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ABSTRACT 
Preschool-age children’s exposures to pesticides measured in indoor dust in California 

by    

Kimberly Hazard 

Doctor of Philosophy in Environmental Health Sciences 

University of California, Berkeley 

Professor Asa Bradman, Co-Chair 

Professor Jay Graham, Co-Chair 

 

This dissertation focuses on young children’s exposures to pesticides in indoor environments 
from dust. Research shows that young children, particularly in California, are exposed to pesticides 
in their environment, including in their homes and child care / early care and education (ECE) 
settings. Children are uniquely vulnerable to chemical exposures due to their exposure-prone 
behaviors and rapidly developing bodies and systems. Chemical exposures during critical windows 
of development put children are at higher risk since their respiratory, reproductive, digestive, 
immunological, and central nervous systems are not fully developed and are vulnerable to 
disruption.  

Most children in the U.S. spend a significant amount of time in environments other than their 
home, but few studies have characterized exposures to pesticides in child care programs. Likewise, 
there are few studies that derive potential intake doses and characterize risk, despite the effort over 
the past three decades make risk assessments more protective of vulnerable populations, including 
young children. In this dissertation, we take a mixtures approach to assessing potential health 
impacts from early childhood exposures to pesticides in indoor dust, both in assessing cumulative 
risk for children in ECE settings, and assessing exposures to pesticide mixtures among children in 
an agricultural community and potential impacts on child cognition. 

Chapter 1 reviews literature on determinants of pesticide exposure to young children in indoor 
environments and their potential health impacts. We present a brief introduction to the pesticides 
that will be discussed throughout this dissertation, key concepts related to measuring pesticides in 
dust, as well as the two study populations used in this dissertation. 

Chapter 2 aims to identify determinants of pesticide levels in carpet dust samples collected 
from 51 licensed child care centers in Northern California and analyzed for 14 structural and 
agricultural pesticides. The most frequently detected pesticides were cis-permethrin (98%), trans-
permethrin (98%), bifenthrin (94%), fipronil (94%), and chlorpyrifos (88%). Higher bifenthrin 
levels were correlated with agricultural applications within 3 kilometers, and higher fipronil levels 
were correlated with professional pesticide applications in the prior year. In multivariable models, 
higher Integrated Pest Management (IPM) Checklist scores were associated with lower loading of 
chlorpyrifos and permethrin. Placement of the sampled area carpet was also a predictor of 
chlorpyrifos loading.  The strongest predictor of higher pesticide loading for the most frequently 
detected pesticides was location in California’s San Joaquin Valley. 
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Chapter 3 aims to determine if children’s exposures to pesticides in child care via non-dietary 
ingestion and dermal absorption exceed health-protective reference values, and compares 
traditional risk calculations to methods that account for uncertainty and cumulative risk. Estimated 
exposures did not exceed EPA-established RfDs or approximated probabilistic RfDs. While 
potential pesticide exposures in licensed child care centers are unlikely to cause neurotoxic or 
hepatotoxic effects, these estimates represent only a portion of the total daily exposure. Our tiered 
approach to producing a comprehensive risk assessment for multiple pesticides in children’s ECE 
settings is an important application of available methods for improved health risk assessment.  

Chapter 4 examines the relationship between early life exposure to pesticide mixtures in house 
dust and children's neurodevelopment, accounting for co-exposures and potential interactions with 
social factors. We used Bayesian Hierarchical Modeling to evaluate the association between levels 
of common pesticide classes detected in the dust and neurodevelopmental outcomes assessed by 
the Wechsler Intelligence Scale for Children at age seven years. A 10-fold increase in pesticide 
loading was associated with a 3-point deficit on the Processing Speed subscale at age seven years 
for the organophosphate oxydemeton-methyl (median of posterior: -3.3 (95% CrI: -6.4, -0.2)), but 
higher iprodione loading was associated with higher Verbal Comprehension subscale scores (2.5 
(0.3, 4.6)). Results were null for pyrethroids, herbicides (individual or class effects), and for 
interaction with the quality of the home environment. Early childhood exposure to pesticide 
mixtures, especially organophosphates, in indoor environments may negatively impact children’s 
cognition. Our findings support further research into pesticide mixtures effects potentiated by sex 
of the child and quality of the home environment. 

Chapter 5 concludes the dissertation with a summary of the results from each chapter, the 
strengths and limitations of the current work, and a discussion of future directions for research on 
children’s exposures to pesticides in early childhood environments.
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Chapter 1 Introduction to Preschool-Age Children's Exposures to Pesticides 
in Indoor Dust 

1.1 Overview 

This dissertation focuses on young children’s exposures to pesticides in indoor environments 
from dust. This introduction reviews determinants of pesticide exposure to young children in 
indoor environments and their potential health impacts. We present a brief introduction to the 
pesticides that will be discussed throughout this dissertation, key concepts related to measuring 
pesticides in dust, as well as the two study populations used in this dissertation. 

1.2 Children’s exposures to pesticides in early childhood environments 

Research shows that young children, particularly in California, are exposed to pesticides in 
their environment, including in their homes (1-5) and child care / early care and education (ECE) 
settings (6-9). Children are uniquely vulnerable to chemical exposures due to their exposure-
prone behaviors and rapidly developing bodies and systems. Children have higher intake of air, 
water, and food per unit of body weight compared with adults (10) and may have a less varied 
diet which often leads to higher exposures to pesticide residues compared with older children and 
adults (11). Hand-to-mouth activity and time spent on floors can also increase their exposure to 
contaminants that settle in dust (10, 12). For example, pesticides may transfer from treated 
surfaces to hands or objects mouthed by children, resulting in non-dietary ingestion (13, 
14)Overall, hand-to-mouth behavior is significantly greater indoors compared with outdoors 
(15). Young children, for whom hand-to-mouth frequency is highest, in child care may spend 
60% to 75% of the time indoors (16).   

Chemical exposures during critical windows of development put children are at higher risk 
since their respiratory, reproductive, digestive, immunological, and central nervous systems are 
not fully developed and are vulnerable to disruption. Children’s metabolic pathways are also 
immature, making them less able to metabolize and remove toxic chemicals from their bodies 
(17), which is of particular concern when children are exposed to multiple pesticides and other 
environmental contaminants and are poorly equipped to metabolize these mixtures of 
compounds. 

While diet is a major source of pesticide exposure, young children can also be exposed to 
pesticides present in their surrounding environments, including homes and ECE facilities. 
Studies in North Carolina and Ohio found preschool children were concurrently exposed at low 
levels to a number of past-use (legacy) and current-use pesticides from several sources and 
routes of exposure at their homes and child care centers. In the North Carolina study, pesticides 
that were detected ≥50% in several different media at these locations included α-chlordane, γ-
chlordane, heptachlor, chlorpyrifos, diazinon, cis- and trans-permethrin, and 2,4-D (8). In the 
Ohio study, cis- and trans-permethrin were detected in 100% of dust samples and over 78% of 
hand wipe samples collected at both homes and child care centers (18). A study in low-income 
homes from urban and agricultural communities in California detected several pesticides in most 
homes, including organophosphate (OP) pesticides previously phased-out for residential uses, 
pyrethroids, and the pesticide synergist piperonyl butoxide (1).  The First National 
Environmental Health Survey of Child Care Centers measured pesticides in indoor floor wipe 
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samples, with chlorpyrifos, diazinon, and cis- and trans-permethrin detected in more than 67% of 
the centers. In smaller studies of ECE programs, detectable levels of pesticides were found in all 
dust samples from 13 centers in North Carolina (8), 22 centers in Ohio (18), and 40 centers in 
California (9).  

There are many sources of pesticide contamination in early childhood environments. 
Pesticide contamination in children’s home and out-of-home care environments may result from 
nearby agricultural use. More than one billion pounds (or over 450 million kilograms) of 
pesticides are applied in the U.S. annually, with nearly 90% used for agriculture (19). A 
systematic review of non-dietary exposure to agricultural pesticides identified key drivers of 
exposure, including behaviors like housekeeping practices and personal hygiene frequency, and 
spatial indicators like proximity to fields and total amounts of pesticides applied nearby (20). 
Children living in agricultural communities may have higher exposures related to take-home 
exposure from their parents’ employment and location of their home relative to agricultural 
fields (21, 22). In California, some jurisdictions have setback requirements for buildings from 
agricultural land, but there is no statewide mandate for buffer zones between homes and 
agriculture. However, there are some limits set for applying pesticides around child care facilities 
in California – growers cannot apply certain pesticides within 0.25 miles of a schoolsite (public 
schools and licensed child care centers) on school days (23).  

Pesticide contamination in children’s environments may also result from structural use. 
Studies in low-income homes in the U.S. consistently find high detection frequencies of home-
use pesticides, particularly pyrethroids, and use of pesticides to manage pest infestations 
associated with housing disrepair (1, 24-26). A 2008 survey of 637 child care center directors in 
California found that 90% reported at least one pest problem and half of these center directors 
reported using pesticides to control pests, with 47% reporting the use of aerosolized pesticides, 
which pose greater risk of exposure than pesticides applied as baits or gels (27). This survey was 
conducted shortly after the California Healthy Schools Act expanded in 2007 to include child 
care facilities. The DPR School and Child Care IPM Program grew again in 2015 after the 
enactment of state legislation that added mandates for schoolsites, including child care centers, to 
have an integrated pest management (IPM) plan, schoolsite pesticide use reporting, and IPM 
training (28).  ECE programs may also hire professionals that apply pesticides inside or outside 
the facility to manage pest problems. In 2017, 98,522 pesticide applications were reported for 
public K-12 schools and licensed child care centers across California. Insecticides were the most 
reported pesticide class, followed by herbicides (29).  

 

1.3 Health effects and neurodevelopmental toxicity 

Studies suggest that early-life exposure to pesticides, even at low levels, can have a wide 
range of adverse health effects such as respiratory symptoms and decreased lung function (30, 
31), and impacts on neurological and behavioral development (32). A meta-analysis found that 
exposure to chronic, low-dose indoor residential insecticides during early childhood is associated 
with an increased risk of leukemia and lymphoma among young children and young adults (33). 
Most of what is known about pesticides and children’s health come from studies within 
agricultural communities, where pesticide exposures are disproportionately high. Residential 
proximity to agricultural pesticide applications during both prenatal and postnatal periods has 
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been linked to poorer cognitive and neurodevelopment later in childhood, and adverse behavioral 
outcomes such as autism (34), autism-related behaviors, and ADHD (35). The 
neurodevelopmental effects of prenatal exposure to OP pesticides are well studied (4, 36-48), but 
gaps in the literature on early childhood exposures to pesticides still exist, particularly in the area 
of chronic, low-level exposures to non-OP pesticides. 

Pregnancy through the first years of life is a critical window for brain growth development 
and particularly vulnerability to disruption (49). Neurological pathways rapidly develop in early 
childhood. In the first few years of life, more than 1 million new neural connections form every 
second (50). Formation of functional neural networks is key to critical cognitive processes such 
as memory, learning, and attention. Overall brain volume and development of several regions of 
white matter may be complete by age 5 years (51), underscoring the critical period prenatally to 
school age. 

Neurotoxicity is defined as an adverse change in the structure or function of the central 
and/or peripheral nervous system following exposure to a chemical, physical, or biologic agent 
(52).  Neurodevelopmental toxicity refers to the harmful effects of xenobiotics on the 
development and function of the nervous system, often resulting from exposure to various 
environmental factors such as chemicals, toxins, or other substances during critical stages of 
prenatal and childhood development.  

The developing brain is particularly vulnerable to adverse effects of neurotoxic pesticides. 
Physiologically-based pharmacokinetic modeling provides evidence of age-related differences of 
pesticide metabolism and neurotoxic susceptibility (53, 54). Many pesticide compounds target 
the nervous system of insects. Because of similarities in brain biochemistry, these pesticides pose 
an inherent risk for human neurotoxicity (55). Despite their recognition of the importance of 
evaluating developmental neurotoxicity, U.S. Environmental Protection Agency (EPA) safety 
testing requirements for pesticides typically focus on acute toxicity, carcinogenicity, 
genotoxicity, and other immediate health effects.  

There are a relatively small number of “known developmental neurotoxicants,” namely 
certain metals, solvents, OP pesticides, and, more recently, endocrine-disrupting compounds, and 
these may not fully represent of all the potential mechanisms by which chemicals may impact 
neurodevelopment (56). Some chemicals may have multiple modes of action and may affect the 
nervous system both directly and indirectly (57), such as through damage to hepatic or 
cardiovascular structures, or endocrine system disruption. Thyroid hormones, a key component 
of the endocrine system, play a crucial role in brain development (58). 

Mechanisms of neurotoxicity have traditionally been recognized as pathways leading to 
neuronal cell death, neuropathology, or severe neural injury; however, recent research suggests 
alternative mechanisms of more subtle yet consequential changes in the brain and behavior (56). 
Critical neurodevelopmental processes include proliferation, migration, differentiation, 
synaptogenesis, myelination, and apoptosis, and evidence shows that interference with one or 
more of these developmental processes can lead to developmental neurotoxicity (49). The OP 
pesticide chlorpyrifos provides a compelling example of how the understood mechanism of 
neurotoxicity may not explain neurodevelopmental impacts. The common mechanism of toxicity 
for the class of OPs is inhibition of the enzyme acetylcholinesterase (AChE). Literature suggests 
that early life exposure to chlorpyrifos at doses lower than what would cause AChE inhibition 

https://developingchild.harvard.edu/science/key-concepts/brain-architecture/#neuron-footnote
https://developingchild.harvard.edu/science/key-concepts/brain-architecture/#neuron-footnote


4 
 

still result in neurodevelopmental abnormalities (55, 59-61). The mechanisms underlying the 
developmental neurotoxicity of chlorpyrifos are not well understood, but potential mechanisms 
include loss of myelin, disruption of axonal transport and outgrowth, and altered synaptic 
function (62). If neurodevelopmental effects are secondary to the critical effect or main 
mechanism of neurotoxicity, such as AChE inhibition, then health protective guidance values 
based on these traditional mechanisms of neurotoxicity may not be protective of 
neurodevelopment. These reference doses, often derived based on the understood neurotoxic 
effects describe above, serve as the point of comparison for health risk assessments.  

Developmental neurotoxicants may also cause “silent damage” (57), manifesting with age, 
and may contribute to neurodegenerative diseases such as Parkinson's or Alzheimer's diseases. 
One hypothesis for the latency of neurotoxic injury involves the brain’s natural plasticity being 
overwhelmed by further exposures to chemical and non-chemical stressors (e.g., chronic stress or 
natural aging process) (57). 

This dissertation will focus on the potential neurotoxicity / neurodevelopmental toxicity of 
pesticides measured in young children’s environments when considering potential health 
outcomes (Chapter 2 focuses on predictors of contamination, with no associated health outcome 
measurement). In Chapter 3, we base our assessment of risk on US EPA risk assessment 
documents and reference doses, which often use neurotoxicity assays in rats to derive the 
reference dose. The EPA maintains that risk assessments select the most sensitive endpoint, and 
are protective of other endpoints, such as neurodevelopmental toxicity. In Chapter 4, we 
evaluated associations of pesticide exposure on child IQ at age 7 years as our outcome of interest 
to assess potential neurodevelopmental impacts of early childhood exposure to pesticide 
mixtures in dust. 

1.4 Pesticide compounds and classes 

Pesticides consist of various chemical classes with different mechanisms of action. OP and 
pyrethroid pesticides, which are frequently detected in homes and child care centers, are two of 
the major classes of insecticides applied to control insects in residential and agricultural settings 
in recent decades. The use of OPs and pyrethroids grew especially after U.S. phase-outs of 
organochlorine (OC) pesticides such as dichlorodiphenyltrichloroethane (DDT) in the late 
1980’s, due to concerns about their persistence and bioaccumulation (however, these highly toxic 
and bioaccumulative pesticides, while banned in high-income nations, are still used in many low-
income and middle-income countries for malaria control). Due to concerns about children’s 
exposures to OP pesticides, the U.S. EPA phased-out residential uses of chlorpyrifos and 
diazinon in the early 2000’s. As of 2021, nearly all uses of chlorpyrifos, which was still heavily 
used in agriculture, are now restricted in California (63).  

Pyrethroid insecticides have replaced many of the residential uses of the OP insecticides, and 
they are also extensively applied on agricultural fields. Pyrethroids are a class of synthetic 
insecticides, designed to mimic the naturally occurring insecticidal properties of some 
chrysanthemum flowers (Chrysanthemum cinerariifolium and Chrysanthemum coccineum). 
Pyrethroids are thought to be of lower toxicity than OP or OC pesticides. Geometric mean levels 
of 3-PBA, a non-specific urinary metabolite for pyrethroids, increased significantly among 
children in the NHANES 2011–2012 population compared to previous cycles, and levels were 
higher among children than adults (64). While data did not show a clear increase in the period 
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from 2007 to 2012 for agricultural use of pyrethroids, residential uses of pyrethroids have likely 
increased over that time. While the harmful effects of OP pesticides are well established (see 
above), little is known about risks associated with chronic, low-dose pyrethroid exposure.  

The pesticide compounds measured in indoor dust samples and discussed in this dissertation 
include a mix of pesticides used regionally in agricultural and structural pest control (see Table 
1.1). In Chapters 2 and 3, the panel of pesticide analytes include those that have been previously 
measured in California ECE centers, including several pyrethroids, plus newer-use pesticides 
such as fipronil and chlorfenapyr that have not previously been measured in child care studies. In 
Chapter 4, analytes include some that are measured in the child care study (cis- and trans-
permethrin, chlorpyrifos, diazinon, and chlorthal dimethyl (DCPA, tradename Dacthal)), plus 
other OPs (phosmet and oxydemeton-methyl), and one fungicide, iprodione, not measured in the 
child care study. This dissertation does not include analyses of other commonly used pesticides 
such as glyphosate, 2,4-D, neonicotinoid insecticides, or persistent legacy pesticides such as 
DDT. In Chapters 3 and 4, we utilize a pesticide class-based approach to evaluate the risks of 
pesticide exposure (for pyrethroids) and produce effect estimates on neurodevelopment for each 
pesticide class using Bayesian Hierarchical Modeling (for OP, pyrethroid, phthalate herbicide, 
and fungicide classes). 

1.5 Characterizing potential exposure using indoor dust 

Pollutant concentrations can be measured in a variety of environmental or biological media, 
or estimated via proxies such as geospatial data. This dissertation focuses on pesticides measured 
in indoor dust, collected with a high-volume small-surface sampler (HVS3). Developed for the 
U.S. EPA in 1990 to assess risk from lead, pesticides, polyaromatic hydrocarbons, and other 
pollutants in house dust on bare surfaces and carpets, the HVS3 allowed measurement of both 
concentration (µg/g) and loading (µg/m2) of surface dust pollutants by using a cyclone with 
controlled air flow and pressure drop across the nozzle (65).  

