UC Berkeley
UC Berkeley Previously Published Works

Title

Extreme Scale De Novo Metagenome Assembly

Permalink

Ihttps://escholarship.org/uc/item/6xs441rd

Authors

Georganas, Evangelos
Egan, Rob

Hofmeyr, Steven

Publication Date
2018

DOI
10.1201/b21930

Peer reviewed

eScholarship.org Powered by the California Digital Library

University of California

https://escholarship.org/uc/item/6xs441r0
https://escholarship.org/uc/item/6xs441r0#author
https://escholarship.org
http://www.cdlib.org/

arXiv:1705.11147v1 [cs.DC] 31 May 2017

Extreme-Scale De Novo Genome Assembly *

Evangelos Georganas!, Steven Hofmeyr?, Rob Egan®, Aydin Buluc?,
Leonid Oliker?, Daniel Rokhsar?, Katherine Yelick?

LIntel Corporation, Santa Clara, USA
2 Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
3 Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, USA

De novo whole genome assembly reconstructs genomic sequence from short, overlapping, and
potentially erroneous DNA segments and is one of the most important computations in modern
genomics. This work presents HipMER, a high-quality end-to-end de novo assembler designed
for extreme scale analysis, via efficient parallelization of the Meraculous code. Genome assembly
software has many components, each of which stresses different components of a computer system.
This chapter explains the computational challenges involved in each step of the HipMer pipeline, the
key distributed data structures, and communication costs in detail. We present performance results
of assembling the human genome and the large hexaploid wheat genome on large supercomputers
up to tens of thousands of cores.

1 Overview of de novo Genome Assembly

Genomes are the fundamental biochemical elements underlying inheritance, represented by chemi-
cal sequences of the four DNA “letters” A, C, G, and T. Genomes encode the basic software of an
organism, defining the proteins that each cell can make, and the regulatory information that deter-
mines the conditions under which each protein is produced, allowing different organs and tissues
to establish their distinct identities and maintain the stable existence of multicellular organisms
like us. Sequences that differ by as little as one letter can cause the expression of proteins that are
defective or are inappropriately expressed at the wrong time or place. These differences underlie
many inherited diseases and disease susceptibility.

Each organism’s genome is a specific sequence, ranging in length from a few million letters
for typical bacterium to 3.2 billion letters for a human chromosome to over 20 billion letters for
some plant genomes, including conifers and bread wheat. Genomes differ between species, and even
between individuals within species; for example, two healthy human genomes typically differ at
more than three million positions, and each can contain over ten million letters that are absent in
the other. Genomes mutate between every generation and even within individuals as they grow,
and some of those mutations can drive cells to proliferate and migrate inappropriately, leading to
diseases such as cancer. We do not yet know which sequence differences are important but hope to
learn these rules by sequencing millions of healthy and sick people, and comparing their genomes.

Determining a genome sequence “de novo” (that is, without reference to a previously determined
sequence for a species) is a challenging computational problem. Modern sequencing instruments can
cost-effectively produce only short sequence fragments of 100-250 letters, read at random from a

*To appear as a chapter in Ezascale Scientific Applications: Programming Approaches for Scalability, Performance,
and Portability, Straatsma, Antypas, Williams (editors), CRC Press, 2017

genome (so-called “shotgun” sequencing). A billion such short reads can be produced for around
$1,000, enough to redundantly sample the human genome thirty times in overlapping short frag-
ments. The computational challenge of “genome assembly” is then to reconstruct chromosome
sequences from billions of overlapping short sequence fragments, bridging a six order of magnitude
gap between the length of the individual raw sequence reads and a complete chromosome.

Reconstructing a long sequence from short substrings is in general an NP-hard problem, and
must rely on heuristics and/or take advantage of specific features of genome sequences [45] 30].
Current genome assembly algorithms typically rely on single node, large memory (e.g. 1 TB) archi-
tectures, and can take a week to assemble a single human genome, or even several months for larger
genomes like loblolly pine [49]. These approaches clearly do not scale to the assembly of millions
of human genomes. While some distributed memory parallel algorithms have been developed, they
do not scale to massive concurrencies as they exhibit algorithmic bottlenecks and the irregular ac-
cess patterns that are inherent to these algorithms amplify the distributed memory parallelization
overheads.

The work presented in this chapter addresses the aforementioned challenges by developing par-
allel algorithms for de novo assembly with the ambition to scale to massive concurrencies. The
result of this work is HipMer [20], an end-to-end high performance de novo assembler designed
to scale to massive concurrencies. HipMer uses (i) high performance computing clusters or super-
computers for both memory size and speed, (ii) a global address space programming model via
Unified Parallel C (UPC) [16] to permit random accesses across the aggregate machine memory,
and (iii) parallel graph algorithms and hash tables, optimized for the statistical characteristics of
the assembly process to reduce communication costs and increase parallelism. Our work is based
on the Meraculous [12, 10] assembler, a state-of-the-art de novo assembler for short reads devel-
oped at the Joint Genome Institute. Meraculous is a hybrid assembler that combines aspects of de
Bruijn-graph-based assembly with overlap-layout-consensus approaches and is ranked at or near
the top in most metrics of the Assemblathon IT competition [§]. The original Meraculous used a
combination of serial, shared memory parallel, and distributed memory parallel code. The size and
complexity of genomes that could be assembled with Meraculous was limited by both speed and
memory size. Our goal was a fast, scalable parallel implementation that could use the combined
memory of a large scale parallel machine and our work [21], 22] 20] [19] has covered all aspects of
the single genome assembly pipeline.

The rest of this chapter is organized as follows. Sections describe the fundamental concepts
that we build upon in this chapter and provide the necessary background. Section [5| details the
parallelization in the HipMer algorithms. Section [6] presents performance results of HipMer on
large scale. Section [7] highlights the main challenges for porting HipMer to manycore architectures.
Section [§ briefly overviews related works and finally Section [9] concludes this chapter.

2 The Meraculous Assembly Pipeline

In this Section we review the Meraculous [12], [10] single genome assembly pipeline and its main
algorithmic components. This pipeline constitutes the basis for our parallel algorithms. Even though
the description of the pipeline is specific to Meraculous, the high-level algorithmic techniques are
relevant to any de novo genome assembler which is based on de Bruijn graphs.

The input to the genome assembler is a set of short, erroneous sequence fragments of 100-250
letters, read at random from a genome (see Figure . Note that the genome is redundantly sampled
at a depth of coverage d. Typically these reads fragments come in pairs and this information will be
further exploited in the pipeline. Paired reads are also characterized by the insert size, the distance
between the two distant ends of the reads. Thus, given the read lengths and the corresponding

insert size

JOTTTTe . depth d

Figure 1: Reads extracted from a genome with a depth of coverage d.

insert size, we have an estimate for the gap between the paired reads. Typically the reads are
grouped into libraries and each library is characterized by a nominal insert size and its standard
deviation. Libraries with different insert sizes play a significant role in the assembly process, as
will be explained later in this section. The Meraculous pipeline consists of four major stages (see
Figure [2[(a)):

1. K-mer analysis: The input reads are processed to exclude errors. First, the reads are
chopped into k-mers, which are overlapping sequences of length k. Figure b) shows the k-mers
(with k£ = 3) that are extracted from a read. Then, the k-mers extracted from all the reads are
counted and those that appear fewer times than a threshold are treated as erroneous and discarded.
Additionally, for each k-mer we keep track of the two neighboring bases in the original read it was
extracted from (henceforth we call these bases extensions). The result of k-mer analysis is a set of
k-mers and their corresponding extensions that with high probability include no errors.

The redundancy d in the read data set is crucial in the process of excluding the errors implicitly.
More specifically, an error at a specific read location yields up to k erroneous k-mers. However,
there are more reads covering the same genome location due to the redundancy d. More precisely,
given the read length L we expect to find a true, error-free k-mer on average f =d-(1—(k—1)/L)
times in the read data set where f is the mean of the Poisson distribution of key frequencies [34]
and most of these k-mer occurrences will be error-free. Therefore, if we find a particular k-mer just
one or two times in our read dataset, then we consider that to be erroneous. On the other hand,
k-mers that appear a number of times proportional to d are likely error-free.

2. Contig generation: The resulting k-mers from the previous step are stored in a de Bruijn
graph. This is a special type of graph that represents overlaps in sequences. In this context, k-mers
are the vertices in the graph, and two k-mers that overlap by k£ — 1 consecutive bases are connected
with an undirected edge in the graph (see Figure [3[for a de Bruijn graph example with k£ = 3).

