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Abstract— A major challenge for cognitive scientists is to 

deduce and explain the neural mechanisms of the rapid 
transposition between stimulus energy and recalled memory - 
between the specific (sensation) and the generic (perception) - in 
both material and mental aspects. Researchers are attempting 
three explanations in terms of neural codes. The microscopic 
code: cellular neurobiologists correlate stimulus properties with 
the rates and frequencies of trains of action potentials induced by 
stimuli and carried by topologically organized axons. The 
mesoscopic code: cognitive scientists formulate symbolic codes in 
trains of action potentials from feature-detector neurons of 
phonemes, lines, odorants, vibrations, faces, etc., that object-
detector neurons bind into representations of stimuli. The 
macroscopic code: neurodynamicists extract neural correlates of 
stimuli and associated behaviors in spatial patterns of oscillatory 
fields of dendritic activity, which self-organize and evolve on 
trajectories through high-dimensional brain state space. This 
multivariate code is expressed in landscapes of chaotic attractors. 
Unlike other scientific codes such as DNA and the periodic table, 
these neural codes have no alphabet or syntax. They are 
epistemological metaphors that experimentalists need to measure 
neural activity and engineers need to model brain functions. My 
aim is to describe the main properties of the macroscopic code 
and the grand challenge it poses: How do very large patterns of 
textured, synchronized oscillations form in cortex so quickly? 
 

Index Terms— AM pattern, correlation length, Hebbian 
assembly, electrocorticogram (ECoG), neocortical population  
 

I. INTRODUCTION: MICROSCOPIC AND MESOSCOPIC CODES 
HE challenges I see for neuroengineers are to define, 
measure, and explain extreme correlation lengths in brain 
activity, and to do this with existing tools for acquiring 

and modeling brain data. Synchronized neural populations [1] 
carry out action and perception in sequential steps. When and 
where does a population form an active state that executes a 
cognitive step? What kind of shape does the active state have? 
How large is it? What bounds it? How long does it last? How 
many neurons participate? Each step may be regarded as a 
cinematic frame that is combined with others of its kind as the 
substrate for perception and action. How are frames parsed?  

The fact that initial answers to these questions came from 
studies of the olfactory system [2] should not be surprising. 
The sense of smell is the most important for the majority of 
animals. It is the simplest in topology and in executing tasks 
of categorizing odorants as good or bad in feeding, fighting, 
fleeing and reproduction. It was the first to appear in the 
phylogenetic evolution of cortex, and it is the prototype for all 
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sensory cortices. Its output goes directly to the entorhinal 
cortex in the limbic system. There all sensory systems 
converge their patterns, which are integrated into gestalts 
during passage through the hippocampus. Integration implies 
that they must use the same basic code, which I identify as the 
macroscopic code. 

In the 1st of three stages in the olfactory system (Fig. 1. 
left) receptors in the nose use the microscopic code. Chemical 
information is transmitted by action potentials on axons in 
parallel that converge to the second stage, the olfactory bulb, 
and excite mitral (pyramidal) cells. The ~108 receptors provide 
a wide aperture that facilitates capture of faint odorants at 
small concentrations. In round numbers there are ~103 types 
with ~105 of each type. Due to turbulence in the nose a faint 
chemical excites a different subset of ~102 receptors in every 
sniff. Identification by categorization requires inductive 
generalization. This is done by associative learning, with pair-
wise strengthening of synapses between coactive cells on trials 
with reinforcement, and weakening by habituation on trials 
without reinforcement. The result is the Hebbian assembly and 
the mesoscopic code, in which the correlate of the signal is 
conceptual (a category), not strictly sensory. In the third stage 
the transmission of the signal is not by topographic mapping 
but by spatial integral transformation (pp. 267-269 in [3]), 
which like a diffusing lens enhances the macroscopic code1.  

The same three stages hold in neocortical sensory systems. 
Those systems differ from three-layered allocortex by the 
intrusion of neurons that have migrated from the floor of the 
lateral ventricles into Layer II and formed the extra three 
layers of neocortex (Fig. 1, right [4]). Specialized neural 
networks in the intrusive layers preprocess sensory 
information from the thalamus (microscopic) and transform it 
to mesoscopic patterns of action potentials. The correlates of 
the collective firing are exemplified by feature-binding 
neurons, mirror neurons, etc. [5]. The embedding Layers I, V 
and VI integrate mesoscopic neural activity over great 
distances, which is feature binding on a grand scale in the 
transition from the microscopic code to the macroscopic code.  