Dust concentration and loading are complimentary measures of indoor contamination. 
Loading (amount of contaminant per unit of flooring sampled) is generally considered to be a 
better indicator of potential exposure (66) and is more sensitive to recent cleaning practices, 
while concentration is generally more indicative of sources of contamination (67, 68) and used in 
risk assessment calculations of potential intake dose. Dust provides a stable matrix for pesticides, 
showing less variation over time than air or urine measurements (65, 69).  

Carpeting is a common dust reservoir where pesticides accumulate. Carpets collect tracked in 
soil and collect settled dust from indoor air (65). Pesticide residues may persist for years in 
carpets, where they are protected from sunlight, rain, temperature extremes, and microorganisms 
(70, 71). Indoor dust is an important route of exposure for young children as they spend more 
time in close contact with floors and have high hand-to-mouth activity. Young children spend a 
significant amount of time indoors, and the concentration of pollutants in house dust may be 2–
32 times higher than that found in the outdoor soil nearby (65). Child care centers, where many 
different children spend a significant amount of time, and the homes of farmworkers with 
children, are two important settings for studying risks of exposure to pesticides in indoor dust. 

1.6 Study populations 
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This dissertation uses data from two children’s environmental health studies with pesticide 
measurements in California. The University of California, San Francisco (UCSF) Healthy 
Children & Environments Study (HCES) is an ongoing randomized-control trial funded by the 
National Institute of Environmental Health Sciences (NIEHS) to examine the effect of an IPM 
intervention for licensed child care centers. Four northern California counties, two in the San 
Francisco Bay Area and two in the Central Valley, were randomized to the IPM or attention-
control health intervention. Carpet dust samples are collected from classrooms at baseline and 
after the seven-month intervention period. In addition, five families are recruited from each 
center meeting the following inclusion criteria: (1) aged 3 or 4 years, (2) plan to spend at least 6 
hours per day in the center, (3) plan to be enrolled in the center for the next 9 months, and (4) 
parent is present during enrollment, who can speak English or Spanish.  

Because HCES does not collect health outcome data associated with the measured pesticide 
exposures, Chapter 4 draws upon the Center for the Health Assessment of Mothers and Children 
of Salinas (CHAMACOS) Study data to examine the association between common pesticide 
classes measured in indoor dust samples and child neurodevelopmental outcomes. The 
CHAMACOS Study is a longitudinal birth cohort study examining pesticide and other 
environmental exposures among children in a farmworker community. The cohort began in 
1999, enrolling pregnant women living in California's Salinas Valley, a key agricultural region. 
The study enrolled English or Spanish-speaking pregnant women who were at less than 20 
weeks’ gestation, eligible for low-income health insurance (Medicaid), and at least 18 years of 
age, recruited from prenatal care clinics serving the Salinas Valley’s farmworker population. 

Both HCES and CHAMACOS include interviews, surveys, and validated observational 
assessments of the child care or home environment to capture information about outcomes and 
covariates. For HCES, the director interview, conducted by the assigned child care health 
consultant, collects information on personal (e.g., education level, years of experience) and 
center (e.g., staff turnover, facility age) demographics; the center’s pest problems, pesticide use 
practices, and IPM policies and practices; and the center’s cleaning products, cleaning routines, 
and maintenance practices. During the baseline assessment stage, an experienced research 
assistant completed inspection checklists in each child care center including the IPM Checklist 
and Health and Safety Checklist for Early Care and Education Programs, utilized in prior studies 
(72-76). The IPM Checklist includes 73 items with 8 subscales, and for this project, included 
additional items to identify use of door mats and the pesticides stored on-site by child care or 
facility staff. The CHAMACOS study includes data on many potential confounders and 
modifiers of neurodevelopmental and other health outcomes. In Chapter 4, we focus on cognition 
measured by the Wechsler Intelligence Scale for Children (WISC-IV) at age 7 years as the key 
endpoint. This outcome measurement is used in many studies examining associations between 
OP and pyrethroid pesticides and neurodevelopment in preschool-age children and school-age 
children (36, 77).  

Both the UCSF Healthy Children & Environments Study and the CHAMACOS study 
collected indoor carpet dust samples using a high-volume small surface sampler (HVS3), which 
is a specially designed vacuum cleaner that collects particles > 5 μm in diameter (HVS3; 
Cascade Sampling Systems, Bend, OR), and both studies used the same sampling protocol. 
Although the CHAMACOS cohort is made up of members of an agricultural community that is 
disproportionately exposed to many pesticides, the levels of the pyrethroids in those homes in 
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1999-2000 are similar to environmental levels found in children’s environments today. A review 
of pyrethroid measurements from children’s homes found that the CHAMACOS measurements 
were on the lower end of the distribution, likely due to regional differences. 20 years later, the 
measurements of cis- and trans-permethrin in California child care centers from non-agricultural 
regions are similar in concentration (see Chapter 2). 

1.7 Research needs and dissertation aims 

The overall goal of this dissertation is to examine exposures to pesticides in child care 
environments, characterize health risks of non-dietary pesticide exposures in child care, and 
examine potential neurodevelopmental effects of pesticides that are most frequently detected in 
children’s environments.  

Child care programs are an important setting for environmental health interventions, but 
there are a limited number of studies conducted there. Children spend a significant amount of 
time in child care environments, with particularly long hours for working class families. Few 
studies have characterized exposures to pesticides in child care programs and none have 
quantitatively examined predictors of the pesticide levels found in environmental samples. Child 
care providers and families of enrolled children participating in environmental health research 
may not have a clear understanding of what concentrations of pesticides in classroom carpet dust 
means for children’s health, therefore research translation is important. 

Widespread use of OP and pyrethroid pesticides has led to ubiquitous human exposure (37). 
However, risk is not distributed evenly or equitably, and children, farmworkers and farming 
communities, and populations experiencing high levels of stress are disproportionately impacted. 
This dissertation applies novel statistical and risk estimation methods to better account for 
multiple exposures and differential vulnerability in the population, improving upon traditional 
methods in environmental epidemiology and human health risk assessment. 

Specific Aims: 
• Chapter 2 aims to identify determinants of pesticide levels in dust samples collected from 

child care classroom carpets.  
• Chapter 3 aims to determine if children’s exposures to pesticides in child care via non-

dietary ingestion and dermal absorption exceed health-protective reference values, and 
compares traditional risk calculations to methods that account for uncertainty and 
cumulative risk.  

• Chapter 4 aims to examine the relationship between early life exposure to mixtures of 
current-use and legacy pesticides measured in house dust and children's 
neurodevelopment. 

Overall, this dissertation seeks to close these knowledge gaps and aims to promote healthy 
early childhood environments, for the benefit of children, their care providers and families, and 
the community at large.   
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Table 1.1. Pesticides and pesticide classes measured in dust samples included in this dissertation. 

Pesticide / Class HCES (Ch. 2 & Ch. 3) CHAMACOS (Ch. 4) 
Pyrethroids 
Bifenthrin X  
Cyfluthrin X  
Cypermethrin X  
Deltamethrin X  
Esfenvalerate X  
ƛ-Cyhalothrin X  
Permethrin (cis/trans) X X 
Organophosphates 
Chlorpyrifos X X 
Diazinon X X 
Oxydemeton-methyl 

 
X 

Phosmet 
 

X 
Fungicides 
Iprodione  X 
Herbicides 
Chlorthal dimethyl (DCPA / 
Dacthal) 

X X 

Phenylpyrazoles 
Fipronil X  
Pyrroles 
Chlorfenapyr  X  
Synergists 
Piperonyl butoxide  X  
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Chapter 2 Predictors of pesticide levels in carpet dust collected from child 
care centers in Northern California, USA 

2.1 Introduction 

The majority of young children in the United States (U.S.) spend time in out-of-home 
care settings, with many preschool-age children spending half of their waking weekday hours in 
early care and education (ECE) programs (78). Chemical exposures in ECE environments are of 
particular concern because young children are uniquely vulnerable to their adverse effects during 
critical windows of rapid development (12). Previous studies have reported on the presence of 
pesticides in ECE facilities (6-9). Studies suggest that early-life exposure to pesticides, even at 
low levels, can have adverse health effects such as respiratory symptoms and decreased lung 
function (30, 31), and impacts on neurological and behavioral development (32). A meta-
analysis found that exposure to chronic, low-dose indoor residential insecticides during early 
childhood is associated with an increased risk of leukemia and lymphoma among young children 
and young adults (33). Physiologically-based pharmacokinetic modeling provides evidence of 
age-related differences of pesticide metabolism and neurotoxic susceptibility (53, 54). 

Pesticide contamination may result from nearby agricultural or structural use. More than one 
billion pounds (or over 450 million kilograms) of pesticides are applied in the U.S. annually, 
with nearly 90% used for agriculture (19). A survey of 637 child care center directors in 
California found that 90% reported at least one pest problem and half of these center directors 
reported using pesticides to control pests, with 47% reporting the use of aerosolized pesticides, 
which pose greater risk of exposure than pesticides applied as baits or gels (27). ECE programs 
may also hire professionals that apply pesticides in or outside the facility to manage pest 
problems. The First National Environmental Health Survey of Child Care Centers measured 
pesticides in indoor floor wipe samples, with chlorpyrifos, diazinon, cis-permethrin, and trans-
permethrin detected in more than 67% of the centers. In smaller studies of ECE programs, 
detectable levels of pesticides were found in all dust samples from 13 centers in North Carolina 
(8) and 22 centers in Ohio (18). However, the predictors of pesticide levels in ECE programs 
have not been quantitatively assessed. 

Indoor dust is an important exposure pathway for young children because they spend more 
time close to and in direct contact with the ground and have greater hand-to-mouth activity (65). 
Carpet dust is a good environmental medium for assessing long-term indoor exposure because 
pesticides and other contaminants collect in dust over years, where they are protected from 
degradation by sunlight, moisture, and microorganisms (70, 71). Dust concentration and loading 
are complimentary measures of indoor contamination. Loading (amount of contaminant per unit 
of flooring sampled) is generally considered to be a better indicator of exposure (66) and is more 
sensitive to recent cleaning practices, while concentration is generally more indicative of sources 
of contamination (67, 68). 

In California, the Department of Pesticide Regulation (DPR) has enacted policies intended to 
reduce children’s exposures to pesticides in public schools and licensed ECE centers 
(“schoolsites”) by limiting agricultural pesticide applications near schoolsites and encouraging 
adoption of low-risk pest management practices, known as integrated pest management (IPM). 
Within 0.25 miles (approximately 402 meters) of a schoolsite, growers cannot apply certain 
pesticides on school days (23). The California Healthy Schools Act is a right-to-know law that 
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provides parents and staff with information about pesticide use at schoolsites (79). Additionally, 
licensed pest management professionals (PMPs) are required to report pesticide applications at 
schoolsites. 

In the present study, we examine behavioral and environmental determinants of pesticide 
concentrations and loadings in carpet dust collected from 51 ECE centers. We utilize baseline 
data from an ongoing study examining pesticide use and exposure in Northern California ECE 
centers. We hypothesize that proximity to agricultural pesticide applications, storing pesticides 
onsite, fewer IPM practices, older building age, having a PMP apply pesticides in the past year, 
placement of sampled area carpet on carpeted flooring, and fewer pests observed onsite are 
associated with higher pesticide concentrations and loading for frequently detected pesticides 
measured in carpet dust. 

2.2 Materials/Subjects and Methods 

2.2.1 Study population 
Data for this analysis were collected as part of the University of California, San Francisco, 

Healthy Children & Environments Study (HCES), a randomized-control trial examining the 
impact of an IPM intervention for ECE centers on pesticide exposure and health risks. The 
present analysis uses baseline data collected from 51 ECE centers from four northern California 
counties during the first three years of the study (November 2017-January 2018, August 2018-
November 2018, and September 2019-November 2019). Inclusion criteria for the four counties is 
described by Alkon et al. 2022 (80). Briefly, the two San Francisco Bay Area and two San 
Joaquin Valley counties were matched on geography, demographics, and agricultural pesticide 
use. There is high agricultural pesticide use in the San Joaquin Valley counties compared to the 
more urban / suburban Bay Area counties (81). The Institutional Review Board at the University 
of California, San Francisco approved all study activities, and written informed consent was 
obtained from all center directors. 

2.2.2 Observational checklist and interview data 
We collected information about practices and facility characteristics during ECE director 

interviews and observational checklists. During the baseline assessment stage, study staff 
completed two inspection checklists in each ECE center: The Integrated Pest Management 
Checklist for Early Care and Education Programs (IPM Checklist) and the Health and Safety 
Checklist for Early Care and Education Programs, both used in previous ECE environment 
studies (76, 82-84). The IPM Checklist has shown construct, content, face, and criterion validity 
(83), as well as having predicted change in child care studies (76). The IPM Checklist includes 
73 items with 8 subscales (outdoor: garbage, exterior, play area; indoor: kitchen, bathrooms, play 
areas, storage, staff area). For each subscale pest problems (pest or evidence of pest observed) 
were recorded in each location. For this project, the IPM Checklist included additional items to 
identify use of doormats, flooring and carpet types in the classroom, and the pesticide products 
stored on-site, including product active ingredients and U.S. EPA pesticide registration numbers.  

A child care health consultant, a health professional trained to provide health and safety 
information specific to ECE settings, was assigned to each ECE program and interviewed the 
director. The interview collected information about the director (e.g., education level, years of 
experience); center characteristics (e.g., facility age, maintenance information); the center’s pest 
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problems, pesticide use practices, and IPM policies and practices; and cleaning products and 
routines.  

2.2.3 Dust sample collection 
Dust samples were collected using a high-volume surface sampler, a specially designed 

vacuum cleaner that collects particles >5 micrometer (μm) in diameter (85) (HVS3; Cascade 
Sampling Systems, Bend, OR). Samples were collected from the carpet where children have 
circle time and / or nap time (often the carpet is used for both). All sites had a carpet or area 
carpet that was at least 1 square meter (m2) in area, the minimum area needed for carpet dust 
sampling.  

Study staff used a standard protocol (86) for HVS3 preparation, sampling, and prevention of 
cross-contamination. The sampling train, vacuum wheels, and collection bottle were cleaned 
with soap and water, rinsed with distilled water, and washed with isopropyl alcohol between 
uses. The sample collector wore nitrile gloves and boot covers to sample from an area of 1-2 m2. 
The exact area sampled, weather conditions, and GPS coordinates were recorded at the time of 
the sample collection. Sealed Teflon collection bottles containing the dust samples were labeled 
with the collection date and sample identification number, stored in a -20 °C freezer, and shipped 
via overnight mail on dry ice to Southwest Research Institute (SwRI) (San Antonio, TX), where 
they were stored in freezers until analysis.  

2.2.4 Laboratory analysis 
SwRI measured concentrations and loadings of 14 pesticides in the dust: bifenthrin, 

chlorfenapyr, chlorpyrifos, cyfluthrin, cypermethrin, chlorthal-dimethyl (DCPA / Dacthal), 
deltamethrin, diazinon, esfenvalerate, fipronil, lambda-cyhalothrin, permethrin (cis- and trans-), 
and piperonyl butoxide. These represent a mix of pesticides used regionally in agricultural and 
structural pest control that have been previously measured in California ECE centers, plus 
several newer-use pesticides such as fipronil and chlorfenapyr.  

For each dust sample, the total dust mass was passed through a 150-μm stainless steel sieve 
and the fine dust was weighed.  The aliquot of the sample’s fine dust mass removed for 
extraction was: 1.0 gram (g) if this mass exceeded 1.0 g, 0.5 g if 0.5-1.0 g, 0.2 g if 0.2-0.5 g, or 
the entire fine dust mass if <0.2 g.  One duplicate and one matrix spike sample were prepared for 
every 20 samples in the extraction batch from additional aliquots of the sample with the largest 
fine dust mass.  Each aliquot in the batch was spiked with three labeled extraction surrogates 
(diazinon-d10, 13C6-cis-permethrin, and p-terphenyl-d14) and Soxhlet-extracted with 200 mL of 
dichloromethane:hexane (1:1) for 18 hours, and the extract concentrated to 1.0 milliliter.  The 
entire extract was passed for cleanup through a florisil column and the eluent concentrated to a 
final volume of 1.0 milliliter in hexane for analysis by Gas Chromatography/Mass Spectrometry 
(GC/MS).  One solvent blank was extracted with each extraction batch of dust samples. 

Analysis for the 14 targets was performed using an Agilent 6890N/5973 GC/MS in selected 
ion monitoring mode with a 30-meter x 0.25-millimeter ID x 0.25 µm film thickness 
Phenomenex ZB-Semi-volatiles GC column.  The instrument was scanned to monitor 2 to 4 
selected ions per analyte.  Quantification was performed using chlorpyrifos-d10 and trans-
permethrin-13C6 as internal standards.  The percent relative standard deviation of the analytes 
was maintained within 30% during each initial seven-point standard calibration.  The percent 



12 
 

difference of each analyte in the mid-level standard was maintained within 40% of the initial 
calibration value during continuing calibrations. Pesticide concentrations were determined in 
nanogram per gram (ng/g) of dust and pesticide loadings were derived by multiplying the 
concentrations (ng/g-dust) by the dust loading (g-dust/m2). Detection limits for each target 
analyte are shown in Supplemental Table 2.1. 

2.2.5 California Department of Pesticide Regulation Pesticide Use Information 
California Department of Pesticide Regulation (DPR) Pesticide Use Report (PUR) data were 

used for the geospatial analysis of facility proximity to agricultural pesticide applications and 
reported structural pesticide applications by PMPs at the schoolsite. PUR agricultural pesticide 
use data includes application date, pounds of active ingredient applied, pounds of product 
applied, crop treated, and location geocoded to one-square mile sections defined by the U.S. 
Public Land Survey System. As part of the Healthy Schools Act, PMPs must report certain 
pesticide applications made at schoolsites annually to DPR. The PUR data obtained for these 
school sites via Public Records Request included county, school name, address, product name, 
active ingredient, location, applicator, and date.  

Indoor dust pesticide exposure studies often select a radius of 1 to 4 kilometer (km) around 
residences to assess associations with nearby agricultural pesticide use (87-90). Harnly et al. 
(2009) found significant associations within ≈ 23 km2 around the home which corresponds to a 
radius of approximately 2.7 km , and Gunier et al. (2014) found concentrations and loadings of 
manganese in house dust related to agricultural applications of manganese fungicides within 3 
km of the residence (89). We estimated agricultural use for each pesticide of interest from 2015 
to 2019 within a 3 km radius around each ECE center using GPS coordinates recorded at the 
time of the sample collection and ArcGIS (ESRI, Redlands, CA). At the time of the analysis, 
PUR data was publicly available on the California pesticide information portal 
(calpip.cdpr.ca.gov) for 2015-2018, and 2019 data was provided by DPR staff. We selected 365 
days prior to the dust sample collection date to align with questions asked in the director 
interview (past 12 months) and the time period often correlated with pesticide dust 
concentrations (88). The density of agricultural pesticide use was estimated using methods 
described by Nuckols et al. (91). Briefly, for each pesticide, the total reported kilograms applied 
within the 365 days prior to the date of the dust sampling is weighted by the proportion of the 
area of the 3 km buffer around the ECE center that intersects with the Public Land Survey 
System section where the application occurred to determine pesticide use in kg/km2. 

