
UCLA
Papers

Title
Data Transport Control in Wireless Sensor Networks

Permalink
https://escholarship.org/uc/item/6xt4d270

Authors
Zhang, Hongwei
Naik, Vinayak S

Publication Date
2008-02-28

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6xt4d270
https://escholarship.org
http://www.cdlib.org/

Data Transport Control in Wireless Sensor

Networks

Hongwei Zhang

Department of Computer Science

Wayne State University

Detroit, Michigan 48202, USA

hzhang@cs.wayne.edu

http://www.cs.wayne.edu/~hzhang

Vinayak Naik

Center for Embedded Networked Sensing

University of California – Los Angeles

Los Angeles, California 90095, USA

naik@cens.ucla.edu

http://www.lecs.cs.ucla.edu/~naik

Abstract

Dynamics of wireless communication, resource constraints, and application di-

versity pose significant challenges to data transport control in wireless sensor net-

works. In this chapter, we examine the issue of data transport control in the con-

text of two typical communication patterns in wireless sensor networks:

convergecast and broadcast. We study the similarity and differences of data trans-

port control in convergecast and broadcast, we discuss existing convergecast and

broadcast protocols, and we present open issues for data transport control in wire-

less sensor networks.

1 Introduction

Wireless sensor networks are increasingly innovating the way we interact with the

physical world, and they tend to have a broad range of applications in science

(e.g., ecology), engineering (e.g., industrial control), and our daily life (e.g.,

healthcare). Spatially distributed, sensor nodes coordinate with one another

2

through messaging passing. Two typical messaging passing tasks in wireless sen-

sor networks are convergecast and broadcast. Convergecast enables a sink node to

collect information (e.g., event detection) from multiple spatially distributed

nodes, and broadcast enables a node to disseminate data (e.g., a new sensor node

program) from itself to all the other nodes in the network.

Even though message passing has been studied extensively in traditional net-

works such as the Internet and wireless networks, wireless sensor networks bring

unique challenges to the design of message passing services due to the complex

properties of wireless communication, resource constrains, and application diver-

sity. Among other tasks, data transport control is an important, challenging task in

sensor networks. Moreover, data transport control differs in different message

passing tasks. For instance, fairness is an important issue in convergecast but not

in broadcast; broadcast tends to require 100% reliability in most cases (e.g., in

sensor network reprogramming), but reliability requirements may vary signifi-

cantly in different convergecast scenarios; the source node of broadcast is a single

node which may serve as a single-point-of-control in broadcast, yet the sources

nodes in convergecast are usually spatially distributed.

In this chapter, we examine in detail the data transport control issues in conver-

gecast and broadcast in Sections 2 and 3 respectively. The discussion of broadcast

is from the perspective of sensor network reprogramming since it is one of the

most commonly uses broadcast services in sensor networks. We make concluding

remarks in Section 4.

2 Data transport control in convergecast

In this section, we first review the basic issues and approaches in data transport

control for convergecast, and then give a detailed treatment of the protocol Reli-

able Bursty Convergecast (RBC) [Zhang et al. 2007].

2.1 Introduction

In convergecast, multiple source nodes need to report data to a sink node, creating

the funneling effect where the traffic load increases as the distance to the sink

node decreases. One consequence of the funneling effect is network congestion

where packet queues overflow because packets arrive at nodes faster than what the

nodes can transmit. The funneling effect also increases channel contention and

thus the probability of packet loss as a result of increased collision probability. To

ensure reliable data transport in convergecast, therefore, two basic issues are con-

gestion control and error control. Besides reliable data transport, another issue is

to ensure fairness in delivering data from different source nodes. Fairness in data

3

delivery is important because, otherwise, the sink node cannot detect or observe

the phenomena happening in regions whose sensing packets experience significant

loss. The research community has proposed different approaches to address the

congestion control, error control, and fairness control issues in convergecast, and

we discuss a few representative mechanisms in the next section.

2.2 Background

For congestion control, Wan et al. proposed the protocol CODA (for Congestion

Detection and Avoidance) [Wan et al. 2003]. In CODA, a node monitors both its

queue length and the channel load condition (e.g., the number of packets transmit-

ted in a short interval) to detect any potential network congestion in its local

neighborhood. A node declares the network as being congested when the queue

length and/or channel load condition exceed certain threshold values. Once a node

detects network congestion, it can use two complementary approaches to amelio-

rate congestion: open-loop, hop-by-hop congestion control, and closed-loop, end-

to-end congestion control. In open-loop, hop-by-hop congestion control, a node

having detected congestion will inform the corresponding transmitting nodes of

the congestion; these transmitting nodes will reduce their transmitting rates ac-

cordingly and then propagate this “congestion” information backward along the

direction toward the traffic sources, creating the diffusing “backpressure” so that

the sources will eventually reduce their traffic generation rates too. In open-loop,

end-to-end congestion control, the sink coordinates with the sources to regulate

the traffic generation rates at different sources.

In CODA, Wan et al. did not differentiate between the congestion within a

node and that in wireless transmission. To address this issue, Ee and Bajcsy [Ee

and Bajcsy 2004] proposed a system where congestion within a node and conges-

tion in wireless communication are treated separated. In [Ee and Bajcsy 2004],

congestion within a node are detected by monitoring its queue length, and the

congestion is dealt with by an open-loop, hop-by-hop control mechanism similar

to that in CODA; congestion in wireless communication (also commonly referred

to as channel contention) is addressed by letting nodes randomly backoff at the

timescale of application transmission interval rather than at the timescale of radio

transmission rate. Besides congestion control, Ee and Bajcsy also proposed a rate-

based mechanism to ensure fairness in packet delivery. Corroborating several ob-

servations in [Wan et al. 2003] and [Ee and Bajcsy 2004], Hull et al. [Hull et al.

2004] studied the effectiveness of different congestion and fairness control mecha-

nisms, and they found out that 1) hop-by-hop flow control is effective for all types

of workloads and utilization levels, and 2) rate limiting is particularly effective in

achieving fairness.

Focusing on the reliability of delivering information related to an event, ESRT

[Sankarasubramanjam et al. 2003] controls congestion based on the relationship

4

between event reliability and source report frequency. More specifically, the sink

node continuously measures the event reliability, and decides on the source report

frequency accordingly; the sources will generate reports based on the frequency-

feedback from the sink node to avoid congestion in the network.

For reliable packet delivery in sensor networks, Stann and Heidermann [Stann

and Heidermann 2003] studied the benefit of hop-by-hop error control and recov-

ery compared with end-to-end error control. For instance, Figure X.1 shows the

number of transmissions required to send 10 packets across 10 hops in hop-by-hop

and end-to-end error control respectively. We see that hop-by-hop error control

significantly reduces the number of transmissions required for reliable data deliv-

ery.