Mutual excitation (Δ, Fig. 1) within the entire assembly (•) 
amplifies a weak sensory signal, irrespective of which few 
neurons actually receive the input on each sniff. That is 
 

1 In prior work I based my definitions of ‘micro-‘, ‘meso-‘, ‘macro-‘ on the 
methods of observation [1]: action potentials; ECoG/LFP (local field 
potentials); and EEG/MEG/fMRI. Here I base my definitions on behavioral 
correlates: ‘micro-‘ = information in a material event (sensory or motor); 
‘meso-‘ = abstract concepts; ‘macro’ = experiences (memories). Microevents 
are described by point processes of single neurons. Mesoevents are point 
processes of collectives of neurons that are described with neural networks. 
Macroevents are fields of global interactions in neural populations that are 
described with the solutions to ordinary differential equations (Ch. 5 in [3]).  
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inductive generalization. Simulations of population dynamics 
with nonlinear differential equations [3], [6] show that the 
negative feedback to the excitatory neurons from inhibitory 
interneurons (o) generates gamma oscillations (30-80 Hz) (Fig. 

2, A), which are regeneratively amplified (B) by small 
increases in the strengths of Hebbian synapses on association 
and strongly damped by small decreases on habituation (C).  

 

 
Fig. 1. Left: The three stages of olfaction use respectively microscopic, mesoscopic, and macroscopic codes. (Δ, excitatory neuron) (o, inhibitory neuron) (=•=, 
member of a Hebbian assembly) [2]. Right: Neocortex forms in embryo by intrusion of neurons forming local neural networks in Layers II-IV [4]. The  networks 
are embedded in Layers I, V and IV, which extend over the entire surface of both hemispheres. The deep pyramidal cells in Layers V and VI provide the long 
axons in power-law distributions that are necessary to support the long correlation lengths observed in the multicortical ECoG [7] and scalp EEG [8], [9].  

 

 
Fig. 2. A. Simulation shows the dependence of oscillatory amplitude (B) and frequency (C) on the gain at Hebbian synapse, Kee, [3], [6]. (D) Oscillation in the 
normalized conditional pulse probability density (NCPD) is conditional on the ECoG amplitude and time lag (pp. 154-163, [3]). Macroscopic oscillations are not 
seen in autocorrelations of a microscopic spike train (above), only by using information in the ECoG, which is a spatial sum over a neural population (p. 153 [3]).  
 
Dendritic current oscillations modulate firing probabilities 
of cortical neurons (Section 3.3.2 in [3]). The parsing 
facilitates mesoscopic Hebbian learning by collimating the 
firing times of excitatory neurons. The gamma oscillations 
are macroscopic; they can only be seen by ensemble 
averaging, because the neurons are time multiplexing. They 
fire randomly at mean rates (1-10 Hz) well below the beta 
and gamma ranges, and collectively they rotate the duty 
cycle. Spike-triggered averaging of local field potentials 
can often indirectly reveal the oscillation. A better measure 
(Fig. 2, D) is the pulse probability wave of a single neuron 
that is calculated from the probability of firing that is 
conditional on the amplitude and time lag from the ECoG.  

Oscillations also serve to launder cortical output. They 
do this when cortical output is transmitted through a 
divergent-convergent pathway (Fig. 1, left) that by spatial 
integration enhances endogenous signals that everywhere 
have the same carrier frequency. The integration attenuates 

unsynchronized activity by smoothing [2], most notably the 
stimulus-bound cortical activity that is driven by exogenous 
sensory input, as distinct from interactively bound activity. 

II. THE ELEMENT OF THE MACROSCOPIC CODE 
Macroscopic patterns are observed by simultaneously 

recording the electrocorticogram (ECoG, Fig. 3), which is 
formed by the instantaneous sum of potentials as the 
dendritic currents flow across the low extracellular 
resistance between the neurons. Neuron populations (104 to 
105) that are aligned in parallel perpendicular to the cortical 
surface contribute to the signal seen by each electrode. 

