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Abstract

A signature of photo-mediated controlled polymerizations is the ability to modulate the rate of 

polymerization by turning the light source ‘on’ and ‘off.’ However, in many reported systems, 

growth can be reproducibly observed during dark periods. In this study, emerging photo-mediated 

controlled radical polymerizations are evaluated with in situ 1H NMR monitoring to assess their 

behavior in the dark. Interestingly, it is observed that Cu-mediated systems undergo long-lived, 

linear growth during dark periods in organic media.
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The utility and sweeping impact of controlled radical polymerization (CRP) has 

fundamentally changed the direction of polymer synthesis. By enabling the accurate control 

of molecular weight, architecture, and dispersity (Ð) for a wide variety of functional 

monomers, the facile synthesis of complex polymeric materials such as extended 

multiblocks[1], surface-modified nanoparticles[2,3], and bioconjugates[4–6] is now possible. 

Recently, the use of external stimuli, such as light[7,8], reducing agents[9], applied 

voltage[10], and mechanical forces[11] to mediate CRP processes has further increased the 

usefulness and impact of CRP.[12] Of these stimuli, light is particularly attractive, as it is 

environmentally benign and highly tunable.[13–15] Numerous examples of photo-mediated 

controlled radical polymerization (photo-CRP) have recently been developed, including Cu-

mediated reversible-deactivation radical polymerization (Cu-mediated RDRP)[16–19], Cu-

free atom transfer radical polymerization (Cu-free ATRP)[8,17,20–22], and photo induced 

electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT).[23,24] These 

systems operate over a wide variety of wavelengths and employ a variety of catalysts to 

polymerize different monomer classes,[25–27] with the broad scope of these systems leading 

to the development of well-defined, functional materials. Notable examples include 

patterned polymer brushes[28,29], organic light-emitting diodes[30], soft gels[31,32], and 

complex polymer architectures[33,34].

In photo-CRP, temporal control is typically demonstrated through sequential ‘on’ - ‘off’ 

cycles. This cycling is performed by irradiating the reaction mixture, polymerization then 

initiates/propagates, followed by a ‘dark’ period where, in an ideal scenario, no additional 

conversion takes place. However, for many reported photo-CRP systems, a small yet 
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reproducible amount of polymer growth can be observed during the ‘off’ cycles.[22,35–39] 

This apparent growth has been attributed to several factors, from experimental error to 

residual active catalyst. While the kinetics of growth and the presence of side reactions has 

been extensively studied for ‘on’ periods[5,40,41], no systematic examination of the 

polymerization reaction during the ‘off’ or ‘dark’ periods has been conducted.

To address this challenge and provide insight into photo-CRP processes, a recently 

developed in situ NMR spectroscopy method is utilized to evaluate temporal control for a 

selection of widely studied photo-CRP processes (see Figure 1 and Figure S1 for a 

representative schematic and photograph of the setup).[42] Compared to conventional 

sampling methods, this approach is uniquely suited for studying temporal control of photo-

CRPs, allowing accurate modulation of irradiation intensity and wavelength through the 

combination of LEDs and fiber optics. In addition, in situ coupling with NMR spectroscopy 

permits rapid and repeated measurements to be taken without invasive sampling of the 

polymerization reaction. As a result, accurate polymerization kinetics can be obtained in 

both the ‘on’ and ‘off’ states.

In this study, PET-RAFT, Cu-free ATRP, and Cu-mediated RDRP systems were selected as 

representative examples of photo-CRP methods. To facilitate an unbiased comparison across 

techniques, irradiation conditions were held constant (equivalent photon flux) and 

polymerization conditions, such as monomer concentration and targeted degree of 

polymerization, were fixed at 33 wt% and DP=150. Temporal control experiments were also 

carried out with equal ‘on’ and ‘off’ times targeting conversions of ~40% with an initial ‘off’ 

period conducted to establish a baseline before exposure to light. To show the general trends 

of a given technique, a representative catalyst/ligand combination will be discussed, however 

full data for all catalysts studied is available in the Supporting Information.