For reliable, real-time packet delivery in bursty convergecast where a huge

burst of data need to be delivered from multiple source nodes to a sink node,

Zhang et al. [Zhang et al. 2007] proposed the protocol Reliable Bursty Converge-

cast (RBC). RBC addresses the challenge of reliable, real-time error control in the

presence of high channel contention and collision. To improve channel utilization

and to reduce ack-loss, RBC uses a window-less block acknowledgment scheme

that guarantees continuous packet forwarding and replicates the acknowledgment

for a packet; to alleviate retransmission-incurred channel contention, RBC em-

ploys differentiated contention control. Moreover, RBC uses mechanisms to han-

dle varying ack-delay and to reduce delay in timer-based retransmissions. We

elaborate on the protocol RBC in the next section.

2.3 RBC: Reliable Bursty Convergecast

A typical application of wireless sensor networks is to monitor an environment (be

it an agricultural field or a classified area) for events that are of interest to the us-

ers. Usually, the events are rare. Yet when an event occurs, a large burst of pack-

Figure X.1: Number of transmissions required to send 10 packets across 10 hops.

5

ets is often generated that needs to be transported reliably and in real-time to a

base station.

One exemplary event-driven application is demonstrated in the DARPA NEST

field experiment ``A Line in the Sand'' (simply called Lites hereafter) [Arora et al.

2004]. In Lites, a typical event generates up to 100 packets within a few seconds

and the packets need to be transported from different network locations to a base

station, over multi-hop routes.

The high-volume bursty traffic in event-driven applications poses special chal-

lenges for reliable and real-time packet delivery. The large number of packets

generated within a short period leads to high degree of channel contention and

thus a high probability of packet collision. The situation is further exacerbated by

the fact that packets travel over multi-hop routes: Firstly, the total number of

packets competing for channel access is increased by a factor of the average hop-

count of network routes; Secondly, the probability of packet collision increases in

multi-hop networks due to problems such as hidden-terminals. Consequently,

packets are lost with high probability in bursty convergecast. For example, with

the default radio stack of TinyOS [TinyOS], around 50% of packets are lost for

most events in Lites.

For real-time packet delivery, hop-by-hop packet recovery is usually preferred

over end-to-end recovery [Stann and Heidermann 2003]; and this is especially the

case when 100% packet delivery is not required (for instance, for bursty conver-

gecast in sensor networks). Nevertheless, existing hop-by-hop control mechanisms

do not work well in bursty convergecast. Via experiments with a testbed of 49

MICA2 motes and with traffic traces of Lites, Zhang et al. [Zhang et al. 2007] ob-

served that the commonly used link-layer error control mechanisms do not sig-

nificantly improve and can even degenerate packet delivery reliability. For exam-

ple, when packets are retransmitted up to twice at each hop, the overall packet

delivery ratio increases by only 6.15%; and when the number of retransmissions

increases, the packet delivery ratio actually decreases, by 11.33%.

One issue with existing hop-by-hop control mechanisms is that they do not

schedule packet retransmissions appropriately; as a result, retransmitted packets

further increase the channel contention and cause more packet loss. Moreover, due

to in-order packet delivery and conservative retransmission timers, packet delivery

can be significantly delayed in existing hop-by-hop mechanisms, which leads to

packet backlogging and reduction in network throughput.

On the other hand, the new network and application models of bursty conver-

gecast in sensor networks offer unique opportunities for reliable and real-time

transport control:

• Firstly, the broadcast nature of wireless channels enables a node to deter-

mine, by snooping the channel, whether its packets are received and for-

warded by its neighbors.

6

• Secondly, time synchronization and the fact that data packets are timestam-

ped relieve transport layer from the constraint of in-order packet delivery,

since applications can determine the order of packets by their timestamps.

Therefore, techniques that take advantage of these opportunities and meet the

challenges of reliable and real-time bursty convergecast are desired.

Zhang et al. [Zhang et al. 2007] studied the limitations of two commonly used

hop-by-hop packet recovery schemes in bursty convergecast. They discovered that

the lack of retransmission scheduling in both schemes makes retransmission-based

packet recovery ineffective in the case of bursty convergecast. Moreover, in-order

packet delivery makes the communication channel under-utilized in the presence

of packet- and ack-loss. To address the challenges, they designed protocol RBC

(for Reliable Bursty Convergecast). Taking advantage of the unique sensor net-

work models, RBC features the following mechanisms:

• To improve channel utilization, RBC uses a window-less block acknowl-

edgment scheme that enables continuous packet forwarding in the presence

of packet- and ack-loss. The block acknowledgment also reduces the prob-

ability of ack-loss, by replicating the acknowledgment for a received packet.

• To ameliorate retransmission-incurred channel contention, RBC introduces

differentiated contention control, which ranks nodes by their queuing condi-

tions as well as the number of times that the enqueued packets have been

transmitted. A node ranked the highest within its neighborhood accesses the

channel first.

In the rest of this section, we examine in more detail the shortcomings of the

existing error control mechanisms and how RBC addressed these shortcomings.

2.3.1 Performance with existing error control mechanisms

Two widely used hop-by-hop packet recovery mechanisms in sensor networks are

synchronous explicit ack and stop-and-wait implicit ack. We present their per-

formance in bursty convergecast as follows.

2.3.1.1 Synchronous explicit ack (SEA)

In SEA, a receiver switches to transmit-mode and sends back the acknowledgment

immediately after receiving a packet; the sender immediately retransmits a packet

if the corresponding ack is not received after certain constant time. Zhang et al.

studied the performance of SEA when used with B-MAC [Polastre et al. 2004]

and S-MAC [Ye et al. 2002]. B-MAC uses the mechanism of CSMA/CA (carrier

sense multiple access with collision avoidance) to control channel access; S-MAC

7

uses CSMA/CA too, but it also employs RTS-CTS handshake to reduce the im-

pact of hidden terminals.

SEA with B-MAC. The event reliability, the average packet delivery delay, as

well as the event goodput is shown in Table X.1, where RT stands for the maxi-

mum number of retransmissions for each packet at each hop (e.g., RT = 0 means

that packets are not retransmitted).

Metrics RT = 0 RT = 1 RT = 2

ER (%)

PD (seconds)

EG (packets/sec)

51.05

0.21

4.01

54.74

0.25

4.05

54.63

0.26

3.63

Table X.1: SEA with B-MAC in Lites trace. ER stands for Event Reliability; PD

stands for packet delivery latency; EG stands for event goodput [Zhang et al.

2007].

Table X.1 shows that when packets are retransmitted, the event reliability in-

creases slightly (i.e., by up to 3.69%). Nevertheless, the maximum reliability is

still only 54.74%, and, even worse, the event reliability as well as goodput de-

creases when the maximum number of retransmissions increases from 1 to 2.

SEA with S-MAC. Unlike B-MAC, S-MAC uses RTS-CTS handshake for uni-

cast transmissions, which reduces packet collisions. The performance data for S-

MAC is shown in Table X.2.

