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Science Institute, University of California San Diego, La Jolla, CA, USA, 7Department of Geosciences, University of Oslo,
Oslo, Norway, 8Columbia University, New York, NY, USA, 9NASA Goddard Institute for Space Studies, New York, NY,
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Abstract Aerosol‐cloud interactions (ACI) in warm clouds are the primary source of uncertainty in
effective radiative forcing (ERF) during the historical period and, by extension, inferred climate sensitivity. The
ERF due to ACI (ERFaci) is composed of the radiative forcing due to changes in cloud microphysics and cloud
adjustments to microphysics. Here, we examine the processes that drive ERFaci using a perturbed parameter
ensemble (PPE) hosted in CAM6. Observational constraints on the PPE result in substantial constraints in the
response of cloud microphysics and macrophysics to anthropogenic aerosol, but only minimal constraint on
ERFaci. Examination of cloud and radiation processes in the PPE reveal buffering of ERFaci by the interaction
of precipitation efficiency and radiative susceptibility.

Plain Language Summary Uncertainty in predicting future global temperature inferred from the
historical record of warming is dominated by howmuch the warming due to greenhouse gases has been offset by
the cooling due to aerosols. Aerosols are small liquid and solid particles that play an important role in cloud
formation. The majority of cooling from aerosols is through reflecting incoming solar radiation back to space by
cloud. In this study, we constrain an ensemble of possible global model configurations with observations of
cloud properties and radiation to reduce uncertainty in the response of clouds and ultimately radiation to
anthropogenic aerosol. While observations substantially reduce the uncertainty in both changes in the number of
droplets and amount of liquid cloud, the constraint on aerosol cooling is minimal. We argue that the relatively
weak constraint is because large changes in cloudiness are accompanied by small change in reflected sunlight
due to increased cloudiness.

1. Introduction
Aerosols play an important role in the Earth's energy budget by affecting cloud properties, surface precipitation,
and radiation at the top of the atmosphere (Stephens & Ellis, 2008; Twomey, 1991). The change in reflected
shortwave radiation from the pre‐industrial (PI) to present day (PD) due to anthropogenic perturbations in aerosol
is known as aerosol radiative forcing. The radiative forcing from aerosols has larger uncertainty than the radiative
forcing from greenhouse gases (GHGs) (Bellouin et al., 2020). The uncertainty in the radiative forcing due to
aerosols results in substantial uncertainty in the climate sensitivity to increased greenhouse gases that we can
reconcile with the observed temperature record (Andreae et al., 2005; Bellouin et al., 2020; Forster, 2016;
Sherwood et al., 2020; Watson‐Parris & Smith, 2022; C. Wang, Soden, Yang, & Vecchi, 2021). Longwave ra-
diation is neglected in this study as it has a much smaller effect on aerosol radiative forcing than that from
shortwave in warm liquid cloud, but longwave can be important for high altitude, ice‐phase cloud (Smith
et al., 2020; Zelinka et al., 2014, 2023).

Aerosol‐cloud interactions (ACI) in liquid clouds contribute the majority of aerosol forcing (Bellouin
et al., 2020). ACI alters the amount of reflected shortwave radiation in liquid cloud in two ways. First, some
aerosols serve as cloud condensation nuclei to form cloud droplets. The changes in droplet number concentration
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(Nd) from changes in CCN concentration alters the cloud reflectivity even without changes in liquid water content
(Twomey, 1977). The change in reflected shortwave radiation is termed instantaneous radiative forcing due to
ACI (IRFaci). Second, changes in cloud microphysical processes driven by changes in Nd may alter cloud
macrophysical properties (cloud extent in space and time, and the amount of condensate in a cloud) (Ackerman
et al., 2004). This is termed the cloud adjustment to aerosol. Process understanding and observations suggest that
cloud adjustments could lead to increased or decreased cloud amount and optical thickness (Ackerman
et al., 2004; Glassmeier et al., 2021; Toll et al., 2019; Wood, 2007). For example, a reduction in cloud droplet size
could lead to the suppression of precipitation and consequently would increase cloud lifetime and condensate
mass (Albrecht, 1989). Another example of a potential aerosol‐cloud adjustment to increasing Nd is enhanced
entrainment of dry air at cloud top due to suppressed precipitation and droplet sedimentation, and more rapid
evaporation of smaller droplets. These effects enhance PBL drying and can result in reduced cloud lifetime and
condensate mass (Ackerman et al., 2004; Bretherton et al., 2007; S. Wang et al., 2003; Wood, 2007). Given the
large number of processes that may be affected, and the causal ambiguity inherent in empirical constraints
(Gryspeerdt et al., 2016, 2019; D. T. McCoy et al., 2020; Stevens & Feingold, 2009), it is not surprising that the
aggregate effect of aerosol‐cloud adjustments on radiative forcing remains highly uncertain (Bellouin
et al., 2020). The sum of radiative forcing from IRFaci and aerosol‐cloud adjustment is the effective radiatve
forcing due to aci (ERFaci).

ERFaci remains poorly constrained by observations, despite the variety of techniques available to observe clouds,
radiation, precipitation, and aerosol via surface sites, aircraft, satellites and in the laboratory (Bellouin et al., 2020;
Charlson et al., 1992). Here, we examine how ERFaci is constrained by observations of cloud microphysics,
macrophysics, and radiation and how processes related to these terms interplay in the prediction of ERFaci.

