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How does uncertainty propagate through a transportation network under equilibrium?

Abstract

Understanding the relationship between demand and traffic network flows in an uncertain set-

ting is gaining more and more attention in the transportation science community. In this dis-

sertation, we establish new theorems and methods for understanding the input-output relation of

traffic network equilibrium problems under uncertainty. Approaching the problem from a fresh

geometrical perspective, we provide new understanding of the uncertainty propagation process in

the problem of traffic equilibrium. We first introduce a minimum norm solution mapping (MNS-

M) between travel demand and network flows and explore its mathematical properties in terms of

well-defined, continuity, induced partition and connectivity. Under the linearity assumption of the

link cost function, we provide a stable analytic formula of the MNSM together with the criterion

of partition region determination. We then extend those results to more general cost functions

by using epi-splines to incorporate more realistic situation of nonlinear link cost under congestion.

The new results associated with nonlinear cost functions can also maintain good geometric inherent

characteristics. After completing these fundamental analyses, we demonstrate how the MNSM can

help understand the uncertainty propagation process through the push-forward measure induced

by the MNSM and we prove that the approximation process maintains strong convergence of the

push-forward measure. We also provide an effective algorithm to compute the MNSM which avoids

massive enumeration. Several important application examples are provided in the end to demon-

strate how the new analytical and numerical methods established in the dissertation can be used

to provide engineering and policy insights for transportation network planning and management.
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CHAPTER 1

Introduction

1.1. Introduction

In transportation science, how to map travel demand to network flows is generally categorized as

traffic assignment problems. The network abstraction naturally arises as transportation services are

operated over spatially distributed but connected infrastructure systems. In a congested network,

the travel time/cost of traversing a network segment depends on traffic condition of that segment.

As individuals deciding how to go through the network to fulfill their travel needs, their collective

actions influence the overall network condition, which in turn then affects their individual travel

decisions. Therefore, in a traffic assignment problem, travelers decisions, though are made by

individuals, are typically modeled simultaneously at a network level to capture the interactions

among users.

The most widely adopted traffic assignment models are based on Wardrop’s user equilibrium

principle, with an assumption that all users choose their best perceived routes [War52]. A network

is said to be under an equilibrium condition if no one can achieve a better result by unilaterally

changing one’s decision. Based on this principle, [BMW55] first formulated the Wardrop equilibrium

for a general network as a mathematical programming problem, often referred as the BMW model

in transportation and regional science [BMN05]. This classic network equilibrium model has been

extensively studied over the last several decades. Just to name a few, efforts include modeling

extensions to incorporate elastic demand [Daf82, ND02, Boy80] and temporal dynamics [WFT90,

HA05, LS02, BPLM12], theoretical analyses on mathematical properties of the equilibrium solutions

in terms stability, existence, and uniqueness [Smi79, Daf80, MN78, Car86], computational efforts

in pursuing more efficient solution algorithms [Aka01, PY84, Nag86, PHRU12], and developments

of computer simulation tools [FMT08, MFT08, Mah01]. Readers may refer to books by [She85,

MP07, Pat15] for comprehensive reviews of the very rich literature on traffic network equilibrium

models. Besides its foundational roles in transportation science problems, network equilibrium
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models can have equivalent presence in many other domain problems that involve non-cooperative

games/competition, such as logistics and supply chain [ZDN+03, Nag06], power systems [NM07,

GF17], and communication networks [BGH92, ORS93].

As stated by [BMN05], “BMW laid the intellectual and economic science foundation for trans-

portation systems analysis planning and evaluation for the rest of the 20th century and beyond.”

In this dissertation, we revisit this classic traffic network equilibrium model and aim for a better

understanding of the relation between travel demand and the network flows in the model. Fol-

lowing existing methods, one may immediately think of three possible ways of approaching this

question. A straightforward way is to directly pinpoint the input-output relation by solving the

network equilibrium model, i.e. to find a corresponding network flow solution or solution set for a

given travel demand. To understand how small changes of travel demand may impact the network

flow patterns, sensitivity analysis can be used. In a sensitivity analysis, the directions and rate of

change of the network flows and travel costs are evaluated under perturbation of model parameters.

Sensitivity analyses were carried out for the network equilibrium problem presented in the form of

either convex optimization [TF88] or variational inequalities [QM89, Pat04, JP07]. Despite of the

broad applications of sensitivity analyses of network equilibrium in network design, control, and

estimation problems [Yan97, YY05, JP07], an apparent limitation of using sensitivity analysis to

understand the global relation between model input and output is that the analysis results are only

valid within a very small perturbed neighborhood. Alternatively, one may approach the problem

using parametric optimization [GVJ90]. For example, [ESvBK18] used parametric optimization

techniques to analyze the properties of the solution to a boundedly rational user equilibrium model

under perturbation of model parameters. Parametric optimization was developed in parallel with

sensitivity analysis [GG12], and has been applied to understanding the input-output relation in

general mathematical programming and optimal control problems [CA13]. All approaches reported

in literature for solving multiparametric programming problems involve two basic steps: (1) deter-

mination of the optimal solution as a parameter-dependent function, valid over a certain region in

the parameter space; and (2) exploration of the remaining parameter space. Besides for limited

special cases, an analytical solution can be extremely hard to obtain. Another challenge is that

when the problem contains multiple optimal solutions, the corresponding parametric optimization
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problem cannot be solved because the inverse function cannot be constructed. This is why para-

metric optimization could not be directly applied to traffic assignment problems because solution

uniqueness is typically not guaranteed. For example, in the study by [ESvBK18], the analyses were

focused on the best and worst cases to avoid the solution non-uniqueness issue.

Deviating from existing schools of thought, we take a fresh geometric perspective combined

with variational analysis, to understand how the travel demand space uncertainty transforms to

the network flow space through physical and behavior rules imposed on the network. Our approach

has some unique features compared to existing methods, which may offer advantages for downstream

applications. First, one challenge arising often in decision making under uncertainty is the infinite

problem dimension. Our approach can be used to overcome this challenge by focusing on the

finite partitions of the input space instead of considering infinite possible realizations of the input

parameters. Following our method, the partition of the input space could be determined directly

and within each partition region only equality constraints exist for the decision making problem.

Furthermore, under the assumption of linearity of the link cost function, analytical relation between

the input space and the output space is easily presented within each partition region. For the

problem without linearity assumption, we provide an approximation process by using epi-splines,

which could extend the results from the linear link cost function to general convex link cost function.

With the above results, the spread of uncertainty from the input to the output space can be clearly

outlined.

This dissertation is organized as follows. In the remaining of chapter 1, we formulate the

network problem. In chapter 2, we define the minimum norm solution mapping (MNSM) and we

show that the MNSM is well-defined and it is a homeomorphism between corresponding spaces.

With the homeomorphism property, we show that it preserves the connectivity and could form a

natural partition of the input space. In chapter 3, we derive the analytical formula of the MNSM

for convex quadratic optimization problem, including an analytic solution for a given partition

region and the criterion to determine the partition region. The similar results for projected-based

solution mapping are discussed as well. In chapter 4, we extend the analytical formula obtained

in chapter 3 to a family of convex optimization problem by using epi-splines. In chapter 5, we

focus on the measure push-forward by the MNSM and verify some basic properties of the measure.

At the end of this chapter, we provide a convergence result of the push-forward measure under
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the process discussed in chapter 5. In chapter 6, the numerical methods to obtain the MNSM for

convex quadratic problem are developed and explained. In chapter 7, we give four applications

of the MNSM, projected spaces, identification of critical network, suboptimal assignment and toll

policy design. In the last chapter, we discuss some unfinished thoughts of this dissertation research.
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1.2. Notation Introduction

General Math (I)

N Natural number {1, 2, 3, . . . }

R Real number

R+ Nonnegative real number

Rn+ Nonnegative n-dimensional real number

a ∈ A a is member of set A

A ⊆ B A is a subset of B

A ⊂ B A is a proper subset of B

∅ Empty set

A ∪B The union of A and B

A ∩B The intersection of A and B

A \B Set difference

Ac Complements of A

A∆B = (A \B) ∪ (B \A) Symmetric difference

A×B Cartesian product of A and B

|A| Cardinality of the Cartesian product

Int(A) Interior of set A

(x1, x2, x3, x4) row vector with entries of x1, x2, x3, x4

(x1, x2, x3, x4)T column vector with entries of x1, x2, x3, x4

AT Transpose of matrix A

A† Moore-Penrose inverse of matrix A

‖ · ‖ 2-norm of vector

‖ · ‖F Frobenius norm of matrix

‖ · ‖∗ Nuclear norm of matrix

minf(x) Minimum value of function f(x)

arg min f(x) Arguments of the minima of function f(x)

f̃ Extended function of function f(x)

∂f(x) Subgradient of function f(x)

epif(x) Epigraph of function f(x)
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General Math (II)

1 : m The set {1, 2, 3, . . . ,m}

P(A) The power set of set A

Cb Feasible set with parameter b

Sb Solution set with parameter b

Ax Active set {i|xi = 0}

Ax(b) Active set with parameter b {i|x(b)i = 0}

RU Partition set {b|Ax(b) = U}

D† Image of the minimum norm solution mapping of the set D

Transportation Assignment Problem

L Link flow space

x Link flow

P Path flow space

f path flow

D Demand space

q Demand

B Demand-path incidence matrix

F Link-path incidence matrix

cl(x) Cost function on link l

{x1, x2, x3, x4} Directed path connect link x1, x2, x3, x4 in turn

1.3. Network Problem Setup

In this section, we introduce some basic concepts and notion of the problem we studied in

this dissertation. The core issue revolves around the two principles of Wardrop. According to
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Beckmann, the two principles of Wardrop could be formulated as following:

UE:

min
x

∑
l

∫ xl

0
tl(xl)dx

subject to
∑
k

f rsk = qrs : ∀r, s

xl =
∑
r

∑
s

∑
k

δrsl,kf
rs
k : ∀l

f rsk ≥ 0 : ∀k, r, s

xl ≥ 0 : ∀l ∈ L

SO:

min
x

∑
l

xltl(xl)dx

subject to
∑
k

f rsk = qrs : ∀r, s

xl =
∑
r

∑
s

∑
k

δrsl,kf
rs
k : ∀l

f rsk ≥ 0 : ∀k, r, s

xl ≥ 0 : ∀l ∈ L

(1.1)

where xl is the equilibrium flow on link l, tl is the travel time on link l, f rsk is the path flow on the

path k connecting O-D pair r − s, qrs is the demand between r and s. To make the formulation

more compact, we give the O-D pairs an order so that we could use a vector q ∈ Rnd
+ to represent

all the OD pairs in the system where nd is the number of different OD pairs. Then we could rewrite

the UE/SO as following:

UE:

min
x

Tue(x)

subject to Bf = q

x = Ff

f ≥ 0

SO:

min
x

Tso(x)

subject to Bf = q

x = Ff

f ≥ 0

(1.2)

where x ∈ Rnl
+ ,f ∈ Rnp

+ ,nl is the number of different links, np is the number of different paths, B

is the incidence matrix between paths and demands,Bij = 1 if the jth path connects the ith OD

pair,Bij = 0 otherwise; F is the incidence matrix between paths and links,Fjk = 1 if the jth path

takes the kth link, Fjk = 0 otherwise; Tue(x) =
∑
l

∫ xl
0 tl(xl)dx, and Tso(x) =

∑
l

xltl(xl)dx. If we

closely look at the constraints in the above problems, it shows a connection among three spaces, the

link flow space L ⊂ Rnl
+ (the space of all the possible link flow), the path flow space P ⊂ Rnp

+ (the

space of all the possible path flow) and the demand space D ⊂ Rnd
+ (the space of all the possible

traffic demand).
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PL D
F

B

Figure 1.1. Relation among the link space, the path space and the demand space

To make it clear, we provide a four-link network as an example.

1 2 3

x1

x2

x3

x4

Figure 1.2. Four link network

Example 1. In the four-link network, 1, 2, 3 are nodes, x1, x2, x3, x4 are link 1, link 2, link 3,

link 4 respectively. Then the link space L belongs to R4
+. The entries of x = (x1, x2, x3, x4)T ∈ L

represent the number of traffic on the corresponding link. For example, x = (1, 2, 3, 4)T means that

there are 1 unit on the link 1, 2 units on the link 2, 3 units on the link 3, 4 units on the link 4.

There are three O-D pairs, q1 : 1 → 2,q2 : 1 → 3, and q3 : 2 → 3. Then the demand space

D belongs to R3
+. The entries of q ∈ D represent the number of traffic demands. For example,

q = (2, 3, 5) means that there are 2 units starting from node 1 to node 2, 3 units starting from node

1 to node 3, 5 units starting from node 2 to node 3.

Moreover, there are eight paths, f1 : x1, f2 : x2, f3 : x1 → x3, f4 : x1 → x4, f5 : x2 → x3,

f6 : x2 → x4, f7 : x3, f8 : x4. Then the path space P is a subset of R8
+. The entries of f ∈ P

represent the number of traffic through the corresponding path.The incidence matrix between link

flow space and path flow space F is given by,

F =


1 0 1 1 0 0 0 0

0 1 0 0 1 1 0 0

0 0 1 0 1 0 1 0

0 0 0 1 0 1 0 1


,
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and the incidence matrix between demand space and path flow space B is given by,

B =


1 1 0 0 0 0 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 1 1


Then, x = Ff and q = Bf .

Instead of considering the link-demand relation directly, we begin with the path-demand re-

lation. Since the link-path relation is known, once we understand the relation between the path

space and the demand space, we could easily push forward to the link space.Hence, we could further

reduce the UE/SO as following:

UE:

min
f

Tue(Ff)

subject to Bf = q

f ≥ 0

SO:

min
f

Tso(Ff)

subject to Bf = q

f ≥ 0

(1.3)

Let T (f) = Tue(Ff) if we consider UE problem or T (f) = Tso(Ff) if we consider SO problem.Hence,

the problem we are facing becomes

min
f

T (f) subject to Bf = q, f ≥ 0 (1.4)

Since we need the travel time on each link is a increasing function depending on the flow, the above

problem, in fact, is a stochastic convex optimization problem for the demand q. Then, the solution

mapping of above problem is

f(q) := arg min{T (f)|Bf = q, f ≥ 0} (1.5)

and the correponding assignment for link flow is

x(q) =: F (f(q)) = F (arg min{T (f)|Bf = q, f ≥ 0}) (1.6)

9



Clearly, without further conditions, those two mappings are set-valued. To handle set-valued

mappings, we need the tools created by pioneers such as R. T. Rockafellar and Roger Wets, Jon

Borwein and Adrian Lewis, and Boris Mordukhovich known as Variational Analysis.

On the other hand, since the solution mapping is set-valued, it means that for each realization

of the traffic demand q, there might be finitely or infinitely many corresponding assignments which

will dilute the corresponding probability. Hence, to understand the uncertainty prolongation, we

have to give up the idea of studying the whole solution set and find a systematic way to track the

uncertainty prolongation.

Due to these two observations, we come up with the idea of the minimum norm solution mapping

(MNSM) that maps demand space to the path flow space as shown in Figure 1.3, which we will

discuss in detail in Chapter 2.

P
D†

L D
F

B

the MNSM

Figure 1.3. Relation among the link space, the path space and the demand space
with the MNSM
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CHAPTER 2

A Minimum Norm Solution Mapping (MNSM)

2.1. Motivation

Consider the convex optimization problem,

min
x

g(x) s.t. Ax = b, x ≥ 0 (2.1)

where g(x) is a convex function, A is a full row rank matrix. Our goal is to understand how the

uncertainty of b prolongates to the corresponding solution x(b), i.e.

S(b) := argmin{g(x)|Ax = b, x ≥ 0} (2.2)

In general, S(b) may have multiple values for given b, i.e. S(b) is set-valued mapping. This is not

good news for studying the uncertainty prolongation because the probability of each given b will

be corresponding to the whole set of the corresponding solutions S(b), i.e. for any x ∈ S(b)

P (x|b) =
P (b)

|S(b)|
(2.3)

where |S(b)| is the number of elements in the set S(b). It seems not a problem when |S(b)| is finite

but in the problem we are interested, the set of S(b) always has infinity many elements so that the

probability of each solution in S(b) is 0s which does not help to understand how the uncertainty

propagation. Hence, instead of considering the whole set S(b), we want to build a systematic

connection from the realization of b to some representative of S(b), which leads to the Minimum

Norm Solution Mapping discussed in the following section.

2.2. Minimum Norm Solution Mapping

Definition 2.2.1. (Minimum Norm Solution Mapping) Consider the problem (2.1) and let

Cb := {x|Ax = b, x ≥ 0} and S(b) := arg min
x∈Cb

g(x). Then if g is coercive and lower-semicontinous,the

11



minimum norm solution mapping x†(b) is defined by

x†(b) := PS(b)(0)

where PS(b) is the projection operator on S(b), and a function g is coercive if and only if g(x)→ +∞

as ‖x‖ → +∞. In fact x†(b) is the solution of the following problem:

min
y

‖y‖

y ∈ S(b)

Now we want to show that the Minimum Norm Solution Mapping is well-defined, that is if Cb

is nonempty, x(b) is nonempty and single valued. To see this, recall the Weierstrass theorem.

Proposition 2.2.1. (Weierstrass’ Theorem) Consider a closed proper function g : Rn →

(−∞,∞], and assume that any one of the following three conditions holds:

(1) dom(g) is bounded,

(2) there exists a scalar γ̄ such that the level set

{x|g(x) ≤ γ̄}

is nonempty and bounded,

(3) g is coercive.

Then the set of minima of g over Rn is nonempty and compact.

Example 2.

min 1
x

x ≥ 0

In this case, none of the above three is satisfied, and g(x) is decreasing to 0 as x→∞.

Now applying the Weierstrass’ Theorem to the extended real-valued function

g̃(x) =

g(x) if x ∈ Cb

∞ otherwise

12



we see that the set of minima of g(x) over Cb is nonempty and compact if g(x) is lower semicon-

tinuous at each x ∈ Cb and one of the following conditions holds:

(1) for some γ̄, the set {x ∈ Cb|f(x) ≤ γ̄} is nonempty and bounded

(2) g̃ is coercive

Since according to the definition that g(x) is coercive, g̃(x) is also coercive. Hence, the set of

minima of g(x) over Cb is nonempty and compact.

Theorem 2.2.2. If g(x) is convex over Cb and x1, x2 are two distinct minima, then λx1 + (1−

λ)x2, λ ∈ [0, 1]is also a minimum which means that the set of minima of g(x) over Cb is convex.

Proof: Since x1, x2 are two distinct minima, x1 6= x2 and g(x1) = g(x2) = inf
x∈Cb

g(x). Since

g(x) is convex and Cb is a convex set, we obtain that

inf
x∈Cb

g(x) ≤ g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2) = inf
x∈Cb

g(x)

Hence,

g(λx1 + (1− λ)x2) = inf
x∈Cb

g(x)

Therefore, λx1 + (1 − λ)x2 is in the set of minima of g(x) over Cb and the set of minima of g(x)

over Cb is convex. Q.E.D.

By now, we obtain that the set of minima of g(x) over Cb is nonempty, convex and compact.

Theorem 2.2.3. Every closed convex subset of Rn has a unique element with minimum norm.

Theorem 2.2.4. The Minimum Norm Solution Mapping is well-defined.

Proof: According to previous discussion and definition 2.2.1, we obtain that the set of minima

of f(x) over Cb,S(b) is a nonempty, convex and compact subset of Rn. By theorem 2.2.3, for each

given b or each realization of b such that Cb is nonempty,x(b) is uniquely defined. Q.E.D.

Denote X to be the range of x, then x(b) is the mapping from Rn+ to X.

Corollary 2.2.1. The Minimum Norm Solution Mapping is bijective between Rn+ and X.

Proof: By definition of X, the Minimum Norm Solution Mapping is surjective. According to

theorem 2.2.4, it is injective. Therefore, it is bijective. Q.E.D.