Due to the nature of DNA, the de Bruijn graph is extremely sparse. For example, the human
genome’s adjacency matrix that represents the de Bruijn graph is a 3 -10? x 3 - 10° matrix with
between two and eight non-zeros per row for each of the possible extensions. In Meraculous only
k-mers which have unique extensions in both directions are considered, thus each row has exactly
two non-zeros.

Using a direct index for the k-mers is not practical for realistic values of k, since there are
4% different k-mers. A compact representation can be leveraged via a hash table: A vertex (k-
mer) is a key in the hash table and the incident vertices are stored implicitly as a two-letter code
[ACGT|[ACGT] that indicates the unique bases that immediately precede and follow the k-mer in the
read dataset. By combining the key and the two-letter code, the neighboring vertices in the graph
can be identified.

T e T=_-=T=T=T=="_"="-="— Read GATCTGAACCG

E GAT

contigs I . | [] ATC
k-mer TCT
s ers CTG
alignments Pty Dol el e gt i e D Emim TGA
preien] it bl i i g i i GAA
AAC
u ACC
CCG
| -
[| . -
[| . [
scaffolds
(a) (b)

Figure 2: (a) The Meraculous assembly pipeline. (b) Extracting k-mers (k = 3) from the read
GATCTGAACCG.

In Figure|3|all k-mers (vertices) have unique extensions (neighbors) except from the vertex GAA
that has two “forward neighbors”, vertices AAC and AAT. From the previous k-mer analysis results we
can identify the vertices that do not have unique neighbors. In the contig generation step we exclude
from the graph all the vertices with non-unique neighbors. We define contigs as the connected
components in the de Bruijn graph. Via construction and traversal of the underlying de Bruijn
graph of k-mers the connected components in the graph are identified. The connected components
have linear structure since we exclude from the graph all the “fork” nodes or equivalently the k-
mers with non-unique neighbors. The contigs are (with high probability) error-free sequences that
are typically longer than the original reads. In Figure [3| by excluding the vertex GAA that doesn’t
have a unique neighbor in the “forward” direction, we find three linear connected components that
correspond to three contigs.

3. Aligning reads onto contigs: In this step we map the original reads onto the generated
contigs. This mapping provides information about the relative ordering and orientation of the
contigs and will be used in the final step of the assembly pipeline.

The Meraculous pipeline adopts a seed-and-extend algorithm in order to map the reads onto
the contigs. First, the contig sequences are indexed by constructing a seed index, where the seeds
are all substrings of length k& that are extracted from the contigs. This seed index is then used to
locate candidate read-to-contig alignments. Given a read, we extract seeds of length k, look them
up in the seed index and as a result we get candidate contigs that are aligned with the read because
they share common seeds. Finally, an extension algorithm (e.g. Smith-Waterman [46]) is applied to
extend each found seed and local alignments are returned as the final result.

4. Scaffolding and gap closing: The scaffolding step aims to “stitch” together contigs and

Contig 2: AACCG

Contig 1: GATCTGA o @

S,

@'

@ Contig 3: AATGC

Figure 3: A de Bruijn graph of k-mers with k = 3.

contig 1 contig 2 contig 3
_______ scaffold 1
— link 192 link 23
] le—

CONtiQ | mmmmis mimmmm CONLiQ contig 4 contig 5
v T scaffold 2

link i®]j link 45

(a) (b)

Figure 4: (a) A link between contigs i and j that is supported by three read pairs. (b) Two scaffolds
formed by traversing a graph of contigs.

form sequences of contigs called scaffolds by assessing the paired-end information from the reads
and the reads-to-contigs alignments. Figure @(a) shows three pairs of reads that map onto the same
pair of contigs i and j. Hence, we can generate a link that connects contigs i and j. By generating
links for all the contigs that are supported by pairs of reads we create a graph of contigs (see
Figure (b)) By traversing this graph of contigs we can form chains of contigs which constitute the
scaffolds. Note that libraries with large insert sizes can be used to generate long-range links among
contigs. Additionally, scaffolding can be performed in an iterative way by using links generated
from different libraries at each iteration.

After the scaffold generation step, it is possible that there are gaps between pairs of contigs.
We then further assess the reads-to-contigs mappings and locate the reads that are placed into
these gaps (see Figure . Ultimately, we leverage this information and close the contig gaps by
performing a mini-assembly algorithm involving only the localized reads for each gap. The outcome
of this step constitutes the result of the Meraculous assembly pipeline.

In the subsequent Sections [3| [] and [f] we will examine the programming model, the main
distributed data structure and the parallel algorithms that are employed in the HipMer pipeline.

3 The Partitioned Global Address Space Model in Unified Parallel
C

The Partitioned Global Address Space (PGAS) programming model is employed in parallel pro-
gramming languages. In this model, any thread is allowed to directly access memory on other
threads. In the PGAS model, two threads may share the same physical address space or they may

_:'"0__5 RTTN :E RSLLN
* - .0"'¢ :E R e
scaffold — — — —
.Gap1 i Gap2 i ~Gap3 ¢
Gap |

closin =

closed g/
SCﬁffOld | o e W |

Figure 5: The gap closing procedure.

own distinct physical address spaces. In the former case, remote-thread accesses can be done directly
using load and store instructions while in the latter case a remote access must be translated into
a communication event, typically using a communication library such as GASNet [7] or hardware
specific layers such as Cray’s DMAPP [47] or IBM’s PAMI [31].

An alternative communication mechanism typically employed in parallel programming lan-
guages is message passing, where the communication is done by exchanging messages between
threads (e.g. see the Message Passing Interface (MPI) [25]). In such a communication model, both
the sender and the receiver should explicitly participate in the communication event and therefore
requires coordinating communication peers to avoid deadlocks. The programmer’s burden in such
a two-sided communication model can be further exaggerated in situations where the communica-
tion patterns are highly irregular as in distributed hash table construction. On the other hand, the
PGAS model requires the explicit participation only of the peer that initiates the communication
and as a result parallel programs with irregular accesses are easier to implement. Such a com-
munication mechanism is typically referred to as one-sided communication. In addition to PGAS
languages like Unified Parallel C (UPC) [16] there are programming libraries such as SHMEM [9]
and MPI 3.0 [I4] with one-sided communication features.

Unified Parallel C (UPC) is an extension of the C programming language designed for high
performance computing on large-scale parallel machines by leveraging a PGAS communication
model. UPC utilizes a Single Program Multiple Data (SPMD) model of computation in which the
amount of parallelism is fixed at program startup time. On top of its one-sided communication
capabilities, UPC provides global atomics, locks and collectives that facilitate the implementation
of synchronization protocols and common communication patterns. In short, UPC combines the
programmability advantages of the shared-memory programming paradigm and the control over
data layout and performance of the message passing programming paradigm. According to the
memory model of UPC each thread has a portion of shared and private address space. Variables
that reside in the shared space can be directly accessed by any other thread and typically the
program should employ synchronization mechanisms in order to avoid race conditions. On the
other hand, variables that live in the private space can be read and written only by the thread
owning that particular private address space.

Overall, the global address space model and the one-sided communication capabilities of UPC
simplify the implementation of distributed data structures and highly irregular communication
patterns. Such communication patterns are ubiquitous in our parallel algorithms described in Sec-
tion Bl

Shared Private

buckets entries
Key: | Val: Key: | Val:
Thread 0 .__>| A${3| i |._|_>| A8¥3| vt |, X
C€co Thread 1 > Ko TVl T
() Thread 2 | | e
o
@ S Thread3 NETAAER y
o
(/) °
3 Key: | Val: Key: [Val:
@ @ o .] GAT| CX > ATG| CA |® y
- Key: | Val:
I R B
BAT) = .
3
Key:| Val:
< —BlEET
® ° e ETEAL
[]
Thread N | | e—+>| KS%| Ja" fe1—s) Koy VAl g .
@ (b)

Figure 6: (a) A de Bruijn graph of k-mers (k = 3). (b) A distributed hash table that represents de
Bruijn graph at left.

4 Distributed Hash Tables in a PGAS Model

A common data structure utilized in subsequent parallel algorithms is the distributed hash table.
There is a wide body of work on concurrent hash tables [43] 26] 27, [17, [32], 40}, 42] that focuses on
shared memory architectures. There is also a lot of work on distributed hash tables (see [2], [41]
and survey of Zhang et al. [48]) specially designed for large-scale distributed environments that
support primitive put and get operations. Such implementations do not target dedicated HPC en-
vironments and therefore have to deal with faults, malicious participants and system instabilities.
Such distributed hash tables are optimized for execution on data centers rather than HPC systems
with low-latency and high-throughput interconnects. There are some simple distributed memory
implementations of hash tables in MPI [23] and UPC [37], but they are used mainly for benchmark-
ing purposes of the underlying runtime and do not optimize the various operations depending on
the use case of the hash table. In this section we describe the basic implementation of a distributed
hash table using a PGAS abstraction. We also identify a handful of use cases for distributed hash
tables that enable numerous optimizations for HPC environments.