One possible linear approximation of ERFaci due to liquid clouds is the sum of the response of top of atmosphere
(TOA) radiation due to changes in Nd at a fixed cloud macrophysical state and the response of TOA radiation to
changes in liquid cloud macrophysical properties induced by changes in Nd (Bellouin et al., 2020; Ghan
et al., 2016). This can be expressed mathematically as

ERFaci = (
∂R

∂ lnNd

⃒
⃒
⃒
⃒
LWPc,C

+
∂R
∂C

dC
dlnNd

+
∂R

∂LWPc

dLWPc

dlnNd
) ⋅ ΔlnNd (1)

where LWPc is the in‐cloud liquid water path (LWP), C is liquid cloud coverage, and ΔlnNd is the fractional
perturbation in Nd (Bellouin et al., 2020; Ghan et al., 2016). The vertical line in the first partial derivative denotes
LWPc and cloud fraction are held constant (Bellouin et al., 2020). While success has been achieved in decom-
posing model behavior in terms of changes in cloud areal cover and in‐cloud liquid water path (Gryspeerdt
et al., 2020), there are several limitations that make diagnosing each term from observations and global model
output difficult. In practice, liquid condensate mass from GCMs is typically provided as the area‐mean (”gridbox
mean”) rather than in‐cloud (Bodas‐Salcedo et al., 2011). Passive observations of LWPc using visible wave-
lengths in the midlatitudes are difficult due to low sun angles and multilayer cloud (Marchand et al., 2010;
Smalley & Lebsock, 2023), in contrast to low‐frequency microwave observations of area‐mean LWP, which are
insensitive to overlying ice cloud (Elsaesser et al., 2017).

In this study, we examine global model behavior in terms of liquid cloud microphysical state (Nd) and
aggregated liquid condensate mass (LWP). This follows the approach of previous studies utilizing micro-
physical state as a constraint on IRFaci (I. L. McCoy et al., 2020) and using LWP as a diagnostic of extra-
tropical liquid cloud variability (D. T. McCoy et al., 2022). We stratify global model‐predicted ERFaci in terms
of microphysical and macrophysical changes in cloud between PD and PI time periods (ΔNd(PD− PI) and
ΔLWP(PD− PI)). Both quantities are effectively unobservable given the lack of records of the PI state of clouds.
One way to constrain these quantities is to use mechanistically motivated relationships between observable and
unobservable quantities (Hall & Qu, 2006), but these must be built on process‐level understanding (Klein &
Hall, 2015). Model simulations can provide the needed observable and unobservable quantities (I. L. McCoy
et al., 2020; Regayre et al., 2020). Following on existing literature, we develop constraints on ΔNd(PD− PI) and
ΔLWP(PD− PI) and, by extension, ERFaci based on observations of clouds and radiation in the present day. The
diagnosed impact of these constraints on ERFaci is contextualized using simple models of cloud, precipitation,
and radiation processes.
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2. Materials and Methods
In this study we examine how cloud, precipitation, aerosol, boundary layer, convective, and radiation processes
contribute to ERFaci based on macrophysical and microphysical changes in cloud combined with the effect of
cloud on radiation. As discussed in the introduction, many of these processes are parameterized in the global
models that we rely on to calculate ERFaci (Smith et al., 2020). To examine this parametric uncertainty and the
imprint of these processes on ERFaci, we leverage a perturbed parameter ensemble (PPE) of the Community
Atmosphere Model Version 6 (CAM6). The behavior of the CAM6 PPE is contextualized relative to global
climate models (GCMs) participating in the sixth Coupled Model Intercomparison Project (CMIP6). Constraints
on ERFaci are calculated by confronting the CAM6 PPE with remotely sensed cloud properties and radiative
fluxes.

2.1. Simulations

2.1.1. Perturbed Parameter Ensemble

A PPE is an ensemble of simulations with varying parameter combinations conducted in a host model to examine
parameter uncertainty (Carslaw et al., 2013; Lee et al., 2011). The CAM6 PPE contains 262 ensemble members
each with a unique combination of 45 parameter values (Table S1 in Supporting Information S1). The 45 pa-
rameters related to cloud and aerosol processes are simultaneously perturbed using Latin hypercube sampling
within an uncertainty range dictated by expert‐elicitation. The configuration is fully described in Eidhammer
et al. (2024) and Duffy et al. (2023).

For each PPE member, PI and PD aerosol emissions scenarios are integrated for 2 years from 2019 through 2020.
Temperature (T) and horizontal wind (U, V) fields are nudged to Modern‐Era Retrospective analysis for Research
and Applications, Version 2 (MERRA2) reanalysis (Bosilovich et al., 2015). The model configurations are
described in detail in Text S1 in Supporting Information S1. The PPE output used in this study is at monthly mean
temporal resolution and are described in Table S2 in Supporting Information S1. Cloud top Nd provides a useful
diagnostic of model behavior. LWP is available directly as grid‐box cloud liquid water path and can be directly
compared to microwave radiometer measurements for regions where precipitating liquid contributes less to the
total. In addition to outputs related to cloud micro‐ and macro‐physical properties, we examine how clouds affect
top of atmosphere radiation. ERFaci is examined and is primarily driven by changes in shortwave radiative flux
driven by liquid clouds (Bellouin et al., 2020). Consequently, we examine the sensitivity of all‐sky TOA albedo
(α) toNd and LWP.We focus on the ERFaci due to changes in albedo from liquid clouds. A table of variables used
to evaluate the microphysical, macrophysical and radiative properties can be found in Table S3 in Supporting
Information S1.