The oscillations occupy two broad spectral bands. Beta 
and gamma rhythms from 12-80 Hz serve as carrier 
frequencies for communication by synchronization among 
distributed cortical populations (Ch. 6 in [3]; [7], [10]). 
Theta-alpha rhythms from 3-12 Hz serve as gating 
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frequencies for bursts of beta and gamma waves in frames. 
In olfaction the bursts are related to the respiratory cycle 
under limbic control [11]. The gating in the other senses is 
not so clear, perhaps by saccades, tremors, and the cochlear 
microphonic that is shaped by the muscles of the middle 
ear. These are manifestations of motor systems that regulate 
sensory input. In all senses the precise timing of burst 
onsets is by spontaneous symmetry breaking [12] that 
recurs in the theta range [13]. The firing of neurons in 
Hebbian assemblies that is triggered by learned stimuli 
typically lasts up to several hundred milliseconds [5], which 
is sufficiently long to shape 2 to 3 successive frames.  

Each burst in a frame is shaped by modulation of the 
phase, frequency, and amplitude of the carrier wave. The 
cell assembly selects the temporal carrier frequency at the 
onset, and the phase spatial pattern is set in the form of a 
cone (Fig. 3, right). The phase gradient (radians/m) varies 
inversely with carrier frequency (radians/s), giving an 
invariant phase velocity (1.89 m/s in the olfactory bulb, 2-4 
m/s in neocortex) that is equal to the conduction velocity of 

intrabulbar axons, not that of the afferent axons from the 
receptors (0.42 m/s) [2], [14], [15]. The location of the 
conic apex varies unpredictably from each burst to the next, 
as shown by the dots projected onto the spherical bulbar 
surface flattened into a circle [14]. Most apices lie outside 
the square array, implying that the gradients extend over the 
whole bulb. I infer that the correlation distance is limited by 
phase dispersion with distance from the apex at ±π/4 
radians (45°). At this distance the cosine (0.707) gives the 
half-power radius of spatial coherence, which estimates the 
correlation length in mm. I adopt the half-power diameter 
as the soft boundary condition for neocortical gamma bursts 
[15], beyond which the degree of synchrony may be 
insufficient to recruit new participant neurons. The modal 
diameter by this criterion is 15 mm; the 95% inclusion 
distance is 28 mm (circles centered on AUD, the auditory 
cortex of the rabbit, Fig. 4), covering large fractions of the 
cerebral hemisphere that are large enough to include all 
subareas of each sensory cortical system [16] for binding.  

 

 
Fig. 3. The ECoG of the bulb and cortex has repeated bursts that are initiated by inhalation (sniffing) [11]. Each burst hass a conical phase gradient [14]. I infer 
that the apex demarcates the site of burst initiation. The location and sign (•, phase lead; o, phase lag) vary randomly; most apices lie outside the square array.  
 

 

 
Fig. 4. The macroscopic code is spatial modulation of the amplitude (AM) of the shared frequency in a burst (example at left), here displayed as contour plots. 

The AM patterns from control and test odor bursts differ during the first day of training in a classic aversive paradigm. Two weeks later the same odorants give 
AM patterns that still differ from each other [11], but they differ even more from the AM patterns in the first week, thus illustrating the lack of invariance of AM 
patterns with fixed conditioned stimuli. At right is shown the outlines of 8x8 electrode arrays on the surfaces of the prepyriform (PC), somatic (SOM), auditory 
(AUD), visual (VIS), and entorhinal (EC) cortices [16]. The same macroscopic code holds for all cerebral cortices examined so far [7], [9]-[11], [14]-[17], [18].  