4.1 Basic implementation of a distributed hash table

We will present the vanilla implementation of a distributed hash table by following an example
of a distributed de Bruijn graph. Figure |§| (a) shows a de Bruijn graph of k-mers with k& = 3
and Figure [6] (b) illustrates its representation in a distributed hash table. A vertex (k-mer) in the
graph is a key in the hash table and the incident vertices are stored implicitly as a two-letter code
[ACGTX][ACGTX] that indicates the unique bases that follow and precede that k-mer. This two letter

code is the value member in a hash table entry. Note that the character X indicates that there is no
neighboring vertex in that direction. By combining the key and the two-letter code, the neighboring
vertices in the graph can be identified. More specifically, by concatenating the last k — 1 letters
of a key and the first letter of the value, we get the “forward” neighboring vertex. Similarly, by
concatenating the second letter of the value and the first k — 1 letters of that key, we get the
“preceding” neighboring vertex.

In our example, all the hash table entries are stored in the shared address space and thus they
can be accessed by any thread. The buckets are distributed to the available threads in a cyclic
fashion to achieve load balance. Our hash table implementation utilizes a chaining rule to resolve
collisions in the buckets (entries with the same hash value). We emphasize here that the hash tables
involved in our algorithms can be gigantic (hundreds of Gbytes up to tens of Thytes) and cannot fit
in a typical shared-memory node. Therefore it is crucial to distribute the hash table buckets over
multiple nodes and in this quest the global address space of UPC is convenient.

In the following subsection we list different use case scenarios of distributed hash tables. These
use case scenarios are encountered in our parallel algorithms described in Section[5|and are presented
upfront in order to highlight the optimization opportunities.

4.2 Use cases of distributed hash tables in the HipMer pipeline

Here we identify a handful of use cases for the distributed hash tables that allow specific optimiza-
tions in their implementation. These use cases will be used as points of reference in the section that
details our parallel algorithms.

Use case 1 — Global Update-Only phase (GUOQO): The operations performed in the dis-
tributed hash table are only global updates with commutative properties (e.g. inserts only). The
global hash table will have the same state regardless of insert order, although it might possibly
have different underlying representation due to chaining. The global update-only phase can be
optimized by dynamically aggregating fine-grained updates (e.g. inserts) into batch updates. In
this way we can reduce the number of messages and synchronization events. We can also overlap
computation/communication or pipeline communication events to further hide the communication
overhead.

A typical example of such a use case is a producer/consumer setting where the producers operate
in a distinct phase from consumers, e.g. all consumers insert items in a hash table before anything
is consumed /read.

Use case 2 — Global Reads & Writes phase (GRW): The operations performed during this
phase are global reads and writes over the already inserted entries. Typically we can’t batch reads
and/or writes since there might be race conditions that affect the control flow of the governing
parallel algorithm. However, we can use global atomics (e.g. compare-and-swap) instead of fine-
grained locking in order to ensure atomicity. The global atomics might employ hardware support
depending on the platform and the corresponding runtime implementation. We can also build
synchronization protocols at a higher level that do not involve the hash table directly but instead
are triggered by the results of the atomic operations. Finally, we can implement the delete operation
of entries with atomics and avoid locking schemes.

For example, consider the consumers in a producer/consumer scenario that compete for the
entries of the hash table. The entries may have utilization signatures (i.e. “used” binary flags)
that can be accessed via global atomics and indicate whether the corresponding entries have been
consumed or not. An orthogonal optimization for this use-case scenario is to adopt locality sensitive
hashing schemes to increase locality and decrease communication volume/latency overhead of global
atomics.

Use case 3 — Global Read-Only phase (GRO): In such a use case, the entries of the

o e S Ao - e 5 SEWe .
DI R s 0 @Q@ St o
Use case 29 A
GUO v v v
GRW v v
GRO v v
LRW v v v

Table 1: Distributed hash table optimizations for various use case scenarios.

distributed hash table are read-only and a degree of data reuse is expected. The optimization that
can be readily employed is to design software caching schemes to take advantage of data reuse
and minimize communication. These caching frameworks can be viewed as “on demand” copying
of remote parts of the hash table. Note that the read-only phase guarantees that we do not need
to provision for consistency across the software caches. Such caching optimizations can be used in
conjunction with locality-aware partitioning to increase effectiveness of the expected data reuse.
Initially even if the data is remote, it is likely to be reused later locally.

A typical example of this use case is a lookup-only hash table that implements a database/index.
This is a special case of the consumer side in a producer/ consumer setting where the entries can
be consumed an infinite number of times.

Use case 4 — Local Reads & Writes phase (LRW): In this use case, the entries in the hash
table will be further read/written only by the processor owning them. The optimization strategy we
employ in such a setting is to use a deterministic hashing from the sender side and local hash tables
on the receiver side. The local hash tables ensure that we avoid runtime overheads. Additionally,
high-performance, serial hash table implementations can be seamlessly incorporated into parallel
algorithms.

For example, consider items that are initially scattered throughout the processors and we want
to send occurrences of the same item to a particular processor for further processing (e.g. consider
a “word-count” type of task). Each processor can insert the received items into a local hash table
and further read/write the local entries from there.

We emphasize that this is not an exhaustive list of use cases for distributed hash tables. Nev-
ertheless, it captures the majority of the computational patterns we identified in our parallel algo-
rithms that will be detailed in the following Section [5} Table [I] summarizes the optimizations we
can employ for the various use cases of the distributed hash tables. Multiple of the aforementioned
use cases can be encountered during the lifetime of a distributed hash table; in most of the cases
the optimizations can be easily composed (e.g. by having semantic barriers to signal the temporal
boundaries of the phases). For example, the Global Update-Only phase can be followed by a Global
Read-Only phase in a scenario where a database is first built via insertion of the corresponding
items into a hash table and later the distributed data structure is reused as a global lookup table.

5 Parallel algorithms in HipMer

In this Section we detail the parallelization of the Meraculous pipeline presented in Section [2| In
our description we refer to ideas from Sections [3| and {4 regarding the PGAS programming model
and distributed hash tables.

5.1 Parallel k-mer analysis

Counting the frequencies of each distinct k-mer involves reading the input DNA short reads, parsing
the reads into k-mers, and keeping a count of each distinct k-mer that occurs more than e times
(e &= 1,2). The reason for such a cutoff is to eliminate sequencing errors. K-mer analysis additionally
requires keeping track of all possible extensions of the k-mer from either side. This is performed
by keeping two short integer arrays of length four per k-mer, where each entry in the array keeps
track of the number of occurrences of each nucleotide [ACGT] on either end. If a nucleotide on an
end appears more times than a threshold ¢4, it is characterized as high quality extension. One
of the difficulties with performing k-mer analysis in distributed memory is that the size of the
intermediate data (the set of k-mers) is significantly larger than both the input and the output,
since each read is subsequenced with overlaps of k — 1 base pairs.

As each processor reads a portion of the reads and extracts the corresponding k-mers, a de-
terministic map function maps each k-mer to a processor id. Once the k-mers are generated, we
perform an irregular all-to-all exchange step in order to communicate the k-mers among the proces-
sors based on the calculated processor ids. This deterministic mapping assigns all the occurrences
of a particular sequence to the same processor, thus eliminating the need for a global hash table;
instead, each processor maintains a local hash table to count the occurrences of the received k-
mers. We refer to this model of computation as “owner-computes”. Note that this computational
pattern fits the Use Case 4 (LRW) of the distributed hash tables. Given the genome size G, the
coverage d and the read length L, the total number of k-mers that have to be communicated are
O(S4(L - k+1)).

In this parallel algorithm, memory consumption quickly becomes a problem due to errors be-
cause a single nucleotide error creates up to k erroneous k-mers. It is not uncommon to have over
80% of all distinct k-mers erroneous, depending on the read length and the value of k. We ame-
liorate this problem using Bloom filters, which were previously used in serial k-mer counters [3§].
A Bloom filter [4] is a space-efficient probabilistic data structure used for membership queries. It
might have false positives, but no false negatives. If a k-mer was not seen before, the filter can
accidentally report it as ‘seen’. However, if a k-mer was previously inserted, the Bloom filter will
certainly report it as ‘seen’. This is suitable for k-mer counting as no real k-mers will be missed. If
the Bloom filter reports that a k-mer was seen before, then the corresponding processor inserts that
k-mer to the actual local hash table in order to perform the counting. Our novelty is the discovery
that localization of k-mers via the deterministic k-mer to processor id mapping is necessary and
sufficient to extend the benefits of Bloom filters to distributed memory.