Metrics RT = 0 RT = 1 RT = 2

ER (%)

PD (seconds)

EG (packets/sec)

72.6

0.17

5.01

74.79

0.183

4.68

70.1

0.182

4.37

Table X.2: SEA with S-MAC in Lites trace

Compared with B-MAC, RTS-CTS handshake improves the event reliability by

about 20% in S-MAC. Yet packet retransmissions still do not significantly im-

prove the event reliability and can even decrease the reliability.

Analysis. We can see that the reason why retransmission does not significantly

improve --- and can even degenerate --- communication reliability is that, in SEA,

lost packets are retransmitted while new packets are generated and forwarded, thus

retransmissions, when not scheduled appropriately, only increase channel conten-

tion and cause more packet collision.1 The situation is further exacerbated by ack-

loss (with a probability as high as 10.29%), since ack-loss causes unnecessary re-

transmission of packets that have been received. To make retransmission effective

in improving reliability, therefore, we need a retransmission scheduling mecha-

nism that ameliorates retransmission-incurred channel contention.

1 This is not the case in wireline networks and is due to the nature of wireless communications.

8

2.3.1.2 Stop-and-wait implicit ack (SWIA)

SWIA takes advantage of the fact that every node, except for the base station,

forwards the packet it receives and the forwarded packet can act as the acknowl-

edgment to the sender at the previous hop [Maroti 2004]. In SWIA, the sender of a

packet snoops the channel to check whether the packet is forwarded within certain

constant threshold time; the sender regards the packet as received if it is forwarded

within the threshold time, otherwise the packet is regarded as lost. The advantage

of SWIA is that acknowledgment comes for free except for the limited control in-

formation piggybacked in data packets. The performance results for SWIA is

shown in Table X.3.

Metrics RT = 0 RT = 1 RT = 2

ER (%)

PD (seconds)

EG (packets/sec)

43.09

0.35

3.48

31.76

8.81

2.58

46.5

18.77

1.41

Table X.3: SWIA with B-MAC in Lites trace

We can see that the maximum event reliability in SWIA is only 46.5%, and

that the reliability decreases significantly when packets are retransmitted at most

once at each hop. When packets are retransmitted up to twice at each hop, the

packet delivery delay increases, and the event goodput decreases significantly de-

spite the slightly increased reliability.

Analysis. The above phenomena are due to the following reasons. First, the length

of data packets is increased by the piggybacked control information in SWIA, thus

the ack-loss probability increases (as high as 18.39% in our experiments), which

in turn increases unnecessary retransmissions. Second, most packets are queued

upon reception and thus their forwarding is delayed. As a result, the piggybacked

acknowledgments are delayed and the corresponding packets are retransmitted

unnecessarily. Third, once a packet is waiting to be acknowledged, all the packets

arriving later cannot be forwarded even if the communication channel is free.

Therefore, channel utilization as well as system throughput decreases, and net-

work queuing as well as packet delivery delay increases. Fourth, as in SEA, lack

of retransmission scheduling allows retransmissions, be it necessary or unneces-

sary, to cause more channel contention and packet loss.

To address the limitations of SEA and SWIA in bursty convergecast, Zhang et

al. [Zhang et al. 2007] designed protocol RBC. In RBC, a window-less block ac-

knowledgment scheme is designed to increase channel utilization and to reduce

the probability of ack-loss; a distributed contention control scheme is also de-

signed to schedule packet retransmissions and to reduce the contention between

newly generated and retransmitted packets. Given that the number of packets

competing for channel access is less in implicit-ack based schemes than in ex-

9

plicit-ack based schemes, Zhang et al. designed RBC based on the paradigm of

implicit-ack (i.e., piggybacking control information in data packets).

2.3.2 Windowless acknowledgment

In traditional block acknowledgment [Brown et al. 1989], a sliding-window is

used for both duplicate detection and in-order packet delivery.2 The sliding-

window reduces network throughput once a packet is sent but remains unacknow-

ledged (since the sender can only send up to its window size once a packet is un-

acknowledged), and in-order delivery increases packet delivery delay once a

packet is lost (since the lost packet delays the delivery of every packet behind it).

Therefore, the sliding-window based block acknowledgment scheme does not ap-

ply to bursty convergecast, given the real-time requirement of the latter.

To address the constraints of traditional block acknowledgment in the presence

of unreliable links, RBC takes advantage of the fact that in-order delivery is not

required in bursty convergecast. Without considering the order of packet delivery,

we only need to detect whether a sequence of packets is received without loss in

the middle and whether a received packet is a duplicate of a previously received

one. To this end, a window-less block acknowledgment scheme is designed to en-

sure continuous packet forwarding irrespective of the underlying link unreliability

as well as the resulting packet- and ack-loss. For clarity of presentation, we con-

sider an arbitrary pair of nodes S and R where S is the sender and R is the re-

ceiver.

Window-less queue management. The sender S organizes its packet queue as

(M+2) linked lists, as shown in Figure X.2, where M is the maximum number of

retransmissions at each hop. For convenience, we call the linked lists virtual

queues, denoted as Q
0
, …, Q

M+1
. The virtual queues are ranked such that a virtual

queue Q
k
 ranks higher than Q

j
 if k < j.

Virtual queues Q
0
, Q

1
, …, and Q

M
 buffer packets waiting to be sent or to be ac-

knowledged, and Q
M+1

 collects the list of free queue buffers. The virtual queues are

maintained as follows:

• When a new packet arrives at S to be sent, S detaches the head buffer of

Q
M+1

, if any, stores the packet into the queue buffer, and attaches the queue

buffer to the tail of Q
0
.

• Packets stored in a virtual queue Q
k
 (k > 0) will not be sent unless Q

k-1
 is

empty; packets in the same virtual queue are sent in FIFO order.

2 Note that SWIA is a special type of block acknowledgment where the window

size is 1.

10

• After a packet in a virtual queue Q
k
 (k ≥ 0) is sent, the corresponding queue

buffer is moved to the tail of Q
k+1

, unless the packet has been retransmitted

M times in which case the queue buffer is moved to the tail of Q
M+1

.

• When a packet is acknowledged to have been received, the buffer holding

the packet is released and moved to the tail of Q
M+1

.

Figure X.2: Virtual queues at a node

The above rules help identify the relative freshness of packets at a node (which is

used in the differentiated contention control in Section 2.3.3); they also help main-

tain without using sliding windows the order in which unacknowledged packets

have been sent, providing the basis for window-less block acknowledgment.

Moreover, newly arrived packets can be sent immediately without waiting for the

previously sent packets to be acknowledged, which enables continuous packet

forwarding in the presence of packet- and ack-loss.

Block acknowledgment & reduced ack-loss. Each queue buffer at S has an ID

that is unique at S. When S sends a packet to the receiver R, S attaches the ID of

the buffer holding the packet as well as the ID of the buffer holding the packet to

be sent next. In Figure X.2, for example, when S sends the packet in buffer a, S at-

taches the values a and b. Given the queue maintenance procedure, if the buffer

holding the packet being sent is the tail of Q
0
 or the head of a virtual queue other

than Q
0
, S also attaches the ID of the head buffer of Q

M+1
, if any, since one or more

new packets may arrive before the next enqueued packet is sent in which case the

newly arrived packet(s) will be sent first. For example, when the packet in buffer c

of Figure X.2 is sent, S attaches the values c, d, and f.