To systematically explore parametric uncertainty across the PPE, we build multiple emulators using Gaussian
Process (GP) regression (Lee et al., 2011; Watson‐Parris et al., 2021). The creation and validation of the emulator
is detailed in Text S2 and Figure S2 in Supporting Information S1. We sample the emulator to generate 1,000,000
possible model variants (e.g., parameter combinations) spanning the 45‐dimensional parameter space. Those
model variants are then compared against observations (Text S2 in Supporting Information S1).

2.1.2. Global Climate Models

Perturbed parameter ensembles provide an evaluation of parametric uncertainty, but say little about structural
uncertainty. To evaluate structural uncertainty we compare PPE simulations to several GCMs participating in the
sixth Coupled Model Intercomparison Project (CMIP6) (Table S4 in Supporting Information S1). We examine
monthly mean output from piClim‐aer and piClim‐control scenarios. piClim‐control set. all emissions to the PI
baseline and piClim‐aer sets aerosol emission and precursor gases to the present‐day and leaves all other
emissions at the PI baseline. There is no nudging in these simulations, and 30 years from piClim‐aer and piClim‐
control are used to calculate aerosol forcing (Smith et al., 2020).

The same variables are examined for the PPE and CMIP6 models, although the variable names differ between
CAM6 and the CMIP6 labels (Table S5 in Supporting Information S1). The calculation of variables from CMIP6
is fully described in Text S3 in Supporting Information S1.
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2.2. Observations

Observations of Nd are derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). Nd is
calculated from MODIS retrievals of effective radius (re) and optical depth (τ) assuming an adiabatic cloud (D.
Grosvenor & Wood, 2014). Nd calculated from MODIS retrievals of cloud properties has been shown to be
reasonably un‐biased relative to in‐situ observations from aircraft (Bennartz & Rausch, 2017; D. P. Grosvenor
et al., 2018; Gryspeerdt et al., 2022; Painemal & Zuidema, 2011), although random uncertainty at a pixel‐by‐pixel
level can be large(D. P. Grosvenor et al., 2018). MODIS Nd is calculated for daily means following D. Grosvenor
and Wood (2014) for the period 2003–2015 and averaged to 1°. As in I. L. McCoy et al. (2020),the Nd difference
between hemispheres is used to constrain the PPE and is calculated as the difference in marine Nd between 30°N
to 60°N and 30°S to 60°S (ΔNd(NH− SH)). As in I. L. McCoy et al. (2020), the uncertainty inMODIS ΔNd(NH− SH) is
estimated as the 95% confidence on the interannual range of MODIS ΔNd(NH− SH).

Observations of LWP are taken from theMulti‐Sensor Advanced Climatology of LiquidWater Path (MAC‐LWP)
for the period 2000–2016 (Elsaesser et al., 2017). The cloud LWP is constructed from 7 sources of satellite
microwave data sampling different parts of the diurnal cycle at 0.25° spatial resolution. These samples are
aggregated to 1° and provide sampling of LWP throughout the diurnal cycle. Matchups to clear‐sky scenes from
MODIS are used to reduce cloud LWP bias in cases where clear‐sky is observed but non‐zero cloud LWP is
retrieved due to retrieval cross‐talk. MAC‐LWP is provided at monthly mean resolution and is only available over
ocean. We average MAC‐LWP data over global oceanic gridboxes for which rainwater contributes less to mean
LWP, since passive microwave radiometers have difficulty distinguishing rainwater from cloudwater (Elsaesser
et al., 2017). Gridboxes are only used in the average if the ratio of cloud LWP to total (rain and cloud) LWP
exceeds 0.75. Systematic uncertainty in area‐weighted mean LWP over the remaining domain is estimated to be
less than ±10%,since low frequency passive microwave radiation (used in the retrieval) is more sensitive to
integrated liquid mass and minimally sensitive to droplet sizes (Elsaesser et al., 2017). The resulting filtered mask
is also applied to the CAM6 PPE and GCM LWP fields for more fair comparison.

We need to quantify the relationship between changes in liquid cloud and changes in top of atmosphere flux to
constrain aerosol forcing. We examine clear‐sky and all‐sky shortwave flux at top of atmosphere contained in the
Clouds and the Earth's Radiant Energy System (CERES) Ed 4.1 Energy Balanced And Filled (EBAF) data
product for the period 2000–2016 (Loeb et al., 2018). We calculate all‐sky and clear‐sky TOA albedo (α and
αclear) and the susceptibility of α to LWP using CERES α and MAC‐LWP over the extratropics (15°N–70°N)
(Figure S3 in Supporting Information S1). Given the relatively low uncertainty of around 3% in the observed
shortwave TOA CERES fluxes (3 Wm− 2 relative to an average flux of 98 Wm− 2) (Loeb et al., 2018), we assume
that the systematic uncertainty associated with the susceptibility of α to LWP is driven by uncertainty in LWP and
set to ±10%.