The false positive rate of a Bloom filter is Pr(e) = (1 — e~"/™)" for m being the number of
distinct elements in the dataset, n the size of the Bloom filter, and A the number of hash functions
used. There is an optimal number of hash functions given n and m, which is h = In2 - (m/n).
In practice, we achieve approximately 5% false positive rate using only 1-2% of the memory that
would be needed to store the data directly in a hash table (without the Bloom filter). Hence, in a
typical dataset where 80% of all k-mers are errors, we are able to filter out 76% of all the k-mers
using almost no additional memory. Hence, we can effectively run a given problem size on a quarter
of the nodes that would otherwise be required.

We have so far ignored that Bloom filters need to know the number of distinct elements expected
to perform optimally. While dynamically resizing a Bloom filter is possible, it is expensive to do
so. We therefore use a cardinality estimation algorithm to approximate the number of distinct k-
mers. Specifically, we use the Hyperloglog algorithm [18], which achieves less than 1.04/y/m error
for a dataset of m distinct elements. Hyperloglog requires a only several KBs of memory to count
trillions of items. The basic idea behind cardinality estimators is hashing each item uniformly
and maintaining the minimum hash value. Hyperloglog maintains multiple buckets for increased

10

accuracy and uses the number of trailing zeros in the bitwise representation of each bucket as the
estimator.

The observation that leads to minimal communication parallelization of Hyperloglog is as fol-
lows. Merging Hyperloglog counts for multiple datasets can be done by keeping the minimum of
their final buckets by a parallel reduction. Consequently, the communication volume for this first
cardinality estimation pass is independent of the size of the sequence data, and is only a function of
the Hyperloglog data structure size. In practice, we implement a modified version of the algorithm
that uses 64-bit hash values as the original 32-bit hash described in the original study [I8] is not
able to process our massive datasets.

One downside of this parallel counting approach is that highly complex plant genomes, such
as wheat, are extremely repetitive and it is not uncommon to see k-mers that occur millions of
times. Such high-frequency k-mers create a significant load imbalance problem, as the processors
assigned to these high-frequency k-mers require significantly more memory and processing times.
We improve our approach by first identifying frequent k-mers (i.e.“heavy hitters” in database
literature) and treating them specially [20]. In particular, the “owner-computes” method is still
used for low-to-medium frequency k-mers but the high frequency k-mers are accumulated locally
on each processor, followed by a final global reduction. Since an initial pass over the data is already
performed to estimate the cardinality (the number of distinct k-mers) and efficiently initialize our
Bloom filters, running a streaming algorithm for identifying frequent k-mers during the same pass
is essentially free.

5.2 Parallel contig generation

Once we have performed the k-mer analysis step, it is necessary to store the resulting k-mers in a
distributed hash table that represent the de Bruijn graph in a compact way. A vertex (k-mer) is a
key in the hash table and the incident vertices are stored implicitly as a two-letter code [ACGT][ACGT]
that indicates the unique bases that immediately precede and follow the k-mer in the read dataset.
These graphs typically are huge and require hundreds of GBs or even TBs for large genomes in
order to be stored in memory. Therefore, we employ the global address space of Unified Parallel
C (UPC) in order to transparently store the distributed hash table in distributed memory and
overcome the limitations of requiring specialized, large shared memory machines.

During the parallel hash table construction, we consider only the k-mers that have unique high-
quality extensions in both directions. These k-mers are hashed and sent to the proper (potentially
remote) bucket of the hash table by leveraging the one-sided communication capabilities of UPC.
We recognize this computational pattern as the Use Case 1 (GUO) of the distributed hash tables,
therefore we can mitigate the communication and synchronization overheads by leveraging dynamic
message aggregation. In particular, we designed a dynamic aggregation algorithm [2I] where the
k-mers are aggregated in batches before being sent to the appropriate processors. The pattern
deployed here is also an irregular all-to-all communication. However, unlike k-mer analysis, the
total number of k-mers that have to be communicated is ©(G), since multiple occurrences of k-
mers have been collapsed during the k-mer analysis stage and this condensed k-mer set should have
size proportional to the genome size G.

Once the distributed de Bruijn graph (hash table) has been constructed, we traverse it in
parallel and identify the connected components that represent the contig sequences. Typically such
de Bruijn graphs have extremely high-diameter (the connected components in theory can have size
up to the length of chromosomes) and therefore traditional parallelization strategies of the graph
traversal would not scale to extreme concurrencies.

In order to form a contig, a processor p; chooses a random k-mer from its own part of the
distributed hash table as seed and creates a new subcontig (incomplete contig) data structure

11

Shared Private

. buckets entries
P, picks seed CCG _>| Key:[Val: | | Key:[Val: .|
@ L— ATC|[TG ACC| GA
- _ <| Key:| Val: A
ACC) AAC| CG |

N g
1 2
p, picks seed CTG r\

s 3 2 @ 18 [—PlElal]

ED) .
2 Key:| Val: Key: | Val:
'__>| CTG| AT |"|_>| TGC|TA '|

Figure 7: Parallel de Bruijn graph traversal. Processor 0 picks a k-mer called “traversal seed” (vertex
CTG) and with four lookups in the distributed hash tables it explores the four remaining vertices
of that connected component. The numbered arrows indicate the order in which processor 0 looks
up the corresponding vertices in the distributed hash table. In an analogous way, processors 1 and
2 pick seeds CCG and ATG respectively and explore in parallel with processor 0 different connected
components of the underlying de Bruijn graph.

A

Key: | Val: A
TGA| AC

Key: | Val: Key: | Val:
‘——>| GAT| CG |‘_"—> ATG| CA |°®

\ 4

A 4

Global Address Space

picks seed ATG
AAT

v

which is represented as a string and the initial content of the string is the seed k-mer. Processor
p; then attempts to extend the subcontig towards both of its endpoints using the high quality
extensions stored as values in the distributed hash table. To extend a subcontig from its right
endpoint, processor p; uses the k — 1 last bases and the right high quality extension R from the
right-most k-mer in the subcontig. It therefore concatenates the last k — 1 bases and the extension
R to form the next k-mer to be searched in the hash table. Processor p; performs a lookup for the
newly formed k-mer and if it is found successfully, the subcontig is extended to the right by the
base R. The same process can be repeated until the lookup in the hash table fails, meaning that
there are no more UU k-mers that could extend this subcontig in the right direction. A subcontig
can be extended to its left endpoint using an analogous procedure. If processor p; can not add
more bases to either endpoint of the subcontig, then a contig has been formed (or equivalently a
connected component in the de Bruijn graph has been explored) and is stored accordingly.

Figure [7] illustrates how the parallel algorithm works with three processors. Processor 0 picks a
random traversal seed (vertex CTG) and initializes a subcontig with content CTG. Then, by looking in
the distributed hash table the entry CTG it gets back the value AT, meaning that the right extension
is A and the left extension is T. After that, processor 0 forms the next k-mer to be looked up
(TGA) by concatenating the last 2 bases of CTG and the right extension A — this lookup corresponds
to the arrow 1 of processor 0. By following the analogous procedure and three more lookups in
the distributed hash table, processor 0 explores all the vertices of that connected component that
corresponds to the contig GATCTGA. The numbered arrows indicate the order in which processor 0
looks up the corresponding vertices in the distributed hash table. In an analogous way, processors

12

1 and 2 pick seeds CCG and ATG respectively and explore in parallel with processor 0 different
connected components of the underlying de Bruijn graph.

All processors independently start building subcontigs and no synchronization is required unless
two processors pick initial k-mer seeds that eventually belong in the same contig. In this case, the
processors have to collaborate and resolve this conflict in order to avoid redundant work and race
conditions. The high-level idea of the synchronization protocol for conflict resolution is that one
of the involved processors backs off, and the other processor takes over the computed “subcontig”
from the processor that backed off. We designed a lightweight synchronization scheme [21] based
on remote atomics and in our previous work we proved (under some modeling assumptions) that
our synchronization algorithm is scalable to massive concurrencies. Finally, the parallel traversal is
terminated when all the connected components in the de Bruijn graph are explored.

The access pattern in the distributed hash table consists of highly irregular, fine-grained lookup
operations. The size of the de Bruijn graph is proportional to the genome size, thus the traversal
involves visiting ©(G) vertices via atomics and irregular lookup operations. The computational
task of the graph traversal is to visit all the already inserted k-mers in the distributed hash table.
During this parallel procedure, we cannot batch reads and/or writes since there might be race
conditions that affect the control flow of the synchronization algorithm. However, we use global
atomics instead of fine-grained locking and we build synchronization protocols at a higher level
that do not involve the distributed hash table directly but instead are triggered by the results of
the atomic operations on the objects stored inside the hash table. We recognize this computational
pattern as the Use Case 2 (GRW) of the distributed hash tables.