 



Freeman WJ (2011) Understanding Perception Through Neural ‘Codes’. In: Special Issue on “Grand Challenges in 
Neuroengineering”, IEEE Trans Biomed Engin 58 (7): 1884-1890.  DOI: TBME-00851-2010.R1 

4 

Sets of ECoG segments that are centered on bursts 
display the shared carrier frequency (Fig. 4, left) and the 
differences in amplitude across the array. Contour plots of 
AM patterns (Fig. 4, center) show the differences but not 
categories. To classify AM patterns we measure each burst 
after analog-to-digital conversion, band pass filtering, and 
frame normalization (dividing each of the n amplitudes by 
the mean amplitude of the entire frame) to get n-amplitudes 
of the synchronized waveform. We construct an nx1 feature 
vector, which specifies the location of a point in n-space. A 
stimulus that a subject can perceive on multiple trials gives 
a cluster of points in n-space. Multiple trials with a different 
stimulus that a subject can perceive and discriminate give a 
different cluster. Each cluster has a center of gravity. 
Categorization of AM patterns is by the Euclidean distance 
to the nearest center. Unequivocal classification with 
respect to some measure of intentional behavior is essential 
for validation of the premise that the AM patterns provide 
the content transmitted by the macroscopic code.  

We have applied this classification procedure to 
normalized AM patterns in rabbit allocortex [10], [18], 
neocortex [16], gerbil auditory cortex [17], multiple sensory 
and limbic cortical signals simultaneously recorded from 
cat or rabbit [7], and human scalp EEG that was recorded 
with a standard 64-channel, whole-head array [9].  

The classificatory information in macroscopic AM 
patterns is spatially distributed with uniform density. No 
channel is more or less important than any other regardless 
of whether the amplitude, variance, or covariance is high or 
low [9], [14], [16], [17]. Localization in space-time is 
paramount in microscopic and mesoscopic codes. 
Macroscopic patterns are not localized; the code is 
distributed. Classification improves in proportion to the 
number of electrodes irrespective of location, provided that 
the array is fixed.  

The correlation distances in space of the synchronized 
carrier waves are many times longer than the mean lengths 
of intracortical axons (Fig. 4, right). EEG bursts that carry 
classifiable AM patterns on carrier frequencies in the beta 
range (12-25 Hz) appear to extend over the entire cortex in 
each hemisphere in the ECoG [7] and the EEG [8], [9]. The 
distributions of the phase cone diameters of the background 
ECoG are power-law [15] (Fig. 4, right), indicating that the 
background ECoG is noise, but the diameters of the phase 
cones of classifiable AM patterns last up to twice as long as 
could be expected by chance [13], [15].  

Importantly the AM patterns lack invariance with respect 
to fixed stimuli (Fig. 4, center). They change when the 
reinforcement is changed, for example, by reinforcing a 
previously unreinforced stimulus, or when reinforcement is 
omitted as in the extinction of a conditioned response. 
These manipulations change the significance or meaning of 
a stimulus but not the stimulus. AM patterns of learned 
stimuli also change when new stimuli are learned, and 
likewise with the passage of time involving the 
accumulation of new experience [18]. Thus the correlate of 
the AM pattern is not the stimulus; it is the meaning of the 

stimulus for the subject. On this basis I conjecture that the 
AM pattern is the unit of the macroscopic code, which 
corresponds to a thought, percept, word, or fleeting 
memory. In summary, the microscopic code embodies 
information; the mesoscopic code embodies abstractions; 
the macroscopic code embodies thoughts and feelings.  

III. PROPERTIES OF THE MACROSCOPIC CODE 
Several properties are found for the macroscopic code. 

• The frequency of carrier waves is nearly invariant 
within frames, but it varies unpredictably stepwise between 
frames [14]-[16], [18]. The temporal power spectral density 
(PSDT) of long segments (> 1 s) has a power-law 
distribution in log-log coordinates 1/fα, (Fig. 5, A) [19], [20] 
with an exponent, 2 < α < 4 [21], indicating that the ECoG 
in averages over long segments is scale-free [22], [23] in 
the beta-gamma range. In PSDT of short data segments 
(~0.1 s) that approximate the durations of bursts, local 
peaks rise above the 1/ fα trend line, indicating departure 

from randomness. Multiple peaks above the 1/fα line often 
coexist at different center frequencies (e. g., Fig. 5, A) [16] 
but not coextensively, suggesting a soliton-like character of 
overlapping bursts.  

• Owing to the frequency modulation between frames the 
Hilbert transform is better suited for ECoG/EEG analysis at 
high temporal resolution than the Fourier transform [24]. 
Each long ECoG segment (~ 6 s) is narrow-band filtered in 
a set of pass bands in the beta-gamma range (Fig. 5, B). The 
filterbank/Hilbert transform (FB-HT) decomposes each 
signal into analytic amplitude (shown for one pass band in 
Fig. 5, C as log10 analytic power) and analytic phase or 
analytic frequency (the time derivative of the analytic 
phase) in each pass band (Fig. 5, D).  

