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Abstract

Background: Glioma is the most common malignant primary brain tumor and is

associated with significant morbidity and mortality. Modifiable risk factors remain

unidentified. New advances in exposure assessment, genomic analyses, and statis-

tical techniques permit more accurate evaluation of glioma risk associated with

exogenous occupational or environmental exposures.

Methods: By using whole‐exome sequencing data from matched germline and gli-

oma tumor samples, the authors compared tumor mutational signatures for 17

persons with glioma and a documented occupational history of firefighting with

those of 18 persons with glioma without an occupational history of firefighting. All

35 individuals were participants in the University of California, San Francisco Adult

Glioma Study.

Results: There was a positive correlation among firefighters between the median

number of sample variants attributable to single‐base substitution signature 42, a

single‐base substitution mutational signature associated with haloalkane exposure

(from the Catalogue of Somatic Mutational Signatures in Cancer) and firefighting

years (p = .04; R2 = 0.29). Among nonfirefighters, the individuals with the highest

number of median variants attributable to single‐base substitution signature 42 also

had occupations that possibly exposed them to haloalkanes, such as painting and

being a mechanic.

Conclusions: In summary, the authors identified gliomas that had mutational sig-

natures associated with haloalkane exposure that were enriched in firefighters and

other occupations.
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INTRODUCTION

Gliomas are associated with significant morbidity and mortality,

motivating attempts to discover risk factors through large‐scale
epidemiology, genetic, and neuropathology collaborations.1–6 To

date, with the exception of ionizing radiation7 and possibly air

pollution,8,9 results are inconsistent for environmental factors, and

most identified genetic variants conferring significant risk are rare.7

We recently identified specific mutational signatures matched to

those reported in the Catalogue of Somatic Mutational Signatures in

Cancer (COSMIC; Wellcome Sanger Institute) using 1000 gliomas

available from The Cancer Genome Atlas (TCGA) and Glioma Lon-

gitudinal Analysis (GLASS).1 Although most glioma mutation signa-

tures were related to the aging process single‐base substitution

signature 1 (SBS1), signatures from environmental haloalkane expo-

sures were present in some gliomas, particularly in men. This muta-

tional signature (single‐base substitution signature 42; SBS42) was

first identified in association with occupational cholangiocarcinoma

among the workers from a printing company in Japan.10 Haloalkanes

are widely used commercially (as well as in the home) in flame re-

tardants, fire extinguishants, and pesticides and are an intriguing

finding given the observed increased glioma risk noted in firefighters

from the Adult Glioma Study (AGS).5 Recently, in one of the first

efforts to directly assess chemical exposure and glioma cell toxicity,

researchers treated oligodendrocyte progenitor cells with a panel of

almost 2000 chemicals and observed that organophosphate flame

retardants prematurely arrested oligodendrocyte maturation, lending

further support to the role of this exposure in gliomagenesis.11

MATERIALS AND METHODS

Because no data on occupational or environmental exposure his-

tories were available for the TCGA/GLASS patient samples used in

our prior analysis1 and to validate our findings in a separate group of

patients, we now compare mutational signatures for 17 individuals

with glioma and a documented occupational history of firefighting

versus those of 18 individuals who had glioma without an occupa-

tional history of firefighting. Individuals with glioma were drawn from

the case–control University of California, San Francisco (UCSF) Adult

Glioma Study (AGS), between 1991 and 2013.5 The AGS included

greater than 3000 adults aged 18 years and older who had a newly

diagnosed glioma between 1991 and 1994 (series 1), 1997 and 1999

(series 2), 2001 and 2004 (series 3), 2006 and 2010 (series 4), and

2010 and 2013 (series 5). Population‐based individuals with glioma

(series 1–4) resided in the San Francisco Bay Area, and clinic‐based
patients (series 3–5) were recruited to participate while seeking

care at the UCSF Neuro‐Oncology Clinic, regardless of their place of

residence. Participants were interviewed about various factors,

including occupational history and treatment, and provided blood

specimens at the time of the interview for research purposes. Pa-

thology was centrally reviewed by a UCSF neuropathologist during

the original recruitment period, and tumor specimens were obtained

from consenting patients. Various tumor marker assays, including

IDH mutation and 1p/19q co‐deletion, were later conducted; World

Health Organization 2016 diagnoses were later assigned to most of

these patients.3,12 From this patient cohort, we identified 17 fire-

fighters with glioma for whom blood and tumor samples were

available. Individuals with glioma (n = 18) who reported no occupa-

tional history of firefighting were matched to the firefighter group on

age, sex, blood collection year, race, dexamethasone use, chemo-

therapy and radiation exposure before the collection of blood, days

since chemotherapy, days since radiation, and glioma subtype.6

Paired blood and treatment‐naive tumor DNA samples from each

patient were prepared at UCSF and sent to the Yale Center for

Genomic Analysis for whole‐exome sequencing.13 Next‐generation
sequencing libraries were prepared from 100 ng each of paired

normal whole‐blood and formalin‐fixed, paraffin‐embedded tumor‐
derived DNA using the IDT xGen formalin‐fixed, paraffin‐embedded