2.2.6 Statistical analyses 
We first calculated descriptive statistics for demographic characteristics, pesticide detection 

frequencies, and distributions of pesticide concentrations and loadings. Among the 14 pesticides 
measured, we conducted further analyses on those with detection frequencies over 75%: 
bifenthrin, chlorpyrifos, fipronil, and permethrin (cis- and trans-). The sum of the two 
concentrations for the isomers cis-permethrin and trans-permethrin were used as a ∑permethrin 
value for consistency with PUR records. Spearman’s correlation coefficients were computed for 
each pesticide concentration and loading (for samples with measurements below the detection 
limit, a value was imputed as the limit of detection divided by the square root of two (DL/√2), 
then all values were natural log transformed) and continuous predictors. Tobit multivariable 
regression models were developed for each natural log transformed pesticide analyte (both 
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concentration and loading), setting the lower bound at the detection limit. Tobit regression is an 
unbiased approach for analyzing truncated data when a portion of the measurements are less than 
the limit of detection, resulting in left-truncated data (92). The transformed pesticide 
concentrations or loadings were the dependent variables and the environmental characteristics 
and behavioral practices were the predictors, controlling for other variables. Statistical analyses 
were conducted with Stata 15 (StataCorp. 2017. Stata Statistical Software: Release 15. College 
Station, TX: StataCorp LLC).  

Independent variables used in the multivariable models were density of agricultural use of 
the specific pesticide active ingredient within 3 km over the 12 months preceding the date of the 
dust sample (continuous, kg/km2), if an application of the active ingredient was reported to DPR 
by a PMP within 12 months preceding the date of the dust sample (binary), observation of a 
product containing the active ingredient during baseline site visit (binary), IPM score based on 
the IPM checklist (total number of items answered “Yes” over the number of applicable 
questions), number of types of pests observed at site visit (categorized as none, one, or two or 
more), geographic region (San Joaquin Valley or Bay Area), and for loading models – placement 
of sampled carpet (categorized as area carpet on top of hard surface flooring, area carpet on top 
of carpeted flooring, or carpeted flooring without area rug). Building year (from director 
interview or county records) was considered in correlations, but excluded from multivariable 
models because building year was closely correlated with IPM Checklist score. 

2.3 Results 

2.3.1 ECE characteristics. 
Table 2.1 describes the ECE program and facility characteristics. Programs from the first 

three years of the study were distributed across the four participating counties. There was a mix 
of program types, including private, non-profit (n=15); private, for-profit (n=10); Head Start 
(n=6); California State Preschool Programs (n=5); and blended funding (n=15). Programs ranged 
in size from 10 to 200 children, totaling 3,327 children enrolled in the 51 participating ECE 
centers. Director experience in the ECE field ranged from 4 to 51 years. 

A doormat was present at the entrance to the facility for 47 of 50 centers (94%). Among 
directors, 62% (n=29) reported knowing about the Healthy Schools Act, 55% (n=26) knew about 
IPM, 29% (n=15) had an IPM coordinator (as required by the Healthy Schools Act), and 27% 
(n=14) had a written IPM policy for the program. The average score on the IPM Checklist was 
73 (SD=9); scores among the San Joaquin Valley sites were about 10% higher than the Bay Area 
sites, and their facilities were newer on average. Seventy-eight percent of sites (n=40) had a pest 
or evidence of pests observed by the researcher completing the IPM Checklist. Most sites had 
one type of pest observed, and the maximum was four different pests. The most common pests 
observed by study staff during the completion of the IPM Checklist were flies and spiders. The 
most common pests observed by directors over the past year were ants (49%), head lice (43%), 
flies (41%), and spiders (41%) (Supplemental Figure 2.1). Over half of the directors (57%) stated 
that a PMP had applied pesticides within the previous year and 24% of programs (n=12) had a 
“non-exempt” pesticide product onsite that requires reporting under the Healthy Schools Act. 
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2.3.2 Pesticide levels in dust. 
Table 2.2 summarizes the distributions of all the pesticides analyzed in carpet dust. All ECE 

centers had at least one detectable pesticide in the carpet dust sample. The most frequently 
detected pesticides were: cis-permethrin (98%), trans-permethrin (96%), bifenthrin (94%), 
fipronil (94%), and chlorpyrifos (80%). Among these, chlorpyrifos had the lowest mean 
concentration and bifenthrin had the highest mean concentration. Piperonyl butoxide, 
cypermethrin, chlorfenapyr, deltamethrin, lambda-cyhalothrin, esfenvalerate, and cyfluthrin were 
detected in 10-73% of samples at baseline. Diazinon and DCPA were not detected in any 
samples. The total number of detected pesticide analytes within each center ranged from three to 
eleven (Supplemental Figures 2.2-2.4).  

2.3.3 Pesticide Use Report (PUR) data. 
The amount of pesticide sold for use (agricultural and structural) in California as well as the 

amount reported in agricultural applications for all 14 pesticides are shown in Table 2.2. Some of 
the pesticides in this study are primarily or only used in agriculture, such as chlorpyrifos, 
whereas some are used in primarily non-agricultural applications, such as fipronil, and some 
pesticides are widely used for both agricultural and structural pest control, such as permethrin. 

Most ECE centers were located within 3 km of an agricultural pesticide application in the 
year prior to the dust sample (Table 2.1). Detailed estimates of agricultural pesticide density are 
shown by region in Supplemental Table 2.2. In San Joaquin Valley counties, 24 of the 26 centers 
were within 3 km of at least one agricultural bifenthrin application that took place up to 365 days 
before the dust collection. The most heavily applied pesticide was chlorpyrifos, with a total of 
nearly 44 kg/km2 applied within 3 km of the child care centers, most of which took place in San 
Joaquin Valley counties.  

There were 18 active ingredients applied at the ECE centers reported to DPR within 365 days 
preceding the dust sampling date (Supplemental Table 2.3). Among these active ingredients, 
bifenthrin applications accounted for the greatest proportion of applications (36%). 

2.3.4 Pesticide concentration correlations. 
Spearman's rank correlation coefficients are shown in Table 2.3 for imputed, log-transformed 

pesticide levels and continuous predictor variables. Density of bifenthrin agricultural pesticide 
applications within 3 km was significantly correlated (p<0.05) with higher bifenthrin dust 
concentrations (r=0.38) and dust loadings (r=0.44). Greater number of fipronil applications 
reported by a PMP was significantly correlated with higher fipronil dust concentrations and 
loadings (r=0.30). Higher IPM Checklist scores were significantly correlated with lower 
chlorpyrifos concentrations (r=-0.28). Other correlation coefficients, including among the 
pesticide analytes and among the predictors can be found in Supplemental Table 2.4. 

2.3.5 Multivariable models.  
Results from the multivariable Tobit models for log-transformed pesticide concentrations and 

loading and predictor variables are shown in Table 2.4 and Figure 2.1. We converted regression 
coefficients into percent change for the predictors (%Δ = (exp(β)-1)*100), also shown in Table 4. 
Location in the San Joaquin Valley was a significant predictor for higher concentrations of 
bifenthrin (1,166% (95% CI: 274%, 4,185%)) and bifenthrin loading (3,457% (95% CI: 733%, 
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15,086%)), chlorpyrifos loading (236% (95% CI: 43%, 691%)), fipronil loading (362% (95% CI: 
20%, 1,682%)), and ∑permethrin loading (567% (95% CI: 112%, 2,001%)). Lower chlorpyrifos 
loading was associated with placement of the sampled carpet on carpeted flooring (-57% (95% 
CI: -81%, -5%)) and sampled base carpeting (-89% (95% CI: -98%, -50%)), compared to the 
referent placement of area carpet on hard-surface flooring. Higher scoring on the IPM Checklist 
was associated with lower permethrin dust loading (-8% (95% CI: -14%, -1%)) and lower 
chlorpyrifos dust loading (-6% (95% CI: -10%, -2%)).  

 

https://www.nature.com/articles/s41370-022-00516-8#Fig1
https://www.nature.com/articles/s41370-022-00516-8#Fig1
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Figure 2.1 Coefficients and 95% confidence intervals for predictors of pesticide levels in ECE 
carpet dust. A Predictors modeled against four pesticide concentrations. B Predictors modeled 
against four pesticide loadings. 
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2.4 Discussion 

Our results indicated that, for specific pesticides, geographic region, proximity to agricultural 
pesticide applications, applications of structural pesticides, fewer IPM practices, and placement 
of sampled carpet on hard surface flooring were predictors of higher pesticide levels in carpet 
dust Northern California ECE centers.  The strongest predictor of higher pesticide loading for all 
the most frequently detected pesticides was location in the San Joaquin Valley. Correlations were 
strongest for bifenthrin levels and agricultural bifenthrin use within 3 km of the ECE center in 
the past year; fipronil levels and PMP applications of fipronil at the ECE center; and lower 
chlorpyrifos levels with better IPM practices. Overall, we saw stronger associations between our 
selected predictors with the pesticide loading than with concentration. We did not find 
associations between observed pesticide products stored onsite, pests observed, or age of the 
facility. Our findings contribute to the growing knowledge that pesticides are ubiquitous in the 
environments in which California’s youngest and most vulnerable populations are cared for. 

The distribution of pesticides in our study were consistent with that of a study in California 
child care centers reported by Bradman et al. 2012 (9) which examined 10 of the same target 
analytes from samples collected in 2010 and 2011 (Figure 2.2 and Supplemental Table 2.5). 
Overall, the detection frequencies were similar aside from diazinon and DCPA, which were 
lower in our study. Chlorpyrifos was found at lower concentrations in the current study than 
other ECE studies. This is consistent with the declining use of OP pesticides after a voluntary 
phase-out for indoor uses of chlorpyrifos and diazinon between 2001 and 2004 (1), and declining 
agricultural use in California which dropped more than 50% since 2005, and all sales of 
chlorpyrifos ceased in 2020 (63). Median concentrations were similar for permethrin and 
piperonyl butoxide, and higher for bifenthrin and cypermethrin in our study, which may reflect 
increasing use of pyrethroids for pest control.  In a study of 13 ECE programs in North Carolina, 
cis- and trans-permethrin were also highly frequently detected in dust samples (8) (Figure 2). To 
our knowledge, this is the first study to measure fipronil and chlorfenapyr in carpet dust from 
ECE programs, two relatively new insecticides that are increasing in popularity (93, 94), and 
were detected in 94% and 33% of our samples, respectively. 
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Figure 2.2 Comparison of pesticide measurements among studies with dust samples from 
early care and education (ECE) programs. A Comparison of pesticide detection frequencies 
among four ECE studies. B Comparison of median pesticide concentrations among four ECE 
studies. UCSF HCES = University of California, San Francisco, Healthy Children and 
Environments Study. 

 

Predictors of pesticide dust contamination were generally consistent with predictors of 
pesticide concentrations in passive sampling silicone wristbands worn by preschool-age children 
in the same study population (80). Having a professional exterminator used in last 6 months at 
home was associated with higher levels of bifenthrin in wristbands worn by children. Pounds of 
agricultural pesticide use at the county-level was associated with cypermethrin, fipronil, and 
permethrin levels in the child wristbands, which is consistent with our findings of strong 
associations between region and higher concentration of bifenthrin and all pesticide dust 
loadings. In the silicone wristbands, having no pests observed at the ECE facility was associated 
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with higher levels of bifenthrin, fipronil, and trans-permethrin, but we found no association 
between pests observed and pesticide levels in dust. 

Most of what is known about determinants of non-dietary exposure to pesticides comes from 
studies in residential environments and suggest that both nearby agricultural pesticide use and 
individual behaviors are associated with pesticide exposures. A systematic review of non-dietary 
exposure to agricultural pesticides identified key determinants of exposure, including behaviors 
like housekeeping practices, and spatial indicators like proximity to fields and total amounts of 
pesticides applied near homes (20). Harley et al. (2019) reported that living within 100 m of 
active agricultural fields, having carpeting in the home, and having an exterminator treat the 
home in the past six months were associated with higher odds of detecting certain pesticides in 
silicone wristbands, while concentrations were lower for participants who cleaned their homes 
daily and had doormats in the entryway of their home (95). Several studies have reported that 
closer proximity to agricultural pesticide applications is associated with higher concentrations 
and loadings of pesticides in residential carpet dust (22, 88, 90, 96).  

The correlation between bifenthrin levels and agricultural use within 3 km in the present 
study is consistent with associations in residential settings.  We did not find an association with 
chlorpyrifos levels and agricultural use, despite chlorpyrifos only having agricultural uses in 
California during the study period. The half-life of chlorpyrifos can exceed one year (see Table 
2), therefore we may need to examine associations with applications made within two or more 
years prior to the dust sample. To our knowledge, this is the first examination of agricultural 
proximity to child care centers and pesticide exposures. Further investigation is needed to 
determine if California’s regulatory buffer of <500 meters around schoolsites will sufficiently 
reduce exposure to agricultural pesticides.  

We were not able to thoroughly examine other known predictors of residential pesticide 
contamination (20, 95). For example, we were not able to examine heterogenous patterns for 
doormats, carpet deep cleaning, or daily cleaning practices. Most ECE programs had their 
carpets deep cleaned (steam cleaned, shampooed, sent out to cleaner, or other wet cleaning 
method) at least once per year, only three programs did not have a doormat at their entrance, and 
routine cleaning, sanitizing, and disinfecting is required by California child care licensing. We 
did not find any correlation between frequency of deep carpet cleaning and pesticide levels in 
preliminary analyses. It is notable that there are still measurable concentrations of at least one 
pesticide in dust from all ECE centers in this study, despite many common practices that should 
reduce contamination. 

We found lower levels of permethrin and chlorpyrifos associated with higher scores on the 
IPM Checklist. Considering that chlorpyrifos has not been used indoors for more than two 
decades, this finding suggests that IPM practices may reduce exposure to legacy pesticides that 
persist in the indoor environment, in addition to preventing pest infestations and reducing the 
need for new pesticide applications. The IPM Checklist captures some information about 
building quality, doormats, ventilation, and cleaning practices, which may influence presence of 
persistent contaminants indoors. 

Flooring type and presence of carpets are predictors of total indoor dust loading (97). We 
found no difference in loading by the type of carpet sampled (low pile vs. medium and high 
pile). We hypothesized that pesticide levels would be lower in ECE centers with hard surface 
flooring types, however it appears that the placement of the sampled area carpet on 
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laminate/hardwood/tile flooring in 29 of the 51 centers permitted ready entrainment of fine dust 
from the hard flooring with activity in the room and subsequent settling and collection on the 
sampled area carpet, producing the elevated chlorpyrifos and permethrin loading on these 
carpets.  By contrast, less entrainment of fine dust may have occurred in the 18 centers where the 
sampled area carpet was placed on carpeted flooring and in the 4 centers where the carpet 
sampled was the base carpeting. This finding does not suggest that carpeted flooring is better 
than non-carpeted flooring for reducing exposure, but supports the notion that all carpets, 
particularly area carpets on which children come in close contact with, serve as reservoirs for 
indoor dust (98), and therefore should be targeted for frequent cleaning, and children’s hands 
should be washed after contact with carpets to reduce exposure. We were not able to determine 
the overall ratio of different flooring types in the classroom, and we relied on self-reported 
cleaning practices and frequencies. Placement of sampled carpets on different flooring types is a 
novel investigation in exposure assessment literature, and more research is needed.  

It is of note that we found poor concordance between the director interview and data on PMP 
applications provided by DPR. There were instances when the ECE director reported that a PMP 
sprayed pesticides in the past year, but no PUR record was provided, and vice versa. For over 
40% of centers (n=21), the PUR data contradicted the self-reported data from the director 
interview. We used DPR data assuming it would be more accurate, but that is unconfirmed. A 
potential limitation of the PUR data is that it includes pesticide applications reported to DPR by 
licensed PMPs and does not include applications by unlicensed center staff; additionally, some 
ECE centers are located on a school campus, so applications may be reported for those schools 
and not shown for the childcare center. However, the PMP records include detailed information 
about application dates, location, and active ingredient(s). Overall, we found that using the PUR 
data returned stronger and more precise effect estimates compared to director reported 
information about PMP practices. Our findings suggest that self-report of PMP pesticide use is 
not as reliable as statewide PUR data, and that there may be an overall need for better 
communication between PMPs and ECE directors. 

Limitations of this study include the relatively small number of baseline dust samples 
available from the first three years of HCES (sampling was curtailed due to COVID-19 
restrictions) which limited our power to detect associations between pesticide levels and 
predictors. We enrolled a convenience sample of ECE programs and assessed exposure during a 
limited period (Fall to early Winter), therefore results are limited in generalizability. Data for 
certain predictors of pesticide levels were not collected or analyzed, such as measures of 
classroom ventilation, efficiency of vacuum used in classroom, or wind direction at time of 
agricultural pesticide applications. We also collected a single sample from one area of the 
classroom, rather than multiple samples throughout the center. Lastly, this analysis considers 
center-level predictors and single pesticide outcomes individually and does not account for 
chemical-specific characteristics such as vapor pressure or persistence, nor considers predictors 
of pesticide mixtures. 

2.5 Conclusion 

In conclusion, we found that pesticide levels in classroom carpet dust were associated with 
some factors that ECE directors may have control over (IPM practices and the use of a pest 
management professional) and others that are beyond their control (geographic location and 
proximity to agricultural pesticide applications).  Children’s care environments are generally 



 

27 
 

understudied, but are a critical point for intervention as chronic, low-level exposures in early 
childhood can influence lifelong health and development.   

2.6 Supplement to Chapter 2 

 
Supplemental Figure 2.1 Director-reported pests observed, past year (director interview) 
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Supplemental Figure 2.2 Distribution of pesticide concentrations per dust sample (concentrations 
are log10-transformed) 

 

 

 

 

 

 

 

 

 

  



 

29 
 

 

Supplemental Figure 2.3 Distribution of pesticide loading per dust sample (log10-transformed) 
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Supplemental Figure 2.4 Total number of detected pesticides per dust sample (n=51) 
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Supplemental Table 2.1 Laboratory Analytical Data: Recovery of spiked pesticide amount in 
seven matrix spikes, and detection limits. 