3. Results
Before investigating how ERFaci depends on parameterized processes in the CAM6 PPE, we characterize the
prior range of ERFaci. The prior range from the PPE is rather narrow compared to the existing observational prior
(Bellouin et al., 2020) and is predicted to be between − 2.72 and − 1.31 W/m2 at 95% confidence bounds. This
range is based on an emulator trained on the PPE and emulating 1M model variants. Having characterized this
prior range, we will examine how ERFaci variability within the PPE is driven by cloud, precipitation, and
radiative processes.

3.1. Cloud Microphysical Response

Nd is the key microphysical variable of state setting aerosol‐cloud interactions (Wood, 2012). We first examine
how the PI to PD change in this quantity (ΔNd(PD− PI)) is constrained by observations.

There is no observational record of PI Nd. Instead, we leverage unperturbed aerosol conditions that occur in the
PD as a proxy for the PI state. The pristine Southern Ocean is seen as a good proxy for the PI state as it remains
almost unchanged from PI to PD (Hamilton et al., 2014). Overlap between PD and PI Nd is seen across the
Southern Hemisphere of the CAM6 PPE (Figure S4 in Supporting Information S1).

Previous studies have used the PD hemispheric contrast in Nd to constrain the anthropogenic perturbation in Nd

relative to the PI period (I. L. McCoy et al., 2020). The Northern hemisphere is the region where most aerosol
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pollution is emitted and it drives the majority of PD‐PI change inNd (Feng & Ramanathan, 2010). We find that the
difference in marine Nd between 30°N to 60°N and 30°S to 60°S (ΔNd(NH− SH)) positively correlates with global
area‐weighted oceanic mean of ΔNd(PD− PI) from the CAM6 PPE (Figure 1a). This positive correlation is also
present in the HadGEM‐UKCA PPE (I. L. McCoy et al., 2020; Yoshioka et al., 2019).

MODIS observes ΔNd(NH− SH) to be between 35 cm
− 3–49 cm− 3 assuming 95% interannual uncertainty following

previous literature (I. L. McCoy et al., 2020). The uncertainty of Nd from 1 by 1°MODIS retrievals is estimated to
be 54% assuming random errors for instrument uncertainty (D. P. Grosvenor et al., 2018). The systematic un-
certainty and random uncertainty of hemispheric contrast in Nd is reduced due to three reasons: (a) the random
uncertainty in Nd is reduced once it is averaged over 30–60 latitude range over 12 years from 2003 to 2015. (b) the
tropics, where Nd calculation is highly unreliable due to high cloud heterogeneity and small cloud fraction
in cumulus‐dominated regions (D. Grosvenor & Wood, 2014; D. P. Grosvenor et al., 2018; Gryspeerdt
et al., 2022), is excluded from our analysis. (c) the difference between hemispheres reduces systematic biases
(D. P. Grosvenor et al., 2018; I. L. McCoy et al., 2020). The prior distribution of the change in Nd over global
oceans (ΔNd(PD− PI)) from the emulator is 3.58 cm− 3 to 19.79 cm− 3 at 95% confidence (Figure 1b). The posterior
distribution of ΔNd(PD− PI), after discarding emulates whose ΔNd(NH− SH) are inconsistent with MODIS obser-
vations, is between 7.12 cm− 3 and 18.94 cm− 3 at 95% confidence (Figures 1a and 1b). This equates to a 27%
reduction in range and a 8% increase in the median.

Figure 1. (a)ΔNd(NH− SH) versus Nd(PD− PI) sampled from GP emulators in the CAM6 PPE. Density is shown as orange shading. ΔNd(NH− SH) is calculated as the
difference in annual, area‐weighted mean Nd over the ocean between 30°N to 60°N and 30°S to 60°S (averaging boundaries shown as vertical dashed lines in Figure S4
in Supporting Information S1). ΔNd(PD− PI ) is calculated as the global change in oceanic Nd between the PI and PD. MODIS ΔNd(NH− SH) is shown as the vertical shaded
bar. (b) The PDF of ΔNd(PD− PI) from PPE members (histogram), the GP emulator prior (blue), and observationally constrained posterior (red). (c) Emulated
ΔLWP(PD− PI) versus PD LWP (color shading) and CMIP6 GCMs (color shapes). The color shading shows emulated ΔNd(PD− PI) binned by ΔLWP(PD− PI) and PD LWP.
Gray contours indicate the density of emulates. Observed LWP from MAC‐LWP for the period 2000–2016 is shown as gray shaded bar on the ordinate. (d) The
distribution of ΔLWP(PD− PI) from the PPE members (histograms), the GP emulator prior (blue line) and the GP posterior constrained by MAC‐LWPmeasurements and
Nd from satellite retrievals (red line).
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The CAM6 PPE explores parametric uncertainty, but does not consider how differences in the underlying model
structure may contribute to uncertainty in ΔNd(PD− PI). It is important to examine multiple GCMs to compare
structural differences. I. L. McCoy et al. (2020) examined several Aerocom models as well as a HadGEM‐UKCA
model PPE. The emergent relationship between hemispheric contrast and PI‐PD difference in Nd appeared across
these models and the constraint based on the HadGEM‐UKCA PPE (8–24 cm− 3) is close to the constraint based
on the CAM6 PPE. The CMIP6 models examined in this study do not include cloud top Nd outputs, but our
agreement with previous work suggests that the hemispheric contrast is robust across model structures. The
MODIS Nd is outside of the PPE range in some parts of the 30–60° region used to calculate ΔNd(NH− SH) (Figure
S4 in Supporting Information S1). This is consistent with known biases in the default version of CAM6 (I. L.
McCoy et al., 2021; Zhou et al., 2021) and other GCMs (I. L. McCoy et al., 2020) and may reflect missing
processes in CAM6 in some regions. However, the ΔNd(PD− PI) of the CAM6 PPE constrained by the MODIS Nd