As they both utilize the photocatalyst as an electron transfer agent, the initial systems chosen 

for study were PET-RAFT and Cu-free ATRP, Scheme 1a.[43] Under traditional PET-RAFT 

conditions, the polymerization of methyl acrylate (MA) in DMSO was examined, (Figure 

2a) and after an inhibition period attributed to residual oxygen being consumed,[24,44,45] the 

polymerization demonstrated linear kinetics with significant deviation from linearity only 

observed at high monomer conversions (Figure 2b). As expected, the polymerization of 

methyl methacrylate (MMA) under Cu-free ATRP conditions (Figure 3a) was slower than 

the polymerization of MA by PET-RAFT due to the increased kp values. However, in both 

the PET-RAFT and Cu-free ATRP experiments, linear kinetics with little to no deviation 

were observed up to conversions of 30–40%. To simplify comparison, this conversion range 

was thereby targeted in the temporal control studies (Figure 2c, 3c).

Significantly, for all PET-RAFT and Cu-free ATRP systems studied, high fidelity is 

observed with no observable conversion being measured during the ‘dark’ period.

Unlike PET-RAFT and Cu-free ATRP, which directly drive polymerization through light-

driven electron transfer events, Cu-mediated RDRP in a secondary fashion, generating active 

Cu(I) from inactive Cu(II), potentially leaving residual catalytic Cu(I) in solution after 

irradiation has stopped, Scheme 1b. To examine this behavior and compare Cu-mediated 
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RDRP to both PET-RAFT and Cu-free ATRP, Me6TREN and CuBr2 were employed in the 

polymerization of both MA and MMA (Figure 4a). Although there are differences in the 

overall behavior of the polymerization of MA and MMA compared to the PET-RAFT and 

Cu-free ATRP examples, namely a lack of inhibition for MA and evidence of severe 

termination for MMA, both systems show linear kinetics up to monomer conversions of 

~30–40% (Figure 4b).

For both MA and MMA, significant differences were observed during ‘off’ periods (Figure 

4c). While the initial ‘dark’ periods did not result in any monomer conversion, the Cu-

mediated systems exhibited substantial polymer growth during the subsequent ‘dark’ periods 

(~5–10% of the ‘on’ rate in both the MA and MMA systems). Interestingly, upon extending 

the dark window from ~10 minutes to ~5 hours, linear polymerization kinetics in the ‘off’ 

state are still observed. Even at high conversions, the Cu catalyst was active with linear 

kinetics being observed (86 to 91%) despite being in an ‘off’ or ‘dark’ period for 3.5 hours 

(Figure S24). These results suggest that during the ‘off’ periods a significant amount of 

Cu(I) (initially produced by reduction of Cu(II)) remains in solution and is responsible for 

polymer growth through a conventional ATRP mechanism, rather than a photo-mediated 

ATRP process. To further investigate the temporal control of Cu-mediated RDRP systems, 

the dark periods were extended for different Cu/ligand pairs (Me6TREN and TPMA). The 

equilibrium constants for Me6TREN and TPMA are reported in the literature, and it has 

been shown that TPMA has a KATRP value approximately an order of magnitude lower than 

Me6TREN.[46] After initial irradiation to similar conversions, both systems did show growth 

during the ‘dark’ period. However, Me6TREN displays a considerably higher rate of 

conversion (approximately an order of magnitude) when compared to the corresponding 

TPMA system (Figure 5). This result illustrates that Cu-mediated RDRP in organic media 

does not exhibit ideal temporal control for any of the conditions/ligands studied due to the 

unwanted presence and extended lifetime of CuBr during ‘dark’ periods.

To improve the temporal control of Cu-mediated polymerizations, we envisage that a system 

must exhibit rapid consumption of residual Cu(I) catalyst during the ‘off’ cycles. Aqueous 

systems are subject to high equilibrium constants,[47,48] and the concentration of Cu(I) 

should therefore decrease rapidly during ‘dark’ periods, translating to increased temporal 

control relative to the corresponding organic systems. As a control, Cu-mediated RDRP of 

poly(ethylene glycol) methyl ether acrylate (PEGA, Mn = 480) using Me6TREN/CuBr2 was 

conducted in organic and aqueous media (Figure 6). In analogy with the Cu-mediated 

polymerization of MA in DMSO, a linear increase in conversion for PEGA occurs during an 

extended ‘dark’ period of ~5 hours after initial irradiation (Figure 6b). To achieve a 

comparable controlled polymerization of PEGA in water, the copper loading was increased 