Pesticide Recovery (%) Limit of Detection (ng/g) 

Mean (SD) Min Median 95th 
percentile 

cis-Permethrin  78 (15) 0.379 3.9 37.5 
trans-Permethrin  88 (25) 1.52 12.6 121 
Bifenthrin  97 (27) 1.26 1.66 16.3 
Fipronil  91 (11) 2.53 3.31 16.5 
Chlorpyrifos  92 (12) 1.26 1.65 3.26 
Piperonyl butoxide  102 (27) 1.26 16.3 82.3 
Cypermethrin  96 (73) 12.6 82.1 412 
Chlorfenapyr  110 (39) 2.53 3.31 16.5 
Deltamethrin  74 (17) 6.31 40.7 79.5 
λ-Cyhalothrin  109 (33) 6.31 8.27 16.6 
Esfenvalerate  92 (38) 6.31 41.1 79.5 
Cyfluthrin  109 (46) 12.6 81.5 159 
DCPA  79 (5) 1.26 1.65 3.26 
Diazinon  85 (7) 1.26 1.65 3.26 

 

Measurement accuracy for each pesticide was assessed by the percent recovery of the spiked 
amount of each targeted pesticide in the seven matrix spike samples.  Measurement precision 
was assessed by degree of agreement between the concentrations of each pesticide measured in 
the dust sample and its laboratory-split duplicate over the seven duplicate samples.   Agreement 
was within a factor of two for 59 (95%) of the 62 pairs with detected concentrations in both the 
sample and its duplicate.  Agreement was within 20% for 47 (76%) of these 62 duplicate pairs.  

LODs were sometimes raised due to inseparable coeluting analytical interference 
compounds. We report the minimum, median and an upper percentile of the LODs for each 
target analyte across all of the baseline samples.  Comparing the upper percentile and median to 
the minimum will indicate the prevalence of raised detection limits for each target pesticide. 
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Supplemental Table 2.2 Estimated density of agricultural pesticide use by region, 3 km around 
center, 365 days prior to sampling 

Pesticide Region # ECE Centers 
with application 
within 3 km, past 
year 

Median 
(kg/km2)* 

Range 
(kg/km2)* 

Bifenthrin 
  
  

SF Bay Area 5 1.79 0.57 - 2.21 
San Joaquin 
Valley 

24 0.65 0.01 - 3.28 

Total 29 0.69 
 

 

Chlorpyrifos 
  
  

SF Bay Area 2 4.60 4.03 - 5.16 
San Joaquin 
Valley 

11 2.54 0.01 - 8.01 

Total 13 3.08 
 

 

Permethrin SF Bay Area 2 1.18 1.17 - 1.19 
San Joaquin 
Valley 

8 0.24 0.001 - 2.72 

Total 10 0.40  
*Among non-zero values  



 

33 
 

Supplemental Table 2.3 Pest Management Professional (PMP) pesticide applications reported to 
DPR – at child care address, 365 days prior to sampling – by active ingredient 

Active Ingredient  Number of applications 
reported  
n (%) 

Alpha-(para-nonylphenyl)-omega-
hydrox.. 

1 (1%) 

Bifenthrin 29 (36%) 
Bromadiolone 3 (4%) 
Chlorfenapyr 1 (1%) 
Cyfluthrin 2 (2%) 
Cypermethrin 3 (4%) 
Deltamethrin 16 (20%) 
Dinotefuran 1 (1%) 
Edta, tetrasodium salt 1 (1%) 
Esfenvalerate 1 (1%) 
Fipronil 3 (4%) 
Hydroprene 2 (2%) 
Indoxacarb 3 (4%) 
Permethrin 2 (2%) 
Piperonyl butoxide 5 (6%) 
Prallethrin 1 (1%) 
Pyrethrins 4 (5%) 
S-methoprene 3 (4%) 
Total 81 (100%) 
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Chapter 3 Health risks associated with preschool-age children’s exposure to 
pesticides in carpet dust from child care centers in Northern California: A 
tiered cumulative risk assessment 

3.1 Introduction 

Research shows that young children are exposed to pesticides in their environment, including 
in child care settings (6-9, 99). Most children in the U.S. spend a significant amount of time in 
environments other than their home. One million children in California under six years of age 
attend child care programs (100) where they may spend up to 30–40 hours per week (78).  

Children are uniquely vulnerable to chemical exposures. Young children spend a large 
portion of their time on the floor or ground and have frequent hand-to-mouth activity, increasing 
their exposure to contaminants that settle in dust (10, 12). Overall hand-to-mouth behavior is 
significantly greater indoors than outdoors (15) and young children often spend 60% to 75% of 
their time indoors (16). Young children are particularly vulnerable to chemical exposures during 
critical windows of development because their respiratory, reproductive, digestive, 
immunological, and central nervous systems are not yet fully matured, causing them to be more 
susceptible to potential disruptions (12). Few studies have assessed potential health risks 
associated with pesticide exposures in child care settings (6, 8). One study of exposure to 
chlorpyrifos and dichlorvos suggested excess cancer risk among children in South Korean child 
care facilities (6). 

Traditional chemical health risk assessment and regulation are often done one chemical at a 
time (Figure 3.1) (101). However, environmental samples show that children are exposed to 
mixtures of pesticides as well as other contaminants (8, 9, 102). The U.S. Environmental 
Protection Agency (EPA) has made some progress in assessing cumulative risks from chemicals 
thought to act via a common biologic mechanism (for example, organophosphate (OP) pesticides 
causing acetylcholinesterase inhibition) (103). The U.S. EPA has developed relative potency 
factors that allow cumulative risk assessments for five classes of pesticides that share a common 
mechanism of toxicity, including pyrethroids. However, current EPA frameworks are still limited 
by a lack of attention to variability in human susceptibility, use of deterministic rather than risk-
specific, probabilistic approaches to defining reference values, and failure to incorporate 
interactions between chemical and nonchemical stressors in assessments (104-107).  

Risk assessments for non-cancer outcomes, such as neurotoxicity, assume a "safe" level of 
exposure, operationalized by the use of EPA oral reference doses (RfD), which are defined as 
levels of exposure “likely to be without an appreciable risk of deleterious effects.”  The National 
Research Council of the National Academies’ (NRC)  report Science and Decisions stressed the 
importance of applying probabilistic approaches and challenging the “bright-line” approach of 
the reference dose for non-cancer outcomes (104). In 2023, a group of scientists released a 
consensus statement for health-protective chemical assessments and decisions, outlining key 
principles for using science in hazard and risk assessment to reflect real-world risks. The 
accompanying publications provide frameworks and methods to address variability, uncertainty, 
and differential susceptibility in estimating risks for non-cancer health effects (105-107), which 
we apply in the present study. Advancements in probabilistic modeling and recent calls for 
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improved risk assessment approaches have made the application of newer methods for risk 
assessment more widely accessible and imperative to use. 

In the present study, we take a tiered approach to assessing potential health risks from 
children’s exposure to pesticides in indoor dust: First, we aim to generate contextual risk 
estimates that can inform and empower study participants in the reporting back of research 
results phase of environmental health studies by offering meaningful insights into potential risks. 
Child care providers and families involved in environmental health research may not easily 
understand what levels of pesticides in classroom carpet dust mean for children's health. 
Calculating potential doses and comparing them to established health benchmarks may support 
reporting research results to participants. Second, we apply probabilistic risk assessment methods 
to better account for variability within the diverse general population and describe risk beyond 
the RfD threshold (105, 106). This comprehensive approach acknowledges the complexity of 
real-world risks and strives to provide a more accurate and nuanced assessment of pesticide-
related health concerns. 

In this paper, we assessed children’s cumulative exposures to pesticides in child care 
facilities via non-dietary ingestion and dermal absorption using deterministic and probabilistic 
models and compared them to health-based reference values. 

 
Figure 3.1 Traditional and recommended risk assessment paradigm 

 

 

3.2 Methods and Materials 
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3.2.1 Study population 
The University of California, San Francisco (UCSF) Healthy Children & Environments 

Study (HCES) is an ongoing randomized-control trial examining the effect of an integrated pest 
management (IPM) intervention to reduce pesticide exposures in licensed child care centers (74, 
80, 99). Four northern California counties, two in the San Francisco Bay Area and two in the San 
Joaquin Valley, were randomized to a IPM or attention-control intervention. Carpet dust samples 
were collected from classrooms at baseline and after a seven-month intervention period. Three to 
seven children were recruited from each center, meeting the following inclusion criteria: aged 3 
or 4 years; plan to spend at least 6 hours per day in the center; plan to be enrolled in the center 
for the next 9 months; and have a parent present during enrollment who spoke either English or 
Spanish. Anthropometric measurements were collected on the enrolled children, including age 
and weight, by a child care health consultant at baseline and after the seven-month intervention 
period.  

3.2.2 Dust sample collection 
We collected indoor carpet dust samples using a high-volume small surface sampler (HVS3) 

(HVS3; Cascade Sampling Systems, Bend, OR). Collection procedures, quality control, and 
laboratory analytic details are described in Hazard et al., 2023 (99). Dust samples were tested for 
14 pesticide analytes, including: pyrethroids (bifenthrin, cyfluthrin, lambda-cyhalothrin, 
cypermethrin, deltamethrin, esfenvalerate, and cis- and trans-permethrin), OP pesticides 
(chlorpyrifos and diazinon), and others including the phenylpyrazole fipronil, the synergist 
piperonyl butoxide, the pyrrole chlorfenapyr, and the herbicide chlorthal-dimethyl (DCPA, 
tradename Dacthal). In this analysis, we evaluate concentrations of pesticides in dust from 52 
child care centers measured at baseline from 2017-2019 (99). We excluded DCPA and diazinon 
from analysis, which had no detects at baseline, and imputed samples below the limit of 
detection as LOD/√2 (108). We summed cis- and trans-permethrin to derive a total permethrin 
concentration used in subsequent analyses.  

3.2.3 Deterministic Risk Calculations and Individual Hazard Quotients 
We first conducted a screening-level deterministic risk assessment using measured pesticide 

concentrations from the baseline dust samples and body weight measurements for a subset of 
children from each center. One center had dust data, but no child data, so we imputed one child 
record for this site, using the mean body weight of all other children (n=253). 

We estimated children’s potential daily intake doses through dermal and non-dietary 
incidental ingestion exposure pathways for each pesticide analyte. We developed two potential 
daily doses deterministically: a central tendency (CT) and upper estimate. For the CT estimates, 
we used the mean default values listed in the U.S. EPA Exposure Factors Handbook (EFH) for 
ingestion rate and skin surface area, and assumed one year of exposure within the child care 
center. For the upper estimates, we used 95th percentile values listed in the EFH and assumed 
two years of exposure within the child care center. See Table 3.1 for assumptions and defaults 
used. We calculated potential daily intake dose (mg/kg/day) per pesticide as: 

DoseDust-Ingest = (Cdust x IR x EF x ED) / (BWchild x AT) 

DoseDerm = (Cdust x AF x SA x ABS x EF x ED) / (BWchild x AT) 
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Potential Daily Intake (PDI) (mg/kg/day) = DoseDust-Ingest + DoseDerm 

Where Cdust is the analyte dust concentration in the child’s child care center (mg/kg), BWchild 
is the child’s body weight (kg) obtained at baseline (within days of the dust sample), EF is 
exposure frequency (days per year), ED is exposure duration (years), IR is dust ingestion rate 
(mg per day), AF is adherence factor (mg/cm2), SA is skin surface area (cm2), ABS is absorption 
factor for pesticides (unitless), and AT is averaging time (365 days per year). Input values and 
corresponding assumptions and sources are described in Table 3.1.  

 

Table 3.1 Exposure factors (Deterministic calculations) 

Input Value used Source 
EF = Exposure 
frequency (day/yr.) 

60 (approx. 1,440 
hrs/yr) 

Assumption: in care 6 hours, 5 days, 48 
weeks 

ED = Exposure 
duration (yrs.) 

1 (Central Tendency) 
2 (Upper) 

Assumption: children ages 3-5 yrs. enrolled 
for 1 or 2 years before entering kindergarten 

IR = Dust ingestion 
rate (mg/day) 

30 (Mean) 
100 (Upper) 

Table 5-1. Recommended Values for Daily 
Soil, Dust, and Soil + Dust Ingestion (2 to 
<6y) 
Exposure Factors Handbook (2017 update) 

AF = Weighted Soil 
Adherence Factor 
(mg/cm2) 

0.04  Table 7-4. Recommended Values for Mean 
Solids Adherence to Skin (Daycare Indoors 
and Outdoors) and Eqn. 7-1 (AFwtd)  
Exposure Factors Handbook (2011) 
 

SA = Skin surface area 
available for contact 
(cm2) 

3870 (Mean) 
4840 (Upper) 

Table 7-2. Recommended Values for 
Surface Area of Body Parts (Arms Hands 
Legs Feet) (3 to <6y) 
Exposure Factors Handbook (2011) 
 

ABS = Absorption 
factor (chemical 
specific) 

10% U.S. EPA Region 3 Technical Guidance 
Manual, Risk Assessment (conservative 
assumption of ABS for pesticides) 
https://www.epa.gov/risk/assessing-dermal-
exposure-soil 

 

 

After estimating the potential daily intake (PDI) for each modeled child, these single-
pesticide doses were compared to established Reference Dose (RfD) values to derive a hazard 
quotient (HQ), such that: HQ = PDI / RfD. An HQ greater than 1 indicates daily exposure that 
exceeds established health protective reference values. 
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In general, we used RfDs listed in the U.S. EPA 2021 Human Health Benchmarks for 
Pesticides (HHBP) Table (109). The HHBP Table includes noncancer benchmarks for exposure 
to pesticides that the EPA has determined may be found in drinking water. Noncancer 
benchmarks for acute (one/day) and chronic (lifetime) drinking water exposures to each pesticide 
were derived for the most sensitive life stage, based on the available information. We selected 
the chronic RfD when available. In some cases, we used the minimum RfD identified via EPA’s 
CompTox Chemicals Dashboard. For example, for chlorpyrifos, we used California’s Office of 
Environmental Health Hazard Assessment (OEHHA) child-specific RfD of 1.00e-4. 

3.2.4 Probabilistic Dose Calculations and Hazard Quotients 
We carried out probabilistic dose calculations using Monte Carlo simulations of exposure to 

account for uncertainty and variability of measured chemical concentrations and assigned 
exposure factors. We used the EnviroPRA Package (110) available for the R environment to 
generate dermal and non-dietary ingestion doses for a probabilistic potential daily intake (PDIpr) 
distributions for each pesticide analyte, with 10,000 Monte Carlo simulations. 

The EnviroPRA package allows the user to fit theoretical distributions to observed data and 
generate a set of random numbers that follow the distribution function selected by the user. We 
fitted distributions to our measured pesticide concentrations in dust and to our measured body 
weights of enrolled children based on lowest Bayesian Information Criteria for the distribution 
fit test and with visual confirmation with Q-Q plots, P-P plots, and density plots via the 
EnviroPRA package (107). For body weight, we used a log-normal distribution and truncated at 
one kg less than the minimum observed body weight and one kg greater than the maximum 
observed body weight. For pesticide concentrations, we used a log-normal distribution for all 
pesticide analytes except cypermethrin and ∑permethrin, which were fit to a Weibull 
distribution. We set truncation limits to 0.1 ng/g less than the minimum concentration (which 
would be imputed at LOD/√2), and 0.1 ng/g greater than the maximum concentration. For three 
pesticide analytes, the distribution fit test and random number generator within the EnviroPRA 
package would not converge for pesticide analytes with extreme outliers (bifenthrin, 
chlorfenapyr, and lambda-cyhalothrin). To address this, we first fit the theoretical distribution to 
a set of concentrations that excluded the outliers and generated random numbers based on that, 
and then imputed the values at the extreme. 

We assumed children attended day care for 30 hours per week, with a minimum of 15 hours 
and a maximum of 50 hours, with most children attending between 30-36 hours per week, using 
a trapezoidal distribution. These assumptions are supported by data collected for the wristband 
passive samplers also used with participating children  (80). We then converted these hours to 
24-hour days in our dose calculations. Similarly, we assumed that children would attend for 0.8 
to 3.2 years with most attending 1 or 2 years. This assumption supported by the age ranges for 
the enrolled children. We generated log-normally distributed exposure factors for surface area 
exposed, soil adherence factor, and dust ingestion rate based on the U.S. EPA Exposure Factor 
Handbook recommendations and ATSDR Exposure Dose Guidance for Soil/Sediment Dermal 
Absorption.  

3.2.5 Cumulative Risk Characterization  
In general, there are two approaches to characterizing cumulative risk: the Hazard Index (HI) 

and Margin of Exposure (MOE) (104). We employed both methods to characterize cumulative 
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risk for both the deterministic and probabilistic estimates of exposure: by health endpoints and 
by pesticide class.  

The HI approach sums the HQs when different chemicals that an individual may be exposed 
to have similar impacts to the same target organ. An HI less than 1 is indicative of a lack of 
appreciable risk, and an HI greater than 1 indicates some increased risk (the larger the HI, the 
greater the risk). 

HI = ∑(Exposure / RfD) 

In the present study, we sum across health endpoints to derive a Hazard Index (HI) for 
neurotoxicity and for hepatotoxicity based on the critical effects listed in documentation for the 
pesticides RfD. For permethrin and piperonyl butoxide, we used two different RfDs for the 
neurotoxicity HI and hepatotoxicity HI (see Table 4).  The MOE approach, used by the U.S. EPA 
for their cumulative risk assessments of pesticide classes, determines a margin between the point 
of departure (POD) and the exposure. An MOE smaller than the product of uncertainty factors 
reflects a potential health concern.  

MOE = POD / Exposure 

In the present study, we include eight pyrethroid pesticide analytes in our analysis and apply 
the same frameworks used in the EPA’s cumulative risk assessment for pyrethroids (103) to our 
measured and modeled data including the relative potency factors and margin of exposure target 
level.  

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

Where BMDindex is the benchmark dose (BMD) of the index chemical, deltamethrin, and 
CumDoseEq is the cumulative dose equivalent, derived by applying relative potency factors 
(RPFs) to calculated PDIs per individual pyrethroid analyte: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝 

𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝 =  
𝐵𝐵𝐵𝐵𝐵𝐵20−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐵𝐵𝐵𝐵𝐵𝐵20−𝑝𝑝

 

U.S. EPA used a 20% change from controls as the BMD threshold (BMD20) for pyrethroids. 
Additionally, EPA used a target MOE of 300 for children ages 0 to 6 years. Derived MOEs of 
less than 300 would indicate increased health risk. We computed MOEs from a cumulative 
pyrethroid dose equivalent by applying EPA’s RPFs our estimations of exposure. 