13



Example 3. Consider the following problem:

min
x∈R3

x2
1

s.t. x1 + x2 + x3 = b

x1, x2, x3 ≥ 0

Then, it is easy to get that S(b) = {x ∈ R3|x1 = 0, x2 = s, x3 = b− s, 0 ≤ s ≤ b} while the optimal

value is 0. Hence,

x(b) = PS(b)(0) = (0,
b

2
,
b

2
)

where PC(x) = inf
y∈C
‖x− y‖.

2.3. Continuity of Minimum Norm Solution Mapping

In this section, we want to show that the Minimum Norm Solution Mapping defined in the

previous section is continuous, i.e. x†(b) : Rn+ → Rm+ is continuous.

In order to explain the result clearly, we will borrow some notation introduced by R. Tyrrel-

l Rockafellar and Roger J-B Wets [RW09]. Let N be the natural numbers,define the following

collections of subsets of N:

N∞ := {N ⊂ N|N\N finite }

= {subsequences of N containing all i beyond some ī}

N#
∞ = {N ⊂ N|N infinite} = {all subsequences of N}

Definition 2.3.1 (inner and outer limits). For a sequence {Ci}i∈N of subsets of Rn, the outer

limit is the set

lim sup
i→∞

Ci := {x|∃N ∈ N#
∞, ∃xi ∈ Ci (i ∈ N) with xi −→

N
x}

= {x|∀V ∈ N (x), ∃N ∈ N#
∞,∀i ∈ N : Ci ∩ V 6= ∅}

while the inner limit is the set

lim inf
i→∞

Ci := {x|∃N ∈ N∞, ∃xi ∈ Ci (i ∈ N) with xi −→
N

x}

= {x|∀V ∈ N (x),∃N ∈ N∞,∀i ∈ N : Ci ∩ V 6= ∅}
14



The limit of the sequence exists if the outer and inner limit sets are equal:

lim
i→∞

Ci := lim sup
i→∞

Ci = lim inf
i→∞

Ci.

The next theorem provides the major criteria for checking set convergence which we will apply

later.

Theorem 2.3.2 (hit-and-miss criteria). [RW09] For Ci, C ⊂ Rn with C closed, one has C ⊂

lim inf
i→∞

Ci if and only if for every open set O ⊂ Rn with C ∩O 6= ∅ there exists N ∈ N∞ such that

Ci ∩O 6= ∅ for all i ∈ N .

Proof:[RW09] ’⇒’holds by definition.

To show that ’⇐’ holds, consider any x ∈ C and rational ε > 0. There is a rational point

x′ ∈ intB(x, ε/2). For such a point x′, we have C ∩ intB(x′, ε/2) 6= ∅, so by assumption there

exists N ∈ N∞ with Ci ∩ intB(x′, ε/2) 6= ∅ for all i ∈ N . Then, x′ ∈ Ci + (ε/2)B, so that

x ∈ Cnu + (ε/2)B + (ε/2)B = Ci + εB for all i ∈ N . Thus x satisfies the defining condition of

lim infiC
i. Q.E.D.

Continuity properties of set-valued mappings S : Rn ⇒ Rm can be developed in terms of outer

and inner limits as the limits:

lim sup
x→x̄

S(x) :=
⋃
xi→x̄

lim sup
i→∞

S(xi)

= {u|∃xi → x̄, ∃ui → u with ui ∈ S(xi)}

lim inf
x→x̄

S(x) :=
⋂
xi→x̄

lim inf
i→∞

S(xi)

= {u|∀xi → x̄, ∃N ∈ N∞, ui −→
N

u with ui ∈ S(xi)}

Definition 2.3.3 (continuity and semicontinuity). [RW09] A set-valued mapping S : Rn ⇒ Rm

is outer semicontinuous (osc) at x̄ if

lim sup
x→x̄

S(x) ⊂ S(x̄),

or equivalently

lim sup
x→x̄

S(x) = S(x̄),
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but inner semicontinuous (isc) at x̄ if

lim inf
x→x̄

S(x) ⊃ S(x̄),

or equivalently when S is closed-valued,

lim inf
x→x̄

S(x) = S(x̄).

It is called continuous at x̄ if both conditions hold, i.e., if S(x)→ S(x̄) as x→ x̄.

The next theorem provides the convergence of solution to convex system which will lead to our

continuous result of C(b) := {x|Ax = b, x ≥ 0}

Theorem 2.3.4 (convergence of solutions to convex system). [RW09] Let

Ci = {x ∈ Xi|Li(x) ∈ Di}, C = {x ∈ X|L(x) ∈ D},

for linear mappings Li, L : Rn → Rm and convex sets Xi, X ⊂ Rn and Di, D ⊂ Rm, such that L(x)

cannot be separated from D. If Li → L, lim infiX
i ⊃ X and lim infiD

i ⊃ D, then lim infiC
i ⊃ C.

Indeed,

Li → L,Xi → X,Di → D ⇒ Ci → C.

Proof. The proof is in [RW09] page 130.

Theorem 2.3.5. Let C : Rn ⇒ Rm be set-valued mapping defined by C(b) := {x|Ax = b, x ≥ 0}

where A is full row rank matrix in Rn × Rm and b ∈ Rn. Then it is continuous.

Proof: Set Di = {bi},Li(x) = L(x) = Ax. Applying theorem 2.3.4,we obtain

{x|Ax = bi} → {x|Ax = b}, as bi → b.

Since C(bi) = {x|Ax = bi} ∩ Rn+,

C(bi)→ {x|Ax = b} ∩ Rn+ = C(b)

Therefore, C(b) is continuous. Q.E.D.
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Furthermore, we want C(b) to be not only continuous but also continuous in Pompeiu-Hausdorff

sense. To show this is also correct, recall the characterization of Pompeiu-Hausdorff continuity

[DR09].

Theorem 2.3.6 (characterization of PompeiuHausdorff continuity). [DR09]A set-valued map-

ping C : Rn ⇒ Rm is Pompeiu-Hausdorff at b̄ if C(b̄) is closed and both of the following condition

hold:

a. For every open set O ⊂ Rn with C(b̄)∩O 6= ∅ there exists a neighborhood V of b̄ such that

C(b) ∩O 6= ∅ for all b ∈ V ;

b. For every open set O ⊂ Rn with C(b̄) ⊂ O there exists a neighborhood V of b̄ such that

C(b) ⊂ O for all b ∈ V .

Proof: The proof is in page 150 of [DR09]

Theorem 2.3.7. C(b) defined in Theorem 2.3.5 is Pomeiu-Hausdorff continuous.

Proof: Clearly C(b) is closed and nonempty (continuous of linear mapping). Condition (a)

in Theorem 2.3.6 is satisfied according to Theorem 2.3.5 and Theorem 2.3.2. For every open set

O ⊂ Rn with C(b̄) ⊂ O, according to theorem 2.3.5, there exists a neighborhood V of b̄ such that

C(b) ⊂ O for all b ∈ V . Therefore, C(b) is Pomeiu-Hausdorff continuous.Q.E.D.

Remark 2.3.1. Another way to obtain similar result is applying the maximum theorem first

proved by Claude Berge. The theorem is primarily used in mathematical economics and optimal

control.

Theorem 2.3.8. Let X and Θ be topological spaces, f : X × Θ → R be a continuous function

on the product X ×Θ, and C : Θ ⇒ X be a compact-valued correspondence such that C(θ) 6= ∅ for

all θ ∈ Θ. Define the marginal function (or value function) f∗ : Θ→ R by

f∗ := sup{f(x, θ) : x ∈ C(θ)}

and the set of maximizers C∗ : Θ ⇒ X by

C∗(Θ) = arg max{f(x, θ) : x ∈ C(θ)} = {x ∈ C(θ) : f(x, θ) = f∗(θ)}
17



If C is continuous at θ, then f∗ is continuous and C∗ is upper semicontinuous with nonempty and

compact values.

In fact, Pomeiu-Hausdorff continuous implies continuous. With the condition that the C(b) is

bounded, the reverse is also correct. Unfortunately, in our case, C(b) is bounded for each given b

but since b ∈ Rn+,

Now we continue to show that S(b) := arg min
x∈C(b)

f(x) is osc at b̄ relative to Q where Q ⊂ Rn+ is

some neighborhood of b.

Theorem 2.3.9 (basic continuity properties of solution mappings in optimization). [DR09] Let

b̄ ∈ Q ⊂ Rn+ be fixed with C(b̄) nonempty and bounded,and suppose that:

a. The mapping C is Pompeiu-Hausdorff continuous at b̄ relative to Q

b. The function g̃ is continuous relative to Rm ×Q at (x̄, b̄) for every x̄ ∈ C(b̄).

Then the value mapping P (b) := min
x∈C(b)

g(x) is continuous at b̄ relative to Q,whereas S(b) is osc at

b̄ relative Q.

In fact, according to theorem 7.41 in [RW09], we could relax the continuous condition in part

b to lsc and the result would still hold. Moreover, since g(x) is convex in our problem, Q could be

as large as domS = domP .

Theorem 2.3.10. S(b) in our problem is osc at b̄ relative to Q.

Proof: According to Theorem 2.3.7, condition a in Theorem 2.3.9 is satisfied. By definition

and Theorem 2.3.4, condition b in Theorem 2.3.9 is satisfied. Therefore, we obtain S(b) is osc at b̄

relative Q. Q.E.D

To complete the proof of the continuity of x†(b), the following proposition solves the last puzzle.

Proposition 2.3.1 (continuous of distance). [RW09] For a closed-valued mapping S : Rn ⇒ Rm

and a point b̄ in a set Q ⊂ Rn,

(1) S is osc at b̄ relative to Q if and only if ∀u ∈ Rm the function b 7→ d(u, S(b)) is lsc at b̄

relative to Q;

(2) S is lsc at b̄ relative to Q if and only if ∀u ∈ Rm the function u 7→ d(u, S(b)) is usc at b̄

relative to Q;
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(3) S is continuous at b̄ relative to Q if and only if ∀u ∈ Rm the function b 7→ d(u, S(b)) is

continuous at b̄ relative to Q

Proof: Proof is on page 157 [RW09].

Now we could obtain our main result of this section.

Theorem 2.3.11. The Minimum Norm Solution Mapping x†(b) is continuous in the

domS.

Proof: First we want to show that the function u 7→ d(u, S(b)) is usc at b̄ relative to Q. Define

h(u) := d(u, S(b)). Recall that h(u) is usc at u for b̄ relative to Q if and only if lim sup
ui→u

h(ui) ≤ h(u).

Since ui → u, there exists a V such that when i is large enough, ui ∈ V as well. By the triangle

inequality,for any z ∈ S(b),

d(ui, z) ≤ d(u, z) + d(u, ui)

Since S(b) is nonempty and compact,take the minimum over z ∈ S(b) in both sides of the above

inequility,

d(ui, S(b)) ≤ d(u, S(b)) + d(ui, u) =⇒ h(ui) ≤ h(u) + d(ui, u).

Hence, the function u 7→ d(u, S(b)) is usc at b̄ relative to Q so that S is lsc at b̄ relative to

Q according to Proposition 2.3.1 part (2). Together with Theorem 2.3.10, S is continuous at b̄

relative to Q. Hence, ∀u ∈ Rm the function b 7→ d(u, S(b) is continuous at b̄ relative to Q. In fact,

since g(x) is convex, Q = int(domS). Since x†(b) := PS(b)(0) = min
x∈S(b)

‖x‖ = d(0, S(b)), x†(b) is

continuous by setting u = 0. Q.E.D.

Corollary 2.3.1. x†(b) is a homeomorphism between Rn and D†.

Proof: According to Corollary 2.2.1, x†(b) is a bijection between Rn and Rm. According to

Theorem 2.3.11, x†(b) is continuous. Since the inverse of x†(b) is Ax which is a linear map, it is

continuous. Therefore, x†(b) is a homeomorphism between Rn and D†. Q.E.D.

In fact, according to the proof of theorem 2.3.11, we could define projection-based solution

mapping for arbitrary u not just when u = 0.

Definition 2.3.12 (projection-based solution mapping). Consider the problem (2.1) and let

Cb := {Ax = b, x ≥ 0} and S(b) := arg min
x∈Cb

g(x). Then if g(x) is coercive and lower-semicontinuous,
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the projection-based solution mapping x†u(b) is defined by

x†u(b) := PS(b)(u)

where PS(b) is the projection operator on S(b).

In fact x†u(b) is the solution of the following problem:

min
y

‖y − u‖

y ∈ S(b)

Theorem 2.3.13 (Projection theorem on Hilbert Space). For every x in a Hilbert space H and

every nonempty closed convex set C ⊆ H, there exists a unique vector y ∈ C for which ‖x− z‖ is

minimized over the vectors z ∈ C.

Based on the Projection theorem and above discussion, we could easily obtain the following

corollary.

Corollary 2.3.2. The projection-based solution mapping x†u(b) is well-defined. If D†u is the

image of the projection-based solution mapping x†u(b), then x†u(b) is a homeomorphism between Rn

and D†u.

Let u(θ) be a continuous function, then we could end up with a more general solution mapping

by composition.

Corollary 2.3.3. The projection-based solution mapping x†u(θ)(b) is well-defined when u(θ) is

a single-valued function of θ. If D†u(θ) is the image of the projection-based solution mapping x†u(θ)(b),

then x†u(θ)(b) is a homeomorphism between Rn and D†u(θ) for each θ.

Remark: Comparing the definition of the MNSM and projection-based solution mapping, it

is easy to notice that those solution mappings could be connected by a simple translation. In this

dissertation, we do not focus much on projection-based solution mapping due to this reason.
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2.4. Connectivity of the Partitions in Demand Space

In this section, we plan to explain the key observation of the MNSM. One difficulty associated

with stochastic optimization is that the problem is infinite dimensional if the uncertain parameter is

not discrete. When the parameter is discrete, we could find a deterministic equivalent optimization

problem which could be solved using decomposition methods such as L-shaped Algorithm and Ben-

der’s decomposition [Bnn62] or using scenario decomposition such as Progressive hedging method

[RWW+13]. Yet, when the parameter is not discrete but continuous, there is no such equivalence.

To conquer this difficulty, we choose to study the finite partitions of the parameter space instead of

infinite possible realizations. It makes this possible to decompose the original problem by discussing

the different combination of activated inequality constraints. This allows us to consider finite many

subproblems of the stochastic optimization with continuous parameter or infinitely many scenarios.

In the following, we will show how the Minimum Norm Solution Mapping could help us form

such partition. Let 1 : m := {i|∀i ∈ N, i ≤ m,m ∈ N} ,P(1 : m) be the power set of 1 : m, i.e. the

collection of all the subsets of 1 : m, and Ax be the active set, i.e. Ax := {i|xi = 0}. Now treat Ax

as a set-valued mapping which maps Rn+ to P(1 : m) such that Ax(b) := {i|x†(b)i = 0}. Then for

any U ∈ P(1 : m), define RU := {b|Ax(b) = U}.

Theorem 2.4.1. The collection of RU for all the U ∈ P(1 : m) forms a partition of X.

Proof: To show a collection forms a partition, we need to show that the union of this collection

is the whole space while the intersection between different elememts is empty. Since x†(b) is

surjective, it turns out that ⋃
U∈P(1:m)

RU = X

Let U, V ∈ P(1 : m) with U 6= V . Assume that RU ∩ RV 6= ∅,then there exists a b′ such that

Ax(b′) = U and Ax(b′) = V which contradicts the fact that U 6= V . Hence, RU ∩RV = ∅.Therefore,

it forms a partition. Q.E.D.

It is easy to see that the number of nonempty RU for all U ∈ P(1 : m) is at most 2m. However,

since we want C(b) to be feasible for any b, the upper bound could reduce to

m
n

 2m−n. As we

will show in numerical examples later, in practice due to some properties of x†(b) this number is

much smaller.
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Corollary 2.4.1. Let U i, U j ∈ P(1 : m) be two different sequences with U i → U and U j → U .

Then

limRU i = RU = limRUj (2.4)

Proof: This is directly from the definition and theorem 2.3.4.

Corollary 2.4.2. RU is connected set for any U ∈ P(1 : m).

Proof: This is directly from the result that x†(b) is a homeomorphism.

These corollaries allow us to create an algorithm to find RU which does not depend on the

choice of the order of activating the inequality constraints.

Therefore, we could decompose the problem (2.1) into finitely many subproblems systematically

through the MNSM. In the next chapter, we will show that when (2.1) is a convex quadratic

optimization problem, we could find an analytic formulation of the MNSM.
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CHAPTER 3

MNSM for Convex Quadratic Optimization (CQO)

The MNSM provides a systematic way to find a representative of the solution set of equilibrium

problems with good properties. It must be pointed out that there exist infinitely many ways to

find the representative of the solution set of equilibrium problems. The advantages of the MNSM

are not only the homeomorphism properties but also we could find an analytic formula when the

objective function of the equilibrium is convex and quadratic. In this chapter, we are going to

figure out the analytic formula of the MNSM for convex quadratic programming problem.

min
x∈Rn

1
2x

TQx+ cTx

subject to Ax = b (3.1)

x ≥ 0

where Q ∈ Rn×n is symmetric positive semi-definite matrix, A ∈ Rm×n is full-row rank matrix,

b ∈ Rm and c ∈ Rn.

3.1. The MNSM for a given region

If we already know that the parameter b in problem 3.1 belongs to a given region where certain

inequalities are active, the parametric optimization problem with both equality and inequality

constraints is equivalent to the one with only equality constraints. Hence, with the help of the well

known KKT conditions for convex optimization problem we are able to derive the analytic formula

of the MNSM for convex quadratic optimization problem. Now let’s recall the KKT conditions.
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Theorem 3.1.1 (Karush-Kuhn-Tucker (KKT) conditions). [BV04] Given the convex optimiza-

tion problem

min
x∈Rn

f(x) (3.2)

subject to g(x) ≤ 0 (3.3)

h(x) = 0 (3.4)

where f(x), g(x) is convex and h(x) is affine. If there exists a point x such that h(x) = 0 and

g(x) < 0, then x∗ is a minimum solution if and only if there exists a λ and µ such that

0 ∈ ∂f(x∗) + λT∂g(x∗) + µT∂h(x∗) (stationary condition) (3.5)

g(x∗) ≤ 0, h(x∗) = 0 (primal feasible) (3.6)

λ ≥ 0 (dual feasible) (3.7)

λigi(x
∗) = 0,∀i = 1, . . . ,m (complementary slackness) (3.8)

Apply the KKT conditions to problem 3.1, we could obtain

Qx+ATµ+ λ = −c (3.9)

Ax = b, x ≥ 0 (3.10)

λ ≥ 0 (3.11)

λixi = 0,∀i = 1, . . . , n (3.12)

where Q ∈ Rn×n is symmetric positive semi-definite matrix, A ∈ Rm×n is full-row rank matrix,

b ∈ Rm and c ∈ Rn.

If we choose b ∈ R∅ = {b | x†(b) > 0} such that no inequality constraints is activated, i.e. xi > 0

for every i = 1, . . . , n, then the KKT conditions reduce toQ AT

A 0

x
µ

 =

−c
b

 (3.13)

i.e. x is in the solution set of convex quadratic problem for b ∈ R∅ if and only if there exists a µ

such that the vector (x, µ)T solves (3.13).
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Theorem 3.1.2. If b ∈ R∅ such that the feasible set of CQP is non-empty and no inequality

constraint is activate, then finding the corresponding MNSM is equivalent to solving the following

problem

x†(b) := argmin

‖x‖2
∣∣∣∣∣∣
Q AT

A 0

x
µ

 =

−c
b

 , x ≥ 0, µ ∈ Rm
 (3.14)

Proof: Since the solution set of linear system is affine, the set of all the (x, µ)T is a convex

subset in Rn+ × Rm. Then the image of natural projection : (x, µ) 7→ x of this set is still convex.

According to the Projection theorem on Hilbert space, there exists a unique element having the

minimum norm which is x†(b) following by the definition of MNSM. Q.E.D

To derive a more explicit formula of the MNSM for CQP, we need the following lemmas.