DNA library Prep Kit (Integrated DNA Technologies, Inc.). Paired‐
end, 100‐base‐pair sequencing was performed on the NovaSeq S4

platform to a depth of 50x for normal libraries and 100x for tumor‐
derived libraries (Illumina, Inc.).

Molecular data were prepared and analyzed with the cancer-

effectsizeR package,14 which uses the MutationalPatterns package15

for signature refitting and reports the number of substitutions within a

sample attributable to each detectable signature. Data were filtered in

accordance with the steps outlined by Cannataro et al. in 2022,16

wherein all variants in >0.04% of any gnomAD subpopulation were

dropped, along with variants not at a statistically different variant

allele frequency with the paired normal sample (Boschloo exact test;

dropped ifp> .05). Variantswithin oneor twobasepairs of oneanother

were also dropped because these variants are likely not independent

(e.g., double‐base substitutions). COSMIC signatures previously iden-

tified within glioblastoma multiforme (GBM)17 were refit to all

nonrecurrent single nucleotide variants within our data set.18 Signa-

tures were refitted 1000 times per sample using the bootstrapping

functionality ofMutationalPatterns. Tohighlight probabledriver genes

within our data that have a high likelihood of being attributable to the

COSMIC SBS42 signature, GBMdata fromGLASS19 and TCGA20 were

combined with our data and the dndscv package,21 informed with

GBM‐specific covariates of mutation rate,22 and used to detect genes

with significantly more variants than expected under assumptions of

neutrality. The probability that the SBS42 signature contributed to

each variant, given the variant's trinucleotide context and the muta-

tional weights within the tumor calculated in each bootstrap resam-

pling, were calculated using cancereffectsizeR.18

RESULTS

The 17 firefighters and 18 nonfirefighters with glioma were primarily

men (94%) who reported being White and of non‐Hispanic ethnicity

(Table 1). They worked as firefighters for an average of 22 years and

were diagnosed approximately 7 years after the last reported fire-

fighter exposure, on average. Most tumors were IDH1/IDH2 wild type

and of high grade (glioblastoma). Most participants received chemo-

therapy (temozolomide) and radiation prior to blood collection.
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T A B L E 1 Characteristics of University of California, San Franciso Adult Glioma Study participants diagnosed from 1991 to 2013 included
in this report.

Characteristic

Firefighters with glioma,
n = 17

Nonfirefighters with glioma,
n = 18a

pNo. % No. %

Age at diagnosis, years

30–39 1 5.9 1 5.6

40–49 3 17.6 3 16.7

50–59 4 23.5 8 44.4

60–69 8 47.1 4 22.2

≥70 1 5.9 2 11.1

Age: Average � SD, years 56.3 � 8.8 55.9 � 9.6 .90

Sex

Male 16 94.1 17 94.4 1.00

Female 1 5.9 1 5.6

Race

White 17 100.0 18 100.0 1.00

Non‐White 0 0.0 0 0.0

Ethnicity

Hispanic 1 5.9 0 0.0 .49

Non‐Hispanic 16 94.1 18 100.0

Firefighting exposure, total years

1–9 3 17.7 NA —

10–19 2 11.8 NA —

20–29 8 47.1 NA —

30–39 4 23.5 NA —

Average � SD 22.2 � 10.0

Time from last firefighting exposure to diagnosis, years

0‐4 9 52.9 NA —

5‐9 3 17.6 NA —

10‐19 1 5.9 NA —

20‐29 1 5.9 NA —

30‐39 1 5.9 NA —

Unknown 2 11.8 NA —

Average � SD 7.3 � 10.9 — —

Histologic diagnosis

Glioblastoma 12 70.6 12 66.7 .79

Astrocytoma, grade 3 1 5.9 1 5.6

Astrocytoma, grade 2 2 11.8 2 11.1

Oligodendroglioma, grade 3 1 5.9 0 0.0

Oligodendroglioma, grade 2 0 0.0 2 11.1

Oligoastrocytoma, grade 2 0 0.0 1 5.6

Other 1 5.9 0 0.0

(Continues)
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Thirteen of the 35 samples had a median number of variants