• The high resolution of the FB-HT after pass filtering 
reveals beats in the filtered signals when the amplitudes of 
the n-signals approach low values almost simultaneously 
(Fig. 5, B). This is a form of Rayleigh noise (p. 148 [3]), 
which is produced when white, brown, or black noise is 
passed through a linear band pass filter. Owing to 
interference in the frequency mix, the analytic power is 
briefly near zero (C). The intervals between down beats 
conform to the Rice distribution [25], [9], [13] for extreme 
values. Rice proved that the modal interval expressed as 
frequency in Hz equals 0.641 times the pass bandwidth in 
Hz [9], [13] for all center frequencies. Empirically the 
optimal pass band for AM pattern classification is 4-10 Hz, 
which reveals down beats in the theta range (3-7 Hz). The 
modal intervals correspond to the intervals between 
classifiable AM patterns [9], [11], [16].  

• When the analytic power approaches zero (Fig. 5, C) 
between two beats, the analytic phase and frequency are 
briefly indeterminate (D), giving maximal spatial standard 
deviation, SDX(t), of the analytic frequency. During a beat 
the trajectory traced in n-space by the feature vector of the 
n-signals takes large steps [16], as it transits from one 
cluster of points to the next.  
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• The analytic phase has a discontinuity (an abrupt 
change in the analytic phase that is known as phase slip). 
The prior phase cone vanishes, and a new cone forms with a 
different apex. Within bursts the SDX(t) stays near a 
minimum [13]. The phase cone is invariant in apical sign, 
location, and phase gradient in rad/mm [15], [26]. The 
analytic frequency has a low temporal and spatial standard 
deviation, SDT(t) and SDX(t) [8], [9], [13], [27]. The AM 
patterns of successive digitizing steps form a very tight 
cluster of feature vectors [16]. This configuration of the 
measures of the parameters of a burst quantitatively define 
a cinematic frame.  

• The frame patterns are finely textured in both phase and 
amplitude. The textures are not at the scale of single 
neurons; they are at the scale of cortical columns. The scale 
of measurement is indicated in Fig. 6, A. The two spikes 
show the simulated potential field at the cortical surface 
(the point spread function, so called in analogy to the 
distribution of intensity in a plane from a point light surface 

off the plane) of 2 single dendrites or dendritic columns 
~0.1 mm in diameter at random locations and at the known 
depth of the generating layer of pyramidal cells. Such 
narrow peaks rarely occur in AM patterns. That is because 
the mutual excitation (positive feedback) among cortical 
pyramidal cells promotes the co-firing that supports long-
range synchronization.  

• However, the analytic power in beats intermittently 
shows dramatic drop-offs in very deep null spikes located in 
the beats between bursts (Fig. 6, B). The log10 of power 
may decrease from peak burst values by a factor of as much 
as 10-4 to 10-6. In theory [12], [13], [28] the location of the 
null spike should coincide with the apex of the phase cone 
(C) of the next burst. Proof that they do so is still lacking, 
owing to inadequate precision of spatial and temporal 
measurement of the ECoG signals. New data are needed 
with higher temporal and spatial resolution given by faster 
analog-to-digital conversion and by more closely spaced 
electrodes to avoid undersampling and aliasing.  

 
 

 
Fig. 5. A. Temporal power spectral density (PSDT). Short segments (0.1 s) show narrow-band peaks of power; long segments (6 s) show “1/f” trends, owing to 
the wide variation of carrier frequencies. B. Bandpass filtered of 62 superimposed ECoG. C. Log10 analytic power from the Hilbert transform. Note the 102 range 
in signal power among the 64 signals from the 5.6 x 5.6 mm array. The spatial organization of the down spikes at 21.094 s is displayed in Fig. 5, B.  D. Analytic 
frequency (phase difference in radians / digitizing step in s). From [1].  
 