3.2.6 Probabilistic RfD 
We also compared the probabilistic dose estimates (PDIpr) to a probabilistically derived 

reference dose. The probabilistic RfD represents the lower confidence limit of the HDM
I defined 

as the human dose at which a fraction I of the population shows an effect of magnitude (severity) 
M for the critical effect considered. In this application, the probabilistic RfD (PrRfD) is the dose 
that protects 99% of the population from neurotoxic/hepatotoxic effects of 5% or more, with a 
confidence of 95%. For example, the PrRfD for deltamethrin is 0.008 mg/kg/day, an estimate of 
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the dose at which, with 95% confidence, at most 1% of the population will have decreased 
locomotor activity of magnitude 5% change or greater. 

We used the World Health Organization (WHO) APROBAplus tool (available at 
https://www.rivm.nl/en/aproba-plus), to produce PrRfDs for each pesticide analyte (111). In 
general, we used points of departure from the EPA risk assessments used in the determination of 
the established RfD (112), and used the defaults included in the APROBAplus tool. More details 
about inputs used in APROBAplus can be found in Supplemental Table 3.1. Using the PrRfDs, 
we again derived neurotoxicity and hepatotoxicity Hazard Indices by summing HQs 
(PDIpr/PrRfD). 

3.2.7 Sensitivity analysis 
This analysis uses data from baseline of the HCES study. As a sensitivity analysis, we 

generated distributions of pesticide concentrations based on measured data at up to three time 
points per center (baseline, approx. 7 months later, and 1-2 years from baseline in the same 
season).  

3.2.8 Hypothetical aggregate exposure scenarios 
In an exploratory analysis, we considered the possibility that exposure to pesticides in dust at 

home would be similar to exposures in child care centers (1, 8, 18, 113). We approximated 
aggregate PDIs for incidental dust ingestion and dermal exposure by using an exposure 
frequency of 365 24-hr days (Supplemental Table 3.2). As a test case for fipronil, we added an 
estimated chronic dietary intake taken from EPA’s risk assessment documentation for fipronil to 
approximate a more complete aggregate exposure for one pesticide.  

3.3 Results 

3.3.1 Pesticide concentrations in dust and estimated exposure 
The baseline detection frequency and geometric mean values for 12 pesticide analytes 

measured in 52 child care centers are shown in Table 3.2. The most frequently detected 
pesticides were cis- and trans-permethrin, bifenthrin, fipronil, and chlorpyrifos. The highest 
geometric mean concentrations (ng/g) were found for cypermethrin (1205.8) and cyfluthrin 
(740.6). Deltamethrin, esfenvalerate, trans-permethrin, and lambda-cyhalothrin had geometric 
mean concentrations between 200-300 ng/g, and bifenthrin, cis-permethrin, piperonyl butoxide, 
and chlorfenapyr had geometric mean concentrations between 100-200 ng/g. While among the 
most frequently detected pesticides, fipronil had a geometric mean concentration less than 100 
ng/g (72.4), and chlorpyrifos less than 10 ng/g (5.5). 

Distributions of the estimated exposures are shown in Table 3.3. The 95th percentiles of the 
probabilistic estimates were greater than the 95th percentile of the deterministic estimates for 
most pesticides, and were similar to the upper deterministic estimate for deltamethrin, 
esfenvalerate, lambda-cyhalothrin, and piperonyl butoxide. The highest estimated dose at the 
99.9th percentile was the probabilistic estimate of bifenthrin exposure, while the lowest was the 
central tendency deterministic estimate of chlorpyrifos exposure. 

https://www.rivm.nl/en/aproba-plus
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3.3.2 Deterministic (screening-level) risk assessment 
Under both the mean estimate and upper estimate exposure scenarios, neither of the 

individual HQs exceeded 1 (Table 3.4), nor any of the cumulative HIs for neurotoxicity or 
hepatotoxicity (Table 3.5). Likewise, all MOEs for the cumulative pyrethroid doses for both the 
mean estimate and upper estimate exposure scenarios were greater than three hundred (Table 5).  

3.3.3 Probabilistic cumulative risk estimates by endpoint and by class 
Distributions of neurotoxicity and hepatotoxicity HIs (summed HQs by endpoint) are shown 

in Table 5. When using the probabilistic PDI over the established RfD, the maximum total HI for 
neurotoxicity was 0.27, and the maximum HI for hepatotoxicity was 0.01. Distributions of 
MOEs for cumulative pyrethroid exposure are shown in Table 5. All estimated MOEs 
(minimum=5,843) were greater than the target MOE of 300 for children under 6 years old (114). 
Our probabilistic and cumulative estimates of daily exposure to pesticides in child care carpet 
dust do not exceed levels that the EPA would consider to appreciable risk of adverse effects over 
a lifetime. 

3.3.4 Application of probabilistic reference dose 
When using the lower confidence limit (5th percentile) of the approximate probabilistic 

HD05
01 as the point of reference for comparing estimated exposure (probabilistic PDI) to derive 

HQs and summed HIs by endpoint, we observe risk estimates nearly twice as high as using the 
established RfDs. However, none of the HIs exceeded one for the neurotoxicity or 
hepatotoxicity. 

3.3.5 Sensitivity analysis 
Using concentration distributions based on up to three carpet dust measurements from each 

child care center did not change the overall proportion of HQs>1 at the 99.9th percentile, but the 
maximum neurotoxicity HQ based on concentration distributions fit to the three time points was 
greater than 1 (max HQ = 2.62).   

3.3.6 Secondary analyses of additional scenarios 
Under the assumption that pesticide levels at home would be similar to child care, changing 

the exposure frequency to 365 24-hr days resulted in the neurotoxicity HI exceeding 1 for a small 
percentage of the total simulated sample (0.2%), with an HI exceeding 1 at the 99.9th percentile 
of cumulative exposure to pesticides in dust with neurotoxic effects (Supplemental Table 3.3). 

In our test case using fipronil, we examined the effects of incorporating FQPA safety factors 
into the APROBAplus tool to derive a PrRfD for fipronil (the pesticide most highly correlated 
with the overall neurotoxicity hazard index, rho=0.93) that is even more conservative, and 
compare this to a crude estimate of aggregate exposure. With an upper confidence limit of 10x 
for a child safety factor, the estimated chronic dietary intake alone of fipronil for children 3-5 
years old exceed the PrRfD of 0.00003 mg/kg/day. Using 3x as the upper confidence limit, we 
see aggregate exposure to fipronil exceed the PrRfD of 0.00007 mg/kg/day for 6.4% of the 
simulated exposures. 
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Table 3.2 Pesticide concentrations and program / child characteristics 

Distributions of pesticides in carpet dust (n=52 child care centers enrolled in HCES) 
Pesticide Analyte Detection Frequency n (%) Geometric Mean (SD) (ng/g) 
Bifenthrin  49 (94%) 168.45 (4.52) 
Chlorfenapyr 12 (23%) 125.69 (4.45) 
Chlorpyrifos 42 (81%) 5.45 (1.86) 
Cyfluthrin 5 (10%) 740.56 (2.43) 
Cypermethrin 28 (54%) 1205.81 (2.01) 
Deltamethrin 14 (27%) 260.04 (4.57) 
Esfenvalerate 9 (17%) 258.56 (3.35) 
Fipronil 48 (92%) 72.44 (3.25) 
Lambda-cyhalothrin 10 (19%) 229.08 (6.14) 
Permethrin (cis-) 51 (98%) 157.48 (3.78) 
Permethrin (trans-) 50 (96%) 253.03 (3.7) 
Piperonyl butoxide 37 (71%) 147.87 (2.88) 

Program and Child Characteristics (n=253 children enrolled in HCES) 
Characteristic  Mean (SD) Range 
Age (years) 4.2 (0.6) 2.82-5.18 
Body weight (kg) 18.0 (3.1) 11.20-34.20 
Sex n (%)  
Male 125 (49%)  
Female 128 (51%)  
Parent-reported child race / ethnicity n (%)  
Asian 11 (4.4%)  
Black / African American 21 (8.3%)  
Hispanic / Latino 68 (26.9%)  
Native American / Native Alaskan 5 (2%)  
Pacific Islander / Native Hawaiian 1 (0.4%)  
White 60 (23.7%)  
Multi-Racial 43 (17%)  
Other 4 (1.6%)  
No answer 40 (15.8%)  
Region n (%)  
San Francisco Bay Area 25 (48%)  
San Joaquin Valley 27 (52%)  
Program type n (%)  
Non-profit private 16 (31%)  
For-profit private 10 (19%)  
Head Start / Early Head Start 6 (11%)  
California State Preschool Program 5 (10%)  
Blended 15 (29%)  
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Table 3.3 Distributions of estimated potential daily intake doses for each pesticide analyte and 
estimation method 
 

Potential Daily Intake (ng/kg/day)a 
Analyte Estimation Method 25th

% 
50th
% 

75th% 95th% 99.9th
% 

Bifenthrin  Deterministic: Central 
Tendency 

0.024 0.055 0.088 1.138 42.215 

Bifenthrin  Deterministic: Upper 
Estimate 

0.259 0.596 0.949 12.26
7 

455.196 

Bifenthrin  Probabilistic 0.314 0.802 2.159 9.486 553.166 
Chlorfenapyr Deterministic: Central 

Tendency 
0.001 0.001 0.006 0.182 1.888 

Chlorfenapyr Deterministic: Upper 
Estimate 

0.010 0.012 0.065 1.961 20.362 

Chlorfenapyr Probabilistic 0.026 0.061 0.164 1.480 45.155 
Chlorpyrifos Deterministic: Central 

Tendency 
0.001 0.002 0.003 0.008 0.011 

Chlorpyrifos Deterministic: Upper 
Estimate 

0.011 0.019 0.033 0.091 0.122 

Chlorpyrifos Probabilistic 0.013 0.023 0.042 0.111 0.434 
Cyfluthrin Deterministic: Central 

Tendency 
0.005 0.022 0.027 0.401 0.684 

Cyfluthrin Deterministic: Upper 
Estimate 

0.054 0.232 0.290 4.324 7.378 

Cyfluthrin Probabilistic 0.140 0.279 0.603 2.123 14.130 
Cypermethrin Deterministic: Central 

Tendency 
0.014 0.182 0.530 1.232 4.054 

Cypermethrin Deterministic: Upper 
Estimate 

0.154 1.968 5.712 13.28
0 

43.715 

Cypermethrin Probabilistic 0.899 2.388 6.047 21.20
8 

105.081 

Deltamethrin Deterministic: Central 
Tendency 

0.003 0.012 0.027 0.415 3.373 

Deltamethrin Deterministic: Upper 
Estimate 

0.030 0.132 0.295 4.471 36.368 

Deltamethrin Probabilistic 0.119 0.282 0.724 3.200 33.098 
Esfenvalerate Deterministic: Central 

Tendency 
0.003 0.012 0.015 0.138 1.996 

Esfenvalerate Deterministic: Upper 
Estimate 

0.030 0.127 0.160 1.493 21.525 

Esfenvalerate Probabilistic 0.095 0.200 0.453 1.789 14.938 
Fipronil Deterministic: Central 

Tendency 
0.010 0.025 0.060 0.182 1.095 
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Fipronil Deterministic: Upper 
Estimate 

0.113 0.271 0.645 1.964 11.809 

Fipronil Probabilistic 0.173 0.397 0.935 3.508 19.594 
Lambda-
Cyhalothrin 

Deterministic: Central 
Tendency 

0.002 0.003 0.004 0.100 5.128 

Lambda-
Cyhalothrin 

Deterministic: Upper 
Estimate 

0.025 0.028 0.047 1.082 55.289 

Lambda-
Cyhalothrin 

Probabilistic 0.049 0.088 0.170 0.550 55.234 

Permethrin Deterministic: Central 
Tendency 

0.007 0.040 0.091 0.350 0.871 

Permethrin Deterministic: Upper 
Estimate 

0.079 0.427 0.980 3.775 9.394 

Permethrin Probabilistic 0.210 0.498 1.216 4.421 27.865 
Piperonyl 
Butoxide 

Deterministic: Central 
Tendency 

0.081 0.146 0.237 0.895 45.750 

Piperonyl 
Butoxide 

Deterministic: Upper 
Estimate 

0.869 1.575 2.559 9.646 493.308 

Piperonyl 
Butoxide 

Probabilistic 1.461 3.939 10.61
8 

44.76
8 

320.068 
 

aUptake from non-dietary ingestion and dermal routes of exposure. 1,000,000 ng/kg = 1 
mg/kg. 
Assumptions: 
Deterministic: 
Central 
Tendency 

In care 6 hours, 5 days, 48 weeks for 1 year, mean dust ingestion rate and 
skin surface area, observed pesticide concentrations and body weight, 10% 
absorption 

Deterministic: 
Upper Estimate 

In care 6 hours, 5 days, 48 weeks for 2 years, 95th% dust ingestion rate and 
skin surface area, observed pesticide concentrations and body weight, 10% 
absorption 

Probabilistic In care 15-50 hours per week for 0.8 to 3.2 years, log-normally distributed 
ingestion rate, skin surface area with mean and 95th% at values provided 
by EPA, log-normal distribtution fit to observed body weight and log-
normal or Weibull distribution fit to pesticide concentration, 10% 
absorption 
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3.4 Discussion 

We found that estimated pesticides exposures to young children in child care centers, using 
both deterministic and probabilistic methods to estimate exposures distributions, were not likely 
to exceed established RfDs, even when assessing cumulative risks across endpoints 
(neurotoxicity and hepatotoxicity), or within classes of pesticides (pyrethroids).  

Few other studies have assessed risks associated with pesticide exposures in child care 
settings, and these studies assess single chemicals without considering cumulative risk. Morgan 
et al. (2014) estimated children’s median potential aggregate (home and child care) intake doses 
by dietary ingestion, nondietary ingestion, and inhalation routes for chlorpyrifos (4.6 ng/kg/day) 
and cis/trans-permethrin (12.5 ng/kg/day) (8). The median PDIs in our study were lower for 
chlorpyrifos (probabilistic 0.023 ng/kg/day, deterministic 0.002-0.019) and for ∑permethrin 
(0.498 ng/kg/day, deterministic 0.04-0.427), although the routes of exposure differ. Our 
estimates do not include dietary ingestion or inhalation routes. 

Kim et al. (2013) assessed health risks of two OP pesticides in child care facilities in South 
Korea, but did not report specific estimated doses (6). They did calculate an HQ greater than 1 at 
the 95th percentile for dichlorvos (not measured in the present study), and focused on excess 
cancer risk for chlorpyrifos (out of scope for the present study). We did not identify any more 
recent (less than 10 years) assessments of health risks associated with exposure to pesticides in 
child care environments, which underscores the need for more research on this environment 
where children spend significant amounts of time.  

We employed a tiered approach to pesticide risk assessment. The first step involves a 
screening risk assessment, which we argue serves a critical purpose in translating research 
findings to child care providers and families participating in environmental health studies. These 
stakeholders are often eager to understand the implications of measured pesticide levels on their 
children's health. Given the absence of established standards or regulations for pesticide 
exposures in such settings, employing a screening-level deterministic risk assessment approach 
enables us to effectively communicate research results to the child care community. Reporting 
results often involves comparing a participant’s chemical concentrations to that of others in the 
study (115). Within current EPA frameworks, all our deterministic dose estimates suggest the 
exposures would be without appreciable risk of adverse effects during a lifetime. As of this 
writing, study staff are returning carpet dust results to participants. Using the deterministic risk 
estimates, we can communicate to child care providers that, while pesticide exposure is 
ubiquitous and steps can and should be taken to reduce exposure, the levels measured in their 
carpets at baseline are not likely to harm children’s health according to U.S. EPA guidelines and 
defaults. 

Subsequently, the refinement phase of our approach incorporates probabilistic modeling with 
distributions of realistic assumptions, assessments of cumulative risk, and comparisons to 
probabilistic reference values. This step goes beyond the screening phase to provide a deeper 
understanding of the risks posed by pesticide exposures. Unlike traditional risk assessments that 
often focus on individual chemicals, we examined cumulative risk by computing distributions for 
endpoint-specific Hazard Indices (HIs) and Margins of Exposure (MOEs) specifically for 
pyrethroids.  
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Aligning with the NRC’s recommendation to consider non-threshold dose-response 
relationships for non-cancer endpoints and to better account for variability and uncertainty in 
hazard characterization, we applied WHO-IPCS methods to derive PrRfDs to use in derivation of 
neurotoxicity HI instead of the established RfDs. These PrRfDs are expressed as the lower 95% 
confidence bound of the dose associated with an effect of magnitude 5% for a population 
incidence of 1%. Using probabilistic dose estimates with PrRfDs did not result in individual HQs 
or endpoint-specific HI exceeding 1, suggesting that the assumed exposures were generally 
below levels of concern. In our thought experiment assuming children are exposed to similar 
levels at home and in child care, we observed a small percentage of the simulated sample 
(0.42%) with a neurotoxicity HI>1 using the PrRfD as the point of comparison, nearly doubling 
the number when comparing to the existing EPA RfDs. Use of the approximate PrRfD also 
provides more information to express risk as a probability, rather than a bright-line with an 
undefined level of increased risk. 

It's important to note that we did not modify the pyrethroid Cumulative Risk Assessment 
(CRA) methodology based on the redefinition of reference doses in this analysis. The EPA used 
benchmark dose modeling to determine relative potency based on a 20% change from controls 
(BMD20), which the EPA determined was “the most conservative estimate able to predict a 
significant change from control values” (114). Other pesticide CRAs have used a benchmark 
dose threshold of 10%, which is more in line with EPA practices for cancer (non-threshold) risk 
assessments (104, 116), and may change the distribution of MOEs in the present study. This 
would be a valuable direction for further exploration. 

Another potential departure from current U.S. EPA risk assessment methods that can greatly 
impact the overall determination of risk is in the application of child-specific safety factors. The 
Food Quality Protection Act of 1996 (FQPA) mandated that the EPA establish safe levels for 
pesticides to ensure no harm to infants and children from aggregate pesticide exposure. This 
requirement included applying a 10x safety margin to account for data gaps on potential prenatal 
and postnatal toxicity. In 2011, this safety margin was reduced to 3x for pyrethroid pesticides, 
and in 2019, the EPA reevaluated the scientific evidence and concluded that the FQPA safety 
factor for all pyrethroids could be further reduced from 3x to 1x while still protecting infants and 
children. This decision has been criticized by some NGOs as heavily influenced by industry 
lobbying (117, 118).  