attributable to SBS42 greater than zero (Figure 1). Among fire-

fighters, there were two individuals with a high median number of

variants attributable to SBS42 and a low number of firefighting years;

however, these individuals had additional self‐described occupations

that possibly exposed them to haloalkanes, such as farming, pesticide

use, and petroleum transport23 (Figure 1A). Removing these two

individuals, there was a positive correlation among firefighters be-

tween the median number of variants in the samples attributable to

SBS42 and firefighting years (p = .04; R2 = 0.29). Among non-

firefighters, the individuals with the highest number of median vari-

ants attributable to SBS42 also had occupations that possibly

exposed them to haloalkanes, such as painting and being a mechanic

(Figure 1A).

F I G U R E 1 The median number of mutations attributable to SBS42 among 1000 bootstrap resamplings of variant data, with

(A) occupations and (B) variants highlighted. (A) Points correspond to firefighters with a nonzero median SBS42 attribution who had <10
firefighting years and nonfirefighters who had the two greatest median attributable SBS42 mutations and had self‐reported occupation.
(B) Variants considered significantly mutated are highlighted (Q < 0.1; green text, with median probability [across 1000 bootstrap samplings]
that each variant is attributable to SBS42). In addition, four tumors with >10 median attributable SBS42 variants but without a variant

considered significantly mutated have a COSMIC tier 1‐curated variant highlighted, (orange text, with the median probability [across 1000
bootstrap samplings] that each variant is attributable to SBS42). COSMIC indicates the Catalogue of Somatic Mutational Signatures in Cancer;
SBS42, single‐base substitution signature 42.

T A B L E 1 (Continued)

Characteristic

Firefighters with glioma,

n = 17

Nonfirefighters with glioma,

n = 18a

pNo. % No. %

IDH1 mutation

Wild type 14 82.4 14 77.8 1.00

Mutated 3 17.7 4 22.2

1p/19q statusb

Not co‐deleted 13 76.5 15 83.3 .00

Co‐deleted 2 11.8 3 16.7

Unknown 2 11.8 0 0.0

Median IQR (min/max) Median IQR (min/max)

Tumor mutational burden, mutations/Mb 56.0 11.0 (26.0/69.0) 55.5 31.75 (25.0/102.0)

Mean contribution to mutation burden of SBS1c 0.369 0.382

Abbreviations: IQR, interquartile range; max, maximum; min, minimum; NA, not applicable.; SBS1, single‐base substitution signature 1 (glioma mutation

signatures related to the aging process); SD, standard deviation.
aTwo nonfirefighters with glioma were matched to the firefighter who had a noted IDH mutation but had unknown 1p/19q status. For this patient, we

selected both a nonfirefighter with a low‐grade IDH‐mutant astrocytoma and another with an IDH‐mutant oligodendroglioma.
bSome of these patients were classified as not co‐deleted based on our Adult Glioma Study 1p/19q imputation algorithm.3

cValues indicate the clock‐like Catalogue of Somatic Mutational Signatures mutational signature mean value among samples of the median SBS1

signature contribution after bootstrapping.
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The SBS42 signature is the likely source of many variants within

several samples and also is the most likely source of specific variants

that are possible drivers of the cancer phenotypewithin these samples

(Figure 1B). Among the 13 samples with a median SBS42 variant

attribution greater than zero, six had at least one significantly mutated

gene, of which five had a >50% median likelihood of SBS42 being the

signature driving the variant. In addition, samples with >10 median

variants attributable to SBS42 also contain variants inNOTCH1, ROS1,

ETV1, and NCOA2—genes curated within the COSMIC tier 1 list of

genes with documented activity relevant to cancer—with a >60%
median likelihood of being attributable to SBS42.

CONCLUSIONS

Glioma is largely associated with aging and mutational signatures

relating to endogenous mutational processes that correlate with

age, such as spontaneous or enzymatic deamination of 5‐
methylcytosine. However, some gliomas have detectable signatures

associated with exogenous mutational processes, such as SBS42

haloalkanes. In these data, we confirm detection of this signature in

a cohort of individuals likely highly exposed to haloalkanes, i.e., long‐
term firefighters. Identifying exogenous mutational processes in

cancers is extremely important because they may inform public

health intervention strategies to reduce mutagenesis and prevent

cancer inception. Identifying occupational correlates with SBS42,

associated with occupational exposure to haloalkanes, will pinpoint

occupational hazards that may be avoidable. This is especially

important for cancers in which exogenous mutagenesis is not well

established.
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