are similar to the HadGEM‐UKCAmodel PPE (I. L. McCoy et al., 2020) suggesting that despite differing abilities
to match the zonal structure of Nd, this constraint is able to effectively constrain ΔNd(PD− PI).

3.2. Cloud Adjustment

Having examined constraints on ΔNd(PD− PI), we turn our attention to adjustments in the amount and optical
thickness of liquid cloud as characterized by LWP. The response of LWP to increased Nd (e.g., the last term in
Equation 1) based on process understanding is uncertain in sign (Bellouin et al., 2020). An important caveat of our
analysis is that entrainment feedback to evaporation and sedimentation is not explicitly parameterized in CAM6,
similar to other GCMs (D. T. McCoy et al., 2020). Implementation of a drop‐size dependent evaporation and
entrainment parameterization in a related GCM (CAM5.3‐Oslo) did not strongly affect adjustment strength
(Karset et al., 2020) and recent surveys of GCMs (including CAM6) find that despite agreeing with observational
studies of LWP and Nd inferring size‐dependent evaporation and entrainment (Gryspeerdt et al., 2019; Smalley
et al., 2024; Zhang & Feingold, 2023), aerosol‐cloud adjustments are still dominated by precipitation suppression
(Mülmenstädt et al., 2024). Additional analysis is necessary to evaluate the representation of this process in
CAM6, and more broadly across GCMs, but is beyond the scope of our study.

A positive correlation is found between changes in area‐weighted mean of global oceanic LWP between the PI
and PD (ΔLWP(PD− PI)) and area‐weighted oceanic mean of PD LWP (Figure 1c). The positive correlation is a
direct consequence of precipitation efficiency in liquid clouds. The relationship between Nd, LWP, and precip-
itation efficiency is shown in Figure S6 in Supporting Information S1. Here, we consider precipitation efficiency
in terms of the ability of cloud to generate a given precipitation rate (Li et al., 2022). PPE members with lower
precipitation efficiency require a larger LWP to balance condensation and precipitation (Figure S6b in Supporting
Information S1), but also create larger adjustments in LWP to changes in Nd (Figure 1c). This can be shown easily
based on a simple steady state model of a single‐layer cloud balancing condensation, evaporation, and
autoconversion‐driven precipitation (Jing et al., 2019; Khairoutdinov & Kogan, 2000; Michibata & Take-
mura, 2015). A step by step derivation is given in Text S4 in Supporting Information S1.

The constraints from MODIS Nd in Section 3.1 have left a subsample of emulates. In this section, we further
constrain the subsample by utilizing observed PD LWP to infer the possible range of unobservable ΔLWP(PD− PI)
from this subsample. The posterior distribution of ΔLWP(PD− PI) is 1.44 g/m

2 to 4.33 g/m2 at 95% confidence
relative to a prior distribution of 1.01 g/m2 to 5.02 g/m2 at 95% confidence (Figure 1d). This is a 28% reduction in
range and 11% increase in the ΔLWP(PD− PI) median.

To examine how prevalent the positive correlation between mean state LWP and LWP response to aerosol
observed in the PPE is across model structure, we contrast the PPE against CMIP6 GCMs. Several of the CMIP6
GCMs with available model output (Table S4 in Supporting Information S1) agree with the PPE in predicting
larger values of ΔLWP(PD− PI) for larger PD LWP (Figure 1c). This is consistent with the common representation
of autoconversion as a power law across GCMs (Jing et al., 2019; Khairoutdinov & Kogan, 2000; Michibata &
Takemura, 2015; D. T. McCoy et al., 2020). CESM2 and CanESM5 are well within the PPE spread. GFDL‐CM4
and HadGEM3‐GC31‐LL show relatively smaller change in LWP compared with the CAM6 PPE, but still follow
the same general pattern of larger LWP adjustment covarying with larger PD LWP. The remaining GCMs show
near‐zero change in LWP in response to aerosol. Among those models with near‐zero LWP adjustment, CNRM‐
CM6‐1, CNRM‐ESM2‐1 and IPSL‐CM6A‐LR only consider first aerosol indirect effect and don't include
aerosol‐cloud adjustments (Lurton et al., 2020; Michou et al., 2020). We view the behavior of other CMIP6
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GCMs as broadly supportive of precipitation efficiency driving relationships between PD LWP and LWP ad-
justments in GCMs where precipitation‐suppression adjustments are permitted in the model physics. When size
dependent evaporation and entrainment is explicitly parameterized in model structures, the positive correlation
between LWP and ΔLWP(PD− PI) might be less apparent. However, GCMs with size‐dependent evaporation and
entrainment parameterized or represented tend to predict ΔLWP(PD− PI) > 0 despite agreeing with observations of
size‐dependent evaporation and entrainment (Karset et al., 2020; Mülmenstädt et al., 2024). It is difficult to
develop a more direct comparison between the GCMs in Figure 1c and the PPE because Nd was not available for
all these models.