Of the ten EPA risk assessment documents reviewed for derivation of the RfD and PrRfD in 
the present study, only one, lambda-cyhalothrin, applied a child health safety factor greater than 
1x. We matched the upper confidence limit of an additional child safety factor to what was used 
in the published EPA risk assessment documentation in the APROBAplus tool. However, further 
analyses could explore the effect of different distributions of child safety factors, consistent with 
the FQPA original mandate, to better incorporate considerations of age-specific differences 
across life stages of development (106). For example, in our examination using fipronil as a test 
case, we assessed the impact of incorporating various FQPA safety factors into the 
APROBAplus tool to derive the PrRfD. Changes to the child safety factors from 1x to 3x to 10x 
had wide implications for the PrRfD and overall risk, particularly when considering aggregate 
risk from multiple sources. Given that fipronil is just one of many neurotoxic pesticides children 
may encounter, there are concerns about cumulative and aggregate exposure risks to children's 
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health, particularly without the use of a child health safety factor, adding uncertainty to the point 
of comparison. 

This study is limited in that we only examined exposures via dermal absorption and non-
dietary ingestion while in the child care center. We did not calculate aggregate exposure from all 
possible relevant sources, which may underestimate overall risk (119). In reality, children are 
exposed at home to similar levels of pesticides in dust (1), are exposed through diet (120), and 
may be exposed through other pathways such as take-home occupational exposures from adults 
in the home, or pesticide drift, particularly in agricultural communities (21). Additional research 
is needed to identify the best available methods for estimating aggregate exposures to multiple 
pesticides when a study’s focus is measuring a specific source of exposure. Future studies could 
make use of aggregate and cumulative exposure models used by the U.S. EPA Office of 
Pesticide Programs to assess how these exposures within this specific environment contribute to 
overall cumulative and aggregate exposure, for example, comparing our estimated doses to 
results from Stochastic Human Exposure and Dose Simulation (SHEDS) models. 

Additionally, we did not consider possible distributions for some default assumptions.  We 
assumed a default value of 10% for dermal absorption for all analyses based on U.S. EPA 
guidance for pesticides, though there may be differences between pesticides based on individual 
physicochemical properties. We also assumed that once in the body, there was 100% absorption 
in the gastrointestinal tract.  These assumptions could result in over- or under-estimation of 
exposure and risk. With a dozen pesticides included in the present study, we did not complete a 
thorough assessment of certain parameters to examine impact on our exposure estimates, such as 
correlation with model inputs or contribution by exposure route. 

Utilizing probabilistic estimates of exposure and of risk better incorporates uncertainty and 
differential susceptibility in exposed populations, especially where exposures can produce non-
cancer effects that are likely to be compounded by other chemicals or other non-chemical 
stressors that exert similar health effects (104, 107). A key assumption of both methods we used 
to estimate cumulative risk, the endpoint-specific HI and cumulative pyrethroid dose using 
relative potency, is dose-additivity. For pyrethroids, dose-additivity implies multiple pyrethroids 
can interact with voltage-gated sodium channels simultaneously, and the overall toxic response 
will be a summation of all the individual pyrethroids. For the neurotoxicity HI, we used RfDs 
corresponding to critical effects on the central nervous system. More research is needed to test 
these dose-additivity assumptions and explore potential synergistic effects.  

To our knowledge, this study is the first to apply probabilistic risk assessment methods to a 
large panel of pesticides measured in child care facilities. By integrating measured 
environmental concentrations and child-level anthropometric data with probabilistic estimates of 
exposure based on established U.S. EPA guidelines, our research provides a robust analysis of 
potential risks associated with pesticide exposures in child care settings. As noted above, young 
children can spend a significant amount of time in child care environments, with particularly 
long hours for working class families. 

Moving forward, more research is needed to validate assumptions and explore cumulative 
risk effects, allowing for better understanding of the uncertainty and differential susceptibility of 
children, particularly considering these children’s different chemical and non-chemical 
exposures that may act on neurodevelopmental pathways. Our study contributes to the 



 

53 
 

 

understanding of pesticide risks in child care environments, providing valuable insights for 
improving children's health and safety. 

3.5 Conclusion 

Within licensed child care centers in Northern California, we do not observe potential 
pesticide exposures via dermal and incidental ingestion pathways that would likely cause 
neurotoxic or hepatotoxic effects in young children. However, these estimated exposures 
represent just a portion of the true potential total daily exposure for young children. When 
considering the total impact of cumulative and aggregate pesticide exposures in early childhood, 
it is critical to reduce exposure in every environment where children spend time. Deterministic 
exposure estimates and derivation of risk estimates using established U.S. EPA frameworks can 
also serve as an important starting point for returning environmental health research results to 
participants. Probabilistic approaches to estimating exposure and reference doses provide 
realistic risk scenarios that can aid in decision making that is ultimately more health-protective 
for our youngest and most vulnerable populations. 
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3.6 Supplement to Chapter 3 

Supplemental Table 3.1 APROBAplus inputs 

Established RfD basis (per EPA 
documentation) 

Input used  

RfD based on NOAEL or LOAEL APROBA defaultsa  
RfD based on BMDL Derive BMDU  

(BMDU = 2 * BMD1sd - BMDL1sd) 
 

RfD based on acute study with NOAEL NOAEL to BMD adjustment:  
used same defaults as chronic (LCL 0.07, 
UCL 1.57) 

aAPROBA defaults: WHO-IPCS. Guidance on Evaluating and Expressing Uncertainty in Hazard 
Assessment, 2017 (Ref(121)). 
 
Supplemental Table 3.2 Distribution of probabilistic estimated potential daily intake (ng/kg/day) 
using exposure frequency of 365 days (PDI365) 

Pesticide p50 p75 p95 p99.9 p100 
Bifenthrin 5.71 17.89 105.50 1297.68 7796.26 
Chlorfenapyr 0.07 0.11 0.24 1.40 34.97 
Chlorpyrifos 0.14 0.26 0.68 2.62 3.72 
Cyfluthrin 1.83 3.98 14.28 101.48 224.36 
Cypermethrin 9.99 29.27 144.52 942.23 1893.46 
Deltamethrin 1.61 4.25 18.22 173.72 359.56 
Esfenvalerate 1.25 2.92 11.45 99.00 159.02 
Fipronil 2.30 5.71 24.05 271.55 1153.02 
Lambda-cyhalothrin 0.49 0.94 2.92 203.03 664.46 
Piperonyl Butoxide 3.07 6.79 24.61 142.80 217.09 
∑Permethrin 15.13 36.38 135.49 1239.27 2494.89 

 
Supplemental Table 3.3 Risk estimates using PDI365 

Risk estimates 
using PDI365 

50% 95% 99.9% 100% 
(Max) 

# HI>1 

Hepatotoxicity HI <0.01 <0.01 0.02 0.08 0 
Hepatotoxicity HI 
using PrRfD 

<0.01 <0.01 0.04 0.12 0 

Neurotoxicity HI 0.02 0.13 1.41 5.84 18 (of 10,000) 
Neurotoxicity HI 
using PrRfD 

0.03 0.21 2.27 9.74 42 (of 10,000) 
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Chapter 4 Early childhood exposures to pesticide mixtures in house dust, the 
home environment, and IQ at age 7 years 

4.1 Introduction 

Young children are uniquely vulnerable to chemical exposures due to their behaviors and 
developing bodies and systems (10, 12), and are frequently exposed to pesticides in their 
environment (1, 2). There is disproportionate exposure to pesticides across California -- it is 
estimated that 95% of agricultural pesticide use in California occurs in 60% of zip codes with the 
highest proportion of residents of color (122). Children residing in agricultural regions are 
disproportionately exposed to mixtures of pesticides via multiple pathways, such as take-home 
exposures from farm-working family members, drift from nearby applications, diet, and 
residential use (21, 123, 124).  

Organophosphate (OP) and pyrethroid pesticides are two of the major classes of pesticides 
that are used to control insects in residential and agricultural settings and are frequently found in 
children’s environments (99, 113). Use of OP pesticides, such as chlorpyrifos, has declined in 
recent decades (125), following regulatory efforts in the 1990s, voluntary cancellation of 
residential uses of chlorpyrifos and diazinon in the early 2000s, and a near total restriction on 
chlorpyrifos in California in 2020. There is strong evidence linking prenatal exposures to OPs to 
cognitive and behavioral deficits in children (36, 37, 126).   

Pyrethroid pesticides, thought to be relatively safe due to lower acute mammalian toxicity, 
have increased in use in recent decades (127). Pyrethroids are used in agriculture, structural pest 
control, and consumer products (128), and are increasingly found in children’s environments and 
bodies (64, 129). Data on the potential health effects of low-level pyrethroid exposure, 
particularly for children, are limited. However, some epidemiologic studies show associations 
between early life (prenatal and early childhood) pyrethroid exposure and poorer 
neurodevelopmental and behavioral outcomes, while others have shown inconsistent results (55, 
77, 127, 130-135).  

The study of complex exposure mixtures has led to the development of novel statistical 
methods, with marked improvement over examining associations with single chemical exposures 
in isolation. Relatively few other studies have applied mixture methods to examining pesticides 
and neurodevelopmental outcomes (39, 40, 48, 136-138). Of particular interest are approaches 
that can examine effects by pesticide class within mixtures, as whole classes of pesticides can 
increase or decrease in use over time, and can be regulated as entire classes as well. 

Measurement of urinary metabolites is often used to assess pesticide exposure, but this 
approach has limitations. For example, OP metabolites in child urine are highly variable (139). 
OPs and pyrethroids are also metabolized quickly in the human body (half-life is less than 24 
hours) (140), indicating that urine biomarkers provide a short-term snapshot of exposure, mostly 
driven by recent dietary exposure (139). As an alternative, investigators have used reported 
pesticide applications near homes as an indicator of potential exposure. In California, this 
information is accessible through the Pesticide Use Report (PUR) data system. However, the 
PUR system mainly records agricultural applications, while pyrethroids are also used for non-
agricultural purposes not geocoded in the PUR database. Indoor dust can provide a stable, long-
term estimate of pesticide contamination that young children are likely to be exposed to (65, 70, 
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71), due to their frequent hand-to-mouth activity and time spent crawling on floors (10, 12). 
Studies show associations between contaminants in dust and exposure; for example, blood lead 
concentrations were found to be strongly associated with lead loading in dust (66). 

Biological and social factors may alter or exacerbate the harm caused by neurotoxicants. 
Adverse social conditions may potentiate the harmful effects of chemical exposures as suggested 
by studies on lead (141), air pollution (142, 143), and tobacco smoke (144) exposure. However, 
limited research has explored the impact of interaction with pesticide exposure. The quality of 
the home environment is an important social factor and source of psychosocial stress that plays a 
significant role in predicting child neurodevelopment. The home quality of the home could 
potentially exacerbate or buffer neurodevelopmental impacts from pesticide exposures (145). A 
supportive home, characterized by enrichment, positive interactions, and access to resources, can 
potentially mitigate the negative impacts of pesticides on child cognition. Conversely, an 
impoverished or stressful home environment may amplify these effects. It is posited that poor 
home environments impact child health through increased exposure to stress, resulting in 
dysregulation of the neuroendocrine and immune systems, which are particularly sensitive in 
childhood.  

Evidence suggests that many current and past-use pesticides, including the OPs, pyrethroids, 
dicarboximide fungicides, and phthalate herbicides included in the present study, may act as 
hormone-disrupting agents (146-151) with the potential to act on the same neuroendocrine 
pathways for which social factors become biologically embedded and for which sex-dimorphic 
effects are produced (152). Failing to examine potential effect modification may underestimate 
the impact of neurodevelopmental toxicants, particularly among more vulnerable populations 
where exposures to environmental and non-chemical stressors are likely to co-occur. 

In the present study, we examine the association between child cognition and potential non-
dietary exposure to pyrethroid, OP, and other pesticide classes found in house dust among 
participants in the Center for the Health Assessment of Mothers and Children of Salinas 
(CHAMACOS) study. We also evaluate potential effect modification by sex of the child and 
potential synergistic effects with the quality of the home environment. 

4.2 Methods 

4.2.1 Study Population 
Participants were enrolled in the CHAMACOS study, a longitudinal birth cohort study of 

pesticide exposure and neurodevelopment in children residing in an agricultural area. Beginning 
in 1999, the study enrolled English or Spanish-speaking pregnant women attending prenatal care 
clinics who were less than 20 weeks gestation, eligible for low-income health insurance 
(Medicaid), and at least 18 years of age.  Detailed Information about participant recruitment and 
study procedures have been described previously (153). 

In the present study, we included 185 participants who had a dust sample collected from their 
home (Supplemental Figure 4.1). We excluded 37 that did not complete a Wechsler Intelligence 
Scale for Children Fourth Edition (WISC-IV) assessment at age 7y. We excluded children 
diagnosed with Down Syndrome, Autism, deafness, hydrocephalus, or who experienced seizures 
in their first year (n=2 children with seizures). A total of 146 participants were included with 
Verbal Comprehension and Perceptual Reasoning scores and 128 with Working Memory, 
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Processing Speed, and Full-Scale IQ scores. Participants included in this analysis did not differ 
significantly from the original full cohort on most attributes. However, participants in the present 
analysis were younger at the seven-year assessment (7.08 versus 7.11, p=0.03), had higher 
HOME scores at 6 months (32.08 versus 31.42, p= 0.02), mothers had slightly higher Peabody 
Picture Vocabulary Test (PPVT) scores at 6 months (87. 84 versus 85.38, p=0.07), and mothers 
were more likely to be married during pregnancy than those from the initial cohort (86% versus 
80%, p=0.04). All study activities were approved by the University of California, Berkeley 
Committee for the Protection of Human Subjects.  

4.2.2 Exposure Characterization 
For this analysis, we used pesticide concentrations measured in indoor dust collected from 

the home when the children were 6 and 12 months of age (2, 90) from 1999 to 2002.  This 
analysis focuses on eight pesticides from four pesticide classes: pyrethroids (cis- and trans-
permethrin), OPs (chlorpyrifos, diazinon, oxydemeton-methyl, and phosmet), one phthalate 
herbicide (chlorthal-dimethyl (DCPA)), and one dicarboximide fungicide (iprodione). While 22 
analytes were measured in CHAMACOS dust samples, these eight analytes represent those 
pesticides with >5% detection frequency in samples and meeting quality control criterion for this 
cohort (90). Note that iprodione and DCPA are not generally considered neurotoxic by 
authoritative bodies, but research suggests neurotoxic / neurodevelopmental effects for iprodione 
(154, 155) and DCPA is a known endocrine disrupting agent; therefore we included it for 
potential effects on the neuroendocrine system (156). 

We utilized both concentration (ng/g of dust) and loading (ng/m2 of sampled area) to classify 
characterize potential exposure. Several studies suggest that loading (amount of contaminant per 
area sampled) is a better indicator of human exposure (66). Concentrations and loadings under 
the limit of detection (LOD) were imputed at LOD/√2. The 6- and 12-month samples were 
averaged if both samples were taken (n=132), or the single value was used if only one sample 
was available (n=2 missing at 6m, n=12 missing at 12m). Values were log10 transformed for 
analyses. 

4.2.3 Outcome Assessment 
We used the Wechsler Intelligence Scale for Children (WISC-IV) to assess 

neurodevelopment at age 7 years. This scale consisted of eight subtests, which yielded four 
subscale scores – the Perceptual Reasoning Index (PRI), Verbal Comprehension Index (VCI), 
Working Memory Index (WMI), and Processing Speed Index (PSI) – as well as an overall score, 
the Full-Scale Intelligence Quotient (FSIQ). Detailed information on data collection in the 
CHAMACOS cohort is explained in Bouchard et al. (38). Briefly the assessments were carried 
out in English or Spanish by bilingual, bicultural psychometricians blinded to children’s 
pesticide exposures. 

4.2.4 Statistical Analysis 
We used two-stage Bayesian Hierarchical Models (BHM) to examine exposure-outcome 

associations simultaneously with all eight pesticide co-exposures measured in dust and to 
examine effects by pesticide classes. Employing BHM as a principled approach to examine 
associations with all pesticides, providing some adjustment of estimates based on prior 
knowledge, produces estimates that are more stable and interpretable than with other approaches 
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to multiple exposure modeling (157). For comparison, we ran a generalized linear model (GLM) 
on the FSIQ outcome using just the first stage model.  

In the first stage model, we regressed each outcome on the exposures and covariates in a 
single linear model as: (E[Y | X,W]) = α + Xβ + Wγ; where X is the vector of all pesticides,  and 
W is the vector of confounders. In the second stage, the exposure effects (β) were modeled as a 
function of an exchangeability matrix Z, coefficient vector π, and vector of residual errors δ as: β 
= Zπ + δ. We used a Z-matrix with indicator variables (0/1) for the class to which each 
individual pesticide belongs, incorporating our a priori expectation that pesticides from the same 
class, with the same mechanism of toxicity, would yield similar effects on the outcome (see 
Supplemental Table 4.1). We specified vague priors on parameters (α, γ, π) with independent 
normal distribution with mean 0 and precision 0.001. We specified independent normal 
distribution for each δ with mean 0 and pre-specified the precision to correspond to the 
assumption that the resulting β parameters would lie within an 8-fold interval (precision τb= 
1/(8/(2*1.96))2 = 0.24). We present mean β effect estimates and 95% Credible Intervals (CrIs) 
for each pesticide predicted from the first-stage model and each pesticide class from the second-
stage model.     

Concentration and loading models were specified in a Fully Bayesian framework and the 
posterior distribution of all model parameters was estimated via Markov Chain Monte Carlo 
(MCMC) sampling. Just Another Gibbs Sampler (JAGS) was used to sample from the posterior 
distributions of these parameters and we estimated the posterior mean and 95% CrIs. We ran 
models with 100,000 iterations after an initial burn-in of 30,000 and thinning rate of 5. We 
assessed convergence graphically using trace plots, autocorrelation plots, and density plots, and 
statistically using the Geweke test. All analyses were conducted using R version 4.1.1 (R 
Foundation for Statistical Computing, Vienna, Austria) with packages “R2jags” (Yu-Sung Su 
and Masanao Yajima, (2021). R2jags: Using R to Run 'JAGS'. R package version 0.7-1.) and 
“coda” (Martyn Plummer, Nicky Best, Kate Cowles and Karen Vines (2006). CODA: 
Convergence Diagnosis and Output Analysis for MCMC, R News, vol 6, 7-11). 

Models were adjusted for the following confounders identified using a directed acyclic graph 
(DAG; see Supplemental Figure 4.2) based on factors associated with infant neurodevelopment 
in previous analyses: total prenatal urinary dialkyl phosphate (DAP) metabolite concentrations (a 
measure of prenatal OP exposure, log10 of average DAPS in pregnancy (nmol/gL)), maternal 
education (≤ 6th grade, 7-12th grade, ≥ high school graduate), maternal verbal intelligence 
(Peabody Picture Vocabulary Test (PPVT) score), maternal depression (>=16 on Center for 
Epidemiologic Studies Depression Scale (CES-D)), language of assessment (Spanish or English), 
age at assessment (in months), and farmworkers in household (Yes/No). We controlled for 
Infant-Toddler Home Observation for Measurement of the Environment (HOME) inventory 
scores assessed at six months (z-score) in non-interaction analyses, and sex of the child in non-
stratified analyses.  