When the receiver R receives a packet p
0
 from S, R learns the ID n' of the

buffer holding the next packet to be sent by S. When R receives a packet p
n
 from S

next time, R checks whether p
n
 is from buffer n' at S: if p

n
 is from buffer n', R

knows that there is no packet loss between receiving p
0
 and p

n
 from S; otherwise,

R detects that some packets are lost between p
0
 and p

n
.

For each maximal sequence of packets p
k
, …, p

k’
 from S that are received at R

without any loss in the middle, R attaches to packet p
k’
 the 2-tuple <q

k
, q

k’
>, where

q
k
 and q

k’
 are the IDs of the buffers storing p

k
 and p

k’
 at S. We call <q

k
, q

k’
> the

block acknowledgment for packets p
k
, …, p

k’
. When S snoops the forwarded packet

11

p
k’
 later, S learns that all the packets sent between p

k
 and p

k’
 have been received by

R. Then S releases the buffers holding these packets. For example, if S snoops a

block acknowledgment <c, e> when its queue state is as shown in Figure X.2, S

knows that all the packets in buffers between c and e in Q
1
 have been received,

and S releases buffers between c and e, including c and e.

One delicate detail in processing the block acknowledgment <q
k
, q

k’
> is that af-

ter releasing buffer q
k
, S will maintain a mapping q

k
 ↔ q

k”
, where q

k”
 is the buffer

holding the packet sent (or to be sent next) after that in q
k’
. When S snoops another

block acknowledgment <q
k
, q

n
> later, S knows, by q

k
 ↔ q

k”
, that packets sent be-

tween those in buffers q
k”
 and q

n
 have been received by R; then S releases the buff-

ers holding these packets, and S resets the mapping to q
k
 ↔ q

n”
, where q

n”
 is the

buffer holding the packet sent (or to be sent next) after that in q
n
. S maintains the

mapping for q
k
 until S receives a block-NACK [n', n) or a block acknowledgment

<q, q'> where q ≠ q
k
, in which case S maintains the mapping for n or q respec-

tively. Via the buffer pointer mapped as above, the node S can process the incom-

ing block acknowledgments and block-NACKs. For convenience, we call the

buffer being mapped to the anchor of block acknowledgments. In the examples

discussed above, buffers q
k”
 and q

n”
 have been anchors once. We also call the

packet in an anchor buffer an anchor packet.

In the above block acknowledgment scheme, the acknowledgment for a re-

ceived packet is piggybacked onto the packet itself as well as the packets that are

received consecutively after the packet without any loss in the middle. Therefore,

the acknowledgment is replicated and the probability for it to be lost decreases

significantly.

Duplicate detection & obsolete-ack filtering. Since it is impossible to com-

pletely prevent ack-loss in lossy communication channels, packets whose ac-

knowledgments are lost will be retransmitted unnecessarily. Therefore, it is neces-

sary that duplicate packets be detected and dropped.

To enable duplicate detection, the sender S maintains a counter for each queue

buffer, whose value is incremented by one each time a new packet is stored in the

buffer. When S sends a packet, it attaches the current value of the corresponding

buffer counter. For each buffer q at S, the receiver R maintains the counter value

c
q
 piggybacked in the last packet from the buffer. When R receives another packet

from the buffer q later, R checks whether the counter value piggybacked in the

packet equals to c
q
: if they are equal, R knows that the packet is a duplicate and

drops it; otherwise R regards the packet as a new one and accepts it. The duplicate

detection is local in the sense that it only requires information local to each queue

buffer instead of imposing any rule involving different buffers (such as in sliding-

window) that can degenerate system performance.

For the correctness of the above duplicate detection mechanism, we only need

to choose the domain size C for the counter value such that the probability of los-

ing C packets in succession is negligible. For example, for the high per-hop packet

loss probability 22.7% in the case of Lites trace, C could still be as small as 7,

12

since the probability of losing 7 packets in succession is only 0.003%. (Given the

small domain size for the counter value as well as the usually small queue size at

each node, the duplicate detection mechanism does not consume much memory.

For example, it only takes 36 bytes in the case of Lites.)

In addition to duplicate detection, we also use buffer counter to filter out obso-

lete acknowledgment. Despite the low probability, packet forwarding at R may be

severely delayed, such that the queue buffers signified in a block acknowledgment

have been reused by S to hold packets arriving later. To deal with this, R attaches

to each forwarded packet the ID as well as the counter value of the buffer holding

the packet at S originally; when S snoops a packet forwarded by R, S checks

whether the piggybacked counter value equals to the current value of the corre-

sponding buffer: if they are equal, S regards as valid the piggybacked block ac-

knowledgment; otherwise, S regards the block acknowledgment as obsolete and

ignores it.

Aggregated-ack at the base station. In sensor networks, the base station usually

forwards all the packets it receives to an external network. As a result, the children

of the base station (i.e., the nodes that forward packets directly to the base station)

are unable to snoop the packets the base station forwards, and the base station has

to explicitly acknowledge the packets it receives. To reduce channel contention,

the base station aggregates several acknowledgments, for packets received con-

secutively in a short period of time, into a single packet and broadcasts the packet

to its children. Accordingly, the children of the base station adapt their control pa-

rameters to the way the base station handles acknowledgments.

2.3.3 Differentiated contention control

In wireless sensor networks where per-hop connectivity is reliable, most packet

losses are due to collision in the presence of severe channel contention. To enable

reliable packet delivery, lost packets need to be retransmitted. Nevertheless,

packet retransmission may cause more channel contention and packet loss, thus

degenerating communication reliability. Also, there exist unnecessary retransmis-

sions due to ack-loss, which only increase channel contention and reduce commu-

nication reliability. Therefore, it is desirable to schedule packet retransmissions

such that they do not interfere with transmissions of other packets.

The way the virtual queues are maintained in our window-less block acknowl-

edgment scheme facilitates the retransmission scheduling, since packets are auto-

matically grouped together by different virtual queues. Packets in higher-ranked

virtual queues have been transmitted less number of times, and the probability that

the receiver has already received the packets in higher-ranked virtual queues is

lower (e.g., 0 for packets in Q
0
). Therefore, we rank packets by the rank of the

virtual queues holding the packets, and higher-ranked packets have higher-priority

13

in accessing the communication channel. By this rule, packets that have been

transmitted less number of times will be (re)transmitted earlier than those that

have been transmitted more, and interference between packets of different ranks

is reduced.

Window-less block acknowledgment already handles packet differentiation and

scheduling within a node, thus we only need a mechanism that schedules packet

transmission across different nodes. To reduce interference between packets of the

same rank and to balance network queuing as well as channel contention across

nodes, inter-node packet scheduling also takes into account the number of packets

of a certain rank so that nodes having more such packets transmit earlier.