3.3. Radiative Response

We examined ΔNd(PD− PI) and ΔLWP(PD− PI) in Sections 3.1 and 3.2. To constrain aerosol radiative forcing we
need to constrain how radiation responds to ΔNd(PD− PI) and ΔLWP(PD− PI). At fixed LWP, the susceptibility of α
to changes in Nd (∂α/∂Nd) tells us about how microphysical changes drive IRFaci. Here, we also examine α
susceptibility to changes in LWP (∂α/∂LWP), which tells us about how the radiative effect scales with the
magnitude of macrophysical adjustments in liquid condensate.

∂α/∂LWP is calculated by regressing observations of α on LWP. To minimize the effect of near‐horizon solar
zenith angles on α (Liou, 2002; D. T. McCoy et al., 2018) we conduct our analysis of α in the summertime (JJA)
over open ocean in the Northern Hemisphere (15°N–70°N). ∂α/∂LWP is calculated for PPE members and for the
observations (Figure S3 in Supporting Information S1). More details of ∂α/∂LWP calculation can be found in Text
S5 in Supporting Information S1.

A negative correlation is found between ∂α/∂LWP and PD LWP across the PPE (Figure 2a). This relationship
follows our expectations from radiative transfer as clouds become radiatively saturated with increasing LWP,
driving a negative correlation. Because LWP is area mean and not in‐cloud, this effect is driven by both saturation
in optical depth and in areal coverage (cloud fraction, CF). α scales approximately linearly with cloud area
fraction (Bender et al., 2016). α also saturates as in‐cloud LWP (LWPc) increases. This result is consistent with
previous work examining CMIP5 and CMIP6 models (D. T. McCoy et al., 2022).

The emergent relationship between LWP and ∂α/∂LWP can be explained using a simple conceptual model
assuming conservative scattering. For an overcast region LWP can be written as a function of cloud optical
thickness (τ), cloud top effective radius at cloud top (re), and water density (ρw)

LWP =
5
9
ρwτre (2)

Cloud albedo (αcld) can be related to τ assuming conservative scattering equation (Lacis & Hansen, 1974) as

αcld ≈
τ

τ + c
(3)

where c is a constant. Here, c is set to 7 (Petty, 2006). Combining these equations yields an equation for the
dependence of cloudalbedo on LWP for overcast regions

αcld ≈
9
5LWP

9
5LWP + cρwre(h)

(4)

and all‐sky albedos (α) can be calculated for different cloud fractions as

α=αcld ⋅CF + (1 − CF) ⋅αclear (5)

The cloud fraction of the idealized single‐layer cloud is varied from 0.2 to 1.0 and αclear = 0.1 over ocean. The
predicted dependence of ∂α/∂LWP on mean‐state LWP by this simple model qualitatively agrees with the
emergent behavior from the CAM6 PPE and CMIP6 GCMs (Figure 2a). The relationship asymptotes to a
different value at high LWP because the simplified model shown above only contains a homogeneous and
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radiatively efficient liquid cloud rather than a population of different cloud thicknesses. Amore complex radiative
model could be created and matched to the PPE behavior, but the physical insight related to α susceptibility
provided is the same. CMIP6 GCMs agree with the PPE and we believe the ∂α/∂LWP saturation with LWP is a
general behavior across model structures. ∂α/∂LWP calculated from CERES and MAC‐LWP also agrees with the
PPE in the lower part of Figure 2a.

3.4. Buffering of Adjustment Forcing Due To Precipitation Efficiency and Radiative Susceptibility

We examine ERFaci across the PPE stratified by ΔNd(PD− PI) and ΔLWP(PD− PI) (Figure 2c). The IRFaci
contribution to ERFaci can be seen in the relationship between ΔNd(PD− PI) and ERFaci emerging across the PPE.
Larger ΔNd(PD− PI) corresponds to more negative ERFaci, consistent with our expectations (Twomey, 1977). With
the narrowed ΔNd(PD− PI) range constrained by MODIS Nd in Section 3.1, ERFaci is estimated to be between
− 2.72 W/m2 to − 1.31 W/m2 at 95% confidence bounds (Figure 3a). The ERFaci range shifts to more negative
values with ΔNd(PD− PI) constrained to larger values, consistent with Twomey effect.