Lemma 3.1.3. If A is full row rank, thenx
∣∣∣∣∣∣
Q AT

A 0

x
µ

 =

−c
b

 , x ≥ 0, µ ∈ Rm
 =

x
∣∣∣∣∣∣
P⊥ATQ

A

x =

−P⊥AT c

b

 , x ≥ 0


Proof: Since A is full row rank, N (AT ) = {0}. Hence

∃µ s.t. Qx+ATµ = −c (3.15)

⇐⇒ Qx+ c ∈ R(AT ) (3.16)

⇐⇒ P⊥AT (Qx+ c) = 0 (3.17)

⇐⇒ P⊥ATQx = −P⊥AT c (3.18)

where P⊥
AT = I −AT (AAT )−1A. Therefore, these two sets are identical. Q.E.D.

Remark 3.1.1. In fact, the condition in above lemma is not necessary if we redefine the pro-

jection P⊥
AT as I −ATA† which is the orthogonal projector onto the kernel of AT .

Lemma 3.1.4 (The least norm solution). Let A ∈ Rm×n, b ∈ Rm and suppose that AA†b = b.

Then any vector of the form

x = A†b+ (I −A†A)y, where y ∈ Rn is arbitrary (3.19)
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is a solution of

Ax = b

Furthermore, all the solution of Ax = b are of this form and the least norm solution is given by

x = A†b, i.e. x = A†b is the solution of

min
x

‖x‖2 (3.20)

subject to Ax = b (3.21)

The following theorem gives the analytic formula of the MNSM for CQP with no inequality

activated.

Theorem 3.1.5. If b ∈ R∅, then the MNSM of CQP 3.1 is

x†(b) = M∅b+N∅ (3.22)

where K∅ =

P⊥ATQ

A

, M∅ = K†∅(:, n+ (1 : m)), and N∅ = −K†∅(:, 1 : n)P⊥
AT c.

Remark 3.1.2. Here, K†∅(:, n+ (1 : m)) is MATLAB notation which means the columns of K†∅

from (n+ 1)thto(n+m)th.

Proof: Since b ∈ R∅, no inequality constraints are activated. Then the CQP is equivalent to

min
x

1

2
xTQx+ cTx (3.23)

subject to Ax = b (3.24)

Applying the above theorem 3.1.2 and lemma 3.1.3, 3.1.4, we obtain the result.Q.E.D

Follow the same idea, we could obtain the analytic formula of the MNSM for CQP with certain

inequality activated.

Theorem 3.1.6. If b ∈ RU , that is xj = 0 for all j ∈ U , the MNSM of CQP is

x†(b) = MUb+NU (3.25)
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where EU = In(U, :),L =

 A
EU

,KU =

P⊥LTQ

L

,MU = K†U (:,m + (1 : n)), and NU = −K†U (:, 1 :

m)P⊥
LT c.

Proof: Since b ∈ RU , xj = 0 for all j ∈ U . The CQP is equivalent to

min
x

1

2
xTQx+ cTx (3.26)

subject to Ax = b (3.27)

xj = 0 ∀j ∈ U (3.28)

Now define EU = In(U, :) then

min
x

1

2
xTQx+ cTx (3.29)

subject to Ax = b (3.30)

EUx = 0 (3.31)

Let L =

 A
EU

 and b̃ =

b
0

,

min
x

1

2
xTQx+ cTx (3.32)

subject to Lx = b̃ (3.33)

Applying the above theorem 3.1.2 and lemma 3.1.3, 3.1.4, we obtain the result. Q.E.D

The following corollaries are motivated by the physical meaning of the MNSM. In this case,

there is only one path for a given OD-pair so that the only possible choice for traveler is to choose

the remain path.

Corollary 3.1.1. Let A be the OD-path incidence matrix. If L =

 A
EU

 is non-singular, then

x†(b) = ETUcb (3.34)

where EU = In(U, :) and U c = 1 : n− U
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Proof: Since L is non-singular, the feasible set {Ax = b, EUx = 0, x ≥ 0} has only one element

which is the solution to the minimum problem as well as the minimum norm solution. Solving the

equation

Ax = b

EUx = 0
=⇒ x†(b) = ETUcb (3.35)

where U c = 1 : n− U . Q.E.D

As a consequence of the above corollary, we obtain the following result which provides a quick result

for the MNSM when the partition region corresponds to the case that there is only one path for a

given OD-pair.

Corollary 3.1.2. Let A be the OD-path incidence matrix. If L =

 A
EU

 is non-singular, then

L†(:, 1 : n) = ETUc (3.36)

Proof: Since L is non-singular, then P⊥
LT maps every vector into Ker(L) = {0}

Then according to theorem 3.1.6 and corollary 3.1.1

KU =

P⊥LTQ

L

 =

0

L

 =⇒ K†U =
[
0 L†

]
=⇒ L† = ETUc (3.37)

Q.E.D

Now consider the convex quadratic optimization problem (CQP) with box constraints to prepare

for further extension of the MNSM.

min
x∈Rn

1
2x

TQx+ cTx (3.38)

subject to Ax = b (3.39)

l ≤ Bx ≤ u, x ≥ 0 (3.40)

where Q is positive semi-definite, both A and B are full row rank matrix.

As with the definition of RU , define RU,V,g as follow :

RU,V,g := {b| x†(b)i = 0 if i ∈ U and x†(b)j > 0 if j 6∈ U (3.41)

[Bx†(b)]i = gi if i ∈ V and li < [Bx†(b)]i < ui if i 6∈ V } (3.42)
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where gi = li if [Bx]i = li is activated and gi = ui if [Bx]i = ui is activated.

Theorem 3.1.7 (The MNSM for CQP with general box constraints). If b ∈ RU,V,g, the MNSM

of CQP with general box constraints (3.38) is

x†(b) = MU,V b−NU,V c+HU,V g (3.43)

where EU = IN (U, :), BV = B(V, :), L =


A

EU

BV

 ,KU,V =

P⊥LTQ

L

, MU,V = K†U,V (:,m + (1 : n)),

NU,V = K†U,V (:, 1 : m)P⊥
LT and HU,V = K†U,V (:, (m+ n+ 1) : end)).

Proof: Since b ∈ RU,V,g, the CQP with general box constraints (3.38) is equivalent to

min
x∈Rn

1
2x

TQx+ cTx (3.44)

subject to Ax = b (3.45)

EUx = 0 (3.46)

BV x = g (3.47)

If


b

0

g

 6∈ R


A

EU

BV


, then the feasible region is empty so that there is no solution.

Now, we only consider that


b

0

g

 ∈ R


A

EU

BV


. Applying theorem 3.1.2 and lemmas 3.1.3, 3.1.4,

we obtain the result. Q.E.D

29



1 2

3

4

x1

x2

x3

x4

x5

Figure 3.1. Network Topology

Example 4. Consider the network shown in figure 3.1. The link costs are :

x1 : t1(s) = s/7 + 82

x2 : t2(s) = s/5 + 32

x3 : t3(s) = s/4 + 82

x4 : t4(s) = 0

x5 : t5(s) = 0

where the coefficients are randomly generated for the first three links and the last two links are free

links.

In this network, we consider two O-D pairs, q1 : 1→ 3 and q2 : 1→ 4 and the corresponding paths,

f1 : {x1}, f2 : {x2, x4}, f3{x2, x5} and f4 : {x3}. Hence, the incidence matrix between O-D pairs
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and paths is given by

B =

1 1 0 0

0 0 1 1


and the incidence matrix between links and paths is given by

F =



1 0 0 0

0 1 1 0

0 0 0 1

0 1 0 0

0 0 1 0


So the following conservation relations are satisfied :

x = Ff, q = Bf

Then, the UE for this network could be formulated as follows:

min
x

1

2
fTQf + cT f (3.48)

subject to Af = q (3.49)

f ≥ 0 (3.50)

where Q = F T



1
7 0 0 0 0

0 1
5 0 0 0

0 0 1
4 0 0

0 0 0 0 0

0 0 0 0 0


F and c = F T



82

32

82

0

0


.

Since in the situation of UE, all the demand have to be assigned.

All the possible situations are: {f1, f3}, {f1, f4}, {f1, f3, f4}, {f2, f3}, {f2, f4}, {f2, f3, f4},

{f3, f1, f2}, {f4, f1, f2}, and {f1, f2, f3, f4}.

Therefore, U ∈ {{2, 4}, {2, 3}, {2}, {1, 4}, {1, 3}, {1}, {4}, {3}, {∅}}.
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If U = ∅, then according to theorem 3.1.5

f †(b) = M∅q +N∅ =


7/16 7/16

9/16 −7/16

−1/4 3/4

1/4 1/4


q +


−875/8

875/8

125/2

−125/2


(3.51)

If U = {2}, then according to theorem 3.1.6

f †(b) = MUq +NU =


1 0

0 0

0 5/9

0 4/9


q +


0

0

1000/9

−1000/9


(3.52)

If U = {1, 3}, then according to corollary 3.1.1

f †(b) = MUq +NU =


0 0

1 0

0 0

0 1


q (3.53)

3.2. Determine the Partition Region

In this section, we establish the criteria that could determine the partition region directly.

To derive those criteria, we need to find the boundary of each given partition region such that the

MNSM satisfies the current active set and meanwhile the MNSM would not trigger other iequalities.

Theorem 3.2.1. The partition region RU = {b | x†(b)i = 0 if i ∈ U} for problem 3.1 is given

by if A and EU are linearly independent,

−
[
(LT )† (QMUb+QNU + c)

]
j
≥ 0 for j = 1 + n, . . . , |U |+ n. (3.54)

[MUb+NU ]i ≥ 0 ∀i 6∈ U (3.55)

(3.56)
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if A and EU are linearly dependent,

−
[
(L̃T )† (QMUb+QNU + c)

]
j
≥ 0 for j = 1 + n, . . . , |U |+ n. (3.57)

[MUb+NU ]i ≥ 0 ∀i 6∈ U (3.58)

where L =

 A
EU

 and L̃ =

 Ã
EU

 where Ã is consisted by those rows of A which are linearly

independent with the rows of EU .

Proof: To determine the partition region RU , recall the KKT conditions for CQP,

Qx+ATµ+ λ = −c (3.59)

Ax = b, x ≥ 0 (3.60)

λ ≥ 0 (3.61)

λixi = 0, ∀i = 1, . . . , n (3.62)

where b ∈ RU , Ax(b) = {i|x†(b)i = 0} = U .

So by complementary slackness condition and the MNSM for CQP, we have for i ∈ U , x†(b)i =

0 =⇒ λi ≥ 0 and for i 6∈ U , x†(b)i ≥ 0 =⇒ λi = 0.

Hence,

(1) i 6∈ U . According to theorem 3.1.6, when b ∈ RU ,

[x†(b)]i = [MUb+NU ]i ≥ 0 (3.63)

(2) i ∈ U . Let L =

 A
EU

. Then equation 3.59 becomes

Qx+ LT

µ
λ

 = −c (3.64)
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If L is full row rank, LLT is invertable.

Multiplying L on both sides, we obtain

Qx+ LT

µ
λ

 = −c =⇒ LLT

µ
λ

 = −L (Qx+ c) =⇒

µ
λ

 = −(LLT )−1L (Qx+ c) (3.65)

Since (LT )† = (LLT )−1L and x†(b) = MUb+NU for b ∈ RU , we have gotµ
λ

 = −(LT )† (QMUb+QNU + c) (3.66)

Since x†(b)i = 0 , we have

λi ≥ 0 =⇒ −
[
(LT )† (QMUb+QNU + c)

]
j
≥ 0 for j = 1 + n, . . . , |U |+ n. (3.67)

On the other hand, if L is not full row rank, the corresponding feasible region is given by

Ax = b, EUx = 0, xi > 0 if i 6∈ U (3.68)

Since L is not full row rank matrix, the feasible region is empty if

b
0

 6∈ R(L). If

b
0

 ∈ R(L)

and L is not full row rank matrix, there must be some rows of A such that these rows are linearly

independent with the rows of EU since both A and EU are full row rank matrix.

Hence those rows of A who are linearly dependence with the rows of EU are redundant constraints

for the feasible region. Let Ã consist of those rows who are linearly independent with the rows of

EU . Then in this case L̃ =

 Ã
EU

 is full row rank matrix. Repeating the above process we have

λi ≥ 0 =⇒ −
[
(L̃T )† (QMUb+QNU + c)

]
j
≥ 0 for j = 1 + n, . . . , |U |+ n. (3.69)

Therefore, putting 3.83, 3.88 and 3.89 together, we obtain the criteria to determine the partition

region RU .
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If A and EU are linearly independent,

−
[
(LT )† (QMUb+QNU + c)

]
j
≥ 0 for j = 1 + n, . . . , |U |+ n. (3.70)

[MUb+NU ]i ≥ 0 ∀i 6∈ U (3.71)

(3.72)

If A and EU are linearly dependent,

−
[
(L̃T )† (QMUb+QNU + c)

]
j
≥ 0 for j = 1 + n, . . . , |U |+ n. (3.73)

[MUb+NU ]i ≥ 0 ∀i 6∈ U (3.74)

Q.E.D

Example 5. Consider the network showing in figure 3.1. Now applying the methods we provide,

we have the demand space of the UE separated into 4 parts shown in figure ??

R∅ := {q|q1 + q2 − 250 ≥ 0, 9q1 − 7q2 + 1750 ≥ 0, q1 − 3q2 − 250 ≥ 0}

R{2} := {q|9q1 − 7q2 + 1750 < 0, q1 ≥ 0}

R{3} := {q|q1 − 3q2 − 250 < 0, q1 ≥ 250}

R{1,4} := {q|q1 + q2 − 250 < 0, q1 ≥ 0, q2 ≥ 0}

Similarly, we could consider a more complicated case

min
x

1

2
xTQx+ cTx (3.75)

s.t. Ax = b, Bx ≤ u, x ≥ 0

where the feasible set is nonempty, both A and B are full row rank matrix.
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Figure 3.2. Demand space partition: R∅ is blue region, R{2} is green region, R{3}
is yellow region, R{1,4} is white region

Theorem 3.2.2. The partition region RU,V = {b | x†(b)i = 0, if i ∈ U Bx†(b)j = uj , if j ∈

V } for problem 3.75 is given by if L =


A

EU

BV

 is full row rank,

[MU,V b+NU,V +HU,V ]i ≥ 0 i 6∈ U (3.76)

[B(MU,V b+NU,V +HU,V )− u]j ≤ 0 j 6∈ V

−
[
(LT )† (QMU,V b+QNU,V +QHU,V + c)

]
i
≥ 0 for i = 1 + n, . . . , |U |+ n

−
[
(LT )† (QMU,V b+QNU,V +QHU,V + c)

]
j
≤ 0 for j = 1 + n+ |U |, . . . , |U |+ |V |+ n
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Or

if L =


A

EU

BV

 is not full row rank

[MU,V b+NU,V +HU,V ]i ≥ 0 i 6∈ U (3.77)

[B(MU,V b+NU,V +HU,V )− u]j ≤ 0 j 6∈ V

−
[
(L̃T )†

(
QMŨ ,Ṽ b+QNŨ ,Ṽ +QHŨ ,Ṽ + c

)]
i
≥ 0 for i = 1 + n, . . . , |Ũ |+ n

−
[
(L̃T )†

(
QMŨ ,Ṽ b+QNŨ ,Ṽ +QHŨ ,Ṽ + c

)]
j
≤ 0 for j = 1 + n+ |Ũ |, . . . , |Ũ |+ |Ṽ |+ n

where L̃ consist of the rows of L who are linear independent.

Proof: To determine the partition region RU,V , recall the KKT conditions for CQP,

Qx+ATµ+ λ+BTκ = −c (3.78)

Ax = b, x ≥ 0 (3.79)

κ ≥ 0, λ ≤ 0 (3.80)

λixi = 0, ∀i = 1, . . . , n (3.81)

κj(BUx− u)j = 0, ∀j = 1, . . . , n (3.82)

where b ∈ RU,V

So by complementary slackness condition and the MNSM for CQP, we have for i ∈ U , x†(b)i =

0 =⇒ λi ≤ 0 and for i 6∈ U , x†(b)i 6= 0 =⇒ λi = 0 and we have for j ∈ V , [Bx − u]j = 0 =⇒

κj ≥ 0 and for j 6∈ V , [Bx†(b)− u]j 6= 0 =⇒ κj = 0

Hence,

(1)i 6∈ U . According to theorem 3.1.6, when b ∈ RU,V ,

[x†(b)]i = [MU,V b+NU,V +HU,V ]i ≥ 0 (3.83)

(2)j 6∈ V . According to theorem 3.1.6, when b ∈ RU,V ,

[Bx†(b)− u]j = [B(MU,V b+NU,V +HU,V )− u]j ≤ 0 (3.84)
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(3)i ∈ U, j ∈ V . Let L =


A

EU

BV

. Then 3.78 becomes

Qx+ LT


µ

λ

κ

 = −c (3.85)

If L is full row rank, LLT is invertible.

Multiplying L on both sides, we obtain

Qx+ LT


µ

λ

κ

 = −c =⇒ LLT


µ

λ

κ

 = −L (Qx+ c) =⇒


µ

λ

κ

 = −(LLT )−1L (Qx+ c) (3.86)

Since (LT )† = (LLT )−1L and x†(b) = MU,V b+NU,V +HU,V for b ∈ RU , we have got
µ

λ

κ

 = −(LT )† (QMU,V b+QNU,V +QHU,V + c) (3.87)

Since µ ∈ Rn, i ∈ U =⇒ λi ≥ 0, and j ∈ V =⇒ κ ≤ 0 , we have

λi ≥ 0 =⇒ −
[
(LT )† (QMU,V b+QNU,V +QHU,V + c)

]
i
≥ 0 for i = 1 + n, . . . , |U |+ n. (3.88)

κj ≤ 0 =⇒ −
[
(LT )† (QMU,V b+QNU,V +QHU,V + c)

]
j
≤ 0 for j = 1+n+ |U |, . . . , |U |+ |V |+n

(3.89)

where | · | is the total number of elements of the set.

If L is not full row rank, the corresponding feasible region is given by

Ax = b, EUx = 0, BV x = u. (3.90)
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If


b

0

u

 6∈ R


A

EU

BV


, then the feasible region is empty so that there is no such region.

If


b

0

u

 ∈ R


A

EU

BV


, we know some equality constraints are redundant so that we could eliminate

those equality constraint without changing the feasible region. Then, we first eliminate those

equality constrains in Ax = b since we are more interested in those inequality constraints which

could be inactivated. After removing redundant, we obtain that L̃ =


Ã

EŨ

BṼ

 is full row rank.

Hence we could repeat above process to obtain that

−
[
(L̃T )†

(
QMŨ ,Ṽ b+QNŨ ,Ṽ +QHŨ ,Ṽ + c

)]
i
≥ 0 for i = 1 + n, . . . , |Ũ |+ n (3.91)

−
[
(L̃T )†

(
QMŨ ,Ṽ b+QNŨ ,Ṽ +QHŨ ,Ṽ + c

)]
j
≤ 0 for j = 1 + n+ |Ũ |, . . . , |Ũ |+ |Ṽ |+ n (3.92)

There, the criteria that determine the partition region RU,V is given by the following :

[MU,V b+NU,V +HU,V ]i ≥ 0 i 6∈ U

[B(MU,V b+NU,V +HU,V )− u]j ≤ 0 j 6∈ V

−
[
(LT )† (QMU,V b+QNU,V +QHU,V + c)

]
i
≥ 0 for i = 1 + n, . . . , |U |+ n

−
[
(LT )† (QMU,V b+QNU,V +QHU,V + c)

]
j
≤ 0 for j = 1 + n+ |U |, . . . , |U |+ |V |+ n

Or

[MU,V b+NU,V +HU,V ]i ≥ 0 i 6∈ U

[B(MU,V b+NU,V +HU,V )− u]j ≤ 0 j 6∈ V

−
[
(L̃T )†

(
QMŨ ,Ṽ b+QNŨ ,Ṽ +QHŨ ,Ṽ + c

)]
i
≥ 0 for i = 1 + n, . . . , |Ũ |+ n

−
[
(L̃T )†

(
QMŨ ,Ṽ b+QNŨ ,Ṽ +QHŨ ,Ṽ + c

)]
j
≤ 0 for j = 1 + n+ |Ũ |, . . . , |Ũ |+ |Ṽ |+ n

Q.E.D
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3.3. Projection-based Solution Mapping

In this section, we would extend the results from previous sections to the projection-based

solution mapping with respect to arbitrary point u ∈ Rm. In fact, when u walks through all the

possible points, we could potentially handle almost all solution sets that can arise in the traffic

equilibrium problems.