4.2.5 Interaction and Effect Modification 
The Home Observation for the Measurement of the Environment (HOME) (158) is a well-

validated instrument for assessing the quality and quantity of stimulation and support available to 
a child in their home environment (159, 160). We examined whether the HOME score modified 
the association of pesticide exposure and neurodevelopment outcomes, hypothesizing that 
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negative associations would be stronger among children with low HOME scores. Product terms 
were added to the first-stage model (161) and an additional column was added to the Z-matrix 
(see Supplemental Table 4.2). We used the same approach to evaluate child’s sex as an effect 
measure modifier by including a product term between sex and each pesticide. We present male- 
and female-specific estimates and examined if the 95% CrI for the product term included or 
excluded the null. 

4.2.6 Sensitivity Analysis 
We ran models changing the precision for δ under the assumption that β parameters would lie 

within a 6-fold and 4-fold interval, rather than our pre-specified 8-fold assumption. 
Acknowledging that we have many more OP pesticides than the other classes of pesticides 
measured in dust, we applied a modified z-matrix that groups pesticides by OP or non-OP, and 
also incorporates relative potency factors (RPFs) from the U.S. EPA. RPFs are calculated as the 
ratio of the toxic potency of a given chemical to that of the index chemical, ultimately expressing 
exposures of all chemicals in the group into exposure equivalents of the index chemical. 
Deriving RPFs is common for determining joint risk associated with mixtures. In an application 
drawn from using nutrient profiles for diet epidemiologic BHM analyses (162), we specified 
indicator variables (0/1) for non-OP pesticides, and specified RPFs with chlorpyrifos as the index 
chemical from EPA’s Organophosphorus Cumulative Risk Assessment (163). We applied this 
modified z-matrix in analyses of pesticide loading and FSIQ and subscales, for all participants 
and stratified by sex (see Supplemental Table 3).  

4.3 Results 

4.3.1 Participant characteristics 
Most mothers of children included in this analysis were born in Mexico (89%), had less than 

a High School graduate level education (84%), and were at or below federal poverty level at time 
of birth (63%) (Table 4.1). The average maternal age at delivery was 27 years (SD=5.3). Most 
households had agricultural workers in the home during pregnancy (74%). These demographics 
are consistent with other analyses from the CHAMACOS cohort using neurodevelopmental 
outcomes. Detection frequencies and mean concentrations for the 6-month and 12-month dust 
samples are shown in Table 4.2. Consistent with the dust sample distributions published in 
Harnly et al. 2009, cis- and trans-permethrin and DCPA were detected in over 90% of samples, 
and phosmet was the least detected. 
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Table 4.1 Sociodemographic characteristics of CHAMACOS study participants with data on 
WISC-IV outcome 

  Overall n=146 
Demographics at delivery 
Mother’s age (mean (SD)) 27.5 (5.3) 
Maternal education (%)  
≤ 6th grade 69 (47%) 
7-12th grade 52 (36%) 
≥ HS graduate 25 (17%) 
Maternal country of birth: Mexico 133 (91%) 
Years lived in USA (mean (SD)) 8.0 (7.3) 
At or below poverty (%) 93 (64%) 
Child sex: Female 78 (53%) 
Agricultural workers in home: Yes (%) 107 (73%) 
Married (%) 126 (86%) 
Childhood characteristics 
Language at 7y WISC-IV assessment: English (%) 51 (35%) 
Exact age (years) at assessment (mean (SD)) 7.1 (0.2) 
Months breastfed (mean (SD)) 9.5 (9.16) 
Attended preschool (%) 103 (73%) 

 
 
Table 4.2 Distributions of pesticides measured in house dust of CHAMACOS study participants 
with data on WISC-IV outcome 

 6m 12m 

Pesticide Analyte 
Detection  
n (%) 

Mean (SD) 
concentration 
(ng/g) 

Detection  
n (%) 

Mean (SD) 
concentration 
(ng/g) 

Chlorpyrifos 111 (77%) 272 (911) 111 (83%) 4 (43) 
Chlorthal-dimethyl 
(DCPA) 132 (92%) 41 (62) 124 (93%) 40 (57) 
Diazinon 114 (79%) 104 (384) 109 (81%) 125 (559) 
Iprodione 62 (43%) 103 (328) 59 (44%) 70 (178) 
Oxydemeton-methyl 65 (56%) 10 (14) 74 (67%) 13 (18) 
cisPermethrin 139 (96%) 819 (1990) 124 (93%) 1947 (14566) 
transPermethrin 139 (96%) 1209 (4125) 127 (95%) 2979 (22953) 
Phosmet 9 (6%) 60 (470) 16 (12%) 90 (460) 
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4.3.2 Full-Scale IQ – comparison of GLM and BHM 
Table 4.3 shows results from adjusted single-stage GLM and the adjusted two-stage BHM for 

the 8 pesticide dust concentrations and loadings for the FSIQ outcome. Results are shown for all 
participants and models stratified by sex.  BHM resulted in more precise and stable estimates for 
the first-stage coefficients and intervals than GLM. BHM also produced effect estimates for the 
four pesticide classes. When using pesticide concentration (ng/g) for the exposures, all individual 
and class 95% confidence intervals (CI) and credible intervals (CrI) crossed the null. In the 
adjusted GLM model, chlorpyrifos loading (ng/m2) was associated with higher FSIQ (95% CI: 
1.0, 8.1), but not in the BHM analyses. When stratified by sex, the associated held among males 
for diazinon in the GLM model (-11.4, -0.4), and in general, effect estimates tended to be 
negative for male children, compared to female children for whom nearly all effect estimates 
were positive. 

4.3.3 WISC-IV Subscales. 
Table 4.4 shows results from BHM for pesticide loading (ng/m2) for the four subscales 

(Verbal Comprehension, Working Memory, Processing Speed, and Perceptual Reasoning), for 
all participants and stratified by sex. A 10-fold increase in oxydemeton-methyl loading was 
associated with a deficit of 3.3 points on the Processing Speed subscale (95% CrI: -6.4, -0.2). We 
observe a borderline effect for the class of OP pesticides and Processing Speed deficits, 
particularly among male children (95% CrI: -6.1, 0.2) (see Figure 4.1). A 10-fold increase in 
iprodione loading was associated with higher Verbal Comprehension scores (95% CrI: 0.3, 4.6). 

In analyses using pesticide concentrations (ng/g), all 95% CrIs crossed the null for the four 
subscales (shown in Supplemental Table 4.4). While all 95% CrI cross the null for 
concentrations of individual pesticides and pesticide classes, we observed a trend toward positive 
associations with pyrethroids for Working Memory and Processing Speed, and a trend toward 
adverse associations associated with OPs for Processing Speed. This trend toward adverse 
associations among OPs on Processing Speed was more pronounced among male children. 

4.3.4 Interaction with home environment 
All 95% CrI for the pesticide concentration-HOME score interaction product terms crossed 

the null for the Full-Scale IQ and the four subscales (Supplemental Table 4.5). We observed 
borderline effects between higher chlorthal-dimethyl (DCPA) loading levels and lower quality 
home environment on FSIQ (95% CrI of product term: -8.0, 0.2 and Working Memory (-8.7, 
0.1). We then observed that there was a borderline association of lower FSIQ scores and higher 
DCPA loading among those with lower HOME scores (β= -7.1 (95% CrI -14.7, 0.5) among low 
HOME scores, β= -0.5 (95% CrI -6.0, 5.0) among higher HOME scores). For Working Memory, 
the effect estimate was negative among those with low HOME scores and positive for those with 
higher HOME scores, but the 95% CrIs widely spanned the null.  

4.3.5 Sensitivity Analyses 
When we adjusted the second stage residual precision under the assumption that the β 

parameters would lie within a narrower interval, we did see changes in the 95% CrI (see 
Supplemental Table 4.6). In particular, the Processing Speed subscale was sensitive to the 
assumption on the 2nd stage precision. With a 4-fold assumption, the individual and overall class 
effects for pyrethroids were significant (indicating an increase in pyrethroid loading was 
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associated with better Processing Speed scores), while we observe significant adverse effects for 
the class of OPs on Processing Speed. Confidence intervals from similar analyses of child 
cognition often range 4-to-10 fold (38, 40, 46, 77), and we feel confident in using an 8-fold or 6-
fold interval, but results may be too sensitive to selection of a 4-fold interval prior. 

Our application of the modified z-matrix with indicators for OP and non-OP pesticides, and 
incorporation of RPFs for the OP pesticides yielded intriguing results, shown in Table 4.5. A ten-
fold increase in oxydemeton-methyl loading was associated with deficits for Full-Scale IQ (not 
observed in primary analysis) (95% CrI: -8.4, -0.1) and Processing Speed (consistent with 
primary analysis) (-9.9, -1.5). Effects on Processing Speed were observed among both male 
children (95% CrI: -14.9, -0.03) and female children (95% CrI: -10.8, -0.3) We also observed a 
modest, borderline association for the class of OPs and Processing Speed deficits (95% CrI: -0.7, 
0.005) (see Figure 4.2). Application of RPFs pulled estimates towards the more toxic pesticides, 
and produced narrower 95% CrIs for the class (OP or non-OP) effect estimates.
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Figure 4.1 Processing Speed subscale BHM results by (A) individual pesticides and (B) pesticide 
class. Models adjusted for: maternal education, maternal intelligence, maternal depression, total 
prenatal urinary DAPs, age at assessment, HOME score, agricultural workers in house, and sex 
(in non-stratified models). 
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Figure 4.2 Class effects of Organophosphate (OP) pesticides on Full-Scale IQ (FSIQ), Verbal 
Comprehension (VC), Working Memory (WM), Processing Speed (PS), Perceptual Reasoning 
(PR) at age seven years using Relative Potency Factors in Bayesian Hierarchical Models. Models 
adjusted for: maternal education, maternal intelligence, maternal depression, total prenatal 
urinary DAPs, assessment language (VC and FSIQ), age at assessment, HOME score, 
agricultural workers in house, and sex (in non-stratified models). 

 

4.4 Discussion 

We did not observe significant associations between pesticide concentrations (ng/g) in house 
dust measured in early childhood with cognitive scores at age seven. Our results showed largely 
null associations between pesticide dust loading (ng/m2) and child cognition at age seven, 
however, we did observe a 10-fold increase in oxydemeton-methyl loading associated with 
modest deficits on the Processing Speed subscale, consistent across primary and sensitivity 
analyses, with stronger effects among male children. We also observed higher Verbal 
Comprehension scores associated with higher iprodione loading in dust. We produced effect 
estimates for four pesticide classes using BHM, but did not observe more than borderline effects 
on cognition by pesticide class. Overall OP levels trended toward cognition deficits, while 
pyrethroid levels trended toward higher cognition. 

We observed stronger effect estimates associated with pesticide dust loading than for 
pesticide concentrations, which is consistent with existing exposure assessment literature. In 
studies evaluating blood lead concentrations and lead dust levels, the associations were much 
stronger with dust loading (66). After observing null results for primary analyses using 
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concentration, we focused our analyses on loading as the exposure characterization of interest. 
Concentration measurements can be useful for assessing indoor contamination and in exposure 
estimation calculations. However, in some situations, there may be higher concentrations but 
with very little surface dust available for exposure. Loading measurements can provide a more 
directly relevant metric for exposure assessment for use in epidemiology.  

We found the strongest, most consistent association between higher levels of oxydemeton in 
dust and cognition deficits at age 7 years, especially when incorporating prior information on the 
potency of oxydemeton-methyl relative to other OP pesticides. Previous CHAMACOS analyses 
have also identified this association for prenatal exposure and childhood cognition. Bouchard et 
al. 2011 found that urinary dimethyl (DM) phosphate metabolite concentrations averaged during 
pregnancy were associated with poorer cognitive scores (38). The investigators noted that the 
stronger associations with DM metabolites for most cognitive measures could be explained by 
higher toxicity pesticides, particularly oxydemeton-methyl, devolving to DM.  Gunier et al. 2017 
used multiple tests of association with neurodevelopment for both individual pesticides and 
pesticide classes with relative potency weighting (35). They found that IQ scores generally 
decreased across all domains with increasing use of OP pesticides within 1 km of the maternal 
residence during pregnancy, and that use of oxydemeton-methyl near child homes was one of the 
individual OP pesticides that had the strongest inverse relationship with Full-Scale IQ.   

In a study that used a different approach to evaluating the impact of pesticide mixtures on 
child cognition, using pesticide profiles of agricultural pesticides applied near maternal 
residences during pregnancy, investigators also identified oxydemeton-methyl, in addition to 
acephate, and maneb, as important contributors to the inverse associations with Full-Scale IQ in 
the CHAMACOS cohort (39). Their findings suggested potential sub-additive effects in the 
magnitude of these associations. It is logical that our results for oxydemeton-methyl in house 
dust align with analyses based on PUR data, given that these indicators of exposure are often 
correlated, and makes these findings more compelling (88, 90). 

The literature on early childhood pyrethroid exposure and neurobehavioral outcomes is 
sparse with overall mixed findings. We initially selected our statistical methods and exposure 
assessment to best uncover associations between pyrethroid pesticides and neurodevelopment 
while accounting for effects of other neurotoxic pesticide classes. The literature suggesting links 
between neurobehavioral deficits and childhood pyrethroid exposure (77, 134, 135, 164, 165) or 
prenatal exposure (130, 135, 166, 167) have measured exposure via urine samples, while our 
study focuses on early childhood non-dietary exposure to pesticides in dust. Our observed null 
associations between early life pyrethroid exposure and cognition are consistent with the other 
epidemiologic studies that also did not report inverse associations (133, 168, 169). These studies 
were cross-sectional and/or were limited by small sample sizes. Future analyses could draw upon 
environmental measures, geospatial analyses, and urine biomarkers for a more robust exposure 
assessment.  

Few other studies have examined pesticide exposures and interactions with psychosocial 
stress. Within the CHAMACOS cohort, one study found that one OP pesticide (malathion) was 
associated with worse internalizing behaviors among those with high Adverse Childhood 
Experiences (ACEs), another source of psychosocial stress (170). Another examination of early 
childhood adversity in the CHAMACOS study found stronger associations between prenatal OP 



 

71 
 

exposure and child IQ with more life stress (171). We selected quality of the home environment 
as a key social factor and potential source of psychosocial stress. In addition to influencing 
neurodevelopment, the home environment is also a more modifiable social factor than, say, 
exposure to racism or living in historically marginalized communities, as many families provide 
positive psychosocial environments, despite experiencing poverty or other challenges posed by 
socio-economic status. We posit that psychosocial stress acts on the same neuroendocrine stress 
response pathway (hypothalamic-pituitary-adrenal axis) (172) as environmental contaminants 
such as pesticides (173).  

While analyses on pesticides and interaction with HOME scores were null, we observed 
borderline effects suggesting the potential for interaction between the phthalate herbicide, 
chlorthal-dimethyl or DCPA (trade name Dacthal) and the quality of the home environment, for 
WISC-IV Full-Scale IQ and Working Memory, suggesting that higher levels of DCPA and lower 
quality home environments can synergistically impact child cognitive outcomes. DCPA is a 
suspected endocrine-disrupting chemical, and the U.S. Environmental Protection Agency 
concluded that DCPA demonstrated a potential for thyroid hormone interaction (151). Note that 
while the EPA does not consider DCPA neurotoxic, disruptions in thyroid function are suspected 
causes of neurodevelopmental deficits. Our findings of borderline synergistic effects warrant 
further exploration of the hypothesis that pesticides and social stress operate within the same 
neuroendocrine system. 

Similar to the present study, Horton et al. examined the potential of the home environment 
and the child's sex to modify the adverse effects of prenatal exposure to the OP pesticide 
chlorpyrifos on child working memory. They also found that a good quality home environment 
did not moderate the adverse effects of chlorpyrifos (45). They did observe that males experience 
a greater deficit in working memory than females following prenatal chlorpyrifos exposure, and 
that male children benefit more from a nurturing home environment than females. We also 
observed an overall trend of poorer cognition associated with higher OP levels among male 
children. This is consistent with the epidemiologic literature (174), although the strongest 
evidence exists for prenatal, rather than early childhood, OP exposures.  

There are some important limitations to note. While this analysis draws on methods that do 
not require a large sample size, we were only able to include a subset of the larger CHAMACOS 
cohort that had dust measured in the home and the outcome assessment. Other epidemiologic 
studies that use dust for exposure assessment had sample sizes of more than 350 to over 1,000 
participants (175-177). There were also a limited number of pesticides within each pesticide 
class used in this analysis. We had house dust measurements for two pyrethroid isomers, but 
many more compounds in this class of pesticides are likely to be present in homes. This analysis 
only focused on certain pesticide exposures, and not legacy pesticides such as DDT or other 
chemical exposures that can impact neurodevelopment, such as lead. In addition, homes are not 
the only environment young children spend time, and this analysis does not account for potential 
exposures outside of the home (about 30% of participants stayed 15+ hours outside home and 
average was about 40 hours/week among those). We also acknowledge that a more accurate 
accounting of psychosocial stress than just HOME scores would better serve this interaction 
analysis, but additional measures of psychosocial stress were limited within our exposure-
outcome subpopulation. The home environment is but one potential contributor to psychosocial 
stress. Other measurable contributors to early life adversity include Adverse Childhood 
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Experiences (ACEs) (170) or a total adversity index, such as that used in Stein et al., 2016 (171), 
or biomarkers of stress; future studies of pesticide exposures and child cognition should explore 
effect modification by these measures.  

The present study is, to our knowledge, the first to examine associations between early 
childhood exposures to pesticide mixtures in house dust and later child cognition. We drew on a 
robust longitudinal cohort and the ability to control for several measured confounders and 
applied principled approaches for considering exposure to pesticide mixtures. Overall, these 
methods move the field forward toward a class-based approach to chemical assessment and 
regulatory control. This analysis also aimed to treat the quality of the home environment, a social 
factor that can contribute to psychosocial stress, as a co-exposure, rather than just another 
variable to control for, thereby moving toward consideration of the cumulative impacts of 
chemical and non-chemical exposures on children’s health. 