We expect a larger change in LWP would also lead to stronger aerosol cooling as the increased cloud thickness
and cloud coverage would reflect more shortwave radiation back to space, resulting in a cooling effect. However,
larger ΔLWP(PD− PI) does not correspond to stronger ERFaci in the PPE (Figure 2c). There is a weak relationship

Figure 2. (a) Present day radiative sensitivity to LWP (∂α/∂LWP) emulated from the PPE (color shading) and from CMIP6 GCMs (color shapes). Emulate density is
shown in orange shading. Observations from MAC‐LWP are shown as a vertical gray shaded bar and ∂α/∂LWP calculated from MAC‐LWP and CERES all‐sky TOA
albedo α) is shown as a horizontal gray shaded bar. Calculations from a simple radiative transfer model assuming conservative scattering and fixed cloud fractions from
0.2 (far left) to 1.0 (far right) are shown as gray lines. (b) Emulated ∂α/∂LWP versus ΔLWP(PD− PI) (color shading) and CMIP6 GCMs (color shapes). Density of
emulates is indicated with gray contours. ∂α/∂LWP calculated from MAC‐LWP and CERES α is shown as a horizontal gray shaded bar. Constrained ΔLWP(PD− PI)
propagated from (a) is shown as a vertical gray shaded bar. (c) Emulated ERFaci versus ΔNd(PD− PI) colored by ΔLWP(PD− PI). (d) Same with (c), but colored by
ΔLWP(PD− PI) scaled byα susceptibility to LWP (ΔLWP(PD− PI) ⋅ ∂α/∂LWP).
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between ΔLWP(PD− PI) at lower ΔNd(PD− PI) (<10 cm
− 3). At higher ΔNd(PD− PI) (>10 cm

− 3), larger ΔLWP(PD− PI)
correlates with weaker ERFaci. The result is the opposite from what has been found by Zhao et al. (2024). In Zhao
et al. (2024), cloud physics parameters that are important to ice processes are perturbed. Models with weaker ice
production processes tend to simulate more LWP as well as stronger (more negative) ERFaci. This is because ice
clouds are optically thinner and reflect less solar radiation back to space than liquid water clouds (Loh-
mann, 2017). In the CAM6 PPE, in addition to perturbing ice processes, liquid processes, convection, and aerosol
processes that are important to ACI are also perturbed (Table S1 in Supporting Information S1). We find that
parameters associated with rain processes (Khairoutdinov & Kogan, 2000) dominate the cloud liquid amount in
liquid cloud, while in Zhao et al. (2024) the mean‐state LWP in mix‐phase cloud is driven by perturbations to ice
processes.

Constraining ΔLWP(PD− PI) based on MAC‐LWP (Section 3.2) does not change the estimated ERFaci range from
its prior distribution (Figure 3a). By combining the constraints from ΔNd(PD− PI) and ΔLWP(PD− PI), ERFaci is
estimated to be between − 2.77W/m2 to − 1.39W/m2 at 95% confidence bounds, which equates to 2% reduction in
range compared to the prior distribution (Figure 3a). This small reduction in range is surprising given the large
potential contribution of aerosol‐cloud adjustments to enhancing ERFaci (Bellouin et al., 2020).

Larger ΔLWP(PD− PI) does not correspond to stronger ERFaci because of compensation by lower ∂α/∂LWP
(Figure 2b). Larger ΔLWP(PD− PI) is accompanied with lower ∂α/∂LWP due to (a) the underlying negative cor-
relation between ∂α/∂LWP and PD LWP (Figure 2a) driven by radiative saturation and (b) the positive correlation
between ΔLWP(PD− PI) and PD LWP (Figure 1c) driven by precipitation efficiency (Figure S6 in Supporting
Information S1), which results in a negative correlation between ΔLWP(PD− PI) and ∂α/∂LWP (Figure 2b). As a
result, more negative ERFaci is expected with a larger change in ΔNd(PD− PI) while ERFaci is relatively insensitive

Figure 3. (a) The distribution of emulated ERFaci prior (gray shading), and observationally constrained posterior at their 95%
confidence intervals fromMODISNd only (red), MAC‐LWP only (purple), calculated dα/dLWP only from CERES radiative
fluxes and MAC‐LWP (green), MODIS Nd and MAC‐LWP (blue), and the posterior from all three lines of observational
constraints (black). (b) Changes in oceanic Nd between the PI and PD (ΔNd(PD− PI)) and hemispheric contrast in Nd
(ΔNd(NH− SH)) positively correlate across CAM6 PPE. (c) Radiative sensitivity (∂α/∂LWP) and ΔLWP(PD− PI) anticorrelate
across CAM6 PPE as a function of mean‐state LWP (PD LWP)).
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to ΔLWP(PD− PI) due to the buffering between LWP adjustments (ΔLWP(PD− PI)) and radiative sensitivity to LWP
(∂α/∂LWP) driven by precipitation efficiency and radiative saturation. This effect also appears to manifest itself in
the prior distribution of ERFaci in the PPE, which is relatively narrow (Figure 3a: − 2.72 W/m2 to − 1.31 W/m2 at
95% confidence) and is in fact narrower than the expert‐predicted range in Bellouin et al. (2020). Parameter
combinations do exist where ERFaci can be relatively strong when both ∂α/∂LWP and ΔLWP(PD− PI) are large
(Figure 2b). When this compensating effect is accounted for and ΔLWP(PD− PI) is scaled by ∂α/∂LWP, then a
dependence of ERFaci on adjustments emerges (Figure 2d). We thus add ∂α/∂LWP as another constraint on
ERFaci. However, the ERFaci constraint is still minimal when adding ∂α/∂LWP as an observational constraint
(Figure 3a). This is because the range of ΔLWP(PD− PI) is wide and therefore the scaled ΔLWP(PD− PI) by α
susceptibility (∂α/∂LWP * ΔLWP(PD− PI)) is too wide to provide a tight constraint on ERFaci (Figure 2b). If a
narrower range of ΔLWP(PD− PI) can be achieved with more accurate LWP measurements, we would expect a
tighter of ERFaci constraints.