Invariably the temporal correlation among processed 
signals is close to unity. This reflects the origin of carrier 
waves from widespread synaptic coupling and not from 
filter artifacts, volume conduction, or activity at the 

reference. Evidence is in the fine differences in amplitude 
and phase modulations of the carrier (Fig. 5, C), which on 
occasion can approach the point spread function for 
activation of a single dendritic column (Fig. 6, A, B).  
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Fig. 6. A. Simulation of the surface potential for two dipoles in cortex. Spacing must be close to avoid aliasing. B. The log10 power in a beat shows a very brief, 
highly local decrease in power at a point close to the location of the phase cone apex in the following burst (Fig. 5, C). C. Phase of the burst in Fig. 5. From [1]. 
 
 

IV. INTERPRETATION OF CORTICAL DYNAMICS  
The story these data tell is that in the awake cerebral 

cortex the limbic system maintains by preafference [29] a 
macroscopic landscape of chaotic attractors [30], each of 
which is accessed by a Hebbian assembly. The cortical state 
of expectancy is characterized by a trajectory in a high-
dimensional search space, analogous to an aircraft flying 
over a 2-D terrain. The information in a learned stimulus 
activates an assembly that directs the cortex into its basin of 
attraction. The cortical state condenses to a lower 
dimension as it converges to the selected attractor, which 
governs the construction of the spatial AM pattern and 
sustains it in transmission for 3 to 5 cycles of the carrier 
wave. The reduction in dimension resembles a phase 
transition with radial spread from a random site of 
nucleation by either explosion or implosion, as seen in the 
phase cone with an extreme of either lead or lag at the apex.  

The Grand Challenge is to explain how immense 
populations of neurons can almost simultaneously switch 
their patterned firings over distances vastly exceeding the 
range of transmission of all but a few large neurons. The 
relevant mode of communication within neurons from 
synapses to trigger zones is by analog currents in dendritic 
shafts. Between neurons it is by action potentials 
propagating from trigger zones to synapses. The billions of 
neurons and trillions of synapses continuously transmit in 
parallel and time-multiplex signals in randomized pulse 
trains. By interaction they create collectives with the 
properties listed above, which differ markedly from the 
properties of neurons and neural networks.  

In brief, the action potential in models of microscopic 
and mesoscopic networks can be treated as a binary digit, 
whereas in models of macroscopic population dynamics, 
the action potential and the brief synaptic potential that it 
evokes can be treated as infinitesimals in nonlinear 
differential equations [3], [6].  

Cortical neurons create the ECoG by their widespread 
synaptic actions. The magnitude of power in the ECoG is in 
part determined by the degree of synchronization of the 

actions, so the power is a measure of the degree of order 
that the neurons impose on themselves and each other. In 
the words of Haken [31] the ECoG serves as an order 
parameter. When the power approaches zero, I infer that 
the interactions that impose the order briefly vanish, and 
that the neurons in that state of disorder are available for 
capture by a new attractor through a phase transition.  

The challenge is met by using the beats and the phase 
plateaus as guides in the search for signals embedded in 
what looks like noise [9] and mostly is noise [13]. The 
search is facilitated by use of concepts from many-body 
physics, which are powerful tools for exploring collective 
phenomena [12], [28]. Among the concepts is criticality 
[32], a process by which brains hold themselves in a state of 
readiness to transit between phases of reception and 
transmission. At criticality the correlation distance can 
increase to very large values. This concept offers a route to 
explore the very long distances of synchronization revealed 
in the scalp EEG [8], [9].  

Another useful concept is singularity. Forty years ago I 
predicted that a singularity would be found in cortical 
population dynamics. I calculated the characteristic 
frequencies (roots) of bulbar populations by solving 
piecewise-linearized ordinary differential equations. 
Repeated solutions yielded root loci (Ch. 5 in [3]), i. e., 
changes in roots with increasing burst amplitude. The root 
loci showed that the olfactory bulb dynamics regeneratively 
and inexorably approached a limit cycle attractor in the 
gamma range (Fig. 6.30 on p. 388 in Ch. 6 of [3]), a 
singularity necessitating a phase transition. Now I propose 
that the singularity is manifested in the highly localized null 
spike, the apex of the phase cone, and the center of vortex 
rotation, expansion, or contraction of the spatial distribution 
of the band pass filtered ECoG [28], [33]. Proving that 
hypothesis is the present Grand Challenge. 
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