To implement the above concepts, we define the rank rank(j) of a node j as

<M-k, |Q
k
|, ID(j)>, where Q

k
 is the highest-ranked non-empty virtual queue at j,

|Q
k
| is the number of packets in Q

k
, and ID(j) is the ID of j. rank(j) is defined such

that 1) the first field guarantees that packets having been transmitted fewer num-

ber of times will be (re)transmitted earlier, 2) the second field ensures that nodes

having more packets enqueued get chances to transmit earlier, and 3) the third

field is to break ties in the first two fields. A node with a larger rank value ranks

higher. Then, the distributed transmission scheduling works as follows:

• Each node piggybacks its rank to the data packets it sends out.

• Upon snooping or receiving a packet, a node j compares its rank with that of

the packet sender k. j will change its behavior only if k ranks higher than j,

in which case j will not send any packet in the following w(j, k) × T
pkt

 time.

T
pkt

 is the time taken to transmit a packet at the MAC layer, and w(j, k) = 4 -

i, when rank(j) and rank(k) differ at the i-th element of the 3-tuple ranks.

w(j, k) is defined such that the probability of all waiting nodes starting their

transmissions simultaneously is reduced, and that higher-ranked nodes tend

to wait for shorter time. T
pkt

 is estimated by the method of Exponentially

Weighted Moving Average (EWMA).

• If a sending node j detects that it will not send its next packet within T
pkt

time (i.e., when j knows that, after the current packet transmission, it will

rank lower than another node), j signifies this by marking the packet being

sent, so that the nodes overhearing the packet will skip j in the contention

control. (This mechanism reduces the probability of idle waiting, where the

channel is free but no packet is sent.)

2.3.4 Experimental results

Table X.4 shows the performance results of RBC, and we can observe the follow-

ing properties of RBC:

14

Metrics RT = 0 RT = 1 RT = 2

ER (%)

PD (seconds)

EG (packets/sec)

56.21

0.21

4.28

83.16

1.18

5.72

95.26

1.72

6.37

Table X.4: RBC in Lites trace

• The event reliability keeps increasing, in a significant manner, as the num-

ber of retransmissions increases. The increased reliability mainly attributes

to reduced unnecessary retransmissions (by reduced ack loss and adaptive

retransmission timer) and retransmission scheduling.

• Compared with SWIA which is also based on implicit-ack, RBC reduces

packet delivery delay significantly. This mainly attributes to the ability of

continuous packet forwarding in the presence of packet- and ack-loss and

the reduction in timer-incurred delay.

• The rate of packet reception at the base station and the event goodput keep

increasing as the number of retransmissions increases. When packets are re-

transmitted up to twice at each hop, the event goodput reaches 6.37 pack-

ets/second, quite close to the optimal goodput  6.66 packets/second  for

Lites trace.

Compared with SWIA, RBC improves reliability by a factor of 2.05 and reduces

average packet delivery delay by a factor of 10.91. Compared to SEA with B-

MAC (simply referred to as SEA hereafter), RBC improves reliability by a factor

of 1.74, but the average packet delivery delay increases by a factor of 6.61 in

RBC. Interestingly, however, RBC still improves the event goodput by a factor of

1.75 when compared with SEA. The reason is that, in RBC, lost packets are re-

transmitted and delivered after those packets that are generated later but transmit-

ted less number of times. Therefore, the delivery delay for lost packets increases,

which increases the average packet delivery delay, without degenerating the sys-

tem goodput. The observation shows that, due to the unique application models in

sensor networks, metrics evaluating aggregate system behaviors (such as the event

goodput) tend to be of more relevance than metrics evaluating unit behaviors

(such as the delay in delivering each individual packet).

3 Data transport control in reprogramming

In this section, we discuss the basic issues and approaches in data transport control

for the purpose of sensor network reprogramming.

15

3.1 Introduction

The large scale of deployments of the wireless networks of embedded devices

demand an ability to reprogram the nodes in the field, possibly over multiple hops.

Since a program has to reach in entirety, the reprogramming service has to deliver

data with 100% reliability. Therefore, the need for a reprogramming service trans-

lates into a problem of reliable dissemination of bulk data in wireless networks of

embedded devices. Designing such a service is a challenging problem due to the

limited energy, memory, and lossy wireless links.

3.2 Background

Early work in wireless networks showed that simple retransmissions of broadcast

messages leads to the broadcast storm problem, where redundancy, contention,

and collision impair the ability to perform well. The naïve approach of simple re-

transmission is not reliable and fast. Hence, a more intricate handling of the

transmissions in the space and time is needed.

The problem of sending a new program, which typically consists of many

packets, is different from that of sending a command, which typically consists of a

few packets. The probability of contention and collisions is more in the case of

sending a new program. Further, optimizing latency of transmission is an impor-

tant concern for the reprogramming case. Although broadcasting a few packets has

its own research challenges, we will only focus on broadcasting a large number

packets due to the space constraints. Hence, the solutions for disseminating less

data are not suitable for the reprogramming. In this section, we will look at the

state-of-the-art reprogramming services for the wireless networks of embedded

devices.

3.3 Challenges

The primary challenges in the problem of reprogramming are as follows.

• 100% reliability: the lossy links commonly found in the wireless networks

of embedded devices makes the problem of providing 100% reliability hard.

• Energy consumption: the battery-powered nature of the embedded devices

necessitates that the energy consumption has to be minimized. Table X.5

summarized energy consumed by selected operations on a Mica mote.

• Time to reprogram the entire network: since the primary objective of the

networks is sensing, it is desirable to minimize the time required to repro-

gram the network.

16

Common operations Power consumption in nAh

Receive a packet 8.000

Transmit a packet 20.000

EEPROM read 16-bytes 1.1111

EEPROM write 16-bytes 83.333

Idle-listen for 1 millisecond 1.250

Table X.5: Energy consumed by selected Mica operations [Mainwaring et al.
2002, Hui and Culler 2004]

• Memory consumption: since the size a program could be larger than that of

the available RAM, the broadcast service must be scalable in terms memory

consumption.

All of the above mentioned challenges differentiate the problem of reliable dis-

semination in wireless embedded devices from that in wireless networks of PCs.

3.4 Techniques of reprogramming

We enumerate the commonly used techniques to address the above-mentioned

challenges. These will help practitioners to understand the working of the state-of-

the-art reprogramming services. The practitioners can use them to tune the per-

formance of the existing reprogramming services or develop new services of their

own.

• 100% reliability:

– Hop-by-hop recovery: Given the lossy nature of the network, the recov-

ery of the lost packets is done in a hop-by-hop manner. This reduces the

number of transmissions as compared to that of end-to-end recovery.

– Sender selection and suppression: The goal of the sender selection and

suppression technique is to ensure that at most one node broadcast the

data in a radio range. An example of the selection criteria to select a

node that has larger number of potential receivers [Kulkarni and Wang

2005]. If a node sending data messages also overhears data messages

from other nodes at the same time, it suppresses its transmissions based

on any rule that uniquely determines an order among the nodes [Hui

and Culler 2004]. An example of such rule is the IDs of the nodes. The

sender selection and suppression reduces the number of collisions.