5.3 Parallel read-to-contig alignment

Here we describe the parallel algorithm that maps the original reads onto the contig sequences.
First, each processor reads a distinct portion of the contig sequences and stores them in global
address space such that any other processor can access them. Every contig sequence of length C
contains C' — k + 1 distinct seeds (substrings) of length k. We extract in parallel seeds from the
contigs and associate with every seed the contig from which it was extracted. Since the contigs
constitute a fragmented version of the genome, in total we extract ©(G) seeds.

Once the seeds are extracted from the contigs, they are stored in a global hash table, referred to
as the seed index where the key is a seed and the value is a pointer to the contig from which this seed
has been extracted. The seed index is distributed and stored in global shared memory such that
any processor can access and lookup any seed. Essentially the seed index data structure provides
a mapping from seeds to contigs. The seeds are stored in the global seed index via an irregular
all-to-all communication step similar to the hash table construction in the contig generation phase.
Again, we recognize this computational pattern as the Use Case 1 (GUO) of the distributed hash
tables, therefore we can mitigate the communication and synchronization overheads by leveraging
dynamic message aggregation. Figure || illustrates how two contigs are indexed by using seeds with
length k& = 3.

After the seed index construction, we proceed with the aligning phase where every read is
mapped onto contigs. Initially, each processor is assigned an equal number of reads. For each read
of length L, a processor extracts all L — k 4+ 1 seeds of length k£ contained in it. Given a seed s
from a read, the processor performs a fine-grained lookup in the global seed index and locates the
candidate contigs that have in common the seed s with that read. Thus, each one of the read-to-
contig candidate alignments can be located in ©(1) time. Figure [8] exhibits an example of how we
can locate a read-to-contig candidate alignment by leveraging the seed index. We emphasize that
in the alignment phase, all processors operate concurrently on distinct reads.

If we naively execute an exhaustive lookup of all possible seeds, in total we have to perform

13

read’s seed

read sequence GIC TGP

Seed: ACT Seed: GGC Seed: CTG ———- Seed: TGG Seed: GCA

N S L I /

Contig 0 Contig 1

Figure 8: Locating read-to-contig candidate alignments. First the processor extracts a seed from
the read sequence (CTG seed). Next, the processor looks up the distributed seed index (arrow 1)
and finds that a candidate contig sequence is Contig 0 (arrow 2). Finally, the Smith-Waterman
algorithm is executed using as inputs the read and the Contig 0 sequences.

O(%(L —k+1)) lookups. Our optimized parallel algorithm though [22] identifies properties in the
contigs during the hash index construction that reduce significantly the number of lookups.

We also made the observation that our parallel alignment phase makes no writes/updates in the
distributed seed index or the distributed data structure that stores the contig sequences after their
construction phase; it just uses them for lookups/reads. We recognize this computational pattern
as the Use Case 3 (GRO) of the distributed hash tables and our parallel algorithm [22] exploits
software caches to maximize data reuse and avoids off-node lookups.

Finally, after locating a candidate contig that has a matching seed with the read we are process-
ing, the Smith-Waterman algorithm is executed with input the read and contig sequences in order
to perform local sequence alignment. The output of this stage is a set of reads-to-contig alignments.

5.4 Parallel scaffolding and gap closing

The first part of scaffolding involves processing of the reads-to-contig alignments (Figure (a)) and
generating links among contigs. In order to parallelize this operation, we index only the relevant
alignments (those that indicate that two contigs should be connected) via a distributed hash table.
This distributed hash table construction employs an irregular all-to-all communication pattern
similar to the contig generation stage (Use Case 1 of distributed hash tables). We emphasize that
the graph of contigs (and consequently the number of links among them) is orders of magnitude
smaller that the k-mer de Bruijn graph because the connected components in the k-mer graph
are now contracted to single vertices in the contig-graph. According to the Lander-Waterman
statistics [I3], the expected number of contigs is ©(dG/L - e~%).

Then, we process the contigs to identify properties (e.g. average k-mer depth, termination
states) that will help us further simplify the contig-graph. This step necessitates looking up k-mer
info in a global hash table of k-mers with ©(G) size. Afterwards, we introspect the contig-graph to
identify bubble structures via a parallel traversal which requires irregular lookups in the distributed
contig-graph representation and global atomics (Use Case 2 of the distributed hash tables). After

14

Stage

Communication pattern

Volume of data

k-mer analysis

all-to-all exchange

0(Gd- (L —k+1)/I)

Contig all-to-all exchange 0(G)
Generation irregular lookups O(G)
global atomics 0(G)
Sequence all-to-all exchange 0(G)
alignment irregular lookups O(Gd-(L-k+1)/L)

all-to-all exchange O(G)
Scaffolding irregular lookups O(G)

global atomics O(dG/L -e~%)

Gap closing all-to-all exchange O(yGd/L)

Table 2: Major communication operations in the HipMer pipeline

the bubble removal step, we traverse the simplified graph and generate scaffolds (Figure [4[b)). The
last traversal is done by selecting starting vertices in order of decreasing length (this heuristic tries
to stitch together first “long” contigs) and therefore it is inherently serial. We have optimized this
component and found that its execution time is insignificant compared to the previous pipeline
operations — this behavior is expected as the input contig-graph is relatively small as explained
earlier.

The gap closing stage uses the read-to-contig alignments, the scaffolds and the contigs to attempt
to assemble reads across gaps between the contigs of scaffolds (see Figure[d|b)). To determine which
reads map to which gaps, the alignments are processed in parallel and projected into the gaps. We
utilize a distributed hash table to localize the unassembled reads onto the appropriate gaps via
irregular all-to-all communication. Assuming that a fraction « of the genome is not assembled into
contigs, then this communication step involves ©(yGd/L) reads. Finally, the gaps are divided into
subsets and each set is processed by a separate processor, in an embarrassingly parallel phase.

5.5 Summary of communication patterns and costs

Given the genome size G, the read length L, the coverage d, and the fraction « of the reads that are
not assembled into contigs, Table [2| summarizes for each stage the main communication patterns
along with the corresponding volume of communication. These communications patterns govern the
efficiency of the parallel pipeline at large scale, where most of the stages are communication-bound.
The different communication patterns have, however, vastly different overheads. For example, the
all-to-all communication exchange is typically bounded by the bisection bandwidth of the system
assuming that the partial messages are large enough and there is enough concurrency to saturate
the available bandwidth. On the other hand, fine-grained, irregular lookups and global atomics are
typically latency-bound and their efficiency relies upon the ability of the interconnect to serve those
fine-grained, irregular request efficiently at high concurrencies.

6 Performance Results

Parallel performance experiments are conducted on Edison, the Cray XC30 located at NERSC.
Edison has a peak performance of 2.57 petaflops/sec, with 5,576 compute nodes, each equipped
with 64 GB RAM and two 12-core 2.4GHz Intel Ivy Bridge processors for a total of 133,824
compute cores, and interconnected with the Cray Aries network using a Dragonfly topology. For
our experiments, we use Kdison’s parallel Lustre /scratch3 file system, which has 144 Object
Storage Servers providing 144-way concurrent access to the I/O system with an aggregate peak

15

overall time —— |
kmer analysis =-==3¢---
contig generation - t S

alignment, scaffolding & gap closing =]
= ideal overall time --4--

Seconds

~,
e,
..
.....
e,
e,
»

e,
e,

. hlt
...........

" .

" e,
......
",

.,
",
",
o,
",
L%

64 Wi
......... *...,........
32 - - S . T
480 960 1920 3840 7680 15360

Number of Cores

Figure 9: End-to-end strong scaling for the human genome. Both axes are in log scale.

performance of 72 GB/sec.

To analyze HipMer performance behavior we examine a human genome for a member of the
CEU HapMap population (identifier NA12878) sequenced by the Broad Institute. The genome
contains 3.2 Gbp (billion base pair) assembled from 2.9 billion reads (290 Gbp of sequence), which
are 101 bp in length, from a paired-end insert library with mean insert size 395 bp. Additionally,
we examine the grand-challenge hexaploid wheat genome (Triticum aestivum L.) containing 17
Gbp from 2.3 billion reads (477 Gbp of sequence) for the homozygous bread wheat line ‘Synthetic
W7984°. Wheat reads are 150-250 bp in length from 5 paired-end libraries with insert sizes 240-740
bp. Also, for the scaffolding phase we leveraged (in addition to the previous libraries) two long-
insert paired-end DNA libraries with insert sizes 1 kbp and 4.2 kbp. This important genome was
only recently sequenced for the first time [36], and requires high-performance analysis due to its
size and complexity.