(a) The optimal solution set for all input parameters b. The blue dash line shows the
optimal solution set for b0.

(b) The MNSM vs The PBSM. The orange curve represents the MNSM. The green line
represents the PBSM when the basis is u

Figure 3.3. Geometry of the Solution Set
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Again, there are two steps to obtain the analytic formula, getting the analytic formula for a given

region and determining the partition region. According to the definition 2.3.12, the projection-based

solution mapping x†u(b) with respect to u is given as following:

min
x

‖x− u‖

s.t. x ∈ S(b) (3.93)

where S(b) is the solution set of the problem 3.1.

Theorem 3.3.1. If b ∈ Ru,∅, then the projection-based solution mapping with respect to u for

the problem 3.1 is

x†u(b) = M∅b+N∅ + (I −K†∅K∅)u (3.94)

where K∅ =

P⊥ATQ

A

, M∅ = K†∅(:, n+ (1 : m)), and N∅ = −K†∅(:, 1 : n)P⊥
AT c.

3.4. Discussion

The solution to equation 3.13 has been studied extensively. Whenever KKT conditions are used

to solve the constrained quadratic optimization problem, equation 3.13 would appear. Mainly there

are two kinds of methods to solve this problem: Direct methods and Iteration methods. The ideas

behind direct methods are usually applying some techniques such as factorization and null space

approaching so that we could solve equation 3.13 by solving some smaller size equations. Iteration

methods such as precondition conjugate gradient and projected conjugate gradient are sequentially

tracking the information given by the initial condition to satisfy the terminal condition. More

details could be found in [BV04]. However, neither of those methods meets the requirement of

building a numerical stable solution mapping without knowing the initial data or input. In the case

of direct method, if we follow the steps of those techniques, one cannot avoid matrix multiplications

involving inverse of matrices. It can enhance numerical instability. In the case of iteration method,

one needs the information of initial data or input to start the process. With these limitations, we

need another approach to get the pre-computed optimal solution. This is a question studied in the

area of multiparametric quadratic optimization such as [FJO13]. However, existing approaches are
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limited to the case of strictly convex quadratic optimization, which has an invertible hessian, and

again the analytic formula of the solution mapping involves the inverse of some matrices.

A naive choice to build the solution mapping is applying the pseudoinverse of the left hand side

on the equation 3.13. For a problem with unique solution, it turns out that the results of using

pseudoinverse may be the same as using the regular inverse. If we limit our framework on the

quadratic convex optimization, both choices give a representative of the solution set. However, it

is not a good choice by a deep geometric reason. In figure 3.4, the black line is the solution set in

Figure 3.4. Difference between the MNSM and pseudoinverse of the KKT matrix
on the equation 3.13

the space containing both primal variable and dual variable. If we choose to use the pseudoinverse,

we will end up with the red point which has the minimum two norm in the space. But the

blue point represents the choice of the MNSM. The difference becomes significant when one tries
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to extend the result from convex quadratic optimization problems to general convex optimization

problems. A natural approach is to use a sequence of quadratic problems to approximate the convex

problem. Using the pseudoinverse of the KKT matrix directly implies considering the convergence

process in the space both involving primal and dual variables with the topology induced by epi-

hypo convergence, which is not separable according to [AW83]. On the other hand, our MNSM

approach considers the primal variables only. Hence the approximation process is in the space with

only primal variables whose topology is induced by the so-called epi-convergence. This gives great

advantages of extending our results from the convex quadratic case to the general convex case,

which will be discussed in details in the next Chapter.
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CHAPTER 4

Approximated MNSM for Convex Optimization (CO)

In this section, we want to generalize the results obtained from CQP to convex optimization

rising from traffic equilibrium problem with general cost functions under congestion. In fact, even

though we have an identical definition of the MNSM, we could barely derive an analytic solution for

the general convex optimization problem. Hence, we explore the MNSM for a convex optimization

problem by using a sequence of the MNSM for a suitable choice of sequence of CQP. Before we go

further in the technical methods, we need to introduce concepts of epi-convergence and epi-splines.

Those preliminary materials will be covered in the first two sections. In section 3, we first define the

so-called approximate MNSM (aMNSM) and then we provide two situations for which the aMNSM

matches the MNSM we defined before.

4.1. Epigraph and Epi-convergence

A central question with a sequence of approximated optimization problems is whether they

provide a good approximation to the solution of the original optimization problem. That is, ideally

we would like for Vn → V , where Vn = minfn(x) and V = minf(x), and we would also like

that for any minimizer sequence xn ∈ arg min fn(x), we could have x ∈ arg min f(x) if xn →

x. Unfortunately, the two well-known convergence processes, point-wise convergence and uniform

convergence are not suitable for this purpose. At its surface, point-wise convergence seems like an

easy exercise but certain pathology could occur as evidenced by the following example : Consider

a sequence of optimization problem

min min{1− x, 1, 2n|x+ 1/n| − 1} (4.1)

s.t. x ∈ [−1, 1]

The objective functions fn(x) = min{1 − x, 1, 2n|x + 1/n| − 1} converge pointwise to f(x) =

min{1−x, 1}. It is not hard to figure out that the minimizer of fn(x) is xn = −1/n and it converge

to zero as n→∞. However, the minimizer of the optimization problem that we are approximating
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by this sequence is x = 1. The minimizer of the sequence does not converge to the minimizer of the

limiting optimization problem. The reason that uniform convergence is not suitable is more straight

forward since the requirement is way too strong to achieve in most cases. Hence, epi-convergence

comes into the picture. The materials about epigraph and epi-convergence reported in this section

are from the related chapter of ’Variational Analysis’ [RW09] for the convenience of readers.

Definition 4.1.1 (Epigraph). For f : Rn → R̄, the epigraph of f is the set

epif := {(x, α) ∈ Rn × R | f(x) ≤ α} (4.2)

The epigraph thus consists of all the points of Rn+1 lying on or above the graph of f .

Definition 4.1.2 (Epigraph for vector-valued function). For f : R̄n → R̄m, the epigraph of f

is the set

epif :=
{

(x, α) ∈ Rn × Rm | f(x) ≤Rm
+
α
}

(4.3)

Proposition 4.1.1. f : R̄n → R̄m is lower-semi continuous function if and only if epif is a

closed subset of Rn × Rm. f is a convex function if and only if epif is a convex set.

Definition 4.1.3 (lower and upper epi-limits). For any sequence {fk}k∈N of functions on Rn,

the lower epi-limit e-lim infk f
k is the function having as its epigraph the outer limit of the sequence

of sets epifk:

epi(e- lim inf
k

fk) := lim sup
k

(epifk). (4.4)

The upper epi-limit e-lim supk f
k is the function having as its epigraph the inner limit of the sets

epifk:

epi(e- lim sup
k

fk) := lim inf
k

(epifk). (4.5)

Thus e-lim infk f
k ≤ e-lim supk f

k in general. When these two functions coincide, the epi-limit

function e-limk f
k is said to exist : e-limk f

k :=e-lim infk f
k = e-lim supk f

k. In this event the

functions fk are said to epi-converge to f . Thus,

fk
e−→ f ⇔ epifk → epif (4.6)
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Proposition 4.1.2 (characterization of epi-limits). Let {fk}k∈N be any sequence of functions

on Rn, and let x be any point of Rn. Then

(e- lim inf
k

fk)(x) = min{α ∈ R̄|∃xk → x with lim inf
k

fk(xk) = α} (4.7)

(e- lim sup
k

fk)(x) = min{α ∈ R̄|∃xk → x with lim sup
k

fk(xk) = α} (4.8)

Thus,fk
e−→ f if and only if at each point x one has lim infk f

k(xk) ≥ f(x) for every sequence xk → x

lim supk f
k(xk) ≤ f(x) for some sequence xk → x

(4.9)

Proposition 4.1.3 (properties of epi-limits). The following properties hold for any sequence

{fk}k∈N of functions on Rn

(1) The functions e-lim infk f
k and e-lim supk f

k are lower semi-continuous, and e-limk f
k is

also lower semi-continuous when it exists.

(2) The functions e-lim infk f
k and e-lim supk f

k depend only on the sequence {clfk}k∈N

(3) If the sequence {fk} is non-increasing (fk ≥ fk+1), then e-limk f
k exists and equals

cl[infk f
k];

(4) If the sequence {fk} is non-decreasing (fk ≤ fk+1), then e-limk f
k exists and equals

supk cl[f
k] (rather than cl[supk f

k]).

(5) For subsets Ck and C of Rn, one has C = lim infk C
k if and only if IC = e- lim supk ICk ,

while one has C = lim supk C
k if and only if IC = e- lim infk ICk

(6) If fk1 ≤ fk ≤ fk2 with fk1
e−→ f and fk2

e−→ f , then fk
e−→ f

(7) If fk
e−→ f , or just f =e-lim infk f

k, then domf ⊂ lim supk[domf
k]

Proposition 4.1.4 (characterization of epi-convergence via minimization). For functions fk

and f on Rn with f lsc, one has

(1) e-lim infk f
k ≥ f if and only if lim infk(infB f

k) ≥ infB f for every compact set B ⊂ Rn

(2) e-lim supk f
k ≤ f if and only if lim supk(infO f

k) ≤ infO f for every open set O ⊂ Rn

Thus, e-limk f
k = f if and only if both conditions hold.

Let ε-arg min f := {x | f(x) ≤ inf f + ε}
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Proposition 4.1.5 (epigraphical nesting). If e-lim supk f
k ≤ f , then

lim sup
k

(inf
k
fk) ≤ inf f (4.10)

Furthermore, the inclusion

lim sup
k

(εk- arg min fk) ⊂ arg min f (4.11)

holds for any sequence εk ↘ 0 such that whenever N ∈ N#
∞ and xk −→

N
x with xk ∈ εk- arg min fk,

then fk(xk) −→
N
f(x)

Theorem 4.1.4 (inf and argmin). Suppose fk
e−→ f with −∞ < inf f <∞.

(1) inf fk → inf f if and only if there exists for every ε > 0 a compact set B ⊂ Rn along with

an index set N ∈ N∞ such that

inf
B
fk ≤ inf fk + ε for all k ∈ N (4.12)

(2) lim supk(ε-arg min fk) ⊂ ε-arg min f for every ε ≥ 0 and consequently

lim sup
k

(ε- arg min fk) ⊂ arg min f whenever ε↘ 0 (4.13)

(3) Under the assumption that inf fk → inf f , there exists a sequence εk ↘ 0 such that εk-

arg min fk → arg min f . Conversely, if such a sequence exists, and if arg min f 6= ∅, then

inf fk → inf f .

Theorem 4.1.4 demonstrated that epi-convergence is the suitable choice of convergence process.

The next step is to find a suitable way to generate a sequence of functions which epi-converges to

the problem we are interested in. It could be solved by using the epi-splines we introduce in the

next section.

4.2. Epi-splines

We review some pertinent facts regarding the space of lower semi-continuous functions before

introducing the epi-spline technique based on the series papers by Johannes O. Royset and Roger

J-B Wets [RW16, RW12, RW14].
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Let lsc-fcns(Rn) be the space of lower-semi continuous functions on Rn with the epi-distance

d, which for any f, g : Rn → R̄, not identically equal to ∞, is defined as

dl(f, g) :=

∫ ∞
0

dlρ(f, g)e−ρdρ, (4.14)

where ρ-epi-distance, ρ ≥ 0 is given by

dlρ(f, g) := max
‖x̄‖
|d(x̄, epif)− d(x̄, epig)|, (4.15)

the standard distance between a point x̄ = (x, α) ∈ Rn+1 with x ∈ Rn and α ∈ R and a set

S ⊂ Rn+1 is given by

d(x̄, S) := inf
ȳ∈S
‖x̄− ȳ‖ (4.16)

Notice that the space lsc-fcns(Rn) is not a vector space but a convex cone. The epi-distance is

a metric on lsc-fcns(Rn) and induces the Attouch-Wets topology. With this topology, we have

fk : Rn → R̄ epi-converge to f : Rn → R̄ if dl(fk, f)→ 0. Even better the space lsc-fcns(Rn) with

Attouch-Wets topology has been shown to be a Polish (complete separable metric) space which

forms a foundation of the epi-splines.

Definition 4.2.1 (partition). A finite collection R1, R2, . . . Rn of open subsets of Rn is a par-

tition of a closed set B ⊆ Rn if ∪Nk=1clRk = B and Rk ∩Rl = ∅ for all k 6= l.

A polynomial in n dimensions is of total degree p if it is expressed as a finite sum of polynomial

terms each having the sum of powers of the variables being no larger than p. The set of all such

polynomials is denoted by polyp(Rn) and the total number of terms in such a polynomial is at most

np := (n+ p)!/(n!p!)

Definition 4.2.2 (lsc epi-splines). A (lsc) epi-spline s : Rn → R of order p ∈ N0, with partition

R = {Rk}Nk=1 of a closed set B ⊆ Rn, is a function that on each Rk, k = 1, . . . , N is polynomial of

total degree p, has s(x) =∞ for x 6∈ B and for every x ∈ Rn, has s(x) = lim inf
x′→x

s(x′). The family

of all such epi-splines is denoted by e-splpn(R).

Proposition 4.2.1. For any partition R of a closed set B ⊆ Rn, p ∈ N0, and n ∈ N0,e-splpn(R) ⊂

lsc-fcns(B) ⊆ lsc- fcns(Rn).
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Definition 4.2.3 (infinite refinement). A sequence {Ri}∞i=1 of partitions of a closed set B ⊆ Rn,

with Ri = {Rik}N
i

k=1 is an infinite refinement if for every x ∈ B and ε > 0, there exists ī ∈ N such

that Rik ⊂ B(x, ε) for every i ≥ ī and k satisfying x ∈ clRik.

Theorem 4.2.4 (dense approximation). For any p ∈ N0 and {Ri}∞i=1, an infinite refinement of

a closed set B ⊂ Rn,
∞⋃
i=1

e-splpn(Ri) is dense in lsc-fcns(B). (4.17)

Theorem 4.2.5 (decomposition). For every s ∈ e-splpn(R) with n > p and R = {Rk}Nk=1, there

exists qk ∈ polyp(Rn) and qk,j ∈ polyp(Rp), j = 1, 2 . . . ,
(
n
p

)
, such that

s(x) = qk(x) =

(np)∑
j=1

qk,j(x[j]), for all x ∈ Rk (4.18)

Corollary 4.2.1. For every s ∈ e-splpn(R), with n > p and R = {Rk}Nk=1 there exist qk,i ∈

polyp(Rn−1), i = 1, 2, . . . , n such that

s(x) =

n∑
i=1

qk,i(x−i), for all x ∈ Rk (4.19)

4.3. The MNSM for convex optimization

Now, we are ready to construct the MNSM for the following convex optimization problem.

min
x

f(x) (4.20)

subject to Ax = b (4.21)

x ≥ 0 (4.22)

where f(x) is a convex function arising from the traffic equilibrium problem with general cost

function. Let Rk be a sequence of partitions of a closed set B ⊆ Rn with Rk = {Rki }N
k

i=1 such that

Rk+1 ⊆ Rk. According to theorem 4.2.4, there exists a sequence of epi-splines sk(x) of total degree

2 such that for any infinite refinement Rk

sk(x)
e−→ f(x) as k →∞ (4.23)
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where sk(x) ∈ e-spl2n(Rk). Then lim sup
k

arg min sk(x) ⊆ arg min f(x) in general, i.e. if xk ∈

arg min sk(x) and xk → x, then x ∈ arg min f(x). Hence, we obtain the following definition of the

approximated MNSM.

Definition 4.3.1. If arg min f(x) is not empty and arg min sk(x) 3 (xk)†(b)→ x∗(b), then the

approximated MNSM is defined by

x̃†(b) := x∗(b) (4.24)

In general, the approximated MNSM x̃†(b) of a convex problem is not necessarily equal to the

MNSM of the convex problem x†(b). The following example shows that even when a sequence of

functions converges uniformly, the approximated MNSM does not necessarily match the MNSM we

defined.

Example 6. Let fk(x) = 1
k |x − 1|, then fk(x) → f ≡ 0 uniformly on [0,2]. The MNSM for

each fk(x) is x = 1 so that the limit of this sequence is 1. But the MNSM of f = 0 is x = 0 6= 1.

See figure 4.1.

Figure 4.1. the approximated MNSM does not match the MNSM

Fortunately, we have established that the approximated MNSM matches the MNSM under the

following two situations.

Theorem 4.3.2. The approximated MNSM coincides with the MNSM if one of the following

two conditions holds:
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(1) arg min f(x) is singleton.

(2) There exists a strictly convex funtion g and a full row-rank matrix L such that f = g ◦ L

and there exists a sequence gk
e−→ g with fk = gk ◦ L

To prove this theorem, we first recall the following proposition from [RW09]

Proposition 4.3.1 (set convergence through projections). For nonempty, closed sets Ck and

C in Rn, one has Ck → C if and only if lim sup
k

d(0, Ck) < ∞ and the projection mappings PCk

have the property that

lim sup
k

PCk(x) ⊂ PC(x) for all x. (4.25)

When the sets Ck and C are also convex, one simply has that Ck → C if and only if PCk(x)→ PC(x)

for all x.

Proof: Proof of this proposition is in [RW09] chapter 4 page 114.

Proof of theorem 4.3.2: (1) is trivial. (2) Since g is strictly convex, then g has a unique minimizer

for every suitable b ∈ Rn+ denoted by y(b). Hence for k in some index set N ∈ N∞, yk(b) → y(b)

where yk(b) ∈ arg min gk since gk
e−→ g. According to exercise 7.47 of [RW09], gk ◦ L e−→ g ◦ L, i.e.,

fk
e−→ f . Meanwhile, arg min f(b) = {x|Lx = y(b)} and {xk|Lkxk = yk(b)} ⊆ arg min fk(b). Hence,

according to theorem 2.3.4, we obtain arg min fk(b) → arg min f(b). According to theorem 2.2.2

tells that both arg min fk(b) and arg min f(b) are convex. Therefore according to proposition 4.3.1

and the definition of the MNSM,

xk†(b)→ x†(b) for every b ∈ Rn+ (4.26)

Q.E.D.

The second condition is, in general, not easy to achieve but in the traffic equilibrium problem where

the full row rank matrix L could be simply chosen by using the link path incidence matrix. Also,

the objective function of the equilibrium problem is
∑
i

∫ xi
0 ti(s)ds which allows us to decompose

the objective function into each links and the epi-spline could be considered as single-variable case.
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Example 7. Consider the network showing in figure 3.1 again. The link costs are given by :

x1 : t1(s) = 82 +
s

7
+ (

s

7
)4

x2 : t2(s) = 32 +
s

5
+ (

s

5
)4

x3 : t3(s) = 82 +
s

4
+ (

s

4
)4

x4 : t4(s) = 0

x5 : t5(s) = 0

So the objective function for UE is given by

UE(x1, x2, x3, x4, x5) =

5∑
i=1

∫ xi

0
ti(s)ds (4.27)

Even though, this is a function with five variables but it is a summation of five function with only

one variable so that we could choose the epi-spline as single-variable case for each links.