– Time Division Multiple Access (TDMA): At the link layer, CSMA/CA

protocol results in lower latency when the number of nodes, simultane-

ously transmitting in a neighborhood, is less. As the number of nodes

increases, the number of backoffs increases. Also, the number of colli-

17

sions due to the hidden terminal effect increases, thereby resulting in

more retransmissions and hence more latency. One way to deal with the

increased number of simultaneous transmissions is to use TDMA,

where each node is allocated a time-slot to transmit [Naik et al. 2007,

Kulkarni and Aramugam 2004]. The TDMA schedule is computed to

guarantee that no two nodes within collision range from each other

transmit at the same time. The collision range is approximately equal to

the twice the transmission range.

– Use of implicit ACK and NACK-based explicit ACK: The use of

TDMA creates a lower bound on the latency to hear from each of the

transmitter in a node’s range. In simpler words, a node knows when the

other nodes in its neighborhood will transmit [Naik et al. 2007, Kul-

karni and Aramugam 2004]. This property enables a node to use im-

plicit acknowledgement to detect message loss. The advantage of im-

plicit acknowledgement over that of explicit is that the implicit

acknowledgement reduces the number of message transmissions and

hence more energy efficient. However, implicit ACK requires the

sender to maintain state about the receivers. The amount of state grows

linearly in terms of the number of receivers. Therefore, a more scalable

approach is to use NACK-based recovery, where a receiver reports the

sequence numbers of the lost packets to the sender and the sender re-

broadcasts the requested packets [Kulkarni and Wang 2005].

• Energy consumption:

– Sender selection and suppression: Use of sender selection and suppres-

sion reduces the number of concurrent transmissions in a neighborhood,

thereby reducing the number of collisions.

– Load balancing while selecting senders: An unfair sender selection

process will tax a sender with transmissions and sapping its energy. A

fair sender selection process takes into consideration the remaining en-

ergy at the node [Kulkarni and Wang 2005].

– Duty cycling of radio: If a technique of sender selection and suppres-

sion is employed, a node that loses in the selection and suppression

round, can chose to switch off it radio [Kulkarni and Arumugam 2004].

The use of sender selection and suppression gives an opportunity to the

non-selected and suppressed nodes to switch off their radios while the

selected sender is transmitting.

– Minimum Connected Dominating Set (MCDS) for selecting senders:

The transmission of radio messages consume significant amount of en-

ergy. Reducing the number of senders will save energy. A constraint to

the problem of selecting senders is that all the nodes must receive the

entire program. If we induce a graph over the wireless network, the

problem of selecting a minimum set of senders is equivalent to that of

18

finding a minimum connected dominating set (MCDS) of the induced

graph [Naik et al. 2007]. A formal definition of MCDS is given in the

section titled Terminologies/Keywords, here we give an example as

shown in Figure X.3.

• Time to reprogram the entire network:

– Pipelining of messages over multiple hops: Although a node has not re-

ceived an entire program, it can become a sender and start sending

packets. This policy results in pipeline of transmissions, thereby reduc-

ing the latency [Hui and Culler 2004, Naik et al. 2007,Kulkarni and

Arumugam 2004]. However, the flipside of the policy can be hidden

terminal effect if care is not taken to ensure that two nodes within col-

liding range are simultaneously transmitting.

– Transmitting as fast as possible: The use of sender selection and sup-

pression technique enables a sender to transmit data packets at the fast-

est rate [Hui and Culler 2004].

• Memory consumption:

– Forward/download phase in MNP: The size of a program could be far

more than that of RAM. In fact, it could even be infeasible to save a

Figure X.3: MCDS of a network. The circles represent nodes. A
line between two nodes means that those two nodes can communi-

cate with each other. The filled-in circles represent MCDS.

19

bitmap, where a bit is allocated for each packet in the program, in the

RAM. Two ways to deal with the small size of RAM is to either use a

window-based recovery or save the information about the lost packets

in the EEPROM instead of RAM. In window-based recovery, a sender

does not transmit a new packet unless all the packets in the last window

are successfully received. In the latter option of using EEPROM, al-

though the size is not a problem, the latency become an issue since read

and write access to the EEPROM is slower than that of RAM. One way

to expedite access to the lost packets is to maintain a linked list connect-

ing the slots of the lost packets [Kulkarni and Wang 2005]. This way, it

is not necessary to traverse the entire list of packets to search for the

lost packets.

– Segmentation of the program: The entire program could be divided into

packets and a fixed N number of buffers could be allocated in the RAM,

where the size of the buffer is same as that of a packet [Hui and Culler

2004]. Since a node does have all of the packets in its RAM, the node

can respond quickly only to those retransmit requests, for which the

packets are in its RAM.

Although we have classified techniques depending upon with of the 4 distinct

challenges do they address, the classification is not disjoint. For example, sender

selection technique not only reduces collisions and improves reliability, but it also

saves energy by reducing number of transmissions.

In Table X.6, we summarize which of the above-mentioned techniques the

commonly used reprogramming services employ. The first row lists the 4 chal-

lenges and the first column lists the name of the services.

4 Thoughts for practitioners

Convergecast. In RBC, the tolerance of out-of-order packet delivery enables the

design of windowless block acknowledgment. In general, network protocol design

tends to be application-specific in wireless sensor networks, and we should pay at-

tention to the application properties in designing or choosing network protocols.

For instance, open-loop, hop-by-hop control is more appropriate for transient con-

gestion, and closed-loop, end-to-end control is better for persistent congestion.

Moreover, end-to-end error control may well be necessary to ensure 100% data

delivery.

Reprogramming. The reprogramming services can be categorized into two broad

classes, which are (a) ad-hoc and (b) structured, depending upon their approaches

to selecting senders. The structured approach induces a graph over the network of

nodes, where each node is a vertex and there is an edge between two vertices if the

two corresponding nodes can communicate with each other. It then uses this graph

20

 Reliability Energy

efficiency

Latency Memory

consumption

Deluge

[Hui and Culler

2004]

Sender selec-

tion and sup-

pression,

NACK-based

recovery

Sender se-

lection and

suppression

Pipelining

while for-

warding

packets

Dividing the

program

into pages

and packets

Infuse

[Kulkarni and

Arumugam

2004]

TDMA, Im-

plicit ACK

Duty cy-

cling of ra-

dio

Pipelining

while for-

warding

packets

Window

based re-

covery

MNP

[Kulkarni and

Wang 2005]

Sender selec-

tion and sup-

pression,

NACK-based

recovery

Load bal-

ancing

while se-

lecting

senders

Use of

linked list in

EEPROM to

keep records

of lost pack-

ets

Sprinkler

[Naik et al.

2007]

TDMA, Im-

plicit ACK

Use of

MCDS

while se-

lecting

senders

Pipelining

while for-

warding

packets

Table X.6: Techniques used by the well known reprogramming services

to select senders. The ad-hoc services do not induce such a graph. While Deluge

and MNP fall under the ad-hoc category, Infuse and Sprinkler fall under the struc-

tured category.