6.1 Strong scaling experiments

Figures [9] and show the end-to-end strong scaling performance of HipMer (including I/O) with
the human and the wheat datasets respectively on the Edison supercomputer. For the human
dataset at 15,360 cores we achieve a speedup of 11.9x over our baseline execution (480 cores). At
this extreme scale the human genome can be assembled from raw reads in just =~ 8.4 minutes.
On the complex wheat dataset, we achieve a speedup up to 5.9x over the baseline of 960 core
execution, allowing us to perform the end-to-end assembly in 39 minutes when using 15,360 cores.
In the end-to-end experiments, a significant fraction of the execution time is spent in parallel
sequence alignment, scaffolding and gap closing (e.g. 68% for human at 960 cores); k-mer analysis
requires less runtime (28% at 960 cores) and contig generation is the least expensive computational
component (4% at 960 cores).

The k-mer analysis and the contig generation steps scale efficiently for both data sets up to
15,360 cores, while the combined step of alignment, scaffolding and gap closing exhibits better
scaling on the human dataset. Even though the alignment and gap closing modules for the wheat
data set exhibit similar scaling to the human test case, the scaffolding step consumes a significantly

16

T
overall time =—t—

16384 &-- kmer analysis =-=-¢--- |
contig generation t 3

8192 i alignment, scaffolding & gap closing wEg- 4
,,,,,,,,,,,,,,,,,,,,, ideal overall time == ==

Seconds

Number of Cores

Figure 10: End-to-end strong scaling for the wheat genome. Both axes are in log scale.

higher fraction of the overall runtime. There are two main reasons for this behavior. First, the
highly repetitive nature of the wheat genome leads to increased fragmentation of the contig gener-
ation compared with the human DNA, resulting in contig graphs that are contracted by a smaller
fraction. Hence, the serial component of the scaffolding module requires a relatively higher overhead
compared with the human dataset. Second, the execution of the wheat pipeline as performed in
our previous work [II] requires four rounds of scaffolding with libraries of different insert sizes,
resulting in even more overhead within the serial module.

The strong scaling results presented here contradict the conventional wisdom that algorithms
with highly irregular accesses (like de novo genome assembly) are prohibitive for distributed memory
systems. We showed that as long as the parallel algorithms are highly-scalable and do not exhibit
algorithmic/serialization bottlenecks, they perform fewer irregular operations on the critical path
as the concurrency increases, therefore decreasing eventually the overall execution time.

6.2 1I/0 caching

Our modular design of the pipeline enables flexible configurations that can be adapted appropriately
to meet the requirements of each assembly. For instance, one might want to perform multiple rounds
of scaffolding to facilitate the assembly of highly repetitive regions or to iterate over the k-mer
analysis step and contig generation multiple times (with varying k and other parameters) in order
to extract information that is latent within a single iteration. These configurations imply that the
input read datasets should be loaded multiple times. Even in a typical, single pass execution of the
pipeline, the reads constitute the input to multiple stages, namely k-mer analysis, alignment and
gap closing. Reloading the reads multiple times from the parallel file system, imposes a potential
I/0 bottleneck for the pipeline. However, at scale we have the unique opportunity to cache the input
reads and all the intermediate results onto the aggregate main memory, thus avoiding the excessive
I/O and concurrent file system accesses. In order to achieve the I/O caching in a transparent way,
we leverage the POSIX shared memory infrastructure and thus all the subsequent input loads are
streamed through the main memory.

Figure|11|shows the end-to-end strong scaling performance of HipMer on the human dataset up

17

overall wi'thout cached 1/0 '—i—
overall with cached /O ===-3¢-=- |

4096 r kmer analysis ¥
contig generation
2048 4 alignment, scaffolding & gap closing -=4#==- "

I/O time -=@--"
ideal with I/O cached - @+

Seconds

1920 3840 7680 15360 23040
Number of Cores

Figure 11: Strong scaling of the human data set with I/O caching. Both axes are in logarithmic
scale.

to 23,040 Edison cores. We present this experiment in order to highlight the importance of the I/O
caching. Note that the baseline concurrency is 1,920 cores; we need at least 80 Edison nodes, each
with 24 cores, to fit all the data structures and cache the input datasets in memory (=~ 5TB). The
line with x ticks shows the end-to-end execution time including the I/O, which is cached in main
memory once the input reads are loaded. The ideal strong scaling is illustrated by the line with
solid circles. At the concurrency of the 23,040 cores we completely assemble the human genome
in 3.91 minutes and obtain a strong scaling efficiency of 48.7% relative to the baseline of 1,920
cores. In order to illustrate the effectiveness of the I/O caching, we performed the same end-to-end
experiments where the input reads are loaded from the Lustre file system five times (solid line).
This experiment does not exhibit any scaling from 15,360 to 23,040 cores due to the I/O overhead,
thus demonstrating that I/O caching is crucial for scaling to massive concurrencies. At the scale
of 23,040 cores, the version with I/O caching is almost 2x faster than the version without this
optimization.

The efficiency of the I/O (reading the input reads once) is illustrated by the line with empty
circles. We observe that the I/O is almost a flat line across the concurrencies and yields a read
bandwidth of ~ 16 GB/sec (the theoretical peak of our Lustre file system is 48 GB/sec). With 80
Edison nodes we are able to saturate the available parallelism in the Lustre file system and further
increasing the concurrency does not help improve the I/O performance. The lines with *, [, B ticks
show the partial execution time for (i) the k-mer analysis, (ii) contig generation and (iii) sequence
alignment, scaffolding and gap closing respectively. We conclude that all the components scale up
to 23,040 cores and do not impose any scalability impediments.

6.3 Performance comparison with other assemblers

To compare the performance of HipMer relative to existing parallel de movo end-to-end genome
assemblers we evaluated Ray [B[6] (version 2.3.0) and ABySS [44] (version 1.3.6) on Edison using 960
cores. Ray required 10 hours and 46 minutes for an end-to-end run on the Human dataset. ABySS,

18

on the other hand, took 13 hours and 26 minutes solely to get to the end of contig generation. The
subsequent scaffolding steps are not distributed-memory parallel. At this concurrency on Edison,
HipMer is approximately 13 times faster than Ray and at least 16 times faster than ABySS.

7 Challenges for future architectures

With the advent of exascale computing architectures expected within the next few years, many
challenges arise into porting efficiently the HipMer de novo assembly pipeline to larger and more
complex systems. In this section we briefly describe these challenges and their implications for highly
irregular algorithms, like our de novo assembly pipeline, and the underlying runtime support.

The architectural trends dictate that the degree of parallelism within the system’s node will
be increased considerably compared to contemporary supercomputing systems. For instance, the
Edison supercomputer (used for our experimental evaluation) is equipped with 24-core nodes, while
NERSC’s newest supercomputer, named Cori, features Intel Xeon Phi “Knight’s Landing” nodes,
each having 68 cores. We expect this trend to hold on the way to exascale. Also, the number of
nodes on exascale systems is expected to rise significantly. The combination of the increased number
of cores per node and the large number of nodes will yield an unprecedented level of parallelism
that should be exploited by the algorithms. In such a massively parallel environment it is crucial
to adopt asynchronous algorithmic approaches that do not suffer from load imbalance and system
performance fluctuations. The parallel hash table construction and the parallel de Bruijn graph
traversal algorithms described in Section are examples of such asynchronous algorithms that
do not exhibit synchronization bottlenecks on the critical path of execution. On the other hand,
parallel algorithms which rely on bulk synchronous communication will most likely be inadequate
for applications with highly irregular accesses.

In Section [5| we highlighted the different communication patterns that are stressed throughout
the HipMer pipeline, namely all-to-all exchanges, irregular lookups and global atomics. Accommo-
dating these communication operations efficiently as the system size increases is critical into port-
ing HipMer to exascale architectures. More specifically, the all-to-all exchange primitives should be
mapped efficiently on the underlying network topologies in order to maximize the attainable band-
width, and ideally should avoid excessive synchronization. Additionally, the operations which are
latency-bound like the irregular lookups and the global atomics should exploit efficient protocols
and routing algorithms that avoid hot spots on a large-scale system. Furthermore, taking advan-
tage of network capabilities like Remote Direct Memory Access (RDMA) and hardware atomics
will play a tremendous role in obtaining low-latency and low-overhead communication primitives.
The aforementioned communication optimizations would be preferably applied at the runtime level
and therefore could be seamlessly employed at the HipMer application level.