Choosing t3(s) as an example, we have

f(x3) =

∫ x3

0
t3(s)ds = 82x3 +

x2
3

8
+

x5
3

5 · 44
, x3 ∈ R+ (4.28)

Then one piece second order epi-spline for above equation could choose as

f1(x3) = 82x3 +
x2

3

8
, x3 ∈ R+ (4.29)

Hence, it is easy to verify that the UE in example 4 is same as the result of using one piece second

order epi-spline to approximate the UE in this example.

Furthermore, we could construct a sequence of function fk(x3) such that fk(x3)
e−→ f(x3) in

the following way:

(1) fk(0) = f(0) = 0

(2) Let Rk =
⋃n
i=1Rki =

⋃n−1
i=1 (aki , a

k
i+1] ∪ (akn,∞) be a finite partition of (0,∞) with a1 = 0.

For any x ∈ Rki ,

fk(x) = f(aki ) + f ′(aki )(x− aki ) +
f ′′(aki )

2
(x− aki )2 (4.30)
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(3) Rk+1 is a refinement of Rk i.e.

Rk+1 ⊆ Rk (4.31)

It is easy to verify that fk(x3)
e−→ f(x3). By construction fk is lower semi-continuous function and

non-decreasing. Also fk converge pointwise to f . Hence, according to proposition 4.1.3,

fk(x3)
e−→ f(x3). (4.32)

Remark: Here we only provide one way to construct the epi-spline which is not unique. But

in the following of the dissertation, we only consider the epi-spline constructed according to above

example.

Figure 4.2. Second order epi-spline example

Now we turn our attention to how the corresponding partition regions change based on the approx-

imated MNSM.

Corollary 4.3.1. Let RkU := {b | Akx(b) = U} where Akx(b) := {i | xk†(b)i = 0}. If the second

condition in theorem 4.3.2 holds, then for every U ∈ P(1 : m)

RkU → RU (4.33)
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Proof: From the proof of theorem 4.3.2, we obtain arg min fk(b) → arg min f(b). Denote

Ω := {x | xi = 0 for i ∈ U}. Then arg min fk(b) ∩ Ω→ arg min f(b) ∩ Ω. According to proposition

4.3.1 and the definition of the MNSM,

RkU → RU (4.34)

Q.E.D

In the above corollary, we have shown for each U , RkU converges to RU . Also, in chapter 2,

we discussed that both Rk :=
⋃
U∈P(1:m)RkU and R :=

⋃
U∈P(1:m)RU form a partition of Rm+ .

Following the process defined by the second condition in theorem 4.3.2, the boundary of the partition

generated by this process will converge to the origin one in some sense eventually. However, through

our numerical simulation, we observed that it seems all the boundaries are the same which means

the sequence of the partition regions is constant. More details will be discussed in next section.

4.4. Quadratic Determination

In this section, we share an important observation when we follow the method given by theorem

4.3.2 condition 2 and provide a possible explanation for this observation.

Example 8. Consider the network showing in figure 3.1 again. The general link costs are :

x1 : t1(s) = 82 +
s

7
+ (

s

7
)4

x2 : t2(s) = 32 +
s

5
+ (

s

5
)4

x3 : t3(s) = 82 +
s

4
+ (

s

4
)4

x4 : t4(s) = 0

x5 : t5(s) = 0

From example 7, we know that the UE in example 4 is the same as the result of using one piece

second order epi-spline to approximate the UE in this example.

As in example 5, we consider that demands q are in the box [0, 1000] × [0, 1000]. Then, 0 ≤

fi ≤ 1000, i = 1, . . . , 4 and 0 ≤ xi ≤ 1000, i = 1, . . . , 5 by flow conservation. Also we apply the

way shown in example 7 to construct two pieces epi-spline R2 = {[0, 500], (500, 1000]}5.
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So the UE :

min
f

TUE(Ff)

s.t. Bf = q, f ≥ 0

→
min
f

T 2
UE(Ff)

s.t. Bf = q, f ≥ 0

(4.35)

where TUE(x) =
5∑
i=1

∫ xi
0 ti(s)ds, T

2
UE(x) =

5∑
i=1

h2
i (xi), and for i = 1, . . . 5, hi(xi) =

xi∫
0

ti(s)ds

h2
i (xi) =

 hi(0) + h′i(0)xi +
h′′i (0)

2 x2
i 0 ≤ xi ≤ 500

hi(500) + h′i(500)(xi − 500) +
h′′i (500)

2 (x2
i − 500)2 500 < xi ≤ 1000

(4.36)

Hence, the UE with general link cost function decomposes into 25 subproblems and each subproblem

is a quadratic optimization problem with general box constraints.

For example, when x1, x3, x4 ∈ [0, 500] and x2, x5 ∈ (500, 1000], the corresponding subproblem is

given by

min
f

T 2
UE(Ff)

s.t. Bf = q, l ≤ Ff ≤ u, f ≥ 0

=
min
f

1
2f

TF TQFf + fTF T c

s.t. Bf = q, l ≤ Ff ≤ u, f ≥ 0

(4.37)

where Q =


h′′1(0) 0 0

0 h′′2(500) 0

0 0 h′′3(0)

, c =


h′1(0)

h′2(500)− 500h′′2(500)

h′3(0)

, l =



0

500

0

0

500


, and u =



500

1000

500

500

1000


.

Remark 1: Since x2, x5 > 500, so that RU,2,5,[0,500,0,0,500] could never happen.

Remark 2: Even though there are 25 subproblems, due to the topology of the network, some of

the subproblems are not feasible such as the subproblem with x2 ∈ [0, 500] and x4, x5 ∈ (500, 1000].

Now according to theorem 3.2.2, we could find the corresponding MNSM partition regions in the

demand space shown in figure 4.3. Similarly, we could also find the corresponding MNSM partition

regions in the demand space with epi-spline defined on

R4 = {{0}, (0, 250], (250, 500], (500, 750], [750, 1000]}5 shown in figure 4.4.

Comparing with the MNSM partition region in figure 3.2, we observe that those main bound-

aries appear in figure 4.3 and 4.4 as well. Here a main boundary means where the corresponding

inequality constraint fi ≥ 0 is activate.
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Figure 4.3. the MNSM partition region corresponding to epi-splines approxima-
tion with R2

Figure 4.4. the MNSM partition region corresponding to epi-splines approxima-
tion with R4

To make it clear, let’s focus on the main boundary corresponding to f2 ≥ 0. As in example 5,

we know that the boundary of R{2} is corresponding to 9b1 − 7b2 = 1750 (red line in figure 4.5)

which represents the boundary for f2 = 0. Now choose three different regions from above, R2
{2},{3},

R4
∅,{1,3}, and R4

{2},{3} shown in figure 4.5. Also, we know the analytic form for those regions as
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following:

R2
{2},{3} = {b ∈ R2 |



1.0000 0.0000 −0.0000

0.0000 0.5435 −382.6087

−0.0000 0.4565 −117.3913

−1.0000 −0.0000 500.0000

−0.0000 −0.5435 882.6087

0.0000 −0.4565 617.3913

−0.1429 0.1141 −29.3478



b
1

 ≥ 0} (4.38)

R4
∅,{1,3} = {b ∈ R2 |



0.4377 0.4377 −359.2720

0.5623 −0.4377 109.2720

−0.2503 0.7497 −187.4151

0.2503 0.2503 −62.5849

−0.4377 −0.4377 609.2720

−0.5623 0.4377 140.7280

0.2503 −0.7497 437.4151

−0.2503 −0.2503 312.5849



b
1

 ≥ 0} (4.39)

R4
{2},{3} = {b ∈ R2 |



1.0000 0.0000 −0.0000

0.0000 0.5435 −382.6087

−0.0000 0.4565 −117.3913

−1.0000 −0.0000 500.0000

−0.0000 −0.5435 882.6087

0.0000 −0.4565 617.3913

−0.1429 0.1141 −29.3478



b
1

 ≥ 0} (4.40)

It is easy to check that the 7th row of R2
{2},{3} and R4

{2},{3} are parallel to 9b1 − 7b2 = 1750 as

well as the second row of R4
∅,{1,3}. Hence, when b is approaching to those boundaries, we have that

the corresponding value of f2 is approaching to 0 as well. Also, the rest fi are not matched.

Based on the observation shown in example 8, we propose the following conjecture:
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(a) R2
{2},{3} (b) R4

∅,{1,3} (c) R4
{2},{3}

Figure 4.5. Three different partition regions

The MNSM partition region of the UE with any general link cost function is de-

termined by its quadratic approximation constructed as illustrate by example 7 .

In fact, we have one step left to make above hypothesis into a theorem. The missing piece of

the puzzle is that under certain condition, the MNSM defined in chapter 2 is a convex function, i.e.

x†(b) is vector-valued convex function in ”some sense”. The certain condition to guarantee x†(b)

convex should be positive non-decreasing lower semicontinuous objective function. The reason that

we say in ”some sense” is because in the space with dimension higher than 1, there are infinitely

many ways to define a partial order. Actually, any non-empty pointed convex cone could induce a

partial order. A natural guess is using so called Lorentz cones Ln = {(x, t) ∈ Rm×R|‖x‖ ≤ t} since

the only geometric property of the MNSM that we could rely on is the minimum norm property.

Unfortunately, we could not prove it at this time.

In the rest of this section, we assume that the MNSM is convex. We want to show that under

this assumption, the hypothesis we claimed above would be true.

The proof has three steps. The first step is to show that for each given U the corresponding

partition region is a convex set. The second step is to show that a finite collection of convex sets

forms a partition of a Euclidean space only if each convex set is a polyhedral. The last step is to

show that two partitions are the same.
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Recall the problem we are dealing with

min
x

f(x) (4.41)

subject to Ax = b (4.42)

x ≥ 0 (4.43)

where f(x) is non-decreasing convex function.

Let b ∈ RU and x†(b) be the image of MNSM, then the KKT conditions are given by

∇f(x†(b)) + LTλ = 0 (4.44)

Ax†(b) = b, x†(b) ≥ 0 (4.45)

λ ≥ 0 (4.46)

x†(b)iλi = 0 ∀i (4.47)

Since x†(b) is convex, the epigraph of x†(b), epix†(b), is a convex set.

Since f(x) is convex, then ∇f(x) is a monotone operator so that ∇f(epix†(b)) is still a convex set

according to [RB16]

Since L is full column rank, according to (4.22), λ = −(LT )†∇f(x†(b)). Together with (4.24) and

(4.23), we obtain that RU is a convex set for any U .

Theorem 4.4.1. A finite collection of convex sets forms a partition of a Euclidean space only

if each convex set is a polyhedral

Proof: Assume Ω1 in this collection is nonempty and not a polyhedral, and Ω2 shares part of

the boundary with Ω1. i.e. ∂Ω1 ∩ ∂Ω2 6= ∅ and ∂Ω1 ∩ ∂Ω2 is not singleton. Let x, y ∈ ∂Ω1 ∩ ∂Ω2,

then since Ω1 is convex, the line segment between x, y lies in Ω1. Also since Ω2 is convex as well,

the line segment between x, y lies in Ω2 which contradicts Ω1 ∩ Ω2 = ∅. Hence, the line segment

between x, y must lie in ∂Ω1 ∩ ∂Ω2. So the boundary of each set in this collection must be linear

which means each convex set is a polyhedral. Q.E.D.

According to this theorem, we obtain that RU is not only a convex set for each given U but

also a polyhedral. Let R be the MNSM partition of problem (4.19) and R̂ be the MNSM partition

of its quadratic approximation problem. For arbitrary set U ∈ P(1 : m), we claim that R̂U ⊃ RU .
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This could prove by contradiction. Since RU is not a subset of R̂U , there exist x0 ∈ RU \ R̂U .

Then according to theorem 18.1 [NW06], there exists a neighborhood of x0 such that x0 is the

minimizer of the quadratic approximation problem with the same inequality be activated. This is

a contradiction. Also, according to theorem 2.4.1, R̂U ∩ R̂V = ∅ when U 6= V . Since both R and

R̂ are partitions, we obtain that R = R̂.

Back to the beginning of this chapter, a major barrier that may discourage this method from

being implemented in wider applications is the number of partition regions, as it will increase the

computational burden tremendously. If the conjecture is true, we would not need to use a very

fine epi-spline to approximate the original problem; rather we can use its quadratic approximation.

Since each partition region is independent from each other, we could use the result obtained from

the quadratic problem as a baseline, then use the epi-spline approximation to build a parallel

algorithm to compute the aMNSM.

60



CHAPTER 5

Measure push-forward by the MNSM

In this chapter, we will show how the uncertainty of input propagates through problem 2.1 to

the uncertainty of the output under the Minimum Norm Solution Mapping. We first introduce the

preliminaries of the probability space and measure. We then show that the measure push-forward

from the input space to the output space forms a probability measure on the output space. At the

end, we will show how the measure behaves under the process discussed in chapter 4.

5.1. Preliminaries of probability space and measure

We use Ω to denote an abstract space whose elements are called points. These points are

denoted by ω.

Definition 5.1.1. Let F be a collection of subsets of Ω. F is called a field (algebra) if Ω ∈ F

and F is closed under complementation and finite union. That is,

(1) Ω ∈ F

(2) A ∈ F =⇒ Ac ∈ F

(3) A1, A2, . . . , An ∈ F =⇒ ∪nj=1Aj ∈ F

If in addition, (3) can be replaced by countable unions, that is

(iv) A1, . . . , An . . . ∈ F =⇒ ∪∞j=1Aj ∈ F ,

then F is called a σ-algebra or often also a σ-field.

Here are three simple examples of σ-algebras

(1) F = {∅,Ω}

(2) F = {all subsets of Ω}

(3) F = {∅,Ω, A,Ac}, if A ⊂ Ω.

Definition 5.1.2. Given any collection A of subsets of Ω, let σ(A) be the smallest σ-algebra

containing A. That is if F is another σ-algebra and A ⊂ F , then σ(A) ⊂ F .

61



Definition 5.1.3. Let (Ω,F) be a measurable space. By a measure on this space we mean a

function µ : F → [0,∞] with the properties:

(1) µ(∅) = 0

(2) if Aj ∈ F are disjoint then

µ
(
∪∞j=1Aj

)
=

∞∑
j=1

µ (Aj) . (5.1)

Remark 5.1.1. We will refer to the triple (Ω,F , µ) as a measure space. If µ(Ω) = 1, we refer

to it as a probability space.

Definition 5.1.4. A Lebesgue-Stieltjes measure on R is a measure on B = σ(B0) such that

µ(I) <∞ for each bounded interval I. By an extended distribution function on R we shall mean a

map F : R→ R that is increasing, F (a) ≤ F (b) if a < b, and right continuous, lim
x→x+0

F (x) = F (x0).

If in addition the function F is nonnegative satisfying lim
x→∞

F (x) = 1 and limx→−∞ F (x) = 0, we

shall simply call it a distribution function.

Proposition 5.1.1. Let µ be a Lebesgue-Stieltjes measure on R. Define F : R → R up to

additive constants, by F (b)−F (a) = µ(a, b]. For example, fix F (0) arbitrary and set F (x)−F (0) =

µ(0, x], x ≥ 0, F (0)− F (x) = µ(x, 0], x < 0. Then F is an extended distribution.

Theorem 5.1.5. Suppose F is a distribution function on R. There is a unique measure µ on

B(R) such that µ(a, b] = F (b)− F (a).

Definition 5.1.6. Suppose A is an algebra. µ is a measure on A if µ : A → [0,∞] ,µ(∅) = 0

and if A1, A2, . . . are disjoint with A = ∪∞j Aj ∈ A, then µ(A) =
∞∑
j=1

µ(Aj). The measure is σ-finite

if the space Ω = ∪∞j=1Ωj where the Ωj ∈ A are disjoint and µ(Ωj) <∞.

Theorem 5.1.7 (Caratheodory’s Extension Theorem). .Suppose µ is σ-finite on an algebra A.

Then µ has a unique extension to σ(A).

Definition 5.1.8 (Product σ-Field). let (Ω1,F1), (Ω2,F2) be two measurable space. The prod-

uct σ-field F1
⊗
F2 on Ω1×Ω2 is defined as the σ-field generated by the collection of all sets of the

form {A1×A2 | A1 ∈ F1, A2 ∈ F2}. The sets in this collection are called measurable rectangles.
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Remark 5.1.2. F1
⊗
F2 6= F1 ×F2 because F1 ×F2 may not be closed on Ac or A1 ∪A2

Theorem 5.1.9 (Product Measure). Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two measurable spaces

where µ1 and µ2 are σ-finite measures. There exists a unique measure µ on (Ω1 × Ω2,F1
⊗
F2)

that satisfies µ(A1 ×A2) = µ1(A1)µ2(A2) for all A1 ∈ F1 and A2 ∈ F2. This measure is called the

product measure, written as µ = µ1 × µ2

Theorem 5.1.10 (Tonelli/Fubini theorem). Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two measurable

spaces where µ1 and µ2 are σ-finite measures. Let µ = µ1 × µ2 be the product measure on (Ω1 ×

Ω2,F1
⊗
F2). Let f : Ω1 × Ω2 → R be a nonnegative measurable function. Then the following

holds: ∫
fdµ =

∫ [∫
f(ω1, ω2)dµ1(ω1)

]
dµ2(ω2) =

∫ [∫
f(ω1, ω2)dµ2(ω2)

]
dµ1(ω1) (5.2)

Remark: the condition of f be a nonnegative measurable function can be extended to integrable

functions with respect to the product measure µ,i.e.
∫
|f |dµ <∞.

5.2. Measure Push-forward by Minimum Norm Solution Mapping

The way we provided to understand how uncertainty propagates from the input space to output

space is to understand the measure push-forward by the MNSM.

Theorem 5.2.1. Let (Rn+,F , µ) be a probability space with the Lebesgue σ-algebra F and x† :

Rn+ → D† be the MNSM defined in previous section. Then the collection

X := {B ⊆ D†|(x†)−1(B) ∈ F} = {B ⊆ D†|A(B) ∈ F} (5.3)

is a σ-algebra on D†

Proof: One have to show that the three conditions of definition 5.1.1 are satisfied. Since x† is

a homeomorphism,

(1)

(x†)−1(D†) = A(D†) = Rn+ ∈ F =⇒ D† ∈ X (5.4)

(2) Let B ⊆ X . Since B ⊆ X ,

A(B) ∈ F (5.5)
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Since F is σ-algebra,

A(B)c ∈ F (5.6)

By preimage of set difference under mapping and A(D†) = Rn+,

A(D† \B) = A(D†) \A(B) = Rn+ \A(B) = A(B)c (5.7)

Hence

Bc ⊆ X (5.8)

(3) Let Bi ⊆ X for i ∈ N. Then,

Bi ⊆ X =⇒ A(Bi) ∈ F for i ∈ N (5.9)

Since F is σ-algebra, ⋃
i∈N

A(Bi) ∈ F (5.10)

By Preimage of Union under Mapping

A

(⋃
i∈N

Bi

)
=
⋃
i∈N

A(Bi) (5.11)

Hence ⋃
i∈N

Bi ∈ X (5.12)

Therefore, X is σ-algebra on D†.Q.E.D.

Definition 5.2.2. Let (X,Σ) and (X ′,Σ′) be measurable spaces. Let µ be a measure on (X,Σ).

f : X → X ′ is a measurable mapping. Then the pushforward measure of µ under f is the mapping

f∗µ : Σ′ → [0,∞] defined by

∀E′ ∈ Σ′ : f∗µ(E′) := µ(f−1(E′)) (5.13)

Theorem 5.2.3. Let (Rn+,F , µ) be a probability space with the Lebesgue σ-algebra F and proba-

bility measure µ. Let x† : Rn+ → D† be the MNSM defined in previous section and X be pushforward

σ-algebra in theorem 5.2.1. Then the pushforward measure x†∗µ : D† → [0,∞] is a probability

measure.
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Proof: To show x†∗µ is a probability measure, one need to check the conditions of definition

5.1.3.