4.4.1 Breaking the cycle of children’s health disparities. 
This research was conducted as part of the 2022-2023 Break the Cycle Program and aims to 

break the cycle of children’s environmental health disparities by focusing on the cumulative 
impact of chemical and non-chemical exposures within a disproportionately burdened 
community (see Cycle Diagram – Figure 4.3). The widespread use of neurotoxic pesticides has 
resulted in ubiquitous human exposure. However, this exposure is not distributed evenly, and 
children, farmworkers, and farming communities bear a disproportionate burden of exposure to 
pesticides and susceptibility to their effects. By investigating the connections between early 
childhood exposure to mixtures of different pesticide classes, the quality of the home 
environment, and neurodevelopmental outcomes in a particularly vulnerable population (young 
children from low-income households within an agricultural community), we can identify 
potential points of intervention. This includes the regulation of chemicals by class, agricultural 
policies that promote integrated pest management, enhancements to housing quality, 
interventions in child care facilities and schools focused on education and reducing 
environmental exposures, and the provision of social and economic support to historically 
disadvantaged families and communities.  
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Advancements in statistical approaches to studying complex environmental chemical 
mixtures (157, 178) allow researchers the opportunity to further elucidate the complex 
interactions between psychosocial stressors, environmental neurotoxicants, and cognitive 
outcomes. Conventional epidemiological methods have been limited in their capacity to address 
the challenge of multiple exposures. However, to break the cycle of children's environmental 
health disparities, we must acknowledge that children from historically underserved communities 
are more likely to be exposed to a combination of chemical and non-chemical stressors, and 
therefore use statistical methods to account for these co-exposures. This research emphasizes the 
examination of current and past-use pesticides, both individually and as entire classes. 
Furthermore, chemical regulations should transition towards regulating classes of chemicals 
collectively, rather than addressing them one at a time, to prevent regrettable substitution.  

Our results suggest that there may be interactive joint effects between the quality of the home 
environment and some pesticides, resulting in greater cognitive deficits among particularly 
vulnerable children. Potential interventions to improve the quality of the home environment 
include those that aim to enhance parental interactions and create a more stimulating learning 
environment in the child's home. Again, these can be bolstered through social and economic 
supports for families. The quality of the home environment can be improved through 
interventions at multiple levels – for example, providing families with age-appropriate toys and 
access to stimulating experiences (such as museum passes), but also creating conditions that 
lower parental stress (such as higher wages and safer workplaces), resulting in greater capacity 
for quality interactions with children at home. Research suggests interventions aimed at reducing 

Figure 4.3 Cycle Diagram for children’s environmental health in California’s Salinas Valley 
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psychosocial stress in children significantly decreased inflammation, in part due to improved 
parenting in the treated group (179), but assessment of such interventions on cognition is limited 
and deserves greater study. 

Another strategy to break the cycle of children’s environmental health disparities is to engage 
youth around environmental health literacy and research. CHAMACOS cohort researchers have 
successfully engaged Latino youth in Salinas, CA to become environmental health researchers, 
leaders, and advocates (180). This should not be overlooked when conducting secondary data 
analyses as in the present study. 

4.5 Conclusion 

Using a mixtures approach, we observed associations between lower cognition (namely 
Processing Speed) and early childhood exposure to OP pesticides, particularly oxydemeton-
methyl, among Mexican-American children living in an agricultural region in California. This 
research highlights the issue of exposure to complex pesticide mixtures in early childhood and its 
potential impacts on children's neurodevelopment. It contributes to our understanding by 
advancing class-based approaches to chemical assessment and emphasizing the importance of 
considering both chemical and non-chemical stressors. Our findings support existing research on 
the impacts of OPs and the particularly toxic oxydemeton-methyl on neurodevelopment, but 
finds this association for exposure in the important early childhood window, rather than prenatal 
exposure. Future research should further explore mixtures of current and past-use pesticides, 
utilize additional exposure assessment methods, and assess the cumulative impacts of these 
exposures. Targeted interventions should be considered to break the cycle of children's 
environmental health disparities for vulnerable children who are exposed to toxic chemicals as 
well as to non-chemical stressors. 

 

 

  



 

75 
 

4.6 Supplement to Chapter 4 

Supplemental Table 4.1 Z-Matrix used in primary analysis 
 

Pyrethroid OP Fungicide Herbicide 
cis-Permethrin 1 0 0 0 
trans-Permethrin 1 0 0 0 
Chlorpyrifos 0 1 0 0 
Phosmet 0 1 0 0 
Diazinon 0 1 0 0 
Oxydm 0 1 0 0 
Iprodione 0 0 1 0 
DCPA 0 0 0 1 

 
 

Supplemental Table 4.2 Z-Matrix for interaction analysis 
 

Pyrethroid OP Fungicide Herbicide HOME 
cis-Permethrin 1 0 0 0 0 
trans-Permethrin 1 0 0 0 0 
Chlorpyrifos 0 1 0 0 0 
Phosmet 0 1 0 0 0 
Diazinon 0 1 0 0 0 
Oxydm 0 1 0 0 0 
Iprodione 0 0 1 0 0 
DCPA 0 0 0 1 0 
HOME Score 0 0 0 0 1 
cisPerm*HOME 1 0 0 0 1 
transPerm*HOME 1 0 0 0 1 
Chlorpyrifos*HOME 0 1 0 0 1 
Phosmet*HOME 0 1 0 0 1 
Diazinon*HOME 0 1 0 0 1 
Oxydm*HOME 0 1 0 0 1 
Iprodione*HOME 0 0 1 0 1 
DCPA*HOME 0 0 0 1 1 
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Supplemental Table 4.3 Z-Matrix for sensitivity analysis using Relative Potency Factors (RPFs) 
 

Not OP OP Relative Potency 
cis-Permethrin 1 0 
trans-Permethrin 1 0 
Chlorpyrifos 0 1 
Phosmet 0 0.42 
Diazinon 0 0.24 
Oxydm 0 16.44 
Iprodione 1 0 
DCPA 1 0 
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Supplemental Table 4.6 Sensitivity analysis of changing precision parameter 
 

Full-Scale IQ (FSIQ) WM VC PS PR  
95% CrI 
using 6-
fold 
assumptio
n 

95% CrI 
using 4-fold 
assumption 

95% CrI 
using 4-fold 
assumption 

95% CrI 
using 4-fold 
assumption 

95% CrI 
using 4-fold 
assumption 

95% CrI 
using 4-fold 
assumption 

cis-
Permethrin 

-0.44, 5.65 -0.01, 5.22 -0.97, 3.95 -1.42, 3.17 0.3, 4.85 -2.36, 2.58 

trans-
Permethrin 

-0.41, 5.38 0.04, 5.09 -0.89, 4.01 -1.75, 2.69 0.28, 4.79 -2.27, 2.56 

Chlorpyrifos -1.12, 3.97 -1.29, 3.25 -2.13, 2.55 -1.02, 2.99 -3.86, 0.44 -0.5, 4.22 
Phosmet -2.25, 3.97 -1.97, 3.26 -2.29, 2.72 -2.14, 2.44 -4.19, 0.49 -0.57, 4.47 
Diazinon -3.49, 1.87 -2.57, 2.08 -3.07, 1.78 -2.14, 2.04 -4.34, 0.22 -1.49, 3.38 
Oxydemeton
-methyl 

-3.02, 3.43 -2.32, 2.91 -3.05, 1.84 -2.07, 2.79 -4.78, -0.19 -1.27, 3.77 

Iprodione -1.84, 3.65 -1.91, 3.61 -0.89, 4.66 -0.06, 4.75 -1.49, 3.49 -2.67, 3.07 
Chlorthal-
dimethyl 
(DCPA) 

-7.45, 4.46 -7.33, 4.5 -7.69, 2.76 -5.78, 4.94 -6.67, 2.67 -10.04, 0.99 

Class: 
Pyrethroid 

-0.52, 5.58 -0.01, 5.16 -0.96, 4 -1.59, 2.95 0.31, 4.84 -2.3, 2.55 

Class: OP -1.99, 2.87 -1.71, 2.56 -2.3, 1.91 -1.53, 2.22 -3.96, -0.11 -0.65, 3.6 
Class: 
Fungicide 

-3.18, 4.95 -2.55, 4.24 -1.55, 5.28 -0.79, 5.45 -2.17, 4.16 -3.3, 3.72 

Class: 
Herbicide 

-8.13, 5.2 -7.64, 4.79 -8.07, 3.19 -6.12, 5.25 -7.01, 3.08 -10.44, 1.28 
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Supplemental Figure 4.1 Inclusion criteria 
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Supplemental Figure 4.2 Directed Acyclic Graph 
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Chapter 5 Conclusion 

5.1 Summary  

The purpose of this dissertation was to 1) characterize and identify determinants of pesticide 
levels in carpet dust in California child care centers, 2) assess the risk of these potential 
exposures, through non-dietary ingestion and dermal absorption, surpassing health-protective 
reference values, and 3) examine early childhood exposures to pesticide mixtures in house dust, 
the home environment, and child cognition. This research addresses critical gaps in our 
understanding of the determinants and health implications of pesticide exposure in early 
childhood environments.  

Methods 

Our methodology is grounded in analysis of two important children's environmental health 
studies. This dissertation includes some of the first findings from the UCSF Healthy Children 
and Environments Study, a randomized-control trial of licensed child care centers in four 
Northern California counties aiming to examine the effect of an Integrated Pest Management 
(IPM) intervention on pesticide levels in child care. Indoor dust is an important source of 
exposure for young children. We utilized dust samples collected via High Volume Small Surface 
Sampler (HVS3). This dissertation provides the first characterization of contamination for certain 
new-use pesticides in early childhood environments, including fipronil and chlorfenapyr. To 
understand how exposures to pesticides in indoor dust can influence child health, we applied 
probabilistic methods to both health risk assessment and epidemiologic investigation. In an effort 
to establish links to health impacts through an epidemiologic investigation, we applied 
innovative methods for examining mixtures by chemical class and incorporating prior knowledge 
into a dataset sourced from the robust CHAMACOS birth cohort study. Our statistical 
approaches utilize probabilistic risk assessment methods and Bayesian hierarchical modeling that 
incorporates consideration of pesticide classes and relative potency.  

Key findings  

In Chapter 2, our research yielded important insights into the factors influencing pesticide 
levels in carpet dust within child care centers in Northern California. Specifically, we identified 
correlations with and predictors of levels of chlorpyrifos, bifenthrin, fipronil, and ∑permethrin.  
Important predictors included geographic region, proximity to agricultural pesticide applications, 
application of structural pesticides, fewer IPM practices, and placement of carpets on hard 
surface flooring. Notably, location within the San Joaquin Valley emerged as the strongest 
predictor of elevated pesticide loading for frequently detected pesticides. Many of our findings 
supported our hypotheses, including the positive association between bifenthrin levels and the 
density of agricultural bifenthrin use within 3 km, lower chlorpyrifos levels with better IPM 
practices, and increased fipronil levels with Pest Management Professional (PMP) applications 
of fipronil at child care centers in the past year. On the other hand, we did not find associations 
between higher concentrations of pesticides and observed pesticide products stored on-site, 
observed pests, or the age of the facility… 

Results from Chapter 3 indicated that, within licensed child care centers in Northern 
California, potential pesticide exposures through dermal and incidental ingestion pathways are 
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unlikely to cause neurotoxic or hepatotoxic effects in young children. However, these estimates 
represent only part of potential daily exposure. In hypothetical thought exercises, we observed 
that similar environmental exposures at home could result in risk for neurotoxic effects for the 
most highly exposed children, and exposures from dietary sources could also result in overall 
exposure levels of concern for neurotoxic effects. We found that application of probabilistic 
methods for exposure estimation and risk-specific reference doses was feasible and should be 
applied widely in risk assessments. 

In Chapter 4, we hypothesized that higher levels of pyrethroids and OPs in house dust in 
early childhood would be associated with lower IQ scores at age 7y and the effect would vary by 
sex of the child and quality of the home environment, however, results regarding pesticide dust 
levels and child cognition at age seven showed largely null associations. Nevertheless, a 10-fold 
increase in oxydemeton-methyl loading was linked to modest deficits on the Processing Speed 
subscale, particularly among male children, at age 7 years. Oxydemeton-methyl was the most 
toxic OP in the mixture. Other CHAMACOS researchers have also identified stronger 
associations with dimethyl metabolites for cognitive deficits explained by higher toxicity 
pesticides like oxydemeton-methyl. Interestingly, overall OP levels trended toward cognition 
deficits, while pyrethroid levels trended toward higher cognition. There was some evidence 
suggesting that effects of OPs vary by the sex of the child, with worse cognitive outcomes for 
male children. While we did not observe significant interactive effects with the quality of the 
home environment, borderline interactions support further analysis and the routine consideration 
of social factors contributing to psychosocial stress in pesticide neurodevelopmental 
investigations. 

5.2 Limitations and Direction for Future Research 

This dissertation focuses on pesticides in indoor dust, but there is a broad spectrum of 
potential contaminants in house dust, such as metals, phthalates, flame retardants, fluorinated 
compounds, and allergens. While this research applies mixture methods and considers 
cumulative risk to pesticide exposure, these could and should be applied to a broader set of 
contaminants present in children’s environments. Another limitation is the relatively small 
number of baseline dust samples available for analysis from the HCES study due to COVID-19 
disruptions. We produced novel findings regarding carpet placement on different flooring types, 
suggesting an avenue for further exploration in exposure assessment literature. 

Both the cumulative health risk assessment for the class of pyrethroids and the Bayesian 
second-stage model outputs for the class of pyrethroids did not yield results that indicate adverse 
neurodevelopmental or other health impacts. We have compelling results incorporating relative 
potency factors for OPs in our Bayesian hierarchical model framework, and future research 
should aim to continue to apply this method to other pesticide classes as well, particularly newer-
use pesticides. 

This research was limited by the lack of health outcome data from the HCES study and the 
inclusion of only two pyrethroid isomers in the CHAMACOS dust analysis. In many ways, 
pesticides are a moving target for exposure assessment and epidemiology. Patterns of use for 
individual pesticides and pesticide classes change over time and differ by region. The permethrin 
levels in CHAMACOS homes 1999 to 2002 are similar to what we find in Northern California 
child care centers 18 years later, but we do not have similar measurements of the same 
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pyrethroids found in HCES child care centers for the CHAMACOS homes. These limitations 
underscore the necessity for well-designed studies with robust exposure assessment methods and 
a comprehensive panel of analytes in future research.  

Additional areas for further exploration in pesticide risk assessment include better 
understanding the implications of changes to Food Quality Protection Act (FQPA) mandated 
child-specific safety factors, and better accounting for aggregate and cumulative exposure. For 
the present study, we relied on established U.S. EPA methods for the pyrethroid cumulative 
health risk assessment and did not apply the probabilistic reference dose approach to deriving the 
margin of exposure for pyrethroids. Further exploration into other ways to incorporate relative 
potency to assess cumulative risk, not just for pyrethroids, but for all neurotoxic pesticides, is 
warranted. We also relied on the FQPA safety factors used by U.S. EPA in its determination of 
the reference dose. However, over the past two decades, the FQPA safety factor for pyrethroids 
has been reduced from a tenfold to a threefold margin of safety, to a complete elimination of the 
safety factor for young children. The impact of these changes warrant further exploration.  

5.3 Significance 

This research makes several contributions to the field of environmental health sciences. Child 
care programs, vital environments for over a million California children, are under-researched in 
environmental health studies. Children may be spending a significant amount of time in child 
care environments, with particularly long hours for working class families. Children are not the 
only vulnerable population in child care settings. California’s early care and education workforce 
includes approximately 130,000 people, predominantly female, with ethnic diversity consistent 
with that of the children they care for (181). Nationwide, child care workers earn wages that put 
them barely above the poverty level for a family of three (78). Prioritizing environmental health 
in child care protects the health of children and promotes health equity for many women of color. 

Our findings suggest that IPM practices may reduce exposure to legacy pesticides that persist 
in the indoor environment, in addition to preventing pest infestations and reducing the need for 
new pesticide applications. IPM is an important health intervention in child care settings, and 
better IPM practices within our food systems can help reduce pesticide exposures for the general 
public, residents of agricultural communities, and farmworkers and their families. We are 
encouraged by the recent release of California’s Sustainable Pest Management roadmap that will 
hopefully reduce children’s exposures to pesticides at school and at home.  

Several methodologies used in this research should continue to be applied in environmental 
health studies. Probabilistic risk assessment and use of probabilistic reference doses as points of 
comparison should be the standard for chemical risk assessment. Bayesian statistical methods 
can answer multiple questions from one data set and incorporate prior knowledge. We produced 
class-specific effect estimates, and incorporated relative potency factors, which is a unique 
feature of this research. This study adds to the limited knowledge about how pesticide exposures 
and psychosocial stress interact. The quality of the home environment and exposure to pesticides 
during early life are both linked to neurodevelopmental issues. Although there is evidence 
connecting either psychosocial stress or chemical exposures to negative neurodevelopmental 
outcomes, their combined effects have not been extensively studied. When data are available, 
particularly when researching disproportionately impacted communities, researchers should 
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routinely analyze potential interactions, in the same way epidemiologists routinely control for 
confounding. Social factors contributing to psychosocial stress that might affect the same 
neuroendocrine pathways as pesticides should be treated as co-exposures with the potential for 
synergistic effects. Bayesian statistical methods allow researchers to incorporate this with 
relative ease. Finally, our findings underscore the importance of using dust loading to 
characterize potential exposure. 

Pesticide use restrictions and right-to-know regulations provide some protection from 
exposures at schools and child care centers. Growers cannot apply certain pesticides within 0.25 
miles (approx. 402 meters) during the school day.  We observed correlation between bifenthrin 
levels in carpet dust and the density of agricultural bifenthrin use within 3 km of the site. Further 
investigation is needed to determine if California’s regulatory buffer around schoolsites will 
sufficiently reduce exposure to agricultural pesticides. As of this writing, and after decades of 
advocacy, the California Department of Pesticide Regulation is developing the infrastructure and 
technology to support a statewide notification system for agricultural pesticide applications. This 
is a critical development as a tool to help communities protect their health, and for researchers to 
study potential adverse health outcomes.  
 

Overall, our research contributes to filling gaps in knowledge around chronic, low-level 
exposure to pesticide mixtures to promote healthier early childhood environments. 

5.4 Conclusion 

This dissertation aimed to assess pesticide exposures in children’s environments, and 
examine health risks and potential neurodevelopmental effects associated with those exposures. 
Our findings reveal the ubiquitous presence of pesticides in children's care environments, 
influenced by various factors, both within and beyond the control of child care operators. While 
pesticide levels within our child care study population did not raise significant concerns, we still 
advocate for the reduction of exposures as children are exposed to mixtures of pesticides both 
within child care and beyond. Our findings supporting the extant literature on the 
neurodevelopmental effects of OP pesticides underscore the need to move away from this class 
of pesticides and toward truly safer alternatives, rather than potentially regrettable substitutes. 

Looking ahead, our research emphasizes the imperative of exploring low-dose effects of 
pesticide mixtures, particularly newer-use pesticides, with a focus on disproportionately 
burdened communities and vulnerable subpopulations. We advocate for support systems 
promoting thriving developing brains, emphasizing high-quality early care and education, and 
adoption of IPM practices. Recognizing the significance of early childhood exposures, our study 
calls for ongoing efforts to safeguard children's developing brains and create healthier 
environments. 
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