see Eq. (8). The red curve is proportional the SC impedance averaged over the transverse
density of the same beam, see Eq. (12). The variable ξ is defined as ξ = krb/γ.

II. TRANSVERSELY UNIFORM BEAM WITH CIRCULAR CROSS SECTION

The transverse density is defined as ρ⊥(x, y) = 1/πr2
b for x2 + y2 ≤ r2

b and ρ⊥(x, y) = 0 for x2 + y2 > r2
b . With a

change to cylindrical coordinates the integral Ik reads

Ik = −2γ

r2
b

∫ rb

0

rdr

∫ ∞

−∞
dζ

ζe−ikζ

(r2 + ζ2γ2)3/2

= − 2
γr2

b

∫ ∞

−∞

tdt

(1 + t2)3/2

∫ rb

0

dre−iktr/γ = − 2i

kr2
b

∫ ∞

−∞

e−itξ − 1
(1 + t2)3/2

dt, (6)

where we have defined ξ = krb/γ and have set the observation point on the axis x = y = 0. From the table of
integrals,

∫∞
−∞ dt/(1 + t2)3/2 = 2 and

∫ ∞

−∞

e−itξ

[1 + t2]3/2
dt = 2ξK1(ξ), (7)

where K1 is Bessel function K1. We have

Ik = i
4

kr2
b

[1− ξK1(ξ)] =
4i

γrb

1− ξK1(ξ)
ξ

, (8)

in agreement with the expression reported in [4].
For ξ →∞, K1(ξ) decreases exponentially while for small ξ we have K1(ξ) ' 1/ξ + ξ[log(ξ/2)+ γE − 1/2]/2, where

γE is the Euler constant ' 0.577 Therefore we have the following limiting forms:

Ik(ξ →∞) = i
4

kr2
b

, (9)

Ik(ξ → 0) = −i
k

γ2
[2 log(ξ) + 2γE − 2 log(2)− 1] ' −i

2k

γ2
log

(
krb

1.85γ

)
, (10)

where 2γE − 2 log(2)− 1 ' −1.23
If the observation point is off-axis at a distance r from the center the expression (8) for Ik should be replaced [4] by

Ik(r) = i
4

γrb

1
ξ

[1− ξK1(ξ)I1 (kr/γ)] , (11)

where I1 is also a Bessel function.
It is interesting to compare Ik on-axis (8) with the average of (11) over the transverse density:

〈Ik〉r =

∫ rb

0
Ik(r)ρ⊥(r)rdr∫ rb

0
ρ⊥(r)rdr

=
4i

γrb

1− 2K1(ξ)I1 (ξ)
ξ

. (12)
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FIG. 2: The two solid line curves are proportional (with same proportionality factor) to the on-axis electric field with open
boundary (black curve) and in the presence of a round perfectly conducting pipe at r = rp (red curve) with ratio rp/rb = 2.
The dashed line is the asymptotic expression ξ[2 log(rp/rb) + 1]/4.

Because I1(ξ) ' ξ/2 for small ξ and I1(ξ) decreases exponentially for large ξ, the limiting behavior of (12) at high
and small frequencies is the same as (9) and (10). At intermediate frequencies, however, the averaged longitudinal
field is noticeable smaller (red curve in Fig. 1).

In the presence of a perfectly conducting pipe of radius rp concentric with the charge distribution the expression
(8) for Ik should be replaced by

Ik = i
4

γrb

1
ξ

[
1− ξ

(
K1(ξ) + K0(ξrp/rb)

I1(ξ)
I0(ξrp/rb)

)]
. (13)

The high frequency limit ξ → ∞ is the same as (9) as both K0(ξrp/rb) and the ratio I1(ξ)/I0(ξrp/rb) decrease
exponentially with ξ, whereas

Ik(ξ → 0) = i
4

γrb

ξ

4

[
2 log

(
rp

rb

)
+ 1

]
, (14)

having used K0(ξ) = −[γE + log(ξ/2)] + O(ξ2), I1(ξ) ' ξ/2, and I0(ξ) ' 1 for ξ → 0. The effect of the boundary
becomes significant at low frequencies below ξ ' rb/rp or wavelengths λ > 2πrpγ. See Fig. 2.

III. AXIS-SYMMETRIC BEAM WITH TRANSVERSE GAUSSIAN DENSITY.

The transverse density is defined as ρ⊥(x, y) = e−(x2+y2)/2σ2
/2πσ2. After changing to cylindrical coordinates we

have

Ik = i
ξ

γσ

√
π

2

∫ ∞

−∞

te−t2/2erfi(t/
√

2)dt

(ξ2 + t2)3/2
, (15)

where the erfi(t) function is defined as erfi(t) = (2/
√

π)
∫ t

0
ex2

dx, and ξ = kσ/γ.
To study the limiting form of the above expression at high and low frequencies consider the function

F (s) =
√

π

2

∫ ∞

−∞

te−t2/2erfi(t/
√

2)dt

(s + t2)3/2
. (16)

The function in the numerator of the integrand of (16) is zero at t = 0, and for large t tends asymptotically to
√

2/π.
In the limit of large s most of the contribution from the integrand comes for large t. We can then approximate

F (s) '
√

π

2

∫ ∞

−∞

√
2/πdt

(s + t2)3/2
=

2
s
. (17)
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FIG. 3: The (absolute value of the) quantity Ik as a function of ξ = kσ/γ for an axis-symmetric gaussian beam with transverse
rms sizes σ [black curve, see Eq. (15)] is contrasted with that of a beam with uniform transverse density for two choices of the
radius rb (red curves).