(1)

x†∗µ(∅) = µ((x†)−1(∅)) = µ(A(∅)) = µ(∅) = 0 (5.14)

(2)

x†∗µ(D†) = µ((x†)−1(D†)) = µ(A(D†)) = µ(Rn+) = 1 (5.15)

(3) Let Bi, i ∈ N be pairwise disjoint sets in X .

x†∗µ

(⋃
i∈N

Bi

)
= µ

(
(x†∗)

−1

(⋃
i∈N

Bi

))

= µ

(
A

(⋃
i∈N

Bi

))

= µ

(⋃
i∈N

A (Bi)

)

=
∑
i∈N

µ (A(Bi))

=
∑
i∈N

x†∗µ (Bi)

Also, for i 6= j,

(
x†∗

)−1
(Bi) ∩

(
x†∗

)−1
(Bj) =

(
x†∗

)−1
(Bi ∩Bj) =

(
x†∗

)−1
(∅) = ∅ (5.16)

Therefore, x†∗µ is a probability measure on (D,X ).

Q.E.D.

5.3. The MNSM of Convex optimization preserves Measure

In this section, we want to show that the sequence of the push-forward measures induced by

the MNSM in chapter 4 converges strongly.

Theorem 5.3.1. Let µ be the probability measure on the demand space (Rn+,F), νk be the

induced probability measure on the path flow space by the MNSM xk†(b) of the second order approx-

imation of the convex problem, and ν be the induced probability measure on the path flow space by

the MNSM x†(b) of the convex problem. Then for every Ω ∈ F , νk(x
k†(Ω))→ ν(x†(Ω))
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Proof: According to theorem 4.3.2, xk†(b)→ x†(b) for every b ∈ Rm+ . Hence, for every Ω ∈ F ,

xk†(Ω) → x†(Ω). Since both xk† x† have continuous inverse mapping A, νk = µ ◦ (xk†)−1 = µ ◦ A

and ν = µ ◦ (x†)−1 = ν ◦A. Therefore, for every Ω ∈ F ,

νk(x
k†(Ω))→ ν(x†(Ω)) (5.17)

Q.E.D.

From the proof of theorem 5.3.1, we could see that the sequence of the MNSMs generates a

sequence of subsets in Rm+ which eventually deforms into the subset generated by the MNSM of

the origin problem. Meanwhile, the corresponding measures are, in fact, unchanged in some sense.

Geometricaly speaking, those image of xk† and the corresponding measure are the same essentially

but with varying degrees of deformation which could not be captured by the natural topology in

Rm+ . Moreover, as the sequence of measures converges strongly, those measures converge weakly as

well. So according to portmanteau theorem [Hos80] for all bounded continuous functions f

limEk[f ]→ E[f ] (5.18)

, and for every lower semi-continuous function bounded from below,

lim inf Ek[f ] ≥ E[f ] (5.19)

where Ek is the expectation with respect to νk and E is the expectation with respect to ν.

In conclusion, under the MNSM framework, it needs to pullback the information from the

output space to understand the uncertainty. And what matters is those pullback image of the

input space. This provides a systematic way to observe and study the uncertainty of the output

space. Examples will be provided in Chapter 7 to demonstrate how the theories established in this

chapter can be used to understand uncertainty propagation from the demand space to the network

flow space in a traffic equilibrium network.
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CHAPTER 6

Numerical Methods

In this chapter, we are going to explore suitable numerical methods to obtain the MNSM of the

traffic equilibrium problem. According to the discussion in chapter 3 and chapter 4, the MNSM of

the traffic equilibrium problem with linear cost function is a piecewise affine function with respect

to the input and the MNSM of the traffic equilibrium problem with general cost function could

be approximated by second order epi-splines which is also a piecewise affine function with more

partition regions. In each partition region, the MNSM is given by theorem 3.1.6 and theorem 3.1.7.

Hence, there are three steps to obtain the MNSM of the traffic equilibrium problem. First, one

needs to calculate the pseudoinverse of the corresponding matrix in the theorem 3.1.6 or theorem

3.1.7. Second, one needs to identify the region of the corresponding partition based on theorem

3.2.1. Lastly, one needs to find all the regions or obtain the regions which people are interesting.

6.1. Find the MNSM in a given partition region

When one identifies a demand belonging to a known region, the MNSM is given by theorem

3.1.6 or theorem 3.1.7. For each case, we need to calculate the pseudoinverse of a matrix [BIG03] to

obtain the MNSM. There are two types of algorithms to calculate the pseudoinverse. One category is

based on certain decomposition of the given matrix such as Rank decomposition, QR decomposition

and Singular Value Decomposition. Another way is based on rank-one-update such as Greville’s

method and Kishi’s method. In general, the best way to obtain the pseudoinverse is using the

methods based on decomposition with the complexity O(min(n2m,m2n)). However, in our case,

computing the pseudoinverse is not an isolated problem. The MNSM of adjacent partition regions

has internal relation – the corresponding matrices could be obtained by appending or deleting rows

(or columns) from one to another. In this chapter, we introduce the so-called direct method based

on decomposition technique. In chapter 8, we will discuss a recursive method specifically suitable

for our case and discuss its importance as well as challenges.
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The so-called direct method is to obtain the pseudoinverse only based on the given matrix

itself without any other addition information. A common algorithm is based on the singular value

decomposition, which has very stable implementation in Matlab and Julia as pinv function. Here

we recall the theorem for singular value decomposition.

Theorem 6.1.1 (Singular Value Decomposition). [BIG03]. Let A ∈ Rn×m be a matrix of rank r

with singular values σ1, . . . , σr. Then there exists an orthogonal matrix U ∈ Rn×n and an orthogonal

matrix V ∈ Rm×m such that

A = UΣV T , (6.1)

where Σ = diag{σ1, . . . , σr 0, . . . , 0} ∈ Rn×m.

Define Σ† = diag{1/σ1, . . . , 1/σr, 0, . . . , 0}, then the pseudoinverse of A is given by

A† = V Σ†UT (6.2)

As easily noticed, there are some rows of U and V corresponding to the 0 singular values. Those

rows will not affect the results of multiplication. Hence, we could have a compact singular value

decomposition without considering those rows.

Corollary 6.1.1 (Compact SVD). Let A ∈ Rn×m be a matrix of rank r, r ≥ 1, and let

u1, . . . , un and v1, . . . , vm denote the columns of the orthogonal matrices U ∈ Rn×n and V ∈

Rm×m that appear in the theorem 6.1.1 of A. Let Uc = [u1, · · · , ur], Vc = [v1, · · · , vr],Σc =

diag{σ1, . . . , σr} ∈ Rr×r. Then

A = UcΣcV
T
c =

r∑
i=1

σiuiv
T
i and AT = VcΣcU

T
c =

r∑
i=1

σiviu
T
i (6.3)

Applying the corollary 6.1.1 to theorem 3.1.6, we obtain the MNSM of a given region of partition.

Theorem 6.1.2. Let b ∈ RU and L =

 A
EU

. KU =

P⊥LTQ

L

 has the compact singular value

decomposition

KU = UcΣcV
T
c =⇒ K†U = VcΣ

†
cU

T
c (6.4)
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Then the MNSM

x(b) = MUb+NUc = VcΣ
+
c U

T
c (:, (n+ 1) : (n+m))b− VcΣ+

c U
T
c (:, 1 : n)P⊥AT c (6.5)

Proof: The proof is applying theorem 6.1.2 to theorem 3.1.6.Q.E.D.

The theorem 6.1.2 not only gives a formula of the MNSM for given region RU , but also po-

tentially provides a suboptimal assignment. For example, one may approach an idea of the sub-

optimal assignment by ignoring some of the small singular values and the corresponding vectors:

x̃(b) = ṼcΣ̃cŨ
T
c (:, (n+ 1) : (n+m))b− ṼcΣ̃+

c Ũ
T
c (:, 1 : n)P⊥

AT c. This idea will be discussed in more

details in chapter 7.

6.2. Preliminaries for Finding Partitions

In the previous section, we assume that one knows which given partition region the demand

belongs to. In this section, we present numerical methods for exploring the partition regions.

Naively speaking, the number of partition regions could be 2n, where n is the total number of paths

in the network, since each path could be either occupied or idle. In fact, due to the connectivity

of the partition region and the low-rank of the MNSM in a given region, the number of partition

regions should be much smaller than the worst case. Furthermore, in the real world, the demands

tend to have a concentrated distribution, i.e. some part of the demand space would occupy the

majority of the probability of the demands. Hence, the number of partition regions which need to be

considered can be further reduced. In this dissertation, we have developed two types of algorithms

based on different problem requirements. One is to obtain a comprehensive set of all partition

regions, the other one is to obtain the partition regions focusing on neighborhoods of interested

demand values. Approaching with either method, there involve two important sub-algorithms:

redundancy removal and feasibility check as preliminaries.

6.2.1. H-Redundancy Removal. A redundant constraint is a constraint that can be re-

moved from a system of constraints without changing the feasible region. As we discussed above,

the MNSM of CQP is a piecewise affine function defined on the input space. In this specific problem,

the input domain corresponds to the demand space Rm+ . In this section, we are interested in how
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to remove the redundant constraints of the pre-image of {f |fi = 0, if i ∈ U and fi > 0 if i 6∈ U},

where U ∈ P(1 : m) follows the same definition as before. Applying the theorem 3.2.1, the closure

of the pre-image set is given by

−
[
(LT )† (QMUb+QNU + c)

]
j
≥ 0 for j = 1 + n, . . . , |U |+ n. (6.6)

[MUb+NU ]i ≥ 0 ∀i 6∈ U

Hence, we want to remove the redundant constraints from above set and identify the non-

redundant constraints. In our case, only the non-redundant constraints are corresponding to the

paths having potential to be eliminated as one goes from the current region to its neighboring region.

The main difference between our case and general linear programming problem (or polyhedral

computation problem [Fuk04]) is those redundant constraints which parallel to some non redundant

constraints are still meaningful. The parallel constraints mean that the corresponding paths should

be eliminated or added to the system simultaneously. Topologically speaking, those constraints

are identical under the framework of the MNSM. Identifying redundant constraints and parallel

constraints helps to reduce the number of searching options which we will discuss in next section.

It is easy to see that (6.6) is a convex polytope since it is the intersection of half-spaces. Now

define the polytope in (6.6) as Ab ≤ c for convenience. Define H = [A c] = [hij ]. Hence it is easy

to find the parallel constraints by considering H̃, where H̃ is given by dividing the first non-zero

entry of each row of H. If ‖H̃(i, :)−H̃(j, :)‖ ≤ tol, we say that ith row and jth row are parallel with

tolerance tol where H̃(i, :) means ith row of H̃. Meanwhile, if two rows are parallel, we should group

them together. Next step is to remove the redundant constraints and identify the non-redundancy

constraints of (6.6). It could be done by considering the following linear programming problem:

P := max
b

0 s.t. Ab ≤ c b ∈ Rm+ (6.7)

Let Pi denote the sub-problem of problem P which has the objective function zi = max
b

m∑
j
Aijbj

and constraints
m∑
j
Akjbj ≤ ck for k = 1, 2, . . . , i − 1, i + 1, . . . , n. Then, we compare zi and ci. If

zi ≤ ci then, we say ith constraint is redundant otherwise it is non-redundant.
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input : A, c
output: the index of non-redundant constraints: Inr

Inr = ∅ ;

for i in U do
zi ← Find the optimal objective value of Problem Pi;

if zi ≤ ci then
The i-th constraint is redundant;
continue

else
The i-th constraint is non-redundant;

Inr ← Inr ∪ {i};
end

end

Algorithm 1: H-Redundancy Removal

6.2.2. Feasible Partition Region. A set {x|Ax ≤ b} is feasible if it is not empty. In this

section, we summarize well known duality theorems that can be used to check the feasibility based

on Linear Programming theory.

Lemma 6.2.1 (Farkas’s lemma). The set {x|Ax ≤ b} is non-empty if and only if the {y|yTA =

0, yT b < 0, y ≥ 0} is empty.

Now we could form a LP as following :

(P) : max
x

0 (6.8)

s.t. Ax ≤ b (6.9)

Then the corresponding Dual problem is given by:

(D) : min
y

bT y (6.10)

s.t. AT y = 0 (6.11)

y ≥ 0 (6.12)

Theorem 6.2.2 (Weak duality theorem). Let P = max(cTx|Ax ≤ b) and D = min(bT y|AT y =

c, y ≥ 0) be its dual. If x is a feasible solution for P and y is a feasible solution for D, then

cTx ≤ bT y.
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Theorem 6.2.3 (Duality Theorem for LPs). If P and D are a primal-dual pair of LPs, then

one of these four cases occurs:

(1) Both are infeasible;

(2) P is unbounded and D is infeasible;

(3) D is unbounded and P is infeasible;

(4) Both are feasible and there exist optimal solutions x, y to P and D such that cTx = bT y.

Hence, to check the feasibility of P, we could check whether D is unbounded or not. This can

be done easily by applying the well-known Simplex method [NM65].

6.3. Search for Partition Regions

One of the most difficult part of multi-parametric quadratic optimization problem is to identify

the partition regions of the input space. In [BMDP02],[Bao02],[TJB03a],[TJB03b],[SKJ+06],[SGDD03],

and[OD04], researchers created searching algorithms based on geometric properties of the partition

regions especially based on reversing recursively the facet-defining hyperplanes of all previously i-

dentified regions with or without the assumption that for each facet of a parition region, there exists

only one neighboring partition region that is adjacent to this facet. In [GBN11] and [FJO13], the

authors presented a combinatorial multi-parametric approach that is based on an implicit enumera-

tion of all possible constraint combinations in the form of candidate active sets. In our cases, thanks

to theorem 3.2.1, we could determine the partition region when the index of activated inequality

constraints are known. Meanwhile, we could find a way such that we could avoid enumeration of

all possible constraint combinations by locating an initial region.

In this section, we provide a method to find the partition regions based on the Depth First

Search (DFS) and wall-crossing technique [KZ16]. Depth-first search (DFS) is an algorithm for

traversing or searching tree or graph data structures. The algorithm starts at the root node

(selecting some arbitrary node as the root node in the case of a graph) and explores as far as

possible along each branch before backtracking, as shown in algorithm 2. Meanwhile, wall-crossing

is to flip the corresponding inequality constraints of the boundary for the certain partition boundary

in our consideration. It provides a way to generate next node on the searching graph since one

would not have the whole graph at the beginning.
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input : A graph G and a vertex v of G
output: All vertices reachable from v labeled as discovered

procedure DFS(G, v);

label v as discovered;

for all directed edges from v to w that are in G.adjacentEdges(v) do
if vertex w is not labeled as discovered then

recursively call DFS(G,w)
end

end

Algorithm 2: Pseudocode of DFS

Assume that the initial region is known, which means the index of activated inequality constraints

is known, then according to theorem 3.1.6 (or theorem 3.1.7) and theorem 3.2.1 we could obtain

the analytic representation of the initial region, which could be treated as our root node. Then

according to the method discussed in section 6.2, we could identify those non-redundant inequality

constraints. If the non-redundant inequality constraints are in the top half of (6.6), then eliminate

the corresponding indexes together with those parallel ones from the index set of the initial region

which forms a new node. If the non-redundant inequality constraints are in the bottom half, then

add the corresponding indexes together with those parallel ones to the index set of the initial region

which forms a new node. Each of the non-redundant inequality constraints could be treated as the

edge connecting to the next node.There are two situations which could help to prune the searching

tree. One is pruning by infeasibility. Another one is that there only exists visited node. Notice that

some boundaries of partition regions are based on domain of the input space, i.e. we could have

the partition regions intersecting with the domain of the input which is a trivial non-redundant

constraint and could not do wall-crossing. Also, notice that due to numerical error of the analytic

formula of the MNSM, we need to add the reversed inequality constraints to the new region since

otherwise it is not guaranteed that the same boundary computed by the top half of (6.6) and the

bottom half of (6.6) are perfectly attached. Now we want to show one example to illustrate the

process of the DFS.

Example 9. Consider the problem in example 7 with the general cost function case. As

in example 7, we still consider that the demands q are in the box [0, 1000] × [0, 1000] with the

second order epi-spline given by R2 = {[0, 500], [500, 1000]}2. Assume that we start at the region

R1,4 = {(q1, q2) | q1 ≥ 0, q2 ≥ 0, q1 ≤ 500, q2 ≤ 500, q1 + q2 ≤ 250, q1 + q2 ≤ 250} given by theorem
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3.2.2, then it is easy to see that q1 ≥ 0, q2 ≥ 0, q1 + q2 ≤ 250 are non-redundant constraints,

q1 ≤ 500, q2 ≤ 500 are redundant constraints. Among the non-redundant constraints, q1 ≥ 0, q2 ≥ 0

are corresponding to the domain of the demand space which could not apply wall-crossing technique.

q1 + q2 ≤ 250 has one parallel inequality constraint so that we need to group the corresponding

indices which are {1, 4} according to theorem 3.2.2. So q1 + q2 ≤ 250 is the only non-redundant

constraint which could apply wall-crossing technique. Also, since q1 + q2 ≤ 250 is in the top half of

(6.6), we need to eliminate the corresponding indices together with those parallel ones to the index

set {1, 4}. Hence, the only candidate region for next step is

R∅ = {(q1, q2) | 7/16q1 + 7/16q2 ≥ 875/8, (6.13)

9/16q1 − 7/16q2 + 875/8 ≥ 0, (6.14)

−1/4q1 + 3/4q2 + 125/2 ≥ 0, 1/4q1 + 1/4q2 − 125/2 ≥ 0, (6.15)

−7/16q1 − 7/16q2 + 4875/8 ≥ 0,−9/16q1 + 7/16q2 + 3125/8 ≥ 0, (6.16)

1/4q1 − 3/4q2 + 875/2 ≥ 0,−1/4q1 − 1/4q2 + 1125/2 ≥ 0} (6.17)

given by theorem 3.2.2. Since we apply wall-crossing to the inequality q1 +q2 ≤ 250, the region that

we should deal with now is defined by R∅ ∩ {(q1, q2) | q1 + q2 ≥ 250}. Through redundancy check,

we obtain that 1/4q1 +1/4q2 ≤ 1125/2 is the redundant constraint and the rest are non-redundant.

Among those non-redundant constraints, 7/16q1 + 7/16q2 ≥ 875/8 and 1/4q1 + 1/4q2 ≥ 125/2 are

parallel to q1 +q2 ≥ 250 which could not form a new candidate. Hence there are five new candidate

regions for the next steps. Repeating this process until no new candidate region generated, we

obtain the partition regions and searching tree shown in figure 6.1.
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(a) Partition Regions

R{1,4}

R∅

R{2}

R{2},{3}

R{2},{1,3}

R{3}

R{3},{2}

R∅,{1} R∅,{2} R∅,{3}

R∅,{1,3}

(b) Searching Tree

Figure 6.1. Partition Regions and Searching Tree

6.4. Identify An Initial Region

In this section, we provide two ways to obtain the initial region for the searching process of the

partition region.
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6.4.1. Minimal Demand. When the demand for each OD pairs is small enough, the cost

function could be approximated by its free flow time on each link.

t(x) ≈ t(0) (6.18)

Hence, the equilibrium problem reduced to the shortest path problem so that we could use algorithm

such as Dijkstras algorithm and Bellman-Ford Algorithm to get the solutions. Notice that since

there might be multiple paths having minimum flow cost at the same time, in this case the MNSM

would be the average of those paths. Then the index of those zero components of the solution forms

the index set U . Then RU would be the first known partition region in the demand space.

6.4.2. Particular Demand. The particular demand case means that for a given demand,

we could allocate this demand into a region such that the original problem is equivalent to a

subproblem with only equality constraints. As we have seen, the MNSM is a solution mapping for

given demand which means the corresponding feasible direction should be zero according to the

first order optimality condition. Since x is the solution to the problem

min
x

1

2
xTQx+ cTx (6.19)

subject to Ax = b (6.20)

x ≥ 0 (6.21)

where b ∈ RU for given U , the corresponding feasible direction should solve the following problem:

min
q

1

2
pTQp+ gT p

subject to Ap = 0

pi = 0, i 6∈ U

where g = Qx + c. If the current region is not the correct one, then there are two situations.