The benefit of using a structured approach is that computing a MCDS and a

TDMA schedule requires fewer control messages than that of ad-hoc approach.

An intuitive reason behind this is that position of a node in a graph can be used to

decide whether the node becomes a sender or not. However, inducing a graph over

nodes can be complex given the highly varying nature of the wireless links. For

example, Infuse and Sprinkler assume that the distance between the nodes is an

indication of the quality of the link between them and rely on location of the nodes

to induce a graph. In practice, the assumption may not hold and could degrade the

performance of the protocol.

5 Directions for future research

Convergecast. Despite the fact that many data transport control mechanisms have

been proposed for convergecast in wireless sensor networks, how to effectively

21

ensure application-specific QoS remains an open issue. Much work is also needed

to address the interaction between QoS provisioning and in-network processing in

wireless sensor networks, since QoS provisioning affects the spatial and temporal

data flow in the network, which in turns affects the effectiveness of in-network

processing and thus messaging efficiency and reliability. Network coding tends to

be an effective approach to improving the efficiency and QoS messaging in wire-

less networks, and it is worthwhile to explore how to apply network coding for the

purpose of reliable, efficient data transport in sensor network convergecast.

Reprogramming. In the case of ad-hoc reprogramming services, the contention

in the wireless medium may increase as the density of the network increases. For

example, in Deluge the nodes advertise themselves as senders after they have re-

ceived a page. In a dense network, these advertisements cause contention [Hui and

Culler 2004]. Although knowledge about density of the network will eliminate this

problem, such knowledge needs partial information about the graphical topology

of the network and hence violates the philosophy of the ad-hoc approach. There-

fore, future research is needed to suppress the advertisements to avoid contention.

The structured approaches, such as Infuse and Sprinkler, assume location in-

formation at each node to induce a graph [Naik et al. 2007, Kulkarni and Aru-

mugam 2004]. Briefly, the idea is to use the position of nodes in the graph to de-

cide whether two nodes are within contention range of each other and then

compute MCDS and TDMA schedule. However, localization in wireless embed-

ded networks is a hard problem in itself. Most of the state-of-the-art localization

techniques demand special acoustic or ultrasonic hardware, which may not be

available in all the embedded devices. Hence, computing MCDS and TDMA

schedule without depending on a localization service demands further research.

6 Conclusions

We have reviewed the challenges and approaches for data transport control in

sensor network convergecast and reprogramming-oriented broadcast. We have

also seen the difference (in both challenges and solution methods) in data transport

control for convergecast and broadcast. For guaranteed QoS and efficiency in

convergecast and broadcast, we have also presented the important open problems

in data transport control. In general, how to design application- and task-specific

data transport control mechanisms remains an interesting, open problem.

22

References

Anish Arora, Prabal Dutta et al (2004). A Line in the Sand: A Wireless Sensor Network for Tar-

get Detection, Classification, and Tracking. Computer Networks (Elsevier) 46(5):605-634

Cheng Tien Ee and Ruzena Bajcsy (2004). Congestion Control and Fairness for Many-to-One

Routing in Sensor Networks. ACM SenSys

Geoffrey Brown, Mohamed Gouda, Raymond Miller (1989). Block Acknowledgment: Redesign-

ing the Window Protocol. ACM SIGCOMM

Jonathan Hui, David Culler (2004). The Dynamic Behavior of a Data Dissemination Protocol for

Network Programming at Scale. ACM SenSys

Bret Hull, Kyle Jamieson, Hari Balakrishnan (2004). Mitigating Congestion in Wireless Sensor

Networks. ACM SenSys

Sandeep Kulkarni, Mahesh Arumugam (2004). Infuse: A TDMA Based Data Dissemination Pro-

tocol for Sensor Networks. Technical Report MSU-CSE-04-46, Michigan State University

Sandeep Kulkarni, Limin Wang (2005). MNP: Multihop Network Reprogramming Service for

Sensor Networks, IEEE ICDCS

Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, John Anderson (2002).

Wireless Sensor Networks for Habitat Monitoring. First ACM International Workshop on

Wireless Sensor Networks and Applications

Miklos Maroti (2004). The Directed Flood Routing Framework. Technical report, Vanderbilt

University, ISIS-04-502

Vinayak Naik, Anish Arora, Prasun Sinha, Hongwei Zhang (2007). Sprinkler: A Reliable and

Energy Efficient Data Dissemination Service for Extreme Scale Wireless Networks of Em-

bedded Devices, IEEE Transactions on Mobile Computing, 6(7)

Joseph Polastre, Jason Hill, David Culler (2004). Versatile Low Power Media Access for Wire-

less Sensor Networks. ACM SenSys

Yogesh Sankarasubramanjam, Ozgur B. Akan, Ian F. Akyildiz (2003). ESRT: Event-to-Sink Re-

liable Transport in Wireless Sensor Networks. ACM MobiHoc

TinyOS. http://www.tinyos.net/

Chieh-Yih Wan, Shane B. Eisenman, Andrew Campbell (2003). CODA: Congestion Detection

and Avoidance in Sensor Networks. ACM SenSys

Wei Ye, John Heidemann, Deborah. Estrin (2002). An Energy-Efficient MAC Protocol for Wire-

less Sensor Networks. IEEE INFOCOM

Hongwei Zhang, Anish Arora, Young-Ri Choi, Mohamed Gouda (2007). Reliable Bursty Con-

vergecast in Wireless Sensor Network. Computer Communications (Elsevier) 30(13)

23

Terminologies/keywords:

1. Convergecast: the transport of packets from multiple spatially distributed sen-

sor nodes to a common sink node.

2. Congestion control: control the packet generation rate at the sources and inter-

mediate nodes to avoid over-utilizing the network in terms of the node packet

buffers and wireless channels.

3. Error control: detect and recover transmission errors in the network which are

caused by packet transmission collision and other factors.

4. Fairness: equality of different nodes in accessing network resources (e.g., wire-

less transmission bandwidth).

5. Windowless block acknowledgment: the block acknowledgment scheme that

enables continuous data transmission irrespective of packet- and ack-loss with-

out any constraint as imposed by the sliding window size in traditional win-

dow-based block acknowledgment mechanisms.

6. MCDS: A dominating set (DS) of a graph G = (V,E) is a subset of V′ of V such

that every vertex v ∈ V is either in V′ or adjacent to some member of V′. A

minimum connected dominating set (MCDS) is a connected dominating set of

minimum cardinality.

7. TDMA-based transmission: A time division multiple access (TDMA)-based

transmission is a scheme where in each node is given a schedule, such that nei-

ther two adjacent nodes nor two nodes sharing a same adjacent node transmit at

the same time.

8. Pipelining of transmissions: The process of pipelining of transmission is com-

posed of simultaneous transmissions of packets by nodes in time.