For small s, F (s) diverges logarithmically, with F (s) = A log(s) + B. The coefficient A can be easily determined
analytically. To this end we replace the numerator in the integrand of (16) with the first non-vanishing term of its
Taylor expansion te−t2/2erfi(t/

√
2) '

√
2/πt2:

F (s) ' 2
∫ Λ

0

t2dt

(s + t2)3/2
= 2

[
− t√

t2 + s
+ log(t +

√
t2 + s)

] ∣∣∣∣∣

t=Λ

t=0

= 2

[
− Λ√

Λ2 + s
+ log

Λ +
√

Λ2 + s√
s

]
, (18)

where Λ is some cut-off. In the limit s → 0 we read off the coefficient of log(s) to find A = −1. The coefficient B can
then be computed numerically as the difference B = F (s)−A log(s) for s sufficiently small. We found B ' 0.116.

We can now write the limiting forms of in the high and low frequency limits

Ik(ξ →∞) = i
2

γσξ
=

2i

σ2k
, (19)

Ik(ξ → 0) = −i
ξ

γσ
[2 log(ξ)− 0.116] = −i

2k

γ2
log

(
kσ

1.06γ

)
, (20)

By comparing (19) and (20) to (9) and (10) respectively we can define a uniform beam with transverse size rb

‘equivalent’ to a gaussian beam with rms size σ. In the high frequency limit reqv
b =

√
2σ, whereas in the low frequency

limit reqv
b ' (1.85/1.06)σ = 1.74σ. A numerical evaluation of (15) shows that at intermediate frequencies reqv

b falls in
the interval [

√
2, 1.74]. See Fig. 3.

IV. TRANSVERSALLY UNIFORM BEAM WITH ELLIPTICAL CROSS SECTION

The transverse density is defined as ρ⊥(x′, y′) = 1/πab for (x/a)2 +(y/b)2 ≤ 1 and ρ⊥(x′, y′) = 0 outside the ellipse.
For observation point on axis the integral can be reduced to

Ik =
i

πk

[
4π

ab
− 2k

γ

∫ 2π

0

K1(kα(φ)/γ)
α(φ)

dφ

]
, (21)

where α(φ) =
√

a2 cos2 φ + b2 sin2 φ.
In the high frequency limit the contribution from the integral vanishes as the Bessel function K1 decreases expo-

nentially and the limiting expression for Ik is easily found. At low frequency the calculation is slightly more involved
but can be still be expressed in terms of elementary functions by making use of the limiting expression for K1 for
small argument and the integral

∫ 2π

0
dt log(1 + c2 sin2 t) = 4π log([1 +

√
1 + c2]/2). The result is very similar to the

expression obtained for round beams:

Ik(ξ →∞) = i
4

kab
(22)

Ik(ξ → 0) = −i
k

γ2

[
2 log

(
k(a + b)

2γ

)
+ 2γE − 2 log(2)− 1

]
' −i

2k

γ2
log

(
k

1.85γ

a + b

2

)
, (23)
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FIG. 4: The (absolute value of ) the quantity Ik [Eq.(21)] as a function of wavelength λ = 2π/k for a transversely uniform

beam with elliptical cross section with axes a and b (black curve) compared with that of round, uniform beam rb =
√

ab (red
dashed curve), and rb = (a + b)/2 (red solid line).

Again, we can define an ‘equivalent’ uniform, round beam by comparing (22) and (23) to (9) and (10) respectively.
For high frequencies we find reqv

b =
√

ab. In the low-frequency limit reqv
b = (a + b)/2. See Fig. 4.

V. TRANSVERSALLY GAUSSIAN BEAM WITH UNEQUAL RMS SIZES

The transverse density in this case is defined as ρ⊥(x, y) = e−(x2/2σ2
x+y2/2σ2

y)/2πσxσy and the expression Ik can be
reduced to

Ik = i
k

2πγ2

∫ 2π

0

dφF

(
k2α2(φ)

γ2

)
, (24)

where α(φ) =
√

σ2
x cos2 φ + σ2

y sin2 φ and F (s) was defined in (16). For large s, F (s) ' 2/s and therefore

Ik(k →∞) = i
k

πγ2

γ2

k2

∫ 2π

0

dφ

α2(φ)
= i

2
kσxσy

. (25)

For small s we use the approximation F (s) ' − log(s) + 0.116 as in Sec. III and obtain:

Ik(ξ → 0) = i
k

γ2

[
2 log

(
σx + σy

2
k

γ

)
− 0.116

]
= i

2k

γ2
log

(
σx + σy

2
k

1.06γ

)
. (26)

VI. CONCLUSIONS

A simple and convenient model to study longitudinal effects of space charge is that of a round beam with transverse
uniform density. Most often, the beam is neither axis-symmetric or uniform, but we would still like use an ‘equivalent’
round and uniform beam model because of its simplicity. For gaussian beams with rms sizes σx and σy, limiting
expressions at small frequencies suggest that we could use an equivalent axis-symmetric uniform beam with radius
rb ' 1.74(σx+σy)/2. This is in substantial agreement with the expression suggested in [1]. Numerical calculations show
that this choice is reasonably accurate over a large spectrum of frequencies and moderate aspect-ratios. Significant
deviations only begin to occur at high frequencies for k(σx + σy)/2γ > 1. We should remark that the definition of
equivalent beam is limited to consideration of the on-axis longitudinal electric field. One may argue that a more
meaningful quantity is the longitudinal electric field averaged over the transverse beam density. For round beams we
showed that this can be up to about 20% smaller than the on-axis field for a range of frequencies in the neighborhood
of krb/γ ' 1.
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