First, there exist some blocking constraints, i.e. we could not move from the current point along

the feasible direction as many as we want.Hence, we should add the corresponding path into the

system. Second, there are some inequalities that have negative dual variable, i.e. we should

76



eliminate the corresponding path out of the system. Here are two theorems which guarantee the

above two strategy are valid.

Theorem 6.4.1. Suppose that the point x̂ satisfies first-order conditions for the equality con-

strained subproblem with Û . Suppose that the constraint gradients ai, i 6∈ Û are linearly independent

and that there is an index j 6∈ Û such that ĝj < 0. Let p be the solution obtained by dropping the

constraint j and solving the following subproblem :

min
q

1

2
pTQp+ (Gx̂+ c)T p

subject to Ap = 0

pi = 0, i 6∈ U

Then p is a feasible direction for constraint i, that is pi ≥ 0. Moreover if p satisfies second-order

sufficient conditions, then we have that pi > 0, and p is a decent direction.

Theorem 6.4.2. Suppose that the solution p is nonzero and satisfies the second-order suffi-

cient conditions for optimality for that problem. Then the function is strictly decreasing along the

direction p.

Both proofs could be found in chapter 16 in the book ”Numerical Optimization” written by

Jorge Nocedal and Stephen J. Wright . In fact, if people are not interested in finding the whole

partition region but some particular regions, they could use algorithm 3 together with theorem

3.2.1 to obtain those interested regions.
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input : q
output: U,MU , NU

U = 1 : n ;

MU , NU ← Find the MNSM corresponding to U ;

x←MUq +NU ;

g ← Qx+ c;

while not all the gi is positive do
Solve p;

if p 6= 0 then
α← min(1, min

i 6∈U,pi<0
(−xi/pi));

if α = 1 then
U ← U ;

else
i← arg min

i 6∈U,pi<0
(−xi/pi);

U ← U ∪ {i};
end

else
j ← arg min

j∈U
gj ;

U ← U\{j};
end

MU , NU ← Find the MNSM corresponding to U ;

x←MUq +NU ;

g = Qx+ c;

end

Algorithm 3: Demand allocation

6.5. Numerical Example and Discussion

As we discussed in previous sections, there are two concerns of the MNSM approaching. One is

the uncontrollable growth of the number of partition regions, and another one is the computing time

for predetermine of the partition regions. In this section, we provide two examples to demonstrate

promising results regarding those two issues.
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A

B

C

D

E

F

G

H

I

1 2

3 4 5

6 7

8 9 10

11 12

Figure 6.2. 3× 3 Grid Network

The first example is a 3 by 3 grid network as shown in figure 6.2, with link cost functions given

by :

t(s) =



0.0313s+ 39.0000

0.0455s+ 42.0000

0.0111s+ 72.0000

0.0135s+ 58.0000

0.0175s+ 100.0000

0.0357s+ 44.0000

0.0145s+ 51.0000

0.0167s+ 71.0000

0.0109s+ 10.0000

0.0417s+ 81.0000

0.0238s+ 57.0000

0.0244s+ 44.0000



(6.22)

In this example, we focus on two OD pairs with two demands in [0, 10000] × [0, 10000]. One

is from node A to node I and another one is from node B to node H. In our consideration, there

are 16 paths corresponding to first OD pair and there are 9 paths corresponding to the second OD

pair (details shown in appendix). Then, we have total 25 different paths and two OD pairs. Hence,

the worst case analysis tells there would be 223 different partition regions since each path could be

used or unused in each partition region and by the flow conservation, each OD pair must have at

least one path connected. However, there are in fact only 23 different regions as shown in figure
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6.3 (details shown in appendix). Also, increasing the range of two demands, the number of the

partition regions would not increase any more.

Figure 6.3. Partition Regions of the 3× 3 grid network

Here we observe that the total number of the partition regions is much less than the worst case

analysis. A possible explanation for this phenomenon is due to the low rankness of the MNSM

according to theorem 3.1.6 and 3.2.1. As we have shown in 3× 3 grid network, the MNSM for each

given partition region RU is

f = MUq +NU (6.23)

where MU ∈ R25×2. According to theorem 3.2.1, the partition region is determined by about 50

inequality constraints. Due to the low rankness, if we flip 4 inequality constraints, there would be

a high chance to end up with an empty region.

The second example is based on Berlin Friedrichshain network, for which detail information is

available at
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https://github.com/bstabler/TransportationNetworks/blob/master/Berlin-Friedrichshain/

README.md

This network has 224 nodes and 523 links, as shown in figure 6.4. We use this example to

demonstrate computational applicability of our method towards medium-large networks.

Figure 6.4. Berlin Friedrichshain Network Schematic diagram

The initial region is chosen by the minimal demand strategy. In each numerical experiment, we

consider a certain number of OD pairs generated randomly. For each chosen OD pair, we take five

paths into consideration which are calculated by Yen’s k-shortest path algorithm. The programs

are implemented in Julia version 1.0.2 with Intel(R) Core(TM) i5-8400 CPU@ 2.80GHz.

Figure 6.5 reports computing time associated with problems of different sizes by varying the

number of OD pairs from 4 to 15. When the number of OD pairs is between 4 and 12, we repeat 1000

times and calculate the average running time for searching partition regions. When the number

of OD pairs is between 12 and 15, we repeat 500 times due to the increasing running time and

calculate the average running time for searching partition regions.

In figure 6.6, the blue curve represents the average running time, the orange one represents the

exponential growth and the yellow one represents the fourth-order polynomial growth. As one may
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Figure 6.5. Average running time

notice, the average running time growth of our algorithm is faster than fourth-order polynomial,

but significantly slower than exponential growth.
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Figure 6.6. Comparison with exponential growth and fourth-order polynomial growth
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CHAPTER 7

Applications

7.1. Projected Spaces and Uncertainty Prolongation

In this section, we discuss how the uncertainty propagates from the demand space to the path

flow space in the traffic equilibrium problems. For q ∈ RΦ, as we discussed in chapter 3, the

corresponding path flow under the MNSM is given by

fΦ = MΦq +NΦ (7.1)

where Φ ∈ P(1 : m). Applying the SVD to MΦ, we know that there exist two orthonormal matrices

UΦ and VΦ such that MΦ = UΦΣV T
Φ . Substituting into equation (7.1), we obtain that

fΦ = UΦΣV T
Φ q +NΦ =⇒ UTΦ fΦ = ΣV T

Φ q + UTΦNΦ (7.2)

where Σ = diag{σ1, σ2, . . . , σn, 0 . . . , 0}. Let f̃Φ = UTΦ fΦ and q̃ = V T
Φ q be the projected path flow

and the projected demand respectively. Denote ÑΦ = UTΦNΦ. Then, we end up with a neat relation

between the projected path flow space and the demand space.

f̃Φ = Σq̃Φ + ÑΦ or f̃Φi = σiq̃Φi + ÑΦi (7.3)

Furthermore since UΦ is an orthonormal matrix UΦU
T
Φ = UTΦUΦ = I, we could recover the path

flow by

fΦ = UΦf̃Φ (7.4)

From the above calculation, we could split the uncertainty propagation process into 4 steps:

(1) Rotation in Demand space Rn+ : q → V T q = q̃;

(2) Dilation : q̃ → Σq̃;

(3) Translation: Σq̃ → Σq̃ + Ñ = f̃

(4) Rotation in path flow space Rm+ : f̃ → Uf̃ = f
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Now we use three different distributions of the demand to illustrate how projected spaces could

clear the uncertainty propagation process.

Example 10. we simulate three different distributions of the demand on the toy model network

discussed in example 4.

(1) Uniform distribution where (q1, q2) ∈ [0, 1000]× [0, 1000].

(2) Two-peak distribution where (q1, q2) ∈ [0, 1000]× [0, 1000], one peak is at (250, 500) with

variation 100 and another peak is at (750, 700) with variation 100 shown in figure 7.1(a).

(3) Mix distribution where (q1, q2) ∈ [0, 1000]× [0, 1000]. This distribution is shown in figure

7.1(b)

In this simulation, we randomly sampled 10 millions demands (q1, q2) ∈ [0, 1000]× [0, 1000] obeying

different distributions. In figure 7.2, the histogram of the path flows shows that no clear relation

between the demand obeying uniform distribution and the corresponding path flows. Now we

change the perspective to the projected spaces. As shown in figure 7.3, the projected demands

result in some similar patterns of the corresponding projected paths but not exact the same when

we look at the entire space. When we focus the comparisons within each partition region, the

situation becomes more clear. In figure 7.4, 7.5, 7.6,7.7,7.8 and 7.9, the histograms of the projected

demands exhibit similar patterns of the histograms of the corresponding projected path flows in each

partition region except dilation and translation. These results indicate that the relation between

projected demands and projected paths in each region is essential and independent of the input

distribution. Furthermore, if we follow the traditional perspective, we could compare the relation

between the demands and link flows. In these cases, even though we observe clear relation between

the projected paths and projected demands, there is still no clear relation between demand and link

flows. This provides a strong support to focus our attention of uncertainty propagation through

exploring the demand-path instead of demand-link flow relation.
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(a) Histogram of the joint distribution between demand q1 and demand q2 obeying
two-peak distribution

(b) Histogram of the joint distribution between demand q1 and demand q2 obeying
mixed distribution

Figure 7.1. Distributions for simulation
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(a) Demands obeying the uniform distribution

(b) Demands obeying the two-peak distribution

(c) Demands obeying the mixed distribution

Figure 7.2. Histogram of the path flows
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(a) Demands obeying the uniform distribution

(b) Demands obeying the two-peak distribution

(c) Demands obeying the mixed distribution

Figure 7.3. Histogram of the projected demands and the projected path flows for
the entire space

88



Figure 7.4. Comparison of the histogram of the projected demand 1 and the pro-
jected path flow 1 by regions

Figure 7.5. Comparison of the histogram of the projected demand 2 and the pro-
jected path flow 2 by regions
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Figure 7.6. Comparison of the histogram of the projected demand 1 and the pro-
jected path flow 1 by regions

Figure 7.7. Comparison of the histogram of the projected demand 2 and the pro-
jected path flow 2 by regions
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Figure 7.8. Comparison of the histogram of the projected demand 1 and the pro-
jected path flow 1 by regions

Figure 7.9. Comparison of the histogram of the projected demand 2 and the pro-
jected path flow 2 by regions
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7.2. Identify Critical Network

In this section, we introduce an application to show how the MNSM could help identify the

critical components of a network. In transportation assignment problems, there is a great interest

in understanding which demand pairs might affect the network most significantly. In our setting, we

separately consider the effects of a demand pair on the network locally (by considering a particular

demand partitioning region) and globally (by considering the entire demand space).

Following the idea from the previous section, the uncertainty propagation along the network is

determined by the relation between the projected demand and the projected path flow. For the

given region RU , f = MUq+NU and f̃ = σU q̃+ ÑU . Hence, we have the following criteria to show

which demand affects the network flow uncertainty more.

Definition 7.2.1. If q ∈ RU , then define the local criteria as

ηU := 1Σ|V T
U | (7.5)

where 1 is the row vector with all ones, |V T
U | = [|V T

U |ij ] is element-wise absolute value. And define

the global criteria

η :=
1

Npartition

∑
RU 6=∅

ηU (7.6)

where Npartition is the total number of nonempty partition regions.

Hence, the OD pair who has a larger η value implies a higher effect on the network flow

uncertainty.

Example 11. Consider the network showing in figure 3.1 again.

If U = ∅, then

f †(b) = M∅q+N∅ =


7/16 7/16

9/16 −7/16

−1/4 3/4

1/4 1/4


q+


−875/8

875/8

125/2

−125/2


=⇒ f̃ †(b) =

1.0392 0

0 0.7487

 q̃−
51.2416

53.8786



(7.7)

So

η∅ =
[
1.0822 1.2435

]
(7.8)
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Since η∅(2) > η∅(1), we conclude that if q ∈ R∅, the second OD pair will affect the network flow

uncertainty more than the first OD pair.

If U = {2}, then

f †(b) = MUq +NU =


1 0

0 0

0 5/9

0 4/9


q +


0

1000/9

−1000/9

 =⇒ f̃ †(b) =

1.0000 0

0 0.7115

 q̃ −
 0

17.3526



(7.9)

So

η{2} = [1.00000.7115] (7.10)

Since η∅(1) > η∅(2), we conclude that if q ∈ R{2}, the first OD pair will affect the network flow

uncertainty more than the second OD pair.

If U = {3}, then

f †(b) = MUq +NU =


1 0

0 0

0 5/9

0 4/9


q +


0

1000/9

−1000/9

 =⇒ f̃ †(b) =

1.0000 0

0 0.7169

 q̃ +

 0

33.9056



(7.11)

So

η{3} = [0.71691.0000] (7.12)

Since η∅(2) > η∅(1), we conclude that if q ∈ R{3}, the second OD pair will affect the network flow

uncertainty more than the first OD pair.

If U = {1, 4}, then

η{1,4} = [1, 1]; (7.13)

Since η∅(2) = η∅(1), we conclude that if q ∈ R{1,4}, the second OD pair will affect the network flow

uncertainty same as the first OD pair.

Therefore

η =
1

4

(
η∅ + η{2} + η{3} + η{1,4}

)
=
[
0.9498 0.9887

]
(7.14)
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which means over all the region the second OD pair has the most effect to the network flow

uncertainty.

On the other hands, we could also obtain which path flow is more sensitive to the demands

with the help of the MNSM.

Definition 7.2.2. If q ∈ RU , then define the local criteria as

τU := |MU |1 (7.15)

where 1 is the column vector with all ones, and |MU | is element-wise absolute value. And define

the global criteria

τ :=
1

Npartition

∑
RU 6=∅

τU (7.16)

Hence, the path flow who has larger τ value implies more sensitive to the OD demand.

Example 12. Consider the same network as previous example.

If U = ∅, then

τ∅ =


0.8750

0.1250

0.5000

0.5000


(7.17)

Hence, the sensitivity of the path flow is in the order f1 > f3, f4 > f2.

If U = {2}, then

τ{2} =


1.0000

0

0.5556

0.4444


(7.18)
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Hence, the sensitivity of the path flow is in the order f1 > f3 > f4 > f2 = 0.

If U = {3}, then

τ{3} =


0.5833

0.4167

0

1.0000


(7.19)

Hence, the sensitivity of the path flow is in the order f4 > f1 > f2 > f3 = 0.

If U = {1, 4}, then

τ{1,4} =


0

1

1

0


(7.20)

Hence, the sensitivity of the path flow is in the order f2 = f3 > f1 = f4 = 0.

Therefore,

τ =
1

4

(
τ{1,4} + τ{3} + τ{2} + τ∅

)
=


0.6146

0.3854

0.5139

0.4861


(7.21)

which means overall the sensitivity of the path flow is in the order f1 > f3 > f4 > f2.

Furthermore, it is easy to extend the idea to link-level sensitivity analysis. Recall that the

MNSM for a given region RΦ is fΦ = MΦq + NΦ. Then according to the path-link incidence

matrix, we have xΦ = FfΦ = FMΦq + FNΦ. Hence, instead of applying SVD on MΦ, we could

find the SVD of FMΦ. Assume that the SVD of FMΦ is given by

FMΦ = U ′ΦΣ′ΦV
′T

Φ (7.22)

Then, we could define the criteria for link-level sensitivity analysis similar to definition 7.2.1 and

7.2.2.
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7.3. Suboptimal assignment

In this section, we explore a suboptimal assignment scheme under the assumption of UE/SO

with linear cost function. The main idea is that for a given demand q, we first ignore a small part

of the demand qε and only assign the main part of the demand qm, and then assign the ignored part

of the demand. To gain benefit from this idea under the MNSM framework, we need the following

three requirements:

(1) The demand qε is small enough to ignore;

(2) The partition region which contains the demand qm is known;

(3) The assignment scheme for qε has less cost.

Remark 7.3.1. In fact, the demand qε small enough implies that qm, q ∈ RU which means qε

is the direction such that q − qε do not cross the boundary of the region RU .

Let fε and fm be the corresponding path flow of qε and qm respectively. Then, we have Bfε = qε

and Bfm = qm with q = qε+ qm. Furthermore, we want that fm is assigned by the MNSM with qm

i.e. fm = MUqm +NU when qm ∈ RU . fε is assigned by some fast algorithm. Recall that when we

have linear cost function on each link the corresponding UE/SO could be formulated as following:

min
f

1

2
fTAf + bT f (7.23)

s.t. Bf = q, f ≥ 0

Define H(f) = 1
2f

TAf + bT f for convenience. Then for q ∈ RU the error of the suboptimal

assignment is given by

err(qε) = H(Bqε + fm)−H(f) (7.24)
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where f = MUq +NU is the MNSM with demand q. Then we have

err(qε) = H(fε +MUqm +NU )−H(f) (7.25)

= H(fε +MU (q − qε) +NU )−H(f) (7.26)

= H(fε +MUq +NU −MUqε)−H(f) (7.27)

= H(fε −MUqε + f)−H(f) (7.28)

= (fε −MUqε)
T∇H(f) + (fε −MUqε)

T∇2H(f)(fε −MUqε) (7.29)

= (fε −MUqε)
T (AMUq +ANU + b) + (fε −MUqε)

TA(fε −MUqε) (7.30)

There are two ways to assign fε fast. One is the fixed assignment and another one is the random

assignment. The fixed assignment is to assign the small part of demands to the certain paths which

has been fixed. A special case of the fixed assignment is to assign the small part of demands to the

path which has the maximum cost, i.e. fε is the solution of

max
f

1

2
fTAf + bT f (7.31)

subject to Bf = I (7.32)

f = {0, 1} (7.33)

Theorem 7.3.1. If the demand q ∈ RU and the small part of the demands ignored first is qε,

the error bound for the fixed assignment is given by

|err(qε)| ≤ ‖I −MUB‖(‖A‖‖MU‖‖q‖+ ‖A‖‖NU‖+ ‖b‖)‖qε‖1 + ‖A‖‖I −MUB‖2‖qε‖21 (7.34)

Proof: Since f is the MNSM with demand q,

H(f) ≤ H(f ′), where f ′ ∈ {f | Bf = q, f ≥ 0} (7.35)
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So the error bound err(qε) = H(Bqε + fm)−H(f) ≥ 0.

Applying the Cauchy-Schwarz inequality and the convexity of norm to (7.30), we have

|(7.30)| ≤ |(fε −MUqε)
T (AMUq +ANU + b)|+ |(fε −MUqε)

TA(fε −MUq| (7.36)

≤ ‖fε −MUqε‖‖AMUq +ANU + b‖+ ‖A‖‖fε −MUqε‖2 (7.37)

≤ ‖fε −MUqε‖(‖AMUq‖+ ‖ANU‖+ ‖b‖) + ‖A‖‖fε −MUqε‖2 (7.38)

≤ ‖fε −MUqε‖(‖A‖‖MU‖‖q‖+ ‖A‖‖NU‖+ ‖b‖) + ‖A‖‖fε −MUqε‖2 (7.39)

Furthermore, we have

‖fε −MUqε‖ = ‖fε −MUBfε‖ (7.40)

= ‖(I −MUB)fε‖ (7.41)

≤ ‖(I −MUB)‖‖fε‖ (7.42)

≤ ‖(I −MUB)‖‖fε‖1 (7.43)

where the last inequality is based on the relation of 2-norm and 1-norm in vector space ‖x‖ ≤ ‖x‖1

and I is identity matrix. Notice that ‖qε‖1 = ‖Bfε‖1 = ‖fε‖1 since B is the incidence matrix

between path and demand.

Therefore,

|err(qε)| ≤ ‖I −MUB‖(‖A‖‖MU‖‖q‖+ ‖A‖‖NU‖+ ‖b‖)‖qε‖1 + ‖A‖‖I −MUB‖2‖qε‖21 (7.44)

Q.E.D.