5x relative to that used in DMSO.[48] Interestingly, after irradiation with 365 nm light, rapid 

polymerization continued for 2 hours in the dark (though in a non-linear fashion) before 

decreasing to undetectable levels. Importantly, the polymerization continued upon further 

irradiation, highlighting that the end groups were still active and implying that the active 

Cu(I) was consumed during the ‘off’ period, presumably by conversion to Cu(II). While this 

aqueous system demonstrated the potential for improved temporal control compared to a 

similar polymerization in organic media, significant monomer conversion does occur in the 

‘dark’ after turning off the light source. In an attempt to increase fidelity further, it was 
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hypothesized that a lower amount of initial CuBr2 would generate less residual catalyst, 

which could then be deactivated more rapidly in the absence of light. In order to maintain 

control with a reduced amount of CuBr2, NaBr was therefore added to the polymerization 

mixture.[48] Indeed, under these conditions, nearly immediate cessation of the 

polymerization was observed upon switching the light ‘off,’ leading to a high degree of 

temporal control. These results highlight the importance of mechanistic understanding in the 

development of strategies for temporal control of Cu-mediated CRP processes.

In summary, a modular in situ NMR technique was utilized to investigate monomer 

conversion during the ‘on’ and ‘off’ cycles for a selection of photo-CRP procedures. 

Temporal control during metal-free ATRP and PET-RAFT was demonstrated to have high 

fidelity and little to no conversion during ‘dark’ periods. In direct contrast, Cu-mediated 

polymerizations conducted in DMSO showed significant growth during ‘off’ cycles, which 

is attributed to the increased lifetime of residual Cu(I) catalyst after initial photoactivation. 

The use of aqueous conditions (low Cu(II) concentration and added NaBr) quickly consumes 

the residual catalytic species and alleviates this problem. This allows well-controlled 

polymers with no observable ‘dark’ growth to be obtained. However, it should be noted that 

these conditions cannot currently be broadly generalized with understanding and improving 

the temporal control in Cu-mediated polymerizations in organic media being an area of 

future focus. The findings of non-ideal temporal behaviour herein also illustrate the 

necessity for employing long ‘off’ periods when studying temporal control to ensure 

measurement fidelity and accuracy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic of the in situ fiber-coupled NMR system showing idealized schemes for photo-

CRP in active (‘on’) and dormant (‘off’) states.
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Figure 2: 
a) PET-RAFT conditions for the polymerization of methyl acrylate (MA) using 470 nm light 

and tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate. b) Kinetic plots of the 

polymerizations at a fixed photon flux. c) Temporal control experiments for the PET-RAFT 

demonstrate ideal temporal control.
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Figure 3: 
a) Cu-free ATRP conditions for the polymerization of methyl methacrylate (MMA) using 

405 nm light and 10-phenylphenothiazine. b) Kinetic plots of the polymerizations at a fixed 

photon flux. c) Temporal control experiments for the Cu-free ATRP reactions demonstrate 

ideal temporal control.
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Figure 4: 
a) Cu-mediated RDRP conditions for the polymerization of MA and MMA using CuBr2 and 

tris[2-(dimethylamino)ethyl]amine (Me6TREN). b) Kinetic plots of the polymerizations at a 

fixed photon flux. c) Temporal control experiments wherein distinct linear growth during 

dark periods after initial irradiation are observed for both polymerizations (~10–15% of the 

‘on’ rate).
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Figure 5: 
Kinetics of MMA polymerizations using Me6TREN/CuBr2 (DMF-d7) and TPMA/CuBr2 

(DMSO-d6) photosystems at equal loadings. Me6TREN undergoes more growth in the dark 

period due to its higher activity (KATRP).
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Figure 6: 
a) General reaction scheme for polymerization of poly(ethylene glycol) methyl ether 

acrylate (PEGA) macromonomers. b) Temporal experiments for PEGA polymerized in 

DMSO (top), water at an elevated Cu concentration (middle), and water with a reduced Cu 

content and NaBr (bottom). Only the reduced Cu-concentration aqueous polymerization 

shows ideal temporal behavior.
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Scheme 1: 
Simplified mechanisms reported for a) PET-RAFT / Cu-free ATRP and b) Cu-mediated 

RDRP.

See review by Johnson and co-workers[13] for in-depth discussions of the above photo-CRP 

mechanisms.
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