All the parallel algorithms in Section [5] are detailed in the context of a flat SPMD execution
model, where each UPC thread is mapped onto a compute core of the system. However, the way
these UPC threads are instantiated during execution time has implications for the overall perfor-
mance and the memory footprint of the runtime. For instance, one could use one process per UPC
thread; alternatively, one could opt for hierarchical approaches where multiple UPC threads are
mapped onto a single process. Both approaches have advantages and disadvantages, but with the
arrival of exascale it is imperative to take into account the scale of the systems and re-evaluate the
design space. Designs where the runtime’s data structures scale in size and complexity quadrat-
ically with the number of nodes and/or cores per node are prohibitive. With this in mind, it is
more likely that highly optimized hierarchical designs would be suitable for runtimes that target
exascale systems. One could additionally adopt analogous hierarchical strategies at the HipMer’s
application level. However, dealing with this issue upfront at the runtime/communication library

19

level would provide a more robust ecosystem and make the HipMer codebase more portable.

Even though the performance of the HipMer pipeline is mostly dominated by communication
and subsequently by the way the communication is orchestrated within the parallel algorithms, it
is crucial to optimize the core computations for the underlying architectures. Such computations
include mostly string operations (e.g. k-mer extraction, reverse complementation of sequences, local
alignment of sequences, string comparisons) and calculations of hash values. These computations
can take advantage of vectorization and hence it is important to leverage vectorized implementations
of these core computations throughout the pipeline. This necessity is even more emphasized within
the context of the current architectural trends, where the single-thread performance heavily depends
on efficient utilization of the vector units.

The process of porting our assembly pipeline to exascale can be tackled on multiple fronts.
In the previous paragraphs we explained how some of the key performance factors lie within the
UPC runtime level. From this point of view, effective portability of the pipeline is translated into
efficient UPC runtime implementation for exascale systems. An additional opportunity to facilitate
the porting to exascale systems emerges within the context of the distributed data structures
described in Section [4l We could capitalize on the level of abstraction offered by our distributed
data structures and their Use Cases (see Table [1) and optimize the core operations of the pipeline
at the library level of the data structures. The benefit of such an approach is that the distributed
data structure library utilized in HipMer could be specialized for each target system (e.g. with
appropriate communication optimizations, topology and hierarchical considerations) while the core
codebase will remain unmodified. Finally, we highlight that the parallel algorithms in the HipMer
pipeline are designed to scale to massive concurrencies and do not exhibit fundamental impediments
in porting them to exascale systems.

8 Related work

As there are many de novo genome assemblers and assessment of the quality of these is well beyond
the scope of this chapter, we refer the reader to the work of the Assemblathons I [I5] and II [§]
as examples of why Meraculous [12] was chosen to be scaled, optimized and re-implemented as
HipMer. For performance comparisons, we primarily refer to parallel assemblers with the potential
for strong scaling on large genomes (such as plant, mammalian and metagenomes) using distributed
computing or clusters.

Ray [5) [6] is an end-to-end parallel de novo genome assembler that utilizes MPI and exhibits
strong scaling. It can produce scaffolds directly from raw sequencing reads and produces timing
logs for every stage. One drawback of Ray is the lack of parallel I/O support for reading and writing
files. As shown in Section [6| Ray is approximately 13x slower than HipMer for the human data set
on 960 cores.

ABySS [44] was the first de novo assembler written in MPI that also exhibits strong scaling.
Unfortunately only the first assembly step of contig generation is fully parallelized with MPI and
the subsequent scaffolding steps must be performed on a single shared memory node. As shown
in Section [6] ABySS’ contig generation phase is approximately 16x slower than HipMer’s entire
end-to-end solution for the human data set on 960 cores.

PASHA [35] is another partly MPI based de Bruijn graph assembler, though not all steps
are fully parallelized as its algorithm, like ABySS, requires a large memory single node for the
last scaffolding stages. The PASHA authors do claim over 2x speedup over ABySS on the same
hardware.

YAGA [2§] is a parallel distributed-memory that is shown to be scalable except for its I/O, but
the authors could not obtain a copy of this software to evaluate. HipMer employs efficient, parallel

20

I/0 so is expected to achieve end-to-end performance scalability. Also, the YAGA assembler was
designed in an era when the short reads were extremely short and therefore its run-time will be
much slower for current high throughout sequencing systems.

SWAP [39] is a relatively new parallelized MPI based de Bruijn assembler that has been shown
to assemble contigs for the human genome and performs strong scaling up to about one thousand
cores. However, SWAP does not perform any of the scaffolding steps, and is therefore not an end-to-
end de novo solution. Additionally, the peak memory usage of SWAP is much higher than HipMer,
as it does not leverage Bloom filters.

There are several other shared memory assemblers that produce high quality assemblies, includ-
ing ALLPATHS-LG [24] (pthreads/OpenMP parallel depending on the stage), SOAPdenovo [33]
(pthreads), DiscovarDenovo [29] (pthreads) and SPADES [3] (pthreads), but unfortunately each
of these requires a large memory node and we were unsuccessful at running these experiments
using our datasets on a system containing 512GB of RAM due to lack of memory. This shows the
importance of strong scaling distributed memory solutions when assembling large genomes.

9 Conclusions

In this chapter we presented HipMer, the first end-to-end highly scalable, high-quality de novo
genome assembler, demonstrated to scale efficiently on tens of thousands of cores. HipMer is two
orders of magnitude faster than the original Meraculous code and at least an order of magnitude
faster than other assemblers, including those with incomplete pipelines and lower quality. Parts of
the HipMer pipeline were used in the first whole-genome assembly of the grand-challenge wheat
genome [I1]. HipMer is so fast, that by using just 17% of Edison’s cores, we could assemble 90
Thases/day, or all of the 5,400 Thases in the Sequence Read Archive [I] in just 2 months. Also,
the HipMer technology makes it possible to improve assembly quality by running tuning parameter
sweeps that were previously prohibitive in terms of computation.

Obtaining this scalable pipeline required several new parallel algorithms and distributed data
structures which take advantage of a global address space model of computation on distributed
memory hardware, remote atomic memory operations and novel synchronization protocols. Addi-
tionally, we developed runtime support to reduce communication cost through dynamic message
aggregation, and statistical algorithms that reduced communication through locality aware hash-
ing schemes. We showed that high-performance distributed hash tables, with various optimizations
constitute a powerful abstraction for this type of irregular data analysis problems.

We believe our results will be important both in the application of assembly to health and
environmental applications and in providing a conceptual framework for scalable genome analysis
algorithms beyond those presented here. The code for HipMer is open source and can be downloaded
at: https://sourceforge.net/projects/hipmer/.

References

[1] Sra database growth. http://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/. Accessed:
2016-07-18.

[2] Hari Balakrishnan, M Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Looking
up data in p2p systems. Communications of the ACM, 46(2):43-48, 2003.

[3] Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail Dvorkin,
Alexander S. Kulikov, Valery M. Lesin, Sergey 1. Nikolenko, Son Pham, Andrey D. Prjibelski,
Alexey V. Pyshkin, Alexander V. Sirotkin, Nikolay Vyahhi, Glenn Tesler, Max A. Alekseyev,

21

http://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

and Pavel A. Pevzner. SPAdes: A new genome assembly algorithm and its applications to
single-cell sequencing. J Comput Biol., 19(5):455-477, May 2012.

Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422-426, 1970.

Sébastien Boisvert, Francois Laviolette, and Jacques Corbeil. Ray: simultaneous assembly
of reads from a mix of high-throughput sequencing technologies. Journal of Computational
Biology, 17(11):1519-1533, 2010.

Sébastien Boisvert, Frédéric Raymond, 1énie Godzaridis, Francois Laviolette, and Jacques Cor-

beil. Ray meta: scalable de novo metagenome assembly and profiling. Genome Biology,
13(R122), 2012.

Dan Bonachea. Gasnet specification, v1.1. http://gasnet.1bl.gov/CSD-02-1207.pdf, 2002.

Keith Bradnaml, Joseph Fass, Anton Alexandrov, et al. Assemblathon 2: evaluating de novo
methods of genome assembly in three vertebrate species. GigaScience, 2(10), 2013.

Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn, Chuck Koelbel,
and Lauren Smith. Introducing openshmem: Shmem for the pgas community. In Proceedings
of the Fourth Conference on Partitioned Global Address Space Programming Model, page 2.
ACM, 2010.

JA Chapman, I Ho, E Goltsman, and DS Rokhsar. Meraculous2: fast accurate short-read
assembly of large polymorphic genomes. PLOS, Submitted, 2016.

Jarrod Chapman, Martin Mascher, Aydin Buluc, Kerrie Barry, Evangelos Georganas, Adam
Session, Veronika Strnadova, Jerry Jenkins, Sunish Sehgal, Leonid Oliker, Jeremy Schmutz,
Katherine Yelick, Uwe Scholz, Robbie Waugh, Jesse Poland, Gary Muehlbauer, Nils Stein,
and Daniel Rokhsar. A whole-genome shotgun approach for assembling and anchoring the
hexaploid bread wheat genome. Genome Biology, 16(26), 2015.