Corollary 7.3.1. If qε ∈ Null(MU ), then

|err(qε)| ≤ (‖A‖‖MU‖‖q‖+ ‖A‖‖NU‖+ ‖b‖)‖qε‖1 + ‖A‖‖qε‖21 (7.45)

Proof: Since qε ∈ Null(MU ), MUqε = 0. Then following the proof of the above theorem, we

could get

|err(qε)| ≤ (‖A‖‖MU‖‖q‖+ ‖A‖‖NU‖+ ‖b‖)‖qε‖1 + ‖A‖‖qε‖21 (7.46)
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Q.E.D.

Another way is to assign the demand in a random way. In this case, fε is a multidimensional

random variable based on a predefined random assignment scheme such that Bfε = qε, E[fε] = Pqε

and V ar[fε] = Σf where P = [pij ] and
∑

j pij = 1 for all i. To show the error bound in this case,

we need the following lemma.

Lemma 7.3.2. [MP92] Let ξ be a random variable with expected value µ and variance-covariance

matrix Σ. Then

E[ξTΛξ] = tr[ΛΣ] + µTΛµ (7.47)

Theorem 7.3.3. If the demand q ∈ RU and the small part of the demands ignored first is qε

The expected error bound for the random suboptimal assigment is given by

E[|err(qε)|] ≤ ‖P −MU‖(‖A‖‖MU‖‖q‖+ ‖A‖‖NU‖+ ‖b‖)‖qε‖+ ‖A‖‖P −MU‖2‖qε‖2 (7.48)

Proof: Take expected value on 7.30 and apply lemma 7.3.2, we have

E[(7.30)] = E
[
(fε −MUqε)

T (AMUq +ANU + b) + (fε −MUqε)
TA(fε −MUqε)

]
= (E[fε]−MUqε)

T (AMUq +ANU + b) + E
[
fTε Afε

]
− E[fTε ]AMUqε − (MUqε)

TAE[fε] + (MUqε)
TA(MUqε)

= (Pqε −MUqε)
T (AMUq +ANU + b) + tr[AΣf ] + (Pqε)

TA(Pqε)

− (Pqε)
TAMUqε − (MUqε)

TAPqε + (MUqε)
TAMUqε

= (Pqε −MUqε)
T (AMUq +ANU + b) + tr[AΣf ] + (Pqε −MUqε)

TA(Pqε −MUqε)( * )

where Pqε is the expected value of the random assignment scheme and Σf is the variance-covariance

matrix of the random assignment scheme. Applying the Cauchy-Schwarz inequality and the con-

vexity of the norm to (∗), we obtain

|(∗)| ≤ |(Pqε −MUqε)
T (AMUq +ANU + b)|+ |tr[AΣf ]|+ |(Pqε −MUqε)

TA(Pqε −MUqε)|

≤ ‖(P −MU )qε‖‖AMUq +ANU + b‖+ |tr[Aσ]|+ ‖A‖‖(P −MU )qε‖2

≤ ‖P −MU‖(‖A‖‖MU‖‖q‖+ ‖A‖‖NU‖+ ‖b‖)‖qε‖+ ‖A‖‖P −MU‖2‖qε‖2
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Therefore,

E[|err(qε)|] ≤ ‖P −MU‖(‖A‖‖MU‖‖q‖+ ‖A‖‖NU‖+ ‖b‖)‖qε‖+ ‖A‖‖P −MU‖2‖qε‖2 (7.49)

Q.E.D.

Corollary 7.3.2. If qε ∈ Null(MU ), then

E[|err(qε)|] ≤ ‖P‖(‖A‖‖MU‖‖q‖+ ‖A‖‖NU‖+ ‖b‖)‖qε‖+ ‖A‖‖P‖2‖qε‖2 (7.50)

Proof: Repeat above proof, and notice MUqε = 0.Q.E.D.

In conclusion, when one chooses to follow the suboptimal assignment, the error or expected

error is bounded by

C1(‖q‖+ ‖qε‖) + C2‖qε‖2 (7.51)

7.4. Toll Policy Design

In the transportation, adding a toll to a link is an effective way to change the behavior of

each participant in a network system. A widely used way to design the toll policy relies on the

assumption that adding a special designed toll based on the demand or link flow could transform

the solution of a user equilibrium problem into the solution of the system optimal problems which

means the selffish behavior of each participant coincides with the system optimal decision. In this

section, we will show that with the help of the MNSM, we are able to design a global toll policy

based on the information of the demand space instead of the work done by the predecessors which

only have a toll policy for single demand or certain demand level. Meanwhile, we could also know

the rate of change for the toll based on the demand and how a specially designed toll policy could

affect the original network systems especially the link cost.
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Recall the formulation of UE and SO:

UE:

min
x

Tue(x)

subject to Bf = q

x = Ff

f ≥ 0

SO:

min
x

Tso(x)

subject to Bf = q

x = Ff

f ≥ 0

(7.52)

where Tue(x) =
∑
l

∫ xl
0 tl(s)ds, and Tso(x) =

∑
l

xltl(xl).

As we known, those two equilibrium problems are both convex so that the KKT conditions

provide a sufficient and necessary condition for the solution. Comparing those two formulations, it

is easy to figure out that the only difference of the KKT conditions of those two problems is the

gradient of the objective function.

UE:

∂Tue(x)

∂xl
= tl(xl)

SO:

∂Tso(x)

∂xl
= tl(xl) + xl

dtl(xl)

dxl

(7.53)

As we discussed, we want to add tolls on the link cost based on link flow.

t̃l(xl) = tl(xl) + Tl(xl) =⇒ Tl(xl) = xl
dtl(xl)

dxl
(7.54)

where Tl is toll price on link l and.

Clearly, if we set the toll price on link l equal to xl
dtl(xl)
dxl

, the solutions of the modified UE will

automatically become the solutions of the original SO. With the help of the MNSM, we could

further extend the tolls function depending on the demands.

Tl(q) = [Ff †(q)]l
dtl
dxl

(
[Ff †(q)]l

)
(7.55)

where [·]l means the lth row. Hence, the total toll cost function PT (q) for paths would be

PT (q) = F TT (q) (7.56)
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where T (q) =


T1(q)

T2(q)
...

Tn(q)


and F is the link-path incidence matrix

Example 13. Once more, let’s consider the toy model in example 4.

Then, we have

dt1
dx1

=
1

7
(7.57)

dt2
dx2

=
1

5
(7.58)

dt3
dx3

=
1

4
(7.59)

dt4
dx4

= 0 (7.60)

dt5
dx5

= 0 (7.61)

If q ∈ R∅, we obtain the toll function on each link given by

T1(q) = [Ff †(q)]1
dt1
dx1

(
[Ff †(q)]1

)
=
q1

16
+
q2

16
− 125

8
(7.62)

T2(q) = [Ff †(q)]2
dt2
dx2

(
[Ff †(q)]2

)
=
q1

16
+
q2

16
+

275

8
(7.63)

T3(q) = [Ff †(q)]3
dt3
dx3

(
[Ff †(q)]3

)
=
q1

16
+
q2

16
− 125

8
(7.64)

T4(q) = [Ff †(q)]4
dt4
dx4

(
[Ff †(q)]4

)
= 0 (7.65)

T5(q) = [Ff †(q)]5
dt5
dx5

(
[Ff †(q)]5

)
= 0 (7.66)

The total toll cost for f1 is PT1(q) = T1(q) = q1
16 + q2

16 −
125
8 .

The total toll cost for f2 is PT2(q) = T2(q) + T4(q) = q1
16 + q2

16 + 275
8 .

The total toll cost for f3 is PT3(q) = T2(q) + T5(q) = q1
16 + q2

16 + 275
8 .

The total toll cost for f4 is PT4(q) = T3(q) = q1
16 + q2

16 −
125
8 .
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If q ∈ R2, we obtain the toll function on each link given by

T1(q) = [Ff †(q)]1
dt1
dx1

(
[Ff †(q)]1

)
=
q1

7
(7.67)

T2(q) = [Ff †(q)]2
dt2
dx2

(
[Ff †(q)]2

)
=
q2

9
+

200

9
(7.68)

T3(q) = [Ff †(q)]3
dt3
dx3

(
[Ff †(q)]3

)
=
q2

9
− 250

8
(7.69)

T4(q) = [Ff †(q)]4
dt4
dx4

(
[Ff †(q)]4

)
= 0 (7.70)

T5(q) = [Ff †(q)]5
dt5
dx5

(
[Ff †(q)]5

)
= 0 (7.71)

The total toll cost for f1 is PT1(q) = T1(q) = q1
7 .

The total toll cost for f2 is PT2(q) = T2(q) + T4(q) = q2
9 + 200

9 .

The total toll cost for f3 is PT3(q) = T2(q) + T5(q) = q2
9 + 200

9 .

The total toll cost for f4 is PT4(q) = T3(q) = q2
9 −

250
8 .

If q ∈ R3, we obtain the toll function on each link given by

T1(q) = [Ff †(q)]1
dt1
dx1

(
[Ff †(q)]1

)
=
q1

12
− 125

6
(7.72)

T2(q) = [Ff †(q)]2
dt2
dx2

(
[Ff †(q)]2

)
=
q1

12
+

125

6
(7.73)

T3(q) = [Ff †(q)]3
dt3
dx3

(
[Ff †(q)]3

)
=
q2

4
(7.74)

T4(q) = [Ff †(q)]4
dt4
dx4

(
[Ff †(q)]4

)
= 0 (7.75)

T5(q) = [Ff †(q)]5
dt5
dx5

(
[Ff †(q)]5

)
= 0 (7.76)

The total toll cost for f1 is PT1(q) = T1(q) = q1
12 −

125
6 .

The total toll cost for f2 is PT2(q) = T2(q) + T4(q) = q1
12 + 125

6 .

The total toll cost for f3 is PT3(q) = T2(q) + T5(q) = q1
12 + 125

6 .

The total toll cost for f4 is PT4(q) = T3(q) = q2
4 .

If q ∈ R1,4, we obtain the toll function on link 2 given by

T2(q) = [Ff †(q)]2
dt2
dx2

(
[Ff †(q)]2

)
=
q1

5
+
q2

5
(7.77)
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and the rest are equal to 0.

The total toll cost for f2, f3 are PT2(q) = PT3(q) = q1
5 + q2

5 .

Besides, the rate of change of the toll function depending on the demand

dT

dx
=

dt

dx
+ x

d2t

dx2
= h(x) (7.78)

Solving this equation, we obtain that the cost function would be

t(x) =

∫ x

1
h(s)(ln(x)− ln(s))ds (7.79)

dT

dq
= h(x)

dx

dq
= h(x)ElF∇f †(q) a.e. (7.80)

Example 14. If the cost function on the link is given by

t(x) = t0 +
Cx4

16
(7.81)

then

h(x) = Cx3 (7.82)

The rate of change the tolls function depending on the demand is given by

dT

dq
= C

(
ElFf

†(q)
)
ElF∇f †(q) a.e. (7.83)

Example 15. If the cost function on the link is given by

t(x) = t0 + C1x+
C2x

4

16
(7.84)

then

h(x) = C1 + C2x
3 (7.85)

The rate of change the tolls function depending on the demand is given by

dT

dq
=
(
C2 + C1

(
ElFf

†(q)
))

ElF∇f †(q) a.e. (7.86)
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where the almost everywhere is because the MNSM has discontinuities To quantify the critical

demand for the toll cost function in each region, we have the following definition

Definition 7.4.1. If q ∈ RU , then define the local criteria as

[ζU ]j :=
∑
i

[
|dT
dq
|
]
i,j

(7.87)

where j is corresponding to jth demand. And define the global criterion

ζ =
1

Npartition

∑
RU 6=∅

ζU (7.88)

Hence, the demand that has larger ζ value implies more contributions to the toll cost change.

Similarly, we could have the following definition to see the toll on which link is more sensitive to

the demand than others.

Definition 7.4.2. If q ∈ RU , then define the local criteria as

[κU ]i :=
∑
j

[
|dT
dq

∣∣∣∣]i,j (7.89)

where i is corresponding to ith link. And define the global criterion

κ =
1

Npartition

∑
RU 6=∅

ζU (7.90)

Example 16. Consider the network in the example 4, we could easily get if q ∈ R∅,

dT

dq
=



1
16

1
16

1
16

1
16

1
16

1
16

0 0

0 0


(7.91)
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if q ∈ R2,

dT

dq
=



1
7 0

0 1
9

0 1
9

0 0

0 0


(7.92)

if q ∈ R3,

dT

dq
=



1
12 0

1
12 0

0 1
4

0 0

0 0


(7.93)

and if q ∈ R1,4,

dT

dq
=



0 0

1
5

1
5

0 0

0 0

0 0


(7.94)

Then, we have

ζ∅ =

[
3

16
,

3

16

]
, ζ2 =

[
1

7
,
2

9

]
, ζ3 =

[
1

6
,
1

4

]
, ζ1,4 =

[
1

5
,
1

5

]
(7.95)

Hence, we could conclude that in the region R∅ and R1,4 demand q1 and demand q2 have the same

impact to the change of the tolls. But in the region R2 and R3, demand q2 has the larger impact.

Also, we have

κ∅ =



1
8

1
8

1
8

0

0


, κ2 =



1
7

1
9

1
9

0

0


, κ3 =



1
12

1
12

1
4

0

0


, κ1,4 =



0

2
5

0

0

0


(7.96)

Then, we could get that in the region R∅, the toll functions are equally behaved, in the region R2

the toll function on link 1 is more sensitive to the demand change, in the region R3 the toll function
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on link 3 is more sensitive to the demand change, and in the region R1,4, only the toll function on

link 2 is affected by the demand change.
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CHAPTER 8

Future Work

8.1. Relation between Different Partition Regions

In this work, we find the analytic formula of the MNSM for CQP as a foundation to see how

the uncertainty propagates. When different inequality constraints are activated, one could reach

different partition region of the input space (demand space for traffic equilibrium problem). Due

to this reason, our MNSM is defined piecewisely. Moreover, in different partition regions RU and

RV , the essential problem is how to compute the corresponding K†U and K†V to obtain the MNSM.

In chapter 6, we have shown that we could use matrix decomposition technique to find those

pseudoinverses of KU or KV . But as we have known, the cost of computing pseudo-inverse is very

expensive. Hence, using some existing information of K†U to find a efficient way to compute K†V

would be an interesting question to ask when we have some information of U and V such as U ∩ V

is singleton. In fact, through a simple calculation, we have observed that if U = V ∪ {i} for some

i, then KU could treat as a rank-two update of KV .

From a geometric perspective, the MNSM in different partition region is the image of the

minimum norm point of the solution set under different projection mapping in some sense. So,

to find the relation between different partition regions is equivalent to find a mapping between

different partition regions which preserves the property of the minimum norm point unchanged.

Moreover, if such mapping exists, is it possible to represent it as composition of functions?

MNSM = Φ1(Φ2(· · · (Φn(b))) (8.1)

8.2. Computational Robustness

From the numerical experiments, we realized that the algorithm to find the MNSM highly relies

on the numerical accuracy. Even though the pseudoinverse of a matrix is numerically more stable

than the inverse of the matrix, the partition region of the MNSM depends on the accuracy of each

row of the pseudoinverse. Sometimes the inaccuracy causes two different partition regions having
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overlap and sometimes the inaccuracy causes the theoretically adjacent regions having gaps. These

facts could make us overestimate or underestimate the number of partition regions. Hence, a more

robust algorithm is needed to conquer this problem.

8.3. Larger Network

In this dissertation, we mainly focus on the theoretical development in building up the basis of

the MNSM approaching to understand the uncertainty. The examples we implemented are limited

to small or middle size networks. As we have shown in chapter 3, the criteria of the partition

region are defined separately for each region which provide us an opportunity to build up a parallel

algorithm to search the partition region. The only thing we don’t know is whether those conditions

defined an empty set or not. We believe that the number of regions in the partition would be a

super small number comparing with the combinatorial upper bound.

8.4. Learning With Small Data

In recent years, machine learning has received more and more attention. Many excellent results

and applications have emerged. But it is unavoidable that this method can only accomplish ”big

data and small tasks.” Inspired by Boris Hanin and David Rolnick’s recent paper [HR19], and

combined with our work in this article, we propose the following imagination model shown in figure

8.1.

In the paper [HR19], Boris and David have showed that the neural network with ReLU function

could partition the corresponding space into linear regions or polytopes. Meanwhile, through

our work in this dissertation, the MNSM or PBSM of the equilibrium problem with linear cost

function could also partition the corresponding space into linear regions or polytopes. Then if

the last question in section 8.1 is true, each MNSM could correspond to a neural network with

ReLU function and each neural network with ReLU function could correspond to a MNSM of

some equilibrium problem. Based on this observation, training a neural network with ReLU and

quadratic objective function could translate into find the MNSM of a suitable equilibrium problem.

The advantage of this idea is that finding the MNSM only needs four information Q, c,A, b which

would be much smaller number of parameters than a neural network. If the objective function is a
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Figure 8.1. Framework of Learning with Small Data

general non-convex function, then following the idea of a very successful algorithm in non-convex

optimization area – sequential quadratic programming, the strategy of training a ReLU network

with non-convex objective function would be three steps. First, find a proper way to generate a

sequence of optimization problem with quadratic objective function and only linear constraints.

Second, for each subproblem, find the corresponding MNSM and its composition formula. At last,

interpret the relevant results as a ReLU network.

Of course, there is no free lunch. Each step mentioned above may be very expensive. But

I believe that the final answer to learn with small data would be finding a pattern or functional

instead of point or function as we are doing recently.
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APPENDIX A

Details of 3× 3 grid network

The paths from node A to node I are following:

(1) 1→ 2→ 5→ 10

(2) 1→ 2→ 5→ 7→ 9→ 12

(3) 1→ 2→ 5→ 7→ 6→ 8→ 11→ 12

(4) 1→ 4→ 9→ 12

(5) 1→ 4→ 9→ 11→ 8→ 6→ 7→ 10

(6) 1→ 4→ 7→ 10

(7) 1→ 4→ 6→ 8→ 11→ 12

(8) 1→ 4→ 6→ 8→ 11→ 9→ 7→ 10

(9) 3→ 8→ 11→ 12

(10) 3→ 8→ 11→ 9→ 7→ 10

(11) 3→ 8→ 11→ 9→ 4→ 2→ 5→ 10

(12) 3→ 6→ 9→ 12

(13) 3→ 6→ 7→ 10

(14) 3→ 6→ 7→ 5→ 2→ 4→ 9→ 12

(15) 3→ 6→ 4→ 2→ 5→ 10

(16) 3→ 6→ 4→ 2→ 5→ 7→ 9→ 12

The paths from node B to node H are following:

(1) 6→ 7

(2) 6→ 4→ 2→ 5

(3) 6→ 9→ 12→ 10

(4) 3→ 1→ 2→ 5

(5) 3→ 1→ 4→ 7

(6) 3→ 1→ 4→ 9→ 12
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(7) 8→ 11→ 12→ 10

(8) 8→ 11→ 9→ 7

(9) 8→ 11→ 9→ 4→ 2→ 5

Region of Partitions:(23 different regions for demand in [0, 10000] × [0, 10000] v.s worst case

analysis ≈ 223)

(1) 1 4 6 9 12 13 17

(2) 1 4 6 9 12 17

(3) 1 4 6 9 17

(4) 1 4 9 12 17

(5) 1 4 9 17

(6) 1 4 9 17 20 23 24

(7) 1 4 9 17 20 24

(8) 1 4 9 17 24

(9) 4 6 9 12 13 17

(10) 4 6 9 12 17

(11) 4 6 12 13 17

(12) 4 6 12 17

(13) 4 9 12 17

(14) 4 9 17

(15) 4 9 17 20 23 24

(16) 4 9 17 20 24

(17) 4 9 17 24

(18) 4 12 17

(19) 4 17

(20) 4 17 20 23 24

(21) 4 17 20 24

(22) 4 17 23 24

(23) 4 17 24
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