We compare CMIP6 GCMs with the CAM6 PPE to investigate whether this buffering effect can be seen across
model structures. Except for CESM2 and CanESM5, none of the CMIP6 GCMs are consistent with the CAM6
PPE. The buffering between LWP adjustment and radiative sensitivity to LWP might be specific to the CAM6
model setup but similar buffering may occur around the default configuration of each GCM. The number of
GCMs with the necessary data to perform this analysis and that permit liquid cloud adjustments is small‐making it
difficult to systematically explore this behavior in the same way that we are able to in CAM6 using the PPE
approach.

As discussed in Section 3.2, the sedimentation‐evaporation feedback might possibly alter the positive correlation
between PD LWP and ΔLWP(PD− PI) in the CAM6 PPE through depleting cloud liquid water. The buffering effect
might be suppressed when the sedimentation‐evaporation feedback is included in the CAM6 PPE.

4. Conclusions
In this work we probe how different parameterized processes interact and imprint on the effective radiative
forcing due to aersol‐cloud interactions (ERFaci). In our analysis we utilize remote sensing observations to
constrain ERFaci. We apply a sequence of constraints designed to target processes contributing to ERFaci
(Equation 1).

Hemispheric contrast in Nd is utilized to constrain the PI to PD change in Nd. Based on the satellite‐derived
ΔNd(NH− SH) and the positive correlation between ΔNd(NH− SH) and ΔNd(PD− PI) from the CAM6 PPE
(Figure 3b), the global area‐weighted oceanic ΔNd(PD− PI) is constrained to be between 7.12 cm

− 3 and 18.94 cm− 3

at 95% confidence. This range is reduced by 27% (from 3.58 cm− 3–19.79 cm− 3 at 95% confidence) and themedian
shifts from 11.68 cm− 3–12.60 cm− 3 (Figure 1b) and is consistent with previous studies (I. L. McCoy et al., 2020).

We combine microwave radiometer remote sensing of LWP with satellite retrievals of Nd to constrain aerosol‐
cloud adjustments in liquid cloud. The range of constrained ΔLWP(PD− PI) decreases 28% (1.01 g/m2 to
5.02 g/m2 decreases to 1.44 g/m2 to 4.33 g/m2). The median increases 11% from 2.25 to 2.50 g/m2 (Figure 1d).

Finally, we examine the ∂α/∂LWP as a constraint on ERFaci. We find that albedo susceptibility across the PPE
and CMIP6 GCMs is strongly dependent on mean‐state LWP (Figure 2a). ERFaci is constrained by combining all
lines of observations. The range of global, annual mean ERFaci is reduced by 2% (− 2.72 W/m2 to − 1.31 W/m2

decreases to − 2.76 W/m2 to − 1.38 W/m2). The median shifts from − 1.97 W/m2 to − 2.01 W/m2 (Figure 3a).

The constraint on global annual mean ERFaci (2% reduction in range and 2% decease in median) is relatively
small compared to the constraints on ΔNd(PD− PI) (27% reduction in range and 8% increase in median), and
ΔLWP(PD− PI) (28% increase in range and 11% increase in median) developed in our study. We argue that the
relative scale of this constraint is due to interactions between precipitation efficiency and radiative susceptibility
to LWP. PPE members with lower precipitation efficiency tend to have higher LWP in the mean state(Figure S6b
in Supporting Information S1) as well as larger LWP adjustments to aerosols (Figure 1c). High LWP in these PPE
members also results in the members being closer to radiative saturation and having a weaker radiative response to
changes in LWP (Figure 3c). The interplay of these processes results in a washing out of the radiative effect from
liquid cloud adjustments due to the buffering of the radiative effect by reduced radiative sensitivity. Because of
this buffering effect, the prior range of the CAM6 PPE ERFaci is narrower compared with the estimate from
Bellouin et al. (2020). The underlying processes driving this buffering are not particularly unique to CAM6 and
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may manifest itself in other GCMs where precipitation suppression is parameterized. Consideration of this effect
may prove useful for GCM development efforts and in understanding the representation of historical aerosol
cooling in GCMs.

Data Availability Statement
Cloud droplet number concentration from MODIS is available at online in NetCDF format from the Centre for
European Data Analysis (CEDA) (D. Grosvenor & Wood, 2018). MAC‐LWP is available through the Goddard
Earth Sciences Data and Information Services Center (GES DISC, current hosting: http://disc.sci.gsfc.nasa.gov)
Radiative fluxes from CERES is available through the CERES subsetting tool (CERES EBAF Ed4.2, 2023).
CMIP6 data is available through the Earth System Grid Federation (CMIP6 Earth System Grid Federation, 2023).
PPE output is available online (Eidhammer, 2023).
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