9. Implicit ACK: Implicit ACK is an acknowledgement scheme, where a sender

infers that (a) a packet has been successfully received if it overhears the for-

warding of the packet by the sender’s successor nodes and (b) otherwise if it

does not overhear the forwarding.

10.NACK-based recovery: If a node recovers a lost packet by explicitly asking the

sender to retransmit the lost packet then such a recovery is called as NACK-

based recovery.

24

Exercises

1. What are the basic issues in data transport control in sensor network converge-

cast?

2. How is ESRT different from protocols such as CODA?

3. Study the paper on RBC [Zhang et al. 2007], and discuss the respective roles of

window-less block acknowledgment and distributed contention control in im-

proving the reliability and goodput of convergecast?

4. Analyze the ack-loss probability in RBC.

5. RBC has focuses on windowless block acknowledgment and distributed con-

tention control. But queue may still overflow without careful flow control.

Please design a flow control mechanism to work with RBC.

6. What is the broadcast storm problem?

7. What are the challenges in the reliable broadcast in wireless networks of em-

bedded devices?

8. When is TDMA faster than CSMA/CA in terms of latency?

9. What is MCDS and how is it useful for the reliable broadcast in wireless net-

works of embedded devices?

10.What are the two categories of the reliable reprogramming services and what

are differences between them?

25

Solutions to exercises

1. Congestion control, error control, and fairness control

2. ESRT focuses on the collective reliability in delivering information related to

an event, yet CODA focuses more on the congestion control issue with respect

individual source nodes.

3. To understand the individual impact of window-less block acknowledgment

and differentiated contention control in RBC, Zhang et al. [Zhang et al. 2007]

evaluated the performance of RBC without using differentiated contention con-

trol (i.e., RBC with window-less block acknowledgment only), and the results

are shown in the following table

Metrics RT = 0 RT = 1 RT = 2

ER (%)

PD (seconds)

EG (packets/sec)

54.90

0.22

4.04

77.19

1.12

4.13

82.29

1.52

4.12

Comparing the above results with Table X.4, we can observe the following:

• Differentiated contention control improves packet delivery performance

even when there is no retransmission (i.e., RT = 0). This is because the con-

tention control reduces channel contention by prioritizing channel access ac-

cording to the degree of queue accumulation at different nodes.

• Without differentiated contention control, packet delivery reliability also

improves significantly when RT (maximum number of per-hop retransmis-

sions) increases from 0 to 1, but the improvement becomes far less when RT

increases from 1 to 2. This is because differentiated contention control plays

an increasingly important role when RT (thus channel contention) increases.

Comparing the above results with Tables 1 and 3, we see that, with window-less

block acknowledgment alone, RBC significantly improves the packet delivery

performance of SEA and SWIA. The reasons are as follows:

• Compared with SEA, the channel contention is less in window-less block

acknowledgment because no explicit acknowledgment packet is generated

(thus reducing the number of packets in the network). Moreover, the intra-

node packet prioritization (via the queue management) in window-less block

acknowledgment also improves the packet delivery reliability.

• Compared with SWIA, window-less block acknowledgment improves

packet delivery reliability by reducing ack-loss probability (and thus reduc-

ing unnecessary packet retransmissions) and employing intra-node packet

prioritization. Window-less block acknowledgment also significantly re-

duces packet delivery delay by careful timer management and by enabling

continuous packet transmission in the presence of packet- and ack-loss.

26

4. For convenience, we define the following notations:

• p: the probability of losing a single (data) packet;

• N: the number of packets received in succession without any loss in the

middle;

• N': the number of packets lost in succession;

• B: the number of packets received in succession without any loss in the

middle, after a packet is already received;

• A: the number of times that the acknowledgment for a packet is received

at the sender.

Assuming that packet losses are independent of one another, we have the prob-

ability mass functions for random variables N and N' as follows.

P[N = k] = p(1-p)
k

P[N' = k] = (1-p)p
 k

In RBC, when a packet m is received at a receiver R, the acknowledgment for

m can reach back to the sender S in two ways: S snoops m when it is forwarded

by R later, with probability P
self

; or S does not snoop m but snoops a packet

whose block acknowledgment acknowledges the reception of m, with probabil-

ity P
ba
. Therefore, the probability P

rbc
 of S receiving the acknowledgment for m

can be derived as follows:

Then, the probability P

rbc’
 of losing the acknowledgment for a packet in RBC is

1-P
rbc

.

In the case of Lites trace and implicit-ack, p = 22.7%. Therefore P
rbc’

 =

8.89%, reducing the ack-loss probability of SWIA by a factor of 2.07.

5. In the presence of high traffic load, the packet queue at a node may accumulate

and overflow if the corresponding senders transmit too many packets in a short

time. This issue can be avoided by a simple hop-by-hop flow control mecha-

nism as follows:

• When forwarding packets, a node piggybacks the number of free queue

buffers at its place.

• Whenever a sender S detects that the number L
r
 of free queue buffers at the

receiver R is below a threshold L, S will stop sending any packet in the fol-

27

lowing (L-L
r
)×d

e,R
 time. L is a constant chosen such that the probability of

losing L packets in succession is negligible (by which the sender will not

fail to detect the congestion state at the receiver), and d
e,R

 is the average in-

terval between R releasing one buffer and the next one while there are pack-

ets enqueued at R. (R estimates d
e,R

 by the method of EWMA.)

• After learning the number L
r
 of free buffers at the receiver R each time, the

sender S will send at most L
r
 packets to R in the following L

r
×d

e,R
 time

unless S snoops another packet forwarded by R.

• To help relieve queue congestion, the nodes having less than L queue buff-

ers are not subject to the differentiated contention control.

6. Simple retransmission of packets for forwarding the packets results in conten-

tion and collisions and impairs the reliability in a wireless network. Such a

phenomenon is called as the broadcast storm problem.

7. The challenges in the reliable broadcast in wireless network networks of em-

bedded devices are providing 100% reliability, minimizing energy consump-

tion, minimizing latency, and minimizing memory usage.

8. CSMA/CA protocol results in lower latency when the number of nodes, simul-

taneously transmitting in a neighborhood, is less. As the number of nodes in-

creases, the number of backoffs increases. Also, the number of collisions due to

the hidden terminal effect increases, thereby resulting in more retransmissions

and hence more latency. A minimal TDMA schedule, which designed by taking

into consideration the density of nodes in a neighborhood, has lower latency

than that of CSMA/CA.

9. A dominating set (DS) of a graph G = (V,E) is a subset of V• of V such that of V such that

every vertex v •V is either in V• or adjacent to some member of V•. A min or adjacent to some member of V•. A mini-

mum connected dominating set (MCDS) is a connected dominating set of

minimum cardinality. A use of nodes in the MCDS of a network results in

minimizing the number of transmitters, thereby saving the energy.

10.The two categories of the reliable reprogramming services are ad-hoc and

structured-based. The structured approach induces a graph over the network of

nodes, where each node is a vertex and there is an edge between two vertices if

the two corresponding nodes can communicate with each other. The ad-hoc

services do not induce a graph over the network.