Jarrod A. Chapman, Isaac Ho, Sirisha Sunkara, Shujun Luo, Gary P. Schroth, and Daniel S.
Rokhsar. Meraculous: De novo genome assembly with short paired-end reads. PLoS ONE,
6(8):€23501, 08 2011.

Richard C Deonier, Simon Tavaré, and Michael Waterman. Computational genome analysis:
an introduction. Springer Science & Business Media, 2005.

James Dinan, Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev
Thakur. An implementation and evaluation of the mpi 3.0 one-sided communication interface.
Concurrency and Computation: Practice and Ezperience, 2016.

Dent Earl, Keith Bradnam, John St John, Aaron Darling, et al. Assemblathon 1: a competitive
assessment of de novo short read assembly methods. Genome research, 21(12):2224-2241,
December 2011.

Tarek El-Ghazawi and Lauren Smith. Upc: unified parallel c. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 27. ACM, 2006.

Carla Schlatter Ellis. Concurrency in linear hashing. ACM Transactions on Database Systems
(TODS), 12(2):195-217, 1987.

22

http://gasnet.lbl.gov/CSD-02-1207.pdf

[18]

[19]

[20]

[21]

[24]

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: the analysis of a near-optimal
cardinality estimation algorithm. DMTCS Proceedings, 2008.

Evangelos Georganas. Scalable Parallel Algorithms for Genome Analysis. PhD thesis, Univer-
sity of California, Berkeley, 2016.

Evangelos Georganas, Aydin Buluc, Jarrod Chapman, Steven Hofmeyr, Chaitanya Aluru, Rob
Egan, Leonid Oliker, Daniel Rokhsar, and Katherine Yelick. HipMer: an extreme-scale de
novo genome assembler. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 14. ACM, 2015.

Evangelos Georganas, Aydin Buluc, Jarrod Chapman, Leonid Oliker, Daniel Rokhsar, and
Katherine Yelick. Parallel De Bruijn Graph Construction and Traversal for De Novo Genome
Assembly. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’14), 2014.

Evangelos Georganas, Aydin Buluc, Jarrod Chapman, Leonid Oliker, Daniel Rokhsar, and
Katherine Yelick. merAligner: A Fully Parallel Sequence Aligner. In Proceedings of the IPDPS,
2015.

Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. Enabling highly-scalable remote
memory access programming with mpi-3 one sided. In 2013 SC-International Conference for
High Performance Computing, Networking, Storage and Analysis (SC), pages 1-12. IEEE,
2013.

S Gnerre, D MacCallum, I andPrzybylski, F Ribeiro, J Burton, B Walker, T Sharpe, G Hall,
T Shea, S Sykes, A Berlin, D Aird, M Costello, R Daza, L Williams, R Nicol, A Gnirke,
C Nusbaum, ES Lander, and DB Jaffe. High-quality draft assemblies of mammalian genomes

from massively parallel sequence data. In Proceedings of the National Academy of Sciences
USA, 2010.

William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance,
portable implementation of the mpi message passing interface standard. Parallel computing,
22(6):789-828, 1996.

Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing. In International Sympo-
sium on Distributed Computing, pages 350-364. Springer, 2008.

Meichun Hsu and Wei-Pang Yang. Concurrent operations in extendible hashing. In VLDB,
volume 86, pages 25—28, 1986.

Benjamin G Jackson, Matthew Regennitter, et al. Parallel de novo assembly of large genomes
from high-throughput short reads. In IPDPS’10. IEEE, 2010.

David Jaffe. Discovar: Assemble genomes and find variants. http://www.broadinstitute.
org/software/discovar/blog/, 2014.

J.D. Kececioglu and E.W. Myers. Combinatorial algorithms for dna sequence assembly. Algo-
rithmica, 13:751, 1995.

Sameer Kumar, Amith R Mamidala, Daniel A Faraj, Brian Smith, Michael Blocksome, Bob
Cernohous, Douglas Miller, Jeff Parker, Joseph Ratterman, Philip Heidelberger, et al. Pami: A
parallel active message interface for the blue gene/q supercomputer. In Parallel € Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International, pages 763-773. IEEE, 2012.

23

http://www.broadinstitute.org/software/discovar/blog/
http://www.broadinstitute.org/software/discovar/blog/

[32]

[33]

[34]

[35]

[36]

Vijay Kumar. Concurrent operations on extendible hashing and its performance. Communi-
cations of the ACM, 33(6):681-694, 1990.

Ruigiang Li, Hongmei Zhu, et al. De novo assembly of human genomes with massively parallel
short read sequencing. Genome research, 20(2):265-272, 2010.

Binghang Liu, Yujian Shi, Jianying Yuan, Xuesong Hu, Hao Zhang, Nan Li, Zhenyu Li, Yanx-
iang Chen, Desheng Mu, and Wei Fan. Estimation of genomic characteristics by analyzing
k-mer frequency in de novo genome projects. arXiv preprint arXiv:1308.2012, 2013.

Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell. Parallelized short read assembly of
large genomes using de Bruijn graphs. BMC' bioinformatics, 12(1):354, 2011.

Klaus FX Mayer, Jane Rogers, Jaroslav Dolezel, Curtis Pozniak, Kellye Eversole, Cather-
ine Feuillet, Bikram Gill, Bernd Friebe, Adam J Lukaszewski, Pierre Sourdille, et al. A
chromosome-based draft sequence of the hexaploid bread wheat (triticum aestivum) genome.
Science, 345(6194), 2014.

Chris Maynard. Comparing one-sided communication with mpi, upc and shmem. Proceedings
of the Cray User Group (CUG), 2012, 2012.

P4ll Melsted and Jonathan K Pritchard. Efficient counting of k-mers in DNA sequences using
a bloom filter. BMC' bioinformatics, 12(1):333, 2011.

Jintao Meng, Binggiang Wang, Yanjie Wei, Shengzhong Feng, and Pavan Balaji. SWAP-
assembler: scalable and efficient genome assembly towards thousands of cores. BMC' Bioinfor-
matics, 15(Suppl 9):S2, 2014.

Maged M Michael. High performance dynamic lock-free hash tables and list-based sets. In
Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and architectures,
pages 73-82. ACM, 2002.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable
content-addressable network, volume 31. ACM, 2001.

Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash tables. Journal of the
ACM (JACM), 53(3):379-405, 2006.

Julian Shun and Guy E Blelloch. Phase-concurrent hash tables for determinism. In Proceedings
of the 26th ACM symposium on Parallelism in algorithms and architectures, pages 96-107.
ACM, 2014.

Jared T Simpson, Kim Wong, et al. Abyss: a parallel assembler for short read sequence data.
Genome research, 19(6):1117-1123, 2009.

JT Simpson and M Pop. The theory and practice of genome sequence assembly. Annu Rev
Genomics Hum Genet., pages 153-72, 2015.

Temple F Smith and Michael S Waterman. Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195-197, 1981.

Monika ten Bruggencate and Duncan Roweth. Dmapp-an api for one-sided program models
on baker systems. In Cray User Group Conference, 2010.

24

[48] Hao Zhang, Yonggang Wen, Haiyong Xie, and Nenghai Yu. A survey on distributed hash table
(dht): Theory, platforms, and applications, 2013.

[49] Aleksey Zimin, Kristian A. Stevens, Marc W. Crepeau, Anne Holtz-Morris, Maxim Koriabine,
Guillaume Mar cais, Daniela Puiu, Michael Roberts, Jill L. Wergrzyn, Pieter J. de Jong,
David B. Neale, Steven L. Salzbert, James A. Yorke, and Charles H. Langley. Sequencing
and assembly of the 22-gb loblolly pine genome. Genetics, 196(3):875-90, Mar 2014.

25

	1 Overview of de novo Genome Assembly
	2 The Meraculous Assembly Pipeline
	3 The Partitioned Global Address Space Model in Unified Parallel C
	4 Distributed Hash Tables in a PGAS Model
	4.1 Basic implementation of a distributed hash table
	4.2 Use cases of distributed hash tables in the HipMer pipeline

	5 Parallel algorithms in HipMer
	5.1 Parallel k-mer analysis
	5.2 Parallel contig generation
	5.3 Parallel read-to-contig alignment
	5.4 Parallel scaffolding and gap closing
	5.5 Summary of communication patterns and costs

	6 Performance Results
	6.1 Strong scaling experiments
	6.2 I/O caching
	6.3 Performance comparison with other assemblers

	7 Challenges for future architectures
	8 Related work
	9 